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Kakutani’s classical theorem (stating that two disjoint convex sets can be separated by complementary
convex sets) is extended to the setting when convexity is meant in the sense of Beckenbach. Then
a characterization of pairs of functions that can be separated by a generalized convex function or by a
function belonging to a two-parameter family (in the sense of Beckenbach) is presented. As consequences,
stability results of the Hyers–Ulam-type are also obtained.
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1. Introduction

Geometrically, the convexity of a function f : I → R means that, for any two distinct
points on the graph of f , the segment joining these points lies above the corresponding
part of the graph. In 1937 Beckenbach [2] generalized this concept by replacing the
segments by graphs of continuous functions belonging to a certain two-parameter family
F of functions (for the precise definition, see Section 3). The so obtained generalized

convex functions have many properties known for classical convexity (cf., e.g., [2], [3],
[16], [5], [4], [11], [17]).

Using a similar idea, Krzyszkowski [10] introduced the notion of generalized convex sets
and proved, among others, a Caratheodory-type result for them.

The aim of this paper is to present further results on generalized convex sets and gener-
alized convex functions. In Section 2, we prove a Kakutani-type separation theorem for
generalized convex sets. A characterization of pairs of functions that can be separated
by a generalized convex functions is given in Section 3. The problem of separation by
functions belonging to F is discussed in Section 4. As corollaries, some Hyers–Ulam-type
stability results related to generalized convexity are obtained.
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2. Separation of generalized convex sets

Let F be a family of continuous real functions defined on an interval I ⊆ R. We say that
F is a two-parameter family if for any two points (x1, y1), (x2, y2) ∈ I × R with x1 6= x2
there exists exactly one ϕ ∈ F such that

ϕ(xi) = yi for i = 1, 2.

The unique function ϕ ∈ F determined by the points a = (x1, y1), b = (x2, y2) will be
denoted by ϕ(x1,y1)(x2,y2) or ϕab. Let a = (x1, y1), b = (x2, y2) ∈ I × R. Define the
generalized segment [a, b] ⊂ I × R joining a, b as follows:

[a, b] :=
{(

x, ϕ(x1,y1)(x2,y2)(x)
)

: min{x1, x2} 6 x 6 max{x1, x2}
}

, if x1 6= x2

and
[a, b] := {(x1, y) : min{y1, y2} 6 y 6 max{y1, y2}}, if x1 = x2.

A set A ⊂ I ×R is called convex with respect to F (in short F-convex) if for any a, b ∈ A
we have [a, b] ⊂ A (cf. [10]).

The celebrated theorem of Kakutani [9] (see also [18], [19, p. 19], [14], [15]) says that each
two disjoint convex sets in a real vector space can be separated by complementary convex
sets. The main result of this section is an analogue of Kakutani’s theorem for generalized
convex sets.

Theorem 2.1. Let A,B ⊂ I × R be disjoint F-convex sets. Then there exist disjoint

F-convex sets C,D such that A ⊂ C, B ⊂ D and C ∪D = I × R.

We start with three lemmas needed in the proof of this theorem. The first one is known
and expresses a basic property of two-parameter families.

Lemma 2.2 ([2]). Let ϕ1, ϕ2 be distinct elements of F and ϕ1(x0) = ϕ2(x0) for some

x0 ∈ int I. Then ϕ1(x) > ϕ2(x) for all x ∈ I on one side of x0 and ϕ1(x) < ϕ2(x) for all

x ∈ I on the other side of x0.

Remark 2.3. It follows from this lemma that if for ϕ1, ϕ2 ∈ F ϕ1(x0) = ϕ2(x0) and
ϕ1(x1) < ϕ2(x1) for some x0, x1 ∈ I, x0 6= x1, then ϕ1 < ϕ2 on the half-line with the
origin x0 containing x1.

Remark 2.4. As a consequence of Lemma 2.2 we obtain also that if ϕ1, ϕ2 ∈ F satisfy the
inequalities ϕ1(x1) < ϕ2(x1) and ϕ1(x2) < ϕ2(x2) for some x1 < x2, then ϕ1(x) < ϕ2(x)
for all x ∈ [x1, x2].

The next lemma extends an easily visualizable property of line segments.

Lemma 2.5. Let a, b, c be distinct points in I ×R. If a1 ∈ [a, c], b1 ∈ [b, c], then [a, b1] ∩
[a1, b] 6= ?.

Proof. We denote the coordinates of a given point p ∈ I × R by (xp, yp). Without loss
of generality we may assume that xa 6 xb. We may also assume that a1 ∈ [a, c]r {a, c}
and b1 ∈ [b, c] r {b, c} (otherwise the proof is trivial). We can distinguish the following
four cases (i)-(iv) as it is detailed below.
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Case (i): xa < xb and c /∈ graphϕab. Assume, for instance, that yc > ϕab(xc). In this case
a few subcases are possible. Assume first that xa < xc < xb. Then b1 lies above the graph
of ϕa1b and a1 lies above the graph of ϕab1 . Indeed, by Lemma 2.2 (cf. also Remark 2.3),
ϕab(x) < ϕac(x) for all x > xa. In particular, ϕab(xa1) < ya1 , whence ϕba(x) < ϕba1(x),
x < xb, and, consequently, ya < ϕba1(xa). Hence, using Lemma 2.2 once more and the
fact that ϕac(xa1) = ϕba1(xa1), we obtain yc > ϕba1(xc). Therefore ϕbc(x) > ϕba1(x) for all
x < xb, and, consequently,

yb1 > ϕba1(xb1). (1)

Similarly we can also show that
ya1 > ϕab1(xa1). (2)

Now, define ψ = ϕba1 −ϕab1 . Then, by (1) and (2), ψ(xb1) < 0 and ψ(xa1) > 0. Since ψ is
continuous, there exists an x0 ∈ [xa1 , xb1 ] such that ψ(x0) = 0, i.e., ϕab1(x0) = ϕa1b(x0) =:
y0. Hence (x0, y0) is the desired point of the intersection [a, b1] ∩ [a1, b].

The further subcases of this case are xc = xa, xc < xa and symmetrically xc = xb, xc > xb.
Their proofs are similar, so they are omitted.

Case (ii): xa < xb and c ∈ graphϕab. Then ϕab1 = ϕa1b and obviously [a, b1]∩ [a1, b] 6= ?.

Case (iii): xa = xb and xc 6= xa. Assume, for instance, that ya < yb, xa < xc and
xa1 6 xb1 . Then a1 lies below the graph of ϕab1 . Indeed, ϕca(x) < ϕcb(x) for all x <
xc. In particular, ϕca(xb1) < yb1 . Hence ϕac(x) < ϕab1(x), x > xa, and, consequently,
ya1 < ϕab1(xa1). Now, for ψ = ϕba1 − ϕab1 we have ψ(xa) = yb − ya > 0 and ψ(xa1) =
ya1 − ϕab1(xa1) < 0. Hence there exists an x0 ∈ [xa, xa1 ] such that ψ(x0) = 0, which
implies [a, b1] ∩ [a1, b] 6= ?.

Case (iv): xa = xb = xc. The statement is obvious in this case.

Given a set A ⊂ I ×R we denote by convF A the F-convex hull of A, i.e., the intersection
of all F-convex subsets of I × R containing A (cf. [10]).

Lemma 2.6. Let A ⊂ I × R be F-convex and p ∈ I × R. Then convF(A ∪ {p}) =
⋃

a∈A[a, p].

Proof. Of course
⋃

a∈A[a, p] ⊂ convF(A ∪ {p}). To prove the reverse inclusion it suffices
to show that the set

⋃

a∈A[a, p] is F-convex.

Take arbitrary c1, c2 ∈
⋃

a∈A[a, p], c1 ∈ [a1, p], c2 ∈ [a2, p]. If either xa1 6= xa2 and
p ∈ graphϕa1a2 or xa1 = xa2 and p ∈ L := {(xa1 , y) : y ∈ R} then, clearly, [c1, c2] ⊂
[a1, p] ∪ [a2, p]. If xa1 6= xa2 and p /∈ graphϕa1a2 or xa1 = xa2 and p /∈ L, then for every
c ∈ [c1, c2] the graph of ϕpc (or the line {(xp, y) : y ∈ R} if xp = xc) crosses [a1, a2]. Thus
there exists an a ∈ [a1, a2] ⊂ A such that c ∈ [a, p], which completes the proof.

Proof of Theorem 2.1. Consider the class P of all pairs (At, Bt) of F-convex sets such
thatAt∩Bt = ? andA ⊂ At, B ⊂ Bt. This class is not empty ((A,B) ∈ P) and is partially
ordered by the relation: (As, Bs) ≺ (At, Bt) if As ⊂ At and Bs ⊂ Bt. Moreover, every
chain L of elements of P has an upper bound in P (the pair (

⋃

(At,Bt)∈L
At,

⋃

(At,Bt)∈L
Bt)).

Therefore, by the Kuratowski-Zorn lemma, there exists a maximal element (C,D) in P.
Now, it remains to prove that C∪D = I×R. On the contrary, suppose that there exists a
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point p ∈ I×R\(C∪D). Consider the sets C1 = convF(C∪{p}) andD1 = convF(D∪{p}).
By the maximality of (C,D) we infer that C1 ∩D 6= ? and C ∩D1 6= ?. Let c1 ∈ C1 ∩D
and d1 ∈ C ∩ D1. By Lemma 2.6 there exist c ∈ C, d ∈ D such that c1 ∈ [c, p] and
d1 ∈ [d, p]. Hence, using Lemma 2.5, we obtain [c, d1] ∩ [c1, d] 6= ?. Since the sets C,
D are F-convex, we have [c, d1] ⊂ C and [c1, d] ⊂ D. Consequently, C ∩ D 6= ?, a
contradiction.

Remark 2.7. The above theorem can be also deduced from an abstract version of Kaku-
tani’s theorem obtained by Ellis [7] in terms of convexity defined axiomatically (cf. also
Chepoi [6] and Kubís [12]).

The property expressed in our Lemma 2.5 is a version of a Pasch axiom (cf. [6], [12]) for
generalized convexity. As we have seen, Lemma 2.5 played a crucial role in the proof of
Theorem 2.1. But it is worth noting that, using Theorem 2.1, we can also obtain a short
proof of Lemma 2.5. Indeed, let a1 ∈ [a, c], b1 ∈ [b, c] and suppose that [a, b1]∩ [a1, b] = ?.
Then, by Theorem 2.1, there exist complementary F-convex sets C,D such that [a, b1] ⊂ C
and [a1, b] ⊂ D. Since C ∪D = I × R, the point c belongs to C or D. In the first case,
[a, c] ⊂ C, whence a1 ∈ C, which is impossible because a1 ∈ D. Similarly, the second case
is impossible. Thus [a, b1] ∩ [a1, b] 6= ?.

3. Separation by F-convex functions

In this section we characterize functions that can be separated by an F-convex function.
The presented result generalizes the sandwich theorem obtained by Baron, Matkowski
and Nikodem [1] stating that two functions f, g : I → R satisfy

f(tx+ (1− t)y) 6 tg(x) + (1− t)g(y), x, y ∈ I, t ∈ [0, 1],

if and only if there exists a convex function h : I → R such that f 6 h 6 g.

Let F be a two-parameter family. A function f : I → R is said to be F-convex [2] if for
any x1, x2 ∈ I, x1 < x2

f(x) 6 ϕ(x1,f(x1))(x2,f(x2))(x), x1 6 x 6 x2.

A function f is called F-concave if −f is F-convex. Of course the only functions which are
simultaneously F-convex and F-concave are the functions belonging to F. Therefore they
will be also called F-affine. Note that in the case when F = {ϕ(x) = mx+ b : m, b ∈ R},
we obtain the notion of standard convex, concave and affine functions. Given a function
f : I → R we denote by epi f the epigraph of f , i.e. the set {(x, y) : x ∈ I, y > f(x)}. The
set {(x, y) : x ∈ I, y > f(x)} will be called the strict epigraph of f . Before formulating
the main result of this section we present two lemmas needed in its proof. The first
one gives a characterization of the F-convex hulls of epigraphs. By the Caratheodory-
type theorem obtained by Krzyszkowski [11] it is known that every point of convF A,
where A ⊂ I × R is a "combination" of at most three points from A (more precisely
convF A =

⋃

{[a, b] : a ∈ A, b ∈ [a1, a2] with a1, a2 ∈ A}). It appears that if A is an
epigraph, then its F-convex hull consists of "combinations" of two points from A. We
prove this fact directly, i.e. without using a Caratheodory-type result.

Lemma 3.1. Let f : I → R be a given function and let E denote its epigraph or strict

epigraph. Then

convF E =
⋃

{[a, b] : a, b ∈ E, xa 6= xb}.
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Proof. Assume that E = epi f (the proof is analogous in the case when E is the strict
epigraph of f). Denote

E1 = convF E and E2 =
⋃

{[a, b] : a, b ∈ E, xa 6= xb}.

Of course E2 ⊂ E1. To prove the reversed inclusion it suffices to show that E2 is F-convex.

Let p, q ∈ E2. Then there exist a, b, c, d ∈ E such that xa 6= xb, xc 6= xd and p ∈ [a, b],
q ∈ [c, d]. Assume first that xp 6= xq. Since ϕab(xp) = ϕpq(xp), it follows from Lemma 2.2
that at least at one of the points xa, xb, ϕab has non greater value than ϕpq. Assume, for
instance, that

ϕab(xa) 6 ϕpq(xa).

Similarly, since ϕcd(xq) = ϕpq(xq), at least at one of the points xc, xd the value of ϕcd is
non greater then the value of ϕpq. Assume, that

ϕcd(xc) 6 ϕpq(xc).

Now take an arbitrary s ∈ [p, q]. There are three possible cases.

Case (i): min{xa, xc} 6 xs 6 max{xa, xc}. Define a1 = (xa, ϕpq(xa)), c1 = (xc, ϕpq(xc)).
Since a ∈ E and ya = ϕab(xa) 6 ϕpq(xa) = ya1 , it follows that a1 ∈ E. Similarly c1 ∈ E.
Note also that ϕa1c1 = ϕpq because these functions have the same values at xa and xc. In
particular

ys = ϕpq(xs) = ϕa1c1(xs).

Hence s = (xs, ys) = (xs, ϕa1c1(xs)) ∈ [a1, c1] and, consequently, s ∈ E2.

Case (ii): xs > max{xa, xc} (then, necessarily, xd > xs). Since ϕcd(xq) = ϕpq(xq) and
ϕcd(xc) 6 ϕpq(xc), we have also ϕcd(xs) 6 ϕpq(xs) = ys. Hence, by Lemma 2.2,

ϕcd(x) 6 ϕcs(x) for all x > xc.

In particular yd = ϕcd(xd) 6 ϕcs(xd). Define d1 = (xd, ϕcs(xd)). Then d1 ∈ E and
s = (xs, ys) = (xs, ϕcs(xs)) ∈ [c, d1]. Consequently, s ∈ E2.

Case (iii): xs < min{xa, xc}. The proof in this case is analogous.

Finally, it remains to consider the case xp = xq. Assume, for instance, that yp 6 yq and
xa < xb. Since ϕas(xa) = ϕab(xa) and ϕas(xs) = ys > yp = ϕab(xp) = ϕab(xs) we have, by
Lemma 2.2, that ϕas(x) > ϕab(x) for all x > xa. In particular ϕas(xb) > ϕab(xb) = yb.
Hence b1 := (xb, ϕas(xb)) ∈ E and s ∈ [a, b1]. Consequently s ∈ E2. This completes the
proof.

Lemma 3.2. Let E be an F-convex subset of I ×R such that for every x ∈ I the section

{y : (x, y) ∈ E} is nonempty and bounded from below. Then the function h : I → R

defined by h(x) = inf{y : (x, y) ∈ E} is F-convex.

Proof. Fix x1, x2 ∈ I, x1 < x2 and denote ϕ = ϕ(x1,h(x1))(x2,h(x2)). By the definition of h
there exist points (x1, yn), (x2, zn) ∈ E, n ∈ N such that yn ց h(x1), zn ց h(x2). Let
ϕn = ϕ(x1,yn)(x2,zn), n ∈ N. It is known (cf. [2]) that ϕn(x) → ϕ(x) for every x ∈ I.
By the F-convexity of E, (x, ϕn(x)) ∈ E for every x ∈ [x1, x2] and n ∈ N. Hence
h(x) 6 ϕn(x), n ∈ N and passing to the limit, h(x) 6 ϕ(x), x ∈ [x1, x2], which yields that
h is F-convex.
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Remark 3.3. If E = epih then the above lemma follows from the fact that h is F-convex
if and only if epih is F-convex (cf. [10]).

Now we can prove the main result of this section generalizing the sandwich theorem from
[1].

Theorem 3.4. Let f, g : I → R. There exists an F-convex function h : I → R such that

f 6 h 6 g if and only if

f(x) 6 ϕ(x1,g(x1))(x2,g(x2))(x) (3)

for all x1, x2 ∈ I such that x1 < x2, and all x ∈ [x1, x2].

Proof. Assume that f 6 h 6 g with an F-convex h and fix x1, x2 ∈ I, x1 < x2. Then,
using Lemma 2.2 (cf. also Remark 2.4), we get for every x ∈ I

f(x) 6 h(x) 6 ϕ(x1,h(x1))(x2,h(x2))(x) 6 ϕ(x1,g(x1))(x2,g(x2))(x).

Now, assume that (3) holds. Put E = convF epi g. Fix an arbitrary x ∈ I and take any
y ∈ R such that (x, y) ∈ E. By Lemma 3.1 there exist (x1, y1), (x2, y2) ∈ epi g, such that
x1 < x2, x ∈ [x1, x2] and y = ϕ(x1,y1)(x2,y2)(x). Hence, by Lemma 2.2 (cf. also Remark
2.4) and (3)

y > ϕ(x1,g(x1))(x2,g(x2))(x) > f(x).

This allows us to define a function h : I → R by the formula

h(x) = inf{y : (x, y) ∈ E}

and gives f 6 h. Moreover, since (x, g(x)) ∈ E for every x ∈ I, we also have h 6 g.
Finally, by Lemma 3.2, we obtain that h is F-convex.

As an immediate consequence of the above theorem we obtain the Hyers-Ulam stability
result for generalized convex functions proved by Krzyszkowski [11] (cf. also [8]).
Let ε > 0. We say that a function g : I → R is ε− F-convex if

g(x) 6 ϕ(x1,g(x1))(x2,g(x2))(x) + ε

for all x1, x2 ∈ I, x1 < x2 and x ∈ [x1, x2].

Corollary 3.5. Let ε > 0. If a function g : I → R is ε − F-convex then there exists an

F-convex function h : I → R such that

g − ε 6 h 6 g.

Proof. Put f = g − ε in Theorem 3.4.

4. Separation by F-affine functions

In this section we present some necessary and sufficient conditions under which two func-
tions f, g : I → R can be separated by an F-affine function. This result is a generalization
of the theorem proved by Nikodem and Wa̧sowicz [13] stating that for given f, g : I → R
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there exists an affine function h : I → R such that f 6 h 6 g if and only if the following
inequalities hold

f(tx+ (1− t)y) 6 tg(x) + (1− t)g(y)

g(tx+ (1− t)y) > tf(x) + (1− t)f(y)

for all x, y ∈ I, t ∈ [0, 1]. In the proof of that result the classical Helly’s theorem was
applied. The method used by us is completely different and is based on the Kakutani-type
theorem from Section 2.

Theorem 4.1. Let f, g : I → R. The following conditions are equivalent:

(i) there exists a function h ∈ F such that f 6 h 6 g;

(ii) there exists an F-convex function h1 : I → R and an F-concave function h2 : I → R

such that f 6 h1 6 g and f 6 h2 6 g;

(iii) for all x1, x2 ∈ I such that x1 < x2 and all x ∈ [x1, x2]

f(x) 6 ϕ(x1,g(x1))(x2,g(x2))(x) (4)

g(x) > ϕ(x1,f(x1))(x2,f(x2))(x); (5)

(iv) for all x1, x2, x3, x4 ∈ I such that x1 < x2, x3 < x4 and all x ∈ [x1, x2] ∩ [x3, x4]

ϕ(x1,f(x1))(x2,f(x2))(x) 6 ϕ(x3,g(x3))(x4,g(x4))(x).

Proof. Implications (i) ⇒ (ii) and (ii) ⇒ (iii) are obvious. To prove (iii) ⇒ (iv)
suppose, contrary to our claim, that there are elements x1, x2, x3, x4 ∈ I, with x1 < x2,
x3 < x4, and x ∈ [x1, x2] ∩ [x3, x4] such that

ϕ(x1,f(x1))(x2,f(x2))(x) > ϕ(x3,g(x3))(x4,g(x4))(x). (6)

Denote ϕ = ϕ(x1,f(x1))(x2,f(x2)), ϕ = ϕ(x3,g(x3))(x4,g(x4)). By (6) and Lemma 2.2, it follows
that ϕ < ϕ at least on one of the intervals [min{x1, x3}, x], [x,max{x2, x4}]. Assume, for
instance, that ϕ < ϕ on the first interval (the proof in the second instance is analogous).
There are two possible cases: x1 6 x3 6 x or x3 6 x1 6 x. In the first one we have

g(x3) = ϕ(x3) < ϕ(x3) = ϕ(x1,f(x1))(x2,f(x2))(x3),

which contradicts (5). In the second case we get

f(x1) = ϕ(x1) > ϕ(x1) = ϕ(x3,g(x3))(x4,g(x4))(x1),

which contradicts (4).

(iv) ⇒ (i). It follows from (iv) that f 6 g on I. Define

A = convF{(x, y) : x ∈ I, y < f(x)}

B = convF{(x, y) : x ∈ I, y > g(x)}.

Clearly, these sets are F-convex. We will show that they are also disjoint. On the contrary,
suppose that there exists an (x, y) ∈ A ∩ B. By Lemma 3.1, there are points (x1, y1),
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(x2, y2) with x1 < x2 and yi < f(xi), i = 1, 2, and points (x3, y3), (x4, y4) with x3 < x4
and yi > g(xi), i = 3, 4, such that

(x, y) ∈ [(x1, y1), (x2, y2)] ∩ [(x3, y3), (x4, y4)].

Hence
y = ϕ(x1,y1)(x2,y2)(x) = ϕ(x3,y3)(x4,y4)(x).

From this, using the fact that yi < f(xi), i = 1, 2 and yi > g(xi), i = 3, 4, we obtain

ϕ(x1,f(x1))(x2,f(x2))(x) > y > ϕ(x3,g(x3))(x4,g(x4))(x).

This contradicts (iv) and proves that A ∩ B = ?. Now, by Theorem 2.1, there exist
disjoint F-convex sets C,D such that A ⊂ C, B ⊂ D and C ∪ D = I × R. Define
h(x) = inf{y : (x, y) ∈ D}. Since the sets C,D are complementary, we have also h(x) =
sup{y : (x, y) ∈ C}. In view of Lemma 3.2, we obtain that h is F-convex and F-concave.
Therefore h ∈ F. It is also clear that f 6 h 6 g. This completes the proof.

As an immediate consequence of Theorem 2.1 we obtain the following sandwich result for
F-convex and F-concave functions.

Corollary 4.2. Let f, g : I → R and f 6 g. If either f is F-convex and g is F-concave

or f is F-concave and g is F-convex then there exists an h ∈ F such that f 6 h 6 g.

Proof. Note, that f, g satisfy condition (ii ) from Theorem 2.1.

As another corollary to Theorem 4.1 we get a stability result for F-affine functions.

Corollary 4.3. Let ε > 0. If f : I → R satisfies the inequalities

f(x) 6 ϕ(x1,f(x1)+ε)(x2,f(x2)+ε)(x)

f(x) > ϕ(x1,f(x1))(x2,f(x2))(x)− ε

for all x1, x2 ∈ I, x1 < x2 and all x ∈ [x1, x2], then there exists a function h ∈ F such

that

f 6 h 6 f + ε.

Proof. Apply Theorem 4.1 for f and g = f + ε.

If the family F is invariant under translations (i.e., for every ϕ ∈ F and c ∈ R, we have
ϕ+ c ∈ F) then the above result can be formulated in a simpler form. It generalizes the
stability result for affine functions proved in [13].

Corollary 4.4. Let F be a two-parameter family invariant under translations and ε > 0.
If f : I → R satisfies the inequality

|f(x)− ϕ(x1,f(x1))(x2,f(x2))(x)| 6 ε (7)

for all x1, x2 ∈ I, x1 < x2 and all x ∈ [x1, x2] then there exists an h ∈ F such that

|f − h| 6
ε

2
.
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Proof. Condition (7) can be rewritten in the form of two inequalities

f(x) 6 ϕ(x1,f(x1))(x2,f(x2))(x) + ε = ϕ(x1,f(x1)+ε)(x2,f(x2)+ε)(x)

and
f(x) > ϕ(x1,f(x1))(x2,f(x2))(x)− ε.

By Corollary 4.3 there exists an h1 ∈ F such that

f 6 h1 6 f + ε.

Define h = h1 −
ε
2
. Then h ∈ F and |f − h| 6

ε
2
.
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