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A subset of a finite-dimensional real vector space is called evenly convex if it is the intersection of a
collection of open halfspaces. The study of such sets was initiated in 1952 by Werner Fenchel, who
defined a natural polarity operation and mentioned some of its properties. Over the years since then,
evenly convex sets have made occasional appearances in the literature but there has been no systematic
study of their basic properties. Such a study is undertaken in the present paper.
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Introduction

Throughout this paper, E will denote a real vector space of finite dimension d ≥ 2,
equipped with a Euclidean norm. It is precisely the closed convex subsets of E that
can be represented as intersections of closed halfspaces. Each open convex set can be
represented as an intersection of open halfspaces, but the sets so representable (here
called evenly convex or simply e-convex) form a much broader class that includes also
the closed convex sets and many sets that are neither open nor closed. For example, if
B is the closed unit ball {x ∈ E : ‖x‖ ≤ 1} of E and C is an arbitrary set such that
intB ⊂ C ⊂ B, then C is evenly convex.

In 1952, Fenchel [6] defined the class of evenly convex subsets of E and observed that
this class admits a natural polarity operation whose properties are similar to those of the
standard polarity that plays such an important role in the study of closed convex sets.
Since the appearance of Fenchel’s paper in 1952, the notion of even convexity has appeared
sporadically for almost thirty years, precisely in the following connections: in 1968, the
maximal separation theorems of Klee [10]; in 1970 and 1972, the linear range-domain
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implications of Schröder [17, 18]; in 1984, the partial convex polyhedra of Rockafellar (p.
510 of [16]); after 1980, evenly convex sets have been used more extensively in quasiconvex
programming, permitting to define the evenly quasiconvex functions that play a relevant
role in the theory of conjugation for quasiconvex functions. These concepts, as well as
some properties of e-convex sets, have been considered both in finite-dimensional spaces,
precisely for conjugation of quasiconvex functions by Martinez-Legaz in 1983 [13] and
by Passy and Prisman in 1984 [14], and by Goberna, Jornet and Rodriguez in 2003 [7]
for various results on sets of solutions of linear systems containing strict inequalities,
and in infinite-dimensional spaces by Penot and Volle in 1990 [15] and by Daniilidis and
Martinez-Legaz in 2002 [4]. However, even in finite-dimensional spaces, many of the basic
properties of evenly convex sets have not appeared in the literature, and it is our intention
to present those properties here.

As the term is used here, a cone is a subset K of E such that K +K ⊂ K, ]0,∞[K ⊂ K,
and K includes a nonzero point of E. Thus each cone K is convex, has the origin 0 as
its apex, and is a union of closed or open rays issuing from 0. (Note that the origin is
not required to belong to K.) The term semispace is used for a cone which is maximal
among cones omitting their apex 0 (i.e. a cone K such that for any x ∈ E \ {0} exactly
one between x and −x belongs to K). Special attention is paid here to the even convexity
of cones and also to the even convexity of bounded sets.

Our section headings are as follows:

1. Exposed Points and Extreme Points

2. k-Sections

3. k-Projections

4. Binary Operations and Polarities

Section 1 gives some hints on the shape of e-convex sets, presenting some properties that
e-convex sets or their boundaries must enjoy. Sections 2 and 3, which contain the main
results, are devoted to the study of the relationship between e-convexity of sets and e-
convexity of their sections or linear projections, providing some characterizations of sets
which admit only e-convex sections or projections. In the last section some natural ways
of combining e-convex sets are defined via some "meet" and "join" (binary) operations,
which moreover prove to be dual operations with respect to Fenchel’s polarity.

1. Exposed Points and Extreme Points

As the term is used here, an exposed face of a closed convex subset X of E is a nonempty
intersection of the form X ∩H where H is a hyperplane in E that supports but does not
contain X. An exposed point of X is a point p such that {p} is an exposed face. Now
suppose that X is a full-dimensional closed convex subset of E, and C = X \ Y where
Y is a subset of the boundary of X. It follows immediately from the definition that C
is e-convex if and only if Y is the (possibly empty) union of some collection of exposed
faces of X. In particular, the even convexity of X is preserved by the deletion from X of
an arbitrary subset of expX, the set of all exposed points of X.

There is a particular subset G of R2 which, along with its close relatives, forms the basis
of several examples that appear in later sections. Hence it seems appropriate to describe
the set here.
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Example 1.1 (Basic Example). Let R be a closed rectangle in R
2 and D a closed

circular halfdisk that is disjoint from R’s interior and whose diameter coincides with one
of the sides of R, say the segment [p, q]. Set

G = (R ∪D) \ {p, q}.

Then G is not e-convex, because each open halfspace that contains G must also contain
the two points p and q of G’s complement. The points p and q are extreme points of G’s
closure but they are not exposed.

Note that this example, as well as the examples in the nextfollowing sections that are
based on it, can be made locally polytopal except at the points p and q, i.e. the set G can
be modified in such a way that each point different from p and q admits a neighborhood
whose intersection with G is a polytope.

Because of the close relationship of e-convexity to exposed faces, and the relationship of
exposed points to extreme points, we digress somewhat to summarize some aspects of
that relationship. This summary seems worth including because the notion of exposed
point, which is essential here, is a natural sharpening of the much more familiar notion
of extreme point.

Let extX denote the set of all extreme points of X. Then of course expX ⊂ extX, and
when X is compact a theorem of Straszewicz [19] shows that expX is dense in extX. (See
[1], [5], [8], and [12] for sharpenings of this result.)

In the case of a polytope, each extreme point is exposed, and when X is a 2-dimensional
convex set there are at most countable many nonexposed extreme points. For each closed
convex subset X of E (in any dimension), the set extX is a Gδ-set, hence topologically
complete, and many examples suggest the conjecture that expX must be not merely
dense in extX but also a residual subset of extX and hence “most� of extX in the sense
of the Baire category theorem. However, this conjecture was disproved by an ingenious
counter-example of Corson [3]. Concerning the Borel type of the set expX, a result of [2]
shows that when d = 2 the set expX is a Gδ-set; when d = 3, expX is the union of a Gδ

with a set that is the intersection of a Gδ and an Fσ; and for d ≥ 3, expX is the union of
a Gδ, an Fσ, and d− 2 sets each of which is the intersection of a Gδ and an Fσ.

2. k-Sections

As the term is used here, a k-section of a subset X of E is the intersection of X with a
flat (affine subspace) of dimension k ≥ 1 in E. We begin by noting without proof some
properties of closedness and of openness of convex sets with respect to the formation of
sections. These should be compared with Corollary 2.3 below.

Proof of the following basic fact is left to the reader.

Proposition 2.1. Suppose that C is a d-dimensional convex subset of E, that 1 ≤ k ≤ d,
and that q ∈ E. If C ∩ M is open in M for every k-flat M that contains q, then C is
in fact open in E. If k ≥ 2 or q is interior to C, then the result holds also with “open�
replaced by “closed.�
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Theorem 2.2. Suppose that C is a convex subset of E, 0 /∈ C, and S is a covering of C
by linear subspaces of dimension ≥ 2. Suppose also that each S ∈ S includes an interior
point pS of C. Then the following two conditions are equivalent:

(1 ) there exists a hyperplane H that contains 0 and misses C;

(2 ) for each S ∈ S there exists a linear subspace LS of S such that LS ∩ C = ∅ and
dimLS = (dimS)− 1.

Proof. (1) implies (2). For H as in (1), let LS = S ∩H for each S ∈ S.

(2) implies (1). Let F denote the set of all linear functionals f : E −→ R such that
fC ⊂ [0,∞[. Since F is convex and finite-dimensional, there is a functional r that
belongs to the relative interior of F . We will show that rC ⊂ ]0,∞[, whence r−1(0) is a
hyperplane that contains 0 and misses C.

Consider an arbitrary point x ∈ C, let S ∈ S be such that x ∈ S. Let pS ∈ S ∩ (intC)
and let LS be as described in (2). Since LS ∩ C = ∅, a standard separation theorem
yields a hyperplane HS that contains LS and misses intC. Hence there exists fx ∈ F such
that HS = f−1

x (0) and fx(pS) > 0. The fact that fx(x) > 0 then follows, for fx(x) ≥ 0,
x ∈ S \LS, and (since LS is of codimension 1 in S) pS is a nonnegative combination of x
and a point of LS; hence fx(x) = 0 implies fx(pS) = 0, a contradiction.

Now since fx ∈ F and r ∈ relintF , there exists gx ∈ F and λx ∈]0, 1[ such that r =
λxfx + (1 − λx)gx. Since fx(x) > 0 and gx(x) ≥ 0, it follows that r(x) > 0, and since x
was an arbitrary point of C we conclude that rC ⊂ ]0,∞[.

Corollary 2.3. Suppose that C is a convex subset of E, q ∈ E, and C ∩M is e-convex
for each k-flat M that contains q. If k ≥ 3, or q ∈ intC and k ≥ 2, then the set C is
e-convex.

Proof. We want to show that each point y of E \ C lies in a hyperplane that misses C.
Since everything is invariant under translation, we may assume that y = 0.

When k ≥ 3, let S denote the collection of all k-flats that contain the set {q, y} and
intersect the set intC. Note that C is covered by S, and it follows from the theorem that
the point 0 (= y) belongs to a hyperplane missing C.

When q ∈ intC and k ≥ 2, we can apply Theorem 2.2 to the collection of all 2-flats that
contain {q, y}.

Corollary 2.4. If C is a cone with dimC ≥ 3 and C is not e-convex, then there is a
3-dimensional subspace M such that C ∩M is not e-convex.

Proof. Apply Corollary 2.3 with q = 0 and k = 3.

Where “3-dimensional� appears in Corollaries 2.3 and 2.4, it cannot be replaced by “2-
dimensional�, as is shown, respectively, by the following two examples.

Example 2.5. Start with a copy of the set G described in Example 1.1. Suppose this
copy lies in xyz-space, in the plane given by z = 1, and call the copy G1. Then set

C1 = conv(G1 ∪ [0, p[∪[0, q[).
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The convex set C1 is not e-convex, because G1 is a 2-section of C1. However, each 2-
section of C1 through the origin consists of a single point, a segment, a closed triangle, or
a triangle with one or two of its vertices missing, and each of these sections is e-convex.

Example 2.6. Let C2 = ]0,∞[G1. Then C2 is a pointed cone with its apex missing, and
C2 is not e-convex. However, each 2-section of C2 through 0 is e-convex because each such
section consists of an open ray or of an open angle with its apex missing or of the union
of such an angle with one or both of its bounding open rays – and each of these sections
is e-convex.

Note, however, that 3 can be replaced by 2 in Corollary 2.4 when the cone includes its
apex. Then, in fact, having each 2-section through the apex e-convex implies that the
cone is closed (see Proposition 3.3).

3. k-Projections

As the term is used here, a k-projection of a subset X of E is a translate of a linear
projection of X into a k-dimensional subspace of E. We supply examples of bounded
e-convex sets that admit non e-convex projections and also examples of convex sets that
are not e-convex but of which all proper projections are e-convex.

Example 3.1. Start with the basic example G defined in Example 1.1. Enlarge G by
replacing its semicircular boundary arc Γ by half of a noncircular ellipse whose minor axis
is [p, q]. Then bend the semiellipse up (rotating around [p, q]) until its vertical projection
onto the plane of G is the semicircle Γ and call Γe the bent up semiellipse. Calling again
R the rectangle used in the construction of G, set

C3 = conv(R ∪ Γe) \ {p, q}.

Because of the bending, each of p and q now lies in a plane disjoint from C3, so C3 is
e-convex. Of course, its projection G is not e-convex.

Example 3.2. Suppose that G lies in the xy plane of the xyz space: consider the capped
cylinder generated by a complete rotation ofG∪{p, q} about its (unique) axis of symmetry
and denote by J1 its half lying in the semispace of the negative z’s. Set J2 = (G× [0, 1])∪
({p, q}×]0, 1]). Finally, let C4 = J1∪J2. Then C4 is not e-convex, for G is a section of C4.
However, projecting C4 onto any plane produces a set that is closed and hence e-convex.

When we pass to cones, the situation changes. It is still true that e-convex cones may
admit projections that are not e-convex: consider, for instance, a closed circular cone K
in R

3, or the same cone but without its apex (0, 0, 0), supported by the plane xy at the
points of the positive x semiaxis. Its projection along the x axis into the plane yz is an
open halfplane together with the point (0, 0, 0), hence it is not e-convex. However, the
property of admitting only e-convex projections has strong implications on the shape of
the cone.

For cones which contain their apex the question is settled by known results, taking into
account the following

Proposition 3.3. A convex cone containing its apex is e-convex if and only if it is closed.
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Proof. Recall that, since everything is invariant under translation, we are assuming that
K has apex 0 and that we have to prove only that e-convexity implies closedness. Suppose
K is not closed and let x ∈ ∂K \K. Since K is assumed e-convex, K is openly separated
from x. Let fx a linear functional such that fx(x) = α > fxK, with α > 0, since 0 ∈ K.
x ∈ ∂K implies the existence of p ∈ K with fx(p) > 0, therefore fxK cannot be bounded
from above, a contradiction.

In fact Theorem 4.11 of [9] can be rewritten as

Proposition 3.4. Suppose that K is a d-dimensional convex cone containing its apex:
for any k, 2 ≤ k ≤ d − 1, K admits only e-convex k-projections if and only if it is a
polyhedral cone.

Therefore from now on we restrict our attention to convex cones omitting their apex. For
cones which are not e-convex we have the following

Theorem 3.5. Suppose that K is a convex cone that omits its apex 0, with dimK = d ≥
3. If K is not evenly convex then it admits a (d-1)-projection that is not evenly convex.
As a consequence, for any k, 2 ≤ k ≤ d− 1, it admits a k-projection that is not e-convex.

Proof. We start remarking that, since K is a convex cone omitting its apex 0, it is
contained in a semispace, and it is a semispace omitting 0 if and only if for every q ∈
R

d \ {0} exactly one between q and −q belongs to K.

Since K is not e-convex, there exists p, p /∈ K, such that K cannot be openly separated
from p, i.e. for any hyperplane H, p ∈ H ⇒ H ∩K 6= ∅. (p must belong to ∂K, hence H
is a linear subspace of Rd).

We split our proof in three cases.

1. Suppose p 6= 0 and −p /∈ K. In this case consider the line L =] −∞,+∞[ p and the
projection πp onto L⊥ along L . Since both p and −p do not belong to K, 0 /∈ πp(K).
Suppose πp(K) is e-convex: then there exists in L⊥ a hyperplane H1 (with dimH1 = d−2)
that openly separates πp(K) from 0. But thenH1+L, a hyperplane in R

d, openly separates
K from p, a contradiction.

2. If p = 0 or−p ∈ K but ∃ q ∈ R
d such that both q /∈ K and−q /∈ K, set L =]−∞,+∞[ q

and consider the projection πq along L onto L⊥ + p. p cannot belong to πq(K). In fact,
if p belonged to πq(K), for some λp ∈ R we should have p+ λpq ∈ K hence, immediately
if p = 0 and recalling that −p ∈ K if p 6= 0, we obtain λpq ∈ K, contradicting our
assumption. Now, if πq(K) were e-convex, we could openly separate it from p in L⊥ + p
by an hyperplane H1. Then H1 + L openly separates K from p, a contradiction.

3. If, for p and any other q ∈ R
d \ {0}, exactly one between the point and its opposite

belongs to K, K is a semispace without 0. We prove by induction on d that, for any
d ≥ 3, a d-dimensional semispace omitting 0 can be projected onto a (d− 1)-dimensional
semispace, containing 0, which obviously is not e-convex. Start with d = 3: there exist
linear functionals f1, f2, f3 on R

3 such that

K = {x ∈ R
3 :

(

f1(x) > 0
)

∨
(

f1(x) = 0 ∧ f2(x) > 0
)

∨
(

f1(x) = f2(x) = 0 ∧ f3(x) > 0
)

}.
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Let q ∈ K such that f1(q) = f2(q) = 0∧ f3(q) > 0. As before, call πq the projection along
L =]−∞,+∞[q onto L⊥. The set {x ∈ R

3 : f1(x) > 0} is projected onto its intersection
with L⊥, which is an open halfplane Q; the set {x ∈ R

3 : f1(x) = 0 ∧ f2(x) > 0} is
projected onto its intersection with L⊥, which is an open halfline in ∂Q, and the set
{x ∈ R

3 : f1(x) = 0 ∧ f2(x) = 0 ∧ f3 > 0} is projected onto 0. Hence πq(K) is, in R
2, a

semispace with 0, and is not e-convex. Now assume that every d-semispace K omitting 0
has an orthogonal projection πq such that πq(K) is a (d−1)-semispace with 0. LetK1 be a
(d+1)-semispace omitting 0: K1 is the union of an halfspace Q and a d-semispaceK ⊂ ∂Q
omitting 0. By the induction hypothesis, there exists q ∈ ∂Q such that the orthogonal
projection πq onto a (d− 1)-dimensional subspace of ∂Q sends K in a (d− 1)-semispace
with 0. πq projects Q in a d-dimensional halfspace Q1, whose boundary is πq(∂Q), and
K in πq(K); therefore πq(K1) = Q1 ∪ πq(K) is a d-semispace, with 0.

It is known that polyhedral cones admit only closed projections, hence cones that are
the intersection of a polyhedral cone with an open cone admit only e-convex projections.
This condition is weakened by the following

Theorem 3.6. Let K be a convex cone omitting its apex 0. If K is e-convex and polyhedral
at each of its points, then for any k, 2 ≤ k ≤ d− 1, all k-projections of K are e-convex.

Before proving Theorem 3.6, we state some new results about open separation of convex
cones, that are useful in the proof.

Lemma 3.7. Let K be a d-dimensional e-convex cone and L a linear j-dimensional sub-
space such that K ∩ L = ∅ but clK ∩ L 6= {0}. Then K is openly separated from L.

Proof. Since K and L are disjoint sets, there exists an hyperplane H that separates K
and L. Let p ∈ ∂K ∩L, p 6= 0: obviously p ∈ H, and since K is a convex cone with apex
0, H must be linear, hence must contain L. Now let F = H ∩ clK, an exposed face of
clK. Since p ∈ F and p /∈ K, and K is assumed to be e-convex, no point of K can belong
to F , hence K is contained in one of the two open halfspaces determined by H.

Lemma 3.8. Let K be a d-dimensional closed convex cone in E, such that K ∩ (−K) =
{0} and L a linear subspace such that L ∩ K = {0}. Then L lies in a hyperplane H
through 0 such that H ∩K = {0}, and hence K \ {0} is openly separated from L.

Proof. Since K is closed and pointed, there is a compact convex set K̃ such that 0 /∈ K̃
and K = [0,+∞[K̃. Since K̃ is compact and K̃ ∩ L = ∅, there is a ball B such that
(K̃+B)∩L = ∅. Now letK ′ = [0,+∞[(K̃+B), a pointed cone such that (K\{0}) ⊂ intK ′

and (K ′ \ {0}) ∩ L = ∅. The sets K ′ \ {0} and L are weakly separated by a hyperplane
H through 0: necessarily, L ⊂ H and H misses K \ {0}, so K \ {0} is openly separated
from L.

Lemma 3.9. Let K be a d-dimensional closed convex cone in E, and let M = K∩ (−K),
the lineality space of K. Suppose L is a linear subspace such that L ∩ K = {0}. Then
K \M is openly separated from L.

Proof. Obviously dimM ≤ d−dimL, since L∩M = {0}. Actually dimM < d−dimL for
otherwise E = M⊕L which is impossible becauseK∩L = {0}. Hence dim(M⊕L) ≤ d−1
and there is a nondegenerate subspace J (i.e. dimJ ≥ 1) such that E = M ⊕L⊕ J . Now
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consider the linear transformation Π whose kernel is M and range is L ⊕ J , projecting
all of E onto L⊕ J . The space L is mapped into itself by Π, and M is mapped into the
origin, so Π(K) is a closed convex pointed cone in L ⊕ J , with (Π(K)) ∩ L = {0}. By
Lemma 3.8, Π(K) \ {0} lies in an open halfspace Q in L⊕ J such that Q misses L. Then
Q+M(= Π−1(Q)) is an open halfspace in E such that Q+M contains K \M and misses
L and, being a subspace, L is contained in the hyperplane ∂Q+M bounding Q+M .

Remark 3.10. We can enumerate the different types of 2-dimensional cones that are not
e-convex, namely

a) angles (or halfplanes) containing their apex and omitting at least one of their boundary
rays;

b) halfplanes omitting their apex but containing one of their boundary rays.

Proof of Theorem 3.6. We proved in Theorem 3.5 that every d-dimensional convex
cone that is not e-convex admits a (d − 1) dimensional projection that is not e-convex,
hence we may assume that the cone admits a 2-projection that fails to be e-convex.

Let π : E → R
2 a projection such that π(K) is not e-convex. If π(K) belongs to case a) of

Remark 3.10, it is not polyhedral at its apex 0. Since 0 ∈ π(K), K ∩ π−1(0) 6= ∅ and by
Klee, ([9], Theorem 4.1) , the cone K cannot be polyhedral at any point of K ∩ π−1(0).

Now we want to prove that, if π(K) is as in b) of Remark 3.10, K cannot be evenly
convex.

Assume K is e-convex. Set L = π−1(0), hence K ∩ L = ∅.

If clK ∩ L 6= {0} by Lemma 3.7, we may produce an open halfspace Q that contains K
while its boundary ∂Q contains L.

If clK ∩L = {0}, by Lemma 3.9, we may produce an open halfspace Q such that L ⊂ ∂Q
and clK \M ⊂ Q (where M is the lineality space of clK). Set F = clK ∩ ∂Q, an exposed
face of clK. Since K is assumed e-convex, and 0 /∈ K, no point of F can belong to K,
but M is contained in F , hence K ⊂ clK \M ⊂ Q.

So in both cases we have an open halfspace Q such that K ⊂ Q and L ⊂ ∂Q.

dim(π−1(0)) = d− 2 implies that π(∂Q) is a line ∂Q1 in R
2, and K projects in one of the

open halfplanes determined in R
2 by ∂Q1. This contradicts the assumption that π(K) is

of the type b) of Remark 3.10, thus completing the proof of the theorem.

The class of e-convex cones which are polyhedral at each of their points is strictly larger
than the class of convex cones that are intersection of a polyhedral cone and an open
cone, as shown by the following

Example 3.11. Let {θn} be an increasing sequence in [0, 2π), such that θ1 = 0 and
limn→+∞ θn = 2π and, in R

3, let {xn} be the sequence {(cos θn − 1, sin θn, 1)}. Set C =
clconv

(

{xn}
+∞

n=0

)

and K =]0,+∞[
(

C \ {(0, 0, 1)}
)

. K is a convex cone omitting its apex
which is e-convex and polyhedral at each of its points but it is not the intersection of a
polyhedral cone with an open one.

Remark 3.12. If K is the cone of the preceding example, clK \ {0} is an e-convex cone
which is not polyhedral at any point of the halfline ]0,+∞[(0, 0, 1); projecting K along



V. Klee, E. Maluta, C. Zanco / Basic Properties of Evenly Convex Sets 145

that line we get an angle containing its apex but omitting one of its boundary rays.

It would be nice to have a characterization of cones that admit only e-convex k-projections,
where k is a fixed integer, 2 ≤ k ≤ d− 1, among convex cones omitting their apex.

The characterization is obtained for k = 2 from Theorems 3.5 and 3.6, together with the
following

Proposition 3.13. If a convex cone K is not polyhedral at a point p, K admits a 2-
projection which is not e-convex.

Proof. It was proved in ([9], Theorem 4.1) that, for any k, 2 ≤ k ≤ d− 1, there exists a
k-projection π into a k-flat through p such that π(K) is not polyhedral in p. For k = 2,
π(K) is a 2-dimensional cone which can be non polyhedral only at its vertex, hence it
cannot be e-convex.

Hence we obtain our main result

Theorem 3.14. A convex cone omitting its apex admits only e-convex 2-projections if
and only if it is e-convex and polyhedral at each of its points.

We close this section stating the following

Conjecture 3.15. For any k, 3 ≤ k ≤ d−1, a convex cone omitting its apex admits only
e-convex k-projections if and only if it is e-convex and polyhedral at each of its points.

4. Binary Operations and Polarities

We begin this section presenting examples that demonstrate some respects in which evenly
convex sets behave differently from closed convex sets and open convex sets. These
examples are cited to show that certain hypotheses cannot be abandoned. In all the
examples, the involved sets are assumed to lie in a d-dimensional Euclidean space E with
d ≥ 2.

Vector sums. For sets X and Y , the vector sum X+Y is the set {x+y : x ∈ X, y ∈ Y }.
It is open if at least one of X and Y is open, and it is closed if X and Y are both closed
and at least one of them is bounded.

Now let B = {b : ‖b‖ < 1} and S = {b : ‖b‖ = 1}, the open unit ball and the unit sphere
of E, and let X = B ∪ U for some U ⊂ S. For each choice of U , the set X is evenly
convex.

If X is not open and u ∈ U , let Y be an open segment ]0, t[ such that the segment u+[0, t]
is tangent to S at u. Then Y is e-convex, but the set X +Y is not e-convex because each
open halfspace that contains X + Y must also contain the point u of its complement.

Convex hulls. The convex hull conv(X ∪ Y ) is open if X and Y are both open, and is
closed if X and Y are both closed and bounded.

With B, U , and X as in the preceding example, suppose that X is not closed and let
u ∈ S \U , let Y = {u+ t} where u+[0, t] is tangent to S at u. Then the set conv(X ∪Y )
is not e-convex because each open halfspace that contains conv(X ∪Y ) must also contain
the point u of its complement.
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Therefore, when considering e-convex sets, it is worthwhile to define the e-convex hull
of X ∪ Y , denoted by e-convX ∪ Y , as the smallest e-convex set containing X ∪ Y .

Obviously convX ∪ Y ⊂ e-conv X ∪ Y ⊂ clconvX ∪ Y.

The following part of this section describes several natural ways of combining two e-convex
sets to produce a third one, and studies the interactions of these binary operations with
polarities.

Proposition 4.1. The class of all e-convex subsets of E is closed under each of the fol-
lowing "meet" operations ∧i and "join" operations ∨i:

X ∧1 Y = (intX) ∩ (intY )

X ∧2 Y = X ∩ Y

X ∧3 Y =
(

X ∩ (clY )
)

∪
(

Y ∩ (clX)
)

X ∧4 Y = (clX) ∩ (clY )

X ∨1 Y = clconv(X ∪ Y )

X ∨2 Y = e-conv(X ∪ Y )

X ∨3 Y = e-conv
(

X ∪ (intY )
)

∩ e-conv
(

Y ∪ (intX)
)

X ∨4 Y = conv
(

(intX) ∪ (intY )
)

.

By definition all the sets on the right side of the definitions are e-convex if X and Y are,
except for the one corresponding to X ∧3 Y . Remark that convexity of X and Y does not
imply convexity of X ∧3 Y . Nevertheless e-convexity of X and Y does imply e-convexity
of X ∧3 Y .

Proof. E-convexity is invariant under translation, hence we assume that 0 ∈ X ∧3 Y . To
prove that X ∧3 Y is e-convex whenever X and Y are, let w /∈ X ∧3 Y ; since w /∈ clX ∩Y ,
and clX∩Y is e-convex, there exists a linear functional φ1 such that φ1(z) < 1∀z ∈ clX∩Y
while φ1(w) = 1; moreover φ1(z) ≤ 1∀z ∈ X ∩ clY . Analogously there exists φ2 with
φ2(z) < 1∀z ∈ X ∩ clY while φ2(w) = 1. Set φ = φ1+φ2

2
: φ is a linear functional such that

φ(z) < 1∀z ∈ X ∧3 Y while φ(w) = 1, and the proof is completed.

In the usual polarity operation for subsets of E, each singleton {x} has a polar {x}◦ =
{y ∈ E : 〈x, y〉 ≤ 1} (a closed halfspace when x 6= 0), and the polar X◦ of a set X ⊂ E is
simply the intersection of all the sets {x}◦ for x ∈ X. That is,

X◦ = {y ∈ E : 〈x, y〉 ≤ 1 for all x ∈ X}.

The set X◦ is always closed and convex and includes the origin, and when X itself has
these properties it is true that (X◦)◦ = X. Fenchel [6] observed that if we replace ≤ by <
(i.e. “closed halfpaces� by “open halfspaces�), and define (what we will call) the e-polar
Xe of a set X as

Xe = {y ∈ E : 〈x, y〉 < 1 for all x ∈ X},

then Xe is always e-convex and includes the origin, and if X itself has these properties
then (Xe)e = X.
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There is another polarity operation, closely related to but different from Fenchel’s, that is
especially appropriate in studying e-convex cones. To deal efficiently with these, we use
the polarity operation c defined as follows:

Xc = {y ∈ E : 〈x, y〉 < 0 for all x ∈ X},

Then Xc is always an e-convex cone that omits the origin, and if X itself has these
properties then (Xc)c = X.

With respect to these polarities, the "meet" and "join" operations that we have just
defined, behave as dual operations (proofs of the following Theorems 4.2 and 4.4 are
trivial).

Theorem 4.2. For 1 ≤ i ≤ 4 the operations ∧i and ∨i are dual in the sense that

(X ∧i Y )e = Xe ∨i Y
e

and
(X ∨i Y )e = Xe ∧i Y

e

whenever X and Y are e-convex subsets of E with 0 ∈ X ∩ Y .

When we replace e-polarity with c-polarity, analogous results hold for convex cones that
omit their apex 0. Namely

Proposition 4.3. The class of all e-convex cones omitting their apex 0 is closed under
each of the following "meet" operations ∧i and "join" operations ∨i:

X ∧1 Y = (intX) ∩ (intY )

X ∧2 Y = X ∩ Y

X ∧3 Y =
(

X ∩ (clY )
)

∪
(

Y ∩ (clX)
)

X ∧4 Y = (clX) ∩ (clY )

X ∨1 Y = clconv(X ∪ Y )

X ∨2 Y = e-conv(X ∪ Y )

X ∨3 Y = e-conv
(

X ∪ (intY )
)

∩ e-conv
(

Y ∪ (intX)
)

X ∨4 Y = conv
(

(intX) ∪ (intY )
)

.

Proof. E-convexity follows from Proposition 4.1. Moreover X ∧3 Y and all the X ∨i Y
are positively homogeneous and convex sets, hence convex cones.

Theorem 4.4. For 1 ≤ i ≤ 4 the operations ∧i and ∨i are dual in the sense that

(X ∧i Y )c = Xc ∨i Y
c

and
(X ∨i Y )c = Xc ∧i Y

c

whenever X and Y are e-convex cones of E omitting their apex 0.
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