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1. Introduction

In the study of the geometry of Banach spaces it was observed that properties like ro-
tundity, (very) smoothness, drop and weak drop properties are characterized by some
continuity properties of the duality or pre-duality mappings (see [3, 10, 14, 17, 19, 26]).
It is our aim in this paper to do a similar study for convex functions. We shall see that
many results stated for the duality mapping and the slices of the closed unit ball of a
normed space have their counterparts for the subdifferential and ε-subdifferential of con-
vex functions. This was already observed by Gregory in his interesting paper [22] and also
by J. Borwein as mentioned in [14, p. 108]; a few results in this direction are established
by Giles and Moors [15], and Giles and Sciffer [16].

Historically, the first continuity result for the subdifferential mapping ∂f of the convex
function f : X → R∪{∞} which is continuous on the interior of its domain was obtained
by Moreau [28] who showed that ∂f is upper semicontinous on int(dom f). Then Asplund
and Rockafellar in [1], among other important results, obtained the Hausdorff continuity
of ∂·f(·) on (0,∞) × int(dom f). After that, Nurminskii [29] proved that ∂εf is locally
Lipschitz on int(dom f) when X = R

n and ε > 0 is fixed. Nurminskii’s result was
extended significantly by Hiriart-Urruty in [23]; in particular, for X a Banach space,
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∂·f(·) is locally Lipschitz on (0,∞)× int(dom f) (a survey of these results can be found in
[24, Section 7]). Moreover, Contesse and Penot [6] showed that ∂εf is Mosco-continuous
on dom f when X is reflexive and the restriction of f to dom f is continuous. As proved
by Thibault [34], the Lipschitz property of the ε–subdifferential is inherited by the V-
subdifferential introduced in [35] for vector-valued convex operators. In this paper we are
mainly interested by semicontinuity properties of ∂·f(·) at (0, x) with x ∈ int(dom f) with
respect to one or both variables.

On the other hand it is common in convex analysis to consider the biconjugate f ∗∗ of a
convex function f defined on a separated locally convex space X as being defined also on
X (taking into account the pairing (X,X∗)) even when X is a normed vector space. As
mentioned by H. H. Bauschke in his review of [39] in Mathematical Reviews, it would be
desirable “the biconjugate f ∗∗ be defined and analyzed in the bidual X∗∗ rather than X�.
This paper also tries to contribute to this desideratum.

2. Notions, notation and preliminary results

With the exception of this section where we recall (and extend slightly) the main result
of Gregory in [22], presented in the framework of real separated locally convex spaces,
throughout the rest of the paper X will be a real normed vector space endowed with a
norm denoted by ‖·‖. The n-th dual of X will be denoted by X∗(n) and its norm (for
n ≥ 1), denoted also by ‖·‖, is the corresponding dual norm. Of course, X∗(0) is nothing
else but X, X∗(1) is X∗ and X∗(2) is X∗∗. The closed unit ball, the open unit ball, and
the unit sphere of X∗(n) will be denoted by UX∗(n) , BX∗(n) and SX∗(n) , respectively. If
u ∈ X∗(n) and ϕ ∈ X∗(n+1), the value of ϕ at u is denoted by 〈u, ϕ〉. So, if x ∈ X and
x∗ ∈ X∗ then 〈x, x∗〉 is x∗(x), while 〈x∗, x〉 is x(x∗), where x is interpreted as an element
of X∗∗. The norm topology on X∗(n) will be denoted by τ‖·‖; this will not create confusion

because the trace of the norm topology of X∗(n+2k) on X∗(n) is the norm topology of X∗(n)

with natural embedding of X∗(n) into X∗(n+2k). The weak and weak∗ topologies on X∗(n)

for n ≥ 1 will be denoted by w(n) and w∗(n), respectively; the weak topology on X will
be denoted by w and the weak∗ topology w∗(1) on X∗ will be denoted simply by w∗.

The closure of A ⊂ X∗(n) for a topology τ on X∗(n) will be denoted by A
τ
. However, the

norm closure of A ⊂ X∗(n) will be denoted by clA, even if A is considered as a subset of
X∗(n+2k) with k ∈ N := {1, 2, . . .}. The norm interior of A ⊂ X∗(n) is denoted by intA; of
course, if X is a normed vector space which is not reflexive, even if the norm interior of
the subset A of X∗(n) is nonempty, its norm interior as a subset of X∗(n+2k) (with k ≥ 1)
is empty. The convex hull of the subset A of a (real) linear space Y is denoted by convA.
When Y is endowed with a linear topology τ , the closed convex hull of A is denoted by
convτA; when Y is a normed space and τ is the norm topology, convτA is denoted simply
by convA. Also recall that the indicator function of the subset A of Y is the function
ιA : Y → R := R ∪ {−∞,+∞} defined by ιA(y) := 0 for y ∈ A and ιA(y) := ∞ := +∞
for y ∈ Y \ A. Before stating the result of Gregory we recall that a bornology on the
(real) separated locally convex space (X, τ) is a family B of subsets of X such that any
B ∈ B is τ -bounded, τ -closed and absolutely convex, ∪{B | B ∈ B} = X and λB ∈ B
whenever λ > 0 and B ∈ B. The topology τB on X∗ is the topology defined by the family
of seminorms {σB | B ∈ B} where

σB : X∗ → R, σB(x
∗) := sup{〈x, x∗〉 | x ∈ B}, (1)



A. K. Chakrabarty, P. Shunmugaraj, C. Zălinescu / Continuity Properties for ... 481

is the support function associated to B. A base of neighborhoods for 0 in X∗ is formed by
the sets B0, where B0 is the polar set of B (that is, B0 := {x∗ ∈ X∗ | σB(x

∗) ≤ 1}). We

say that the function f : X → R is directionally B-differentiable at x ∈ X with f(x) ∈ R

if the limit

f ′(x, y) := lim
t→0+

f(x+ ty)− f(x)

t
(2)

exists in R for every y ∈ X, and the limit is uniform with respect to y ∈ B, for every
B ∈ B. Of course, if f is directionally B-differentiable at x then x is in the algebraic
interior of the set {y ∈ X | f(y) ∈ R}. When ∅ 6= A ⊂ {x ∈ X | f(x) ∈ R} and the
limit in (2) exists and is uniform with respect to x ∈ A and y ∈ B for every B ∈ B, we
say that f is uniformly directionally B-differentiable on A (or for x ∈ A). Of course,
we say that f is (uniformly) B-differentiable at x (on A) if f is (uniformly) directionally
B-differentiable at x (on A) and f ′(x, ·) is a continuous linear functional (for every x ∈ A);
in this case f ′(x, ·) is denoted by ∇f(x).

Recall that f : X → R is proper if its domain dom f := {x ∈ X | f(x) <∞} is nonempty
and f(x) 6= −∞ for every x ∈ X. The class of proper convex functions defined on X will
be denoted by Λ(X), while the class of lower semicontinuous (lsc for short) proper convex
functions on X will be denoted by Γ(X). The conjugate of f ∈ Λ(X) is the function

f ∗ : X∗ → R, f∗(x∗) := sup{〈x, x∗〉 − f(x) | x ∈ X};

f ∗ is convex, w∗-lower semicontinuous, and is proper if and only if f is minorized by a
continuous affine function. The ε-subdifferential of f ∈ Λ(X) at x ∈ dom f is defined by

∂εf(x) := {x∗ ∈ X∗ | 〈y − x, x∗〉 ≤ f(y)− f(x) + ε ∀y ∈ X}

and ∂εf(x) := ∅ if x /∈ dom f ; of course, ∂εf(x) = ∅ for ε < 0. It is obvious that
∂εf(x) ⊂ ∂ε′f(x) if ε ≤ ε′. Taking ε = 0 we get the usual subdifferential ∂f(x) of f at
x. In general, the (ε-) subdifferential is a multifunction. Recall that the limit in (2) for

f ∈ Λ(X) and x ∈ dom f always exists (possibly in R); moreover, in such a situation, for
ε ≥ 0, we also consider the ε-directional derivative as being defined by

f ′
ε(x, u) := inf{t−1[f(x+ tu)− f(x) + ε] | t > 0} ∈ R.

Then f ′
ε(x, ·) is a sublinear functional and ∂εf(x) = ∂f ′

ε(x, ·)(0) (see f.i. [39, Th. 2.4.4]).

We are interested in the continuity properties of the multifunctions

Sf : R×X ⇉ X∗, Sf (ε, x) := ∂εf(x),

Sf∗ : R×X∗
⇉ X∗∗, Sf∗(ε, x∗) := ∂εf

∗(x∗),

SX
f∗ : R×X∗

⇉ X, SX
f∗(ε, x∗) := X ∩ ∂εf

∗(x∗) = X ∩ Sf∗(ε, x∗).

Recall that the multifunction R : S ⇉ T between the topological spaces (S, σ) and (T, τ)
is upper semicontinuous (usc or σ-τ usc if we want to emphasize the topologies) at s ∈ S
if for every open set D ⊂ T with R(s) ⊂ D, there exists a neighborhood U of s in S such
that R(U) := ∪s′∈UR(s′) ⊂ D. When the topology τ on T is defined by a metric d, we say
that R is H-usc (or σ-τ H-usc) at s if for every ε > 0 there exists a neighborhood U of s
in S such that R(U) ⊂ (R(s))ε, where, for A ⊂ T , Aε := {x ∈ T | d(x,A) < ε}; of course,
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for A,B ⊂ (T, d) nonempty sets and x ∈ T , d(x,A) := inf{d(x, a) | a ∈ A} is the distance
from x to A and gap(A,B) := inf{d(a, b) | a ∈ A, b ∈ B} is the gap between A and B with
d(x, ∅) := ∞ (and so ∅ε = ∅) and gap(A, ∅) = gap(∅, A) := ∞, gap(∅, ∅) := 0. Similarly,
if (T, τ) is a real topological vector space, R is H-usc at s if for every neighborhood V of
0 in T , there exists a neighborhood U of s in S such that R(U) ⊂ R(s) + V ; these two
variants of Hausdorff upper semicontinuity coincide when T is a normed vector space.

The product topology on S × T of the topology σ on S and the topology τ on T will be
denoted, as usual, by σ × τ ; the usual topology on R is denoted by τ0.

Gregory [22, Th. 3.1] established several characterizations of the directional B-differen-
tiability with an elegant proof; as he mentions in [22, p. 12], “many of the equivalences
can be regarded as an extension (to the case where ∂f(x) is not a singleton) of results of
Asplund and Rockafellar [1] on the A-differentiability of convex functions�. An inspection
of his proof shows that the following result also holds. We give its proof for reader’s
convenience; for the definition of σB see (1).

Theorem 2.1. Let (X, τ) be a real separated locally convex space, B a bornology on X,
f ∈ Λ(X) and A ⊂ X a nonempty set. Assume that A + U0 ⊂ dom f and f is Lipschitz
on A+ U0 for some τ -neighborhood U0 of 0 (that is, there exists a continuous seminorm
p : X → R such that |f(x)− f(x′)| ≤ p(x − x′) for all x, x′ ∈ A + U0). The following
assertions are equivalent:

(i) f is uniformly directionally B-differentiable on A;

(ii) the multifunction Sf (·, x) is uniformly τ0-τB H-usc at 0 for x ∈ A;

(iii) the multifunction Sf is uniformly τ0 × τ -τB H-usc at (0, x) for x ∈ A;

(iv) the multifunction Sf (0, ·) is uniformly τ -τB H-usc at x for x ∈ A;

(v) limy→x infσB(∂f(y)− ∂f(x)) = 0 for every B ∈ B uniformly for x ∈ A.

Of course, statement (iii) means that for every B ∈ B, there exist η > 0 and a neigh-
borhood U of 0 such that ∂ηf(y) ⊂ ∂f(x) + B0 for each x ∈ A and each y ∈ x + U ; the
meanings of (ii) and (iv) are similar.

Proof. (i) ⇒ (ii) Let B ∈ B and choose t > 0 such that

f(x+ ty)− f(x)

t
− f ′(x, y) < 1

2
∀x ∈ A, ∀y ∈ B.

Let η = t/2. Assume that for some x ∈ A, there is y∗ ∈ ∂ηf(x) such that y∗ /∈ ∂f(x)+B0,
or, equivalently, (y∗ − ∂f(x)) ∩ B0 = ∅. Because the first set is w∗-compact (see f.i. [39,
Th. 2.4.9]), both being nonempty, w∗-closed and convex, a separation theorem yields some
y ∈ X and µ ∈ R such that

inf{〈y, y∗ − x∗〉 | x∗ ∈ ∂f(x)} > µ > sup{〈y, u∗〉 | u∗ ∈ B0}.

Because 0 ∈ B0, we may (and we do) assume that µ = 1. So, we obtain y ∈ B00 = B.
The left-hand side of the above inequality shows that

〈y, y∗〉 −max{〈y, x∗〉 | x∗ ∈ ∂f(x)} = 〈y, y∗〉 − f ′(x, y) > 1.

Taking into account that y∗ ∈ ∂ηf(x), we get the contradiction

1 >
f(x+ ty)− f(x)

t
− f ′(x, y) + 1

2
≥ 〈y, y∗〉 − f ′(x, y) > 1.
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(ii) ⇒ (iii) Fix some B ∈ B. By hypothesis we have ∂ηf(x) ⊂ ∂f(x) + B0 for some
η > 0 and every x ∈ A. Consider γ := η/4 and a convex neighborhood U of 0 such that
2U ⊂ U0 and p(u) ≤ γ for u ∈ U . Take x ∈ A, y ∈ x + U and y∗ ∈ ∂γf(y). Then, for
every z ∈ X, we have

f(z)− f(x) = f(z)− f(y) + f(y)− f(x)

≥ 〈z − y, y∗〉 − γ + f(y)− f(x)

≥ 〈z − x, y∗〉 − γ + 〈x− y, y∗〉+ f(y)− f(x)

≥ 〈z − x, y∗〉 − 2γ + [f(y)− f(2y − x)] + [f(y)− f(x)]

≥ 〈z − x, y∗〉 − 2γ − 2p(y − x) ≥ 〈z − x, y∗〉 − 4γ

≥ 〈z − x, y∗〉 − η.

It follows that y∗ ∈ ∂ηf(x), and so y∗ ∈ ∂f(x) +B0.

(iii) ⇒ (iv) is obvious.

(iv) ⇒ (v) Fix B ∈ B and take ε > 0. Then ε−1B ∈ B. By hypothesis, there exists a
neighborhood U of 0 in X such that ∂f(y) ⊂ ∂f(x) + (ε−1B)0 = ∂f(x) + εB0 for every
x ∈ A and every y ∈ x+U . We may (and we do) suppose that U ⊂ U0, and so ∂f(y) 6= ∅,
f being continuous at y. Hence, taking some y∗ ∈ ∂f(y), there exists x∗ ∈ ∂f(x) such that
z∗ := y∗−x∗ ∈ (∂f(y)−∂f(x))∩εB0, and so σB(z

∗) ≤ ε. Hence infσB(∂f(y)−∂f(x)) ≤ ε
for all x ∈ A and y ∈ x+ U .

(v) ⇒ (i) Fix some B ∈ B. Then, for ε > 0 there exists Uε ⊂ U0 a convex neighborhood
of 0 such that infσB(∂f(y) − ∂f(x)) ≤ ε for all x ∈ A and y ∈ x + Uε. Because B is
bounded, there exists some η > 0 such that ηB ⊂ Uε. Fix some x ∈ A and y ∈ B. For
x∗ ∈ ∂f(x) and y∗ ∈ ∂f(x+ ηy) we have

0 ≤
f(x+ ηy)− f(x)

η
− f ′(x, y) ≤ 〈y, y∗〉 − 〈y, x∗〉 ≤ σB(y

∗ − x∗),

whence

0 ≤
f(x+ ηy)− f(x)

η
− f ′(x, y) ≤ infσB(∂f(x+ ηy)− ∂f(x)) ≤ ε.

Since the quotient is increasing with respect to (w.r.t. for short) η and the estimate is
independent of y ∈ B, we obtain f is uniformly directionally B-differentiable on A.

The notion of bornology used above is somewhat different from the usual notion in which
the sets need not be closed or absolutely convex. These supplementary conditions are
not restrictive for the Fréchet bornology (the family of all bounded subsets of X), for
the Hadamard bornology (the family of all compact subsets of X) when X is a Banach
space (apply [25, Th. 2.11.C]), or for the weak Hadamard bornology (the family of all
weakly compact subsets of X) when X is a Banach space (applying the Krein–Smulian
weak compactness theorem [27, Th. 2.8.14]).

When B := {K ⊂ X | K is compact, convex and K = −K 6= ∅}, the function f ∈ Λ(X)
(which is continuous at x ∈ dom f) is automatically directionally B-differentiable at x,
and so properties (ii)–(v) hold in such a case for A = {x}. (The fact that the limit in (2)
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is uniform on the compact set K ⊂ X follows from Dini’s theorem because the mapping
0 < t 7→ t−1[f(x+ ty)− f(x)] is monotone and continuous w.r.t. y ∈ K (for small t) and
the limit f ′(x, ·) is continuous.)

Given the topological space (T, τ) and a net (Ai)i∈I of subsets of T , we say that (Ai) V
+-

converges to A ⊂ T , and we write Ai
V+

−→ A, if for every open subset D of T with A ⊂ D,
there exists some iD ∈ I such that Ai ⊂ D for every i ≥ iD (V+ stands for upper Vietoris);
when we want to emphasize the topology τ we write V+

τ . When (T, d) is a metric space,

we say that the net (Ai)i∈I of subsets of T W-converges to A ⊂ T , and we write Ai
W
−→ A,

if (d(x,Ai))i∈I → d(x,A) for every x ∈ T (W stands for Wijsman). In the framework of

a metric space (T, d), we say that (Ai) H+-converges to A ⊂ T , and write Ai
H+

−→ A, if
for every ε > 0 there exists iε ∈ I such that Ai ⊂ Aε for i ≥ iε (H+ stands for upper

Hausdorff); similarly, when (T, τ) is a topological vector space, Ai
H+

τ−→ A, if for every
neighborhood V of 0 in T there exists iV ∈ I such that Ai ⊂ A+ V for i ≥ iV . Note that
if Ai is nonempty for every i ∈ I and (Ai)i∈I converges for one of the above convergences
then necessarily A is nonempty. Moreover, if T is a metric space or a topological vector

space and Ai
V+

−→ A then Ai
H+

−→ A, the converse being true if A is compact.

Given a sequence (An)n∈N of subsets of a metric space (T, d) or a topological vector space
(T, τ) and A ⊂ T , taking S := {0} ∪ { 1

n
| n ∈ N} ⊂ R endowed with the usual topology

and the multifunction R : S ⇉ T defined by R(0) := A, R( 1
n
) := An, we have An

H+

−→ A

if and only if R is H-usc at 0. Similarly, An
V+

−→ A if and only if R is usc at 0 (even if
(T, τ) is a general topological space).

Also recall that for a sequence (An) of subsets of the metric space (T, d), lim supAn is the
set of those x ∈ T such that there exist (nk) ⊂ N an increasing sequence and a sequence
(xk) ⊂ T convergent to x with xk ∈ Ank

for every k ≥ 1; so, x ∈ lim supAn if and only if
lim inf d(x,An) = 0. Recall that the Hausdorff index of noncompactness of the nonempty
bounded subset A of the metric space (T, d) is the number

α(A) := inf{ε > 0 | A ⊂ F ε for some finite set F ⊂ T}.

We shall need the following result which seems to be new.

Proposition 2.2. Let (T, d) be a complete metric space and let (An) be a sequence of
nonempty closed subsets of T . The following assertions are equivalent:

(i) every sequence (xk) with xk ∈ Ank
, (nk) ⊂ N being an increasing sequence, has a

convergent subsequence;

(ii) the set A := lim supAn is nonempty and compact, and An
H+

−→ A;

(iii) there exists a nonempty compact set A ⊂ T such that An
H+

−→ A.

Moreover, if (i), (ii) or (iii) holds then α(An) → 0.

Proof. (i) ⇒ (ii) By our hypothesis the set A := lim supAn is nonempty. Of course, A
is a closed set. In order to obtain that A is compact it is sufficient to show that every
sequence in A has a Cauchy subsequence. If this is not true then there exist a sequence
(xk) ⊂ A and ε > 0 such that d(xk, xp) ≥ ε for all distinct k and p. Because x1 ∈ A
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we have lim inf d(x1, An) = 0, and so there exists n1 ∈ N such that d(x1, An1) < ε/3.
Because x2 ∈ A we have lim inf d(x2, An) = 0, and so there exists n2 ∈ N, n2 > n1, such
that d(x2, An2) < ε/3. Continuing in this way, we find an increasing sequence (nk) ⊂ N

such that d(xk, Ank
) < ε/3 for every k. Consider x′k ∈ Ank

with d(xk, x
′
k) < ε/3. By

our hypothesis, (x′k) has a convergent subsequence, and so we may assume that (x′k)
itself is convergent, whence (x′k) is Cauchy. It follows that there exists k0 ∈ N such that
d(x′k, x

′
p) < ε/3 for k, p ≥ k0. Hence, for distinct k, p ≥ k0 we get the contradiction

ε ≤ d(xk, xp) ≤ d(xk, x
′
k) + d(x′k, x

′
p) + d(x′p, xp) < ε/3 + ε/3 + ε/3 = ε. Hence A is

compact.

Assume that (An) does not H
+-converge to A. Then there exist ε > 0 and an increasing

sequence (nk) ⊂ N such that Ank
6⊂ Aε. So, for every k we get xk ∈ Ank

such that
d(xk, A) ≥ ε. By our hypothesis (xk) has a convergent subsequence, and so we may
assume that xk → x ∈ X. It follows that x ∈ A. This yields the contradiction ε ≤
lim d(xk, A) = d(x,A) = 0.

(ii) ⇒ (iii) is obvious.

(iii) ⇒ (i) First notice that A is nonempty. Let (nk) ⊂ N be an increasing sequence
and (xk) ⊂ X be such that xk ∈ Ank

for every k. Consider a sequence (εp)p≥1 ⊂ (0,∞)

converging to 0. Because An
H+

−→ A, there exists a sequence (mp) ⊂ N such that An ⊂ Aεp

for n ≥ mp. As nk → ∞, there exists an increasing sequence (kp) such that nkp ≥ mp for
every p, and so d(xkp , A) < εp for every p. Hence, we get a sequence (yp)p≥1 ⊂ A such
that d(xkp , yp) < εp for every p, whence d(xkp , yp) → 0. Because A is compact, (yp) has a
convergent subsequence, and so (xkp)p≥1 has a convergent subsequence. This shows that
(xk) has a convergent subsequence.

Assume now that (iii) holds. Let ε > 0. By hypothesis, there exists nε such that
An ⊂ Aε/2 for n ≥ nε. Since A is compact, there exist F ⊂ A finite such that A ⊂ F ε/2.
It follows that An ⊂ F ε. Therefore α(An) ≤ ε, and so α(An) → 0.

The case of a decreasing sequence (An) will be useful.

Corollary 2.3. Let (T, d) be a complete metric space and (An) be a decreasing sequence
of nonempty closed subsets of T . The following assertions are equivalent:

(i) every sequence (xn) with xn ∈ An for n ≥ 1 has a convergent subsequence;

(ii) A := ∩n≥1An is a nonempty compact set and for every ε > 0 there exists n ≥ 1 such

that An ⊂ Aε, that is, An
H+

−→ A;

(iii) α(An) → 0.

Proof. Because (An) is decreasing we have lim supAn = ∩n≥1An. It is easy to see that in
our case, assertions (i) and (ii) in the preceding proposition are equivalent to assertions
(i) and (ii) of the present statement, respectively. So we have (i) ⇔ (ii) ⇒ (iii).

The implication (iii) ⇒ (i) is an immediate consequence of the following result which we
state without proof, being probably known.

Lemma 2.4. Let (T, d) be a metric space and (An) be a decreasing sequence of nonempty
closed subsets of X. Then α(An) → 0 if and only if every sequence (xn) with xn ∈ An for
every n has a Cauchy subsequence.
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Note the fact that ∩n≥1An is a nonempty compact set provided α(An) → 0 in the preceding
corollary is established in statement (f) of [2, p. 4].

3. Continuity properties for the subdifferential and ε-subdifferential of a con-

vex function

From now on, we consider (X, ‖·‖) to be a real normed vector space. We say, as in [5], that

the function f : X → R is directionally Fréchet differentiable at x ∈ X with f(x) ∈ R if f
is directionally B-differentiable when B is the Fréchet bornology (that is, B is the class of
all absolutely convex closed bounded subsets of X). Of course, if f is directionally Fréchet
differentiable at x then x is in the interior of the set {y ∈ X | f(y) ∈ R}. Moreover, note
that f is Fréchet differentiable at x with f(x) ∈ R iff f is Gateaux differentiable at x
(that is, f ′(x, y) exists in R for every y ∈ X and f ′(x, ·) is a continuous linear functional)
and directionally Fréchet differentiable at x. Taking B to be the Fréchet bornology on X
in Gregory’s theorem (Theorem 2.1) we obtain the following result.

Theorem 3.1. Let A ⊂ X be a nonempty set and f ∈ Λ(X). Assume that there exists
η > 0 such that A+ηUX ⊂ dom f and f is Lipschitz on A+ηUX . The following assertions
are equivalent:

(i) f is uniformly directionally Fréchet differentiable on A;

(ii) the multifunction Sf (·, x) is uniformly τ0-τ‖·‖ H-usc at 0 for x ∈ A in the sense that
for every ε > 0, there exists η > 0 such that ∂ηf(x) ⊂ ∂f(x)+εUX∗ for every x ∈ A;

(iii) the multifunction Sf is uniformly τ0 × τ‖·‖-τ‖·‖ H-usc at (0, x) for x ∈ A;

(iv) the multifunction Sf (0, ·) is uniformly τ‖·‖-τ‖·‖ H-usc at x for x ∈ A;

(v) limy→x gap(∂f(y), ∂f(x)) = 0 uniformly for x ∈ A.

The next result shows that uniformly directional Fréchet differentiability for a convex
function is a strong condition.

Theorem 3.2. Let f ∈ Λ(X) be continuous on int(dom f) and ∅ 6= S ⊂ dom f . If f
is uniformly directionally Fréchet differentiable on S then f is Fréchet differentiable on
intS and ∇f is uniformly continuous on intS. Conversely, if f is Gateaux differentiable
on S and ∇f is uniformly continuous on S then f is uniformly directionally Fréchet
differentiable on every set A with gap(A,X \ S) > 0.

Proof. Assume that f is uniformly directionally Fréchet differentiable on S. Let us show
that f is Gateaux differentiable at any x ∈ intS. The conclusion then follows from
the equivalence of (i) and (v) in Theorem 3.1. So, take x ∈ intS and u ∈ SX . There
exists some r > 0 such that S + rUX ⊂ dom f and x + rUX ⊂ S. Consider the function
ψ : R → R defined by ψ(t) := f(x+tu). We have that ψ′

+(t) := lims↓0 s
−1[ψ(t+s)−ψ(t)] =

f ′(x+tu, u) and ψ′
−(t) := lims↑0 s

−1[ψ(t+s)−ψ(t)] = −f ′(x+tu,−u) for every t ∈ domψ.
Since f is uniformly directionally Fréchet differentiable on S, for every ε > 0 there exists
δ ∈ (0, r] such that

f(y + sv)− f(y)

s
− f ′(y, v) ≤ ε ∀y ∈ S, ∀v ∈ UX , ∀s ∈ (0, δ].

In particular, taking y = x+ tu and v ∈ {−u, u}, we obtain

ψ(t+ s)− ψ(t)

s
− ψ′

+(t) ≤ ε,
ψ(t− s)− ψ(t)

s
+ ψ′

−(t) ≤ ε
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for all t ∈ (−r, r) and s ∈ (0, δ]. Fixing t ∈ (−r, r) and replacing t by t′ ∈ (t, r) in the
second inequality, and taking into account that limt′↓t ψ

′
−(t

′) = ψ′
+(t) and the continuity

of ψ on (−2r, 2r) we obtain

ψ(t− s)− ψ(t)

s
+ ψ′

+(t) ≤ ε ∀t ∈ (−r, r), ∀s ∈ (0, δ].

Hence
ψ(t+ s)− ψ(t)

s
+
ψ(t− s)− ψ(t)

s
≤ 2ε ∀t ∈ (−r, r), ∀s ∈ (0, δ].

Taking the limit for s → 0 we obtain 0 ≤ ψ′
+(t) − ψ′

−(t) ≤ 2ε for every t ∈ (−r, r)
and ε > 0. Hence ψ′

+(t) = ψ′
−(t) for t ∈ (−r, r). In particular, ψ′

+(0) = ψ′
−(0), that

is, f ′(x,−u) = −f ′(x, u). Since u ∈ UX is arbitrary, we obtain f ′(x, ·) is linear (and
continuous), and so f is Gateaux differentiable at x.

Conversely, assume that f is Gateaux differentiable on S and ∇f is uniformly continuous
on S. Consider A ⊂ dom f such that γ := gap(A,X \ S) > 0. Fix ε > 0; then there
exists δ ∈ (0, γ) such that ‖∇f(x)−∇f(y)‖ ≤ ε for x, y ∈ S with ‖x− y‖ ≤ δ. Taking
t ∈ (0, δ), u ∈ UX and x ∈ A, we necessarily have that x + tu ∈ S. By the mean-value
theorem there exists some t′ ∈ (0, t) such that f(x+ tu)− f(x) = 〈tu,∇f(x+ t′u)〉, and
so

f(x+ tu)− f(x)

t
− f ′(x, u) = 〈u,∇f(x+ t′u)−∇f(x)〉 ≤ ε.

The conclusion follows.

An inspection of the proof of the previous theorem shows that the next result holds, where
the function g : D ⊂ X → X∗ is said to be τ‖·‖-τB uniformly continuous on A ⊂ D if

∀ε > 0, ∀B ∈ B, ∃δ > 0, ∀y, y′ ∈ A : ‖y − y′‖ ≤ δ ⇒ σB(g(y)− g(y′)) ≤ ε.

Theorem 3.3. Let f ∈ Λ(X) be continuous on int(dom f), S ⊂ dom f and let B be
a bornology on X. If f is uniformly directionally B-differentiable on S then f is B-
differentiable on intS and ∇f is τ‖·‖-τB uniformly continuous on intS. Conversely, if f
is B-differentiable on S and ∇f is τ‖·‖-τB uniformly continuous on S then f is uniformly
directionally B-differentiable on every set A with gap(A,X \ S) > 0.

Observe that the function f := ‖·‖ is uniformly directionally B-differentiable on SX if
and only if f is uniformly directionally B-differentiable on [r, r−1] · SX for every (some)
r ∈ (0, 1) (just use the positive homogeneity of f). With this remark, from Theorem 3.2
we obtain the norm is uniformly directionally Fréchet differentiable on SX if and only
if the norm is uniformly smooth, that is, [10, Prop. 4.1] (established for X complete).
Moreover, the norm is uniformly directionally B-differentiable on SX if and only if the
norm is B-differentiable on X \{0} (that is, X is B-smooth) and ∇‖·‖ is τ‖·‖-τB uniformly
continuous on SX (compare with Lemma 1.1 in [16] established for the weak Hadamard
bornology).

An example of directionally Fréchet differentiable function is that of conical function. We
say that f ∈ Λ(X) is conical at x ∈ dom f if there exists some r > 0 and a sublinear

function p : X → R such that f(y) = f(x)+ p(y−x) for every y ∈ x+ rBX . Of course, if
this relation holds then p = f ′(x, ·), p is proper and ∂f(y) = ∂p(y − x) ⊂ ∂p(0) = ∂f(x)
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for every y ∈ x + rBX . Similar to the notion of quasi-polyhedral norm (see [18, Def.
3.1]), we say that the function f ∈ Λ(X) is quasi-polyhedral at x ∈ dom f if there exists
some r > 0 such that ∂f(y) ⊂ ∂f(x) for every y ∈ x + rBX . Hence, every function
f ∈ Λ(X) which is conical at x ∈ dom f is quasi-polyhedral at x. The converse is true if
f is continuous at x.

Proposition 3.4. Let f ∈ Λ(X) be continuous at x ∈ dom f . Then f is conical at x if
and only if f is quasi-polyhedral at x.

Proof. Assume that ∂f(y) ⊂ ∂f(x) for every y ∈ x + rBX ⊂ dom f . We may suppose
that x = 0 and f(0) = 0 and we have to show that f(y) = f ′(0, y) for y ∈ rBX . But
f(ty) ≤ tf(y) for every y ∈ X and t ∈ (0, 1), and so f ′(0, y) ≤ f(y) for every y ∈ X. Take
y ∈ rBX . Because f is continuous on rBX ⊂ int(dom f), by the mean-value theorem in
the convex case (see f.i. [39, Exer. 2.31]), there exist some γ ∈ (0, 1) and z∗ ∈ ∂f(γy)
such that f(y) = f(y) − f(0) = 〈y, z∗〉. Because γy ∈ rBX , we have z∗ ∈ ∂f(0), and so
f(y) ≤ max{〈y, x∗〉 | x∗ ∈ ∂f(0)} = f ′(0, y).

When X is a Banach space the continuity of f can be replaced by lower semicontinuity.

Proposition 3.5. Let X be a Banach space, f ∈ Γ(X) and x ∈ dom f . Then f is conical
at x if and only if f is quasi-polyhedral at x.

Proof. We have to prove the sufficiency part. As in the proof of the preceding proposition,
we take x = 0, f(0) = 0 and ∂f(y) ⊂ ∂f(0) for every y ∈ rBX . First, by Brøndsted–
Rockafellar theorem (see f.i. [39, Th. 3.1.2]) we have 0 ∈ cl(dom ∂f). From our hypothesis
we obtain ∂f(0) 6= ∅. We have seen that f ′(0, y) ≤ f(y) for every y ∈ X, and so

s∂f(0)(y) := sup{〈y, x∗〉 | x∗ ∈ ∂f(0)} ≤ f ′(0, y) ≤ f(y) ∀y ∈ X. (3)

Take y ∈ rBX and s ∈ R, s ≤ f(y). Applying Zagrodny’s theorem (see f.i. [39, Th. 3.2.5]),
we obtain a sequence (xn) converging to x ∈ [0, y[ with f(xn) → f(x) and a sequence
(x∗n) such that x∗n ∈ ∂f(xn) for every n and s = s − f(0) ≤ lim inf〈y, x∗n〉. Because rBX

is open, we have xn ∈ rBX for large n, and so x∗n ∈ ∂f(0) for such n. It follows that
s ≤ sup{〈y, x∗〉 | x∗ ∈ ∂f(0)} = s∂f(0)(y). Letting s → f(y) we get f(y) ≤ s∂f(0)(y).
Therefore equality holds in (3) for every y ∈ rBX .

Of course, if f ∈ Λ(X) is continuous and conical at x ∈ dom f then f is directionally
Fréchet differentiable at x; so we get again [18, Lem. 3.3] (established for the norm and
X complete).

Taking into account that for metric spaces S, T , the multifunction R : S ⇉ T is H-usc
at s ∈ S if and only if for every sequence (sn) ⊂ S converging to s and every sequence
(tn) ⊂ T such that tn ∈ R(sn) for n ≥ 1 we have d(tn,R(s)) → 0, when A is a singleton,
to the characterizations in Theorem 3.1 we can add other ones. Note that in the preceding
characterization of H-upper semicontinuity we can replace sequences by nets.

Theorem 3.6. Let f ∈ Λ(X) be continuous at x ∈ dom f . The following assertions are
equivalent:

(i) f is directionally Fréchet differentiable at x;

(ii) the multifunction Sf (·, x) is τ0-τ‖·‖ H-usc at 0;



A. K. Chakrabarty, P. Shunmugaraj, C. Zălinescu / Continuity Properties for ... 489

(iii) the multifunction Sf is τ0 × τ‖·‖-τ‖·‖ H-usc at (0, x);

(iv) the multifunction Sf (0, ·) is τ‖·‖-τ‖·‖ H-usc at x;

(v) limy→x gap(∂f(y), ∂f(x)) = 0;

(vi) for every sequence (ηn) ⊂ [0,∞) converging to 0 and every sequence (x∗n) with
x∗n ∈ ∂ηnf(x) for n ∈ N, we have d(x∗n, ∂f(x)) → 0;

(vii) for every sequence (ηn) ⊂ [0,∞) converging to 0, for every sequence (xn) ⊂ X
converging to x and every sequence (x∗n) with x∗n ∈ ∂ηnf(xn) for n ∈ N, we have
d(x∗n, ∂f(x)) → 0;

(viii) for every sequence (xn) ⊂ X converging to x and every sequence (x∗n) with x∗n ∈
∂f(xn) for n ∈ N, we have d(x∗n, ∂f(x)) → 0.

Note that the equivalence of conditions (i), (ii) and (iv) of the preceding result is proved
by Robert [30]. However, the notion of directionally Fréchet differentiability was first
introduced by Valadier [37, p. 61] under the name of “sous-différentiabilité au sens de
Fréchet� (subdifferentiability in Fréchet’s sense); there the author provides a criterion for
f to be directionally Fréchet differentiable. Also note that the equivalence of (i) and (iv)
is obtained again by Giles and Moors [15, Th. 3.2]. As mentioned before Theorem 2.1, the
equivalences above can be seen as an extension of some results of Asplund and Rockafellar
[1] to the case where Sf (0, x) is not a singleton. The case where Sf (0, x) is a singleton
is discussed in Theorem 3.8. On the other hand, as pointed out in Introduction, Sf has
very good continuity properties on (0,∞)× int(dom f) (see [23, 29, 34]).

Of course, we could state the preceding theorem with an arbitrary bornology on X. We
preferred to state it only for the Fréchet bornology because the assertions (v)–(viii) have
nice formulations using the distance function. For example, taking B to be the class
of weakly compact absolutely convex subsets of X, one obtains: f is directionally B-
differentiable at x if and only if for every B ∈ B there exists a neigborhood U of x such
that ∂f(U) ⊂ ∂f(x) + B0. This assertion is stated by Giles and Sciffer [16, Lem. 2.1] for
X complete and with B replaced by the class of weakly compact subsets of X, that is, the
weak Hadamard bornology. Taking into account the Krein–Smulian weak compactness
theorem (see [27, Th. 2.8.14]), [16, Lem. 2.1] follows from the above assertion.

Taking f = ‖·‖ and x ∈ SX , observe that ∂f(x) = {x∗ ∈ SX∗ | 〈x, x∗〉 = 1} and
∂ηf(x) = {x∗ ∈ UX∗ | 〈x, x∗〉 ≥ 1− η}. These sets will be denoted by S(x, 0) and S(x, η),
respectively. When f = ‖·‖, x ∈ SX and X is complete, Franchetti and Payá [10, Th. 1.2]
obtained the equivalence of conditions (i), (ii), (iv) and (v), while Hu and Lin [26, Th.
12] obtained the equivalence of conditions (i), (ii), (iv)–(vi) and (viii) of the preceding
result.

The variant with ∂f(x) compact of the preceding result is the following:

Theorem 3.7. Let f ∈ Λ(X) be continuous at x ∈ dom f . The following assertions are
equivalent:

(i) ∂f(x) is compact and f is directionally Fréchet differentiable at x;

(ii) ∂f(x) is compact and the multifunction Sf (·, x) is τ0-τ‖·‖ H-usc at 0;

(iii) ∂f(x) is compact and the multifunction Sf is τ0 × τ‖·‖-τ‖·‖ H-usc at (0, x);

(iv) ∂f(x) is compact and the multifunction Sf (0, ·) is τ‖·‖-τ‖·‖ H-usc at x;

(v) ∂f(x) is compact and limy→x gap(∂f(y), ∂f(x)) = 0;
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(vi) for every sequence (ηn) ⊂ [0,∞) converging to 0 and every sequence (x∗n) with
x∗n ∈ ∂ηnf(x) for n ∈ N, (x∗n)n∈N has a τ‖·‖-convergent subsequence;

(vii) for every sequence (ηn) ⊂ [0,∞) converging to 0, every sequence (xn) ⊂ X con-
verging to x and every sequence (x∗n) with x∗n ∈ ∂ηnf(xn) for n ∈ N, (x∗n)n∈N has a
τ‖·‖-convergent subsequence;

(viii) for every sequence (xn) ⊂ X converging to x and every sequence (x∗n) with x∗n ∈
∂f(xn) for n ∈ N, (x∗n)n∈N has a τ‖·‖-convergent subsequence;

(ix) limη↓0 α (∂ηf(x)) = 0.

Proof. The equivalence of conditions (i)–(v) is immediate from Theorem 3.6. In order to
have the equivalence of conditions (i)–(viii) it is sufficient to observe that every condition
in the above statement is equivalent to the compactness of ∂f(x) and the validity of
the corresponding condition in Theorem 3.6. Assume, for example, that (viii) in the
present statement holds. Taking xn = x for every n, we obtain immediately that ∂f(x) is
compact. Assume now that (viii) in Theorem 3.6 is not true. Then there exist a sequence
(xn) converging to x, a sequence (x∗n) with x

∗
n ∈ ∂f(xn) for every n and ε > 0 such that

d(x∗n, ∂f(x)) ≥ ε for every n. By hypothesis, (x∗n) has a subsequence (x∗nk
) τ‖·‖-converging

to x∗ ∈ X∗. Because gph ∂f is closed, it follows that x∗ ∈ ∂f(x), which contradicts the
fact that d(x∗, ∂f(x)) ≥ ε. The converse is (almost) immediate.

Because X∗ is complete, the equivalence of conditions (vi) and (ix) follows immediately
from Corollary 2.3.

For f = ‖·‖, x ∈ SX and X complete, the equivalence of assertions (i), (ii), (iv)–(vi) and
(viii) in the preceding result is stated by Hu and Lin in [26, Cor. 13], while the equivalence
of (ii) and (ix) is stated by Banaś and Sadarangani in [3, Th. 7]. Note that Hu and Lin
[26] say that the norm is quasi-Fréchet differentiable when it satisfies condition (viii) in
Theorem 3.7 at any x ∈ SX .

The case with ∂f(x) a singleton in the preceding statement (instead of being compact) is
also of interest. In such a case f is directionally Fréchet differentiable at x if and only if
f is Fréchet differentiable at x. So we have the following result.

Theorem 3.8. Let f ∈ Λ(X) be continuous at x ∈ dom f . The following assertions are
equivalent:

(i) f is Fréchet differentiable at x;

(ii) limη↓0 diam ∂ηf(x) = 0;

(iii) limη↓0,y→x diam ∂ηf(y) = 0;

(iv) ∂f(x) = {x∗} for some x∗ ∈ X∗ and limy→x d(x
∗, ∂f(y)) = 0;

(v) for every sequence (ηn) ⊂ [0,∞) converging to 0 and every sequence (x∗n) with
x∗n ∈ ∂ηnf(x) for n ∈ N, (x∗n)n∈N is τ‖·‖-convergent;

(vi) for every sequence (ηn) ⊂ [0,∞) converging to 0, every sequence (xn) ⊂ X con-
verging to x and every sequence (x∗n) with x∗n ∈ ∂ηnf(xn) for n ∈ N, (x∗n)n∈N is
τ‖·‖-convergent;

(vii) for every sequence (xn) ⊂ X converging to x and every sequence (x∗n) with x∗n ∈
∂f(xn) for n ∈ N, (x∗n)n∈N is τ‖·‖-convergent.

Proof. It is obvious that any one of the assertions (ii)–(vii) implies that ∂f(x) is a
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singleton (being nonempty). The statement follows then from Theorem 3.6.

Note that limy→x diam ∂f(y) = 0 is not equivalent to (i) in the preceding theorem. Just
consider a Gateaux differentiable convex function f which is not Fréchet differentiable;

such a function is f : L1(0, 1) → R, f(x) :=
∫ 1

0

√

1 + (x(t))2dt (see [39, Exer. 2.10]).

The equivalence of (i) and (v) in the previous result for f = ‖·‖ and x ∈ SX is stated as
Smulian Lemma in [8, p. 243].

To the characterizations above one can add those from [22, Cor. 3.3] obtained for the
Fréchet bornology (see also [39, Th. 3.3.2]; in fact, taking into account [22, Cor. 3.3], the
condition that X is a Banach space is superfluous for the implication (vi) ⇒ (vii) in [39,
Th. 3.3.2]).

We add here a characterization for the τ0-w(1) H-upper semicontinuity at 0 of the multi-
function Sf (·, x) which appears as a consequence of a result of Section 5 (Corollary 5.3);
the notation is explained in the next section. It can be completed with the corresponding
characterizations (for τ = w) in Proposition 3.10 below.

Proposition 3.9. Let f ∈ Λ(X) be continuous at x ∈ dom f . Then

∂f ∗∗(x) = ∂f(x)
w∗(3)

if and only if the multifunction Sf (·, x) is τ0-w(1) H-usc at 0.

When f = ‖·‖, x ∈ SX and X is complete, the preceding result is nothing else but [14,
Th. 3.1].

Some of the continuity properties in the preceding results can be stated when τ‖·‖ is
replaced by another locally convex topology on X∗. These continuity results can not be
obtained directly from Theorem 2.1 because such a topology is not necessarily of type τB.

Proposition 3.10. Let f ∈ Λ(X), x ∈ dom f and τ a locally convex topology on X∗.
Consider the following assertions:

(i) the multifunction Sf (·, x) is τ0-τ H-usc at 0;

(ii) the multifunction Sf (0, ·) is τ‖·‖-τ H-usc at x;

(iii) the multifunction Sf is τ0 × τ‖·‖-τ H-usc at (0, x).

If f is continuous at x then (i) ⇔ (iii); if X is complete, f is lower semicontinuous and
τ is weaker than the norm topology on X∗, then (ii) ⇔ (iii); if X is complete, f is lsc,
x ∈ int(dom f) and τ is weaker than the norm topology, then (i) ⇔ (ii) ⇔ (iii).

Proof. Note that (iii) ⇒ (i)∧ (ii) always and the last statement subsumes the first two.

(i) ⇒ (iii) Let f be continuous at x and assume that Sf (·, x) is τ0-τ H-usc at 0. Let
V be a convex τ -neighborhood of 0 in X∗. By hypothesis, there exists η > 0 such
that ∂ηf(x) ⊂ ∂f(x) + V . Because f is continuous at x, there exists r > 0 such that
|f(y) − f(x)| ≤ η/9 for ‖y − x‖ < 2r. Let γ := η/3. Consider (y, y∗) ∈ gph ∂γf with
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‖y − x‖ < r. Then, for every z ∈ X, we have

f(z)− f(x) = f(z)− f(y) + f(y)− f(x)

≥ 〈z − y, y∗〉 − γ + f(y)− f(x)

≥ 〈z − x, y∗〉 − γ + 〈x− y, y∗〉+ f(y)− f(x)

≥ 〈z − x, y∗〉 − 2γ + [f(y)− f(2y − x)] + [f(y)− f(x)]

≥ 〈z − x, y∗〉 − 3γ = 〈z − x, y∗〉 − η.

It follows that y∗ ∈ ∂ηf(x), and so y∗ ∈ ∂f(x) + V . The conclusion follows.

(ii) ⇒ (iii) Let X be complete, f be lsc and τ be weaker than the norm topology.
Assume Sf (0, ·) is τ‖·‖-τ H-usc at x. Because dom f ⊂ cl(dom ∂f), we have ∂f(x) 6= ∅ in
our situation.

Let V be a convex τ -neighborhood of 0 in X∗. By hypothesis, there exists η ∈ (0, 1) such
that ∂f(y) ⊂ ∂f(x) + 1

2
V for ‖y − x‖ < η. Let γ > 0 satisfy 2γ < η and γUX∗ ⊂ 1

2
V .

Consider ‖y − x‖ < γ and y∗ ∈ ∂γ2f(y). By Brøndsted–Rockafellar theorem (see [39,
Th. 2.4.2]), there exists (z, z∗) ∈ gph ∂f such that ‖z − y‖ ≤ γ and ‖z∗ − y∗‖ ≤ γ. It
follows that ‖z − x‖ ≤ ‖z − y‖ + ‖y − x‖ ≤ γ + γ < η. Hence z∗ ∈ ∂f(x) + 1

2
V , and so

y∗ ∈ ∂f(x) + γUX∗ + 1
2
V ⊂ ∂f(x) + V . The proof is complete.

The equivalence of (i) and (ii) in Proposition 3.10 is obtained in [14, Th. 2.1] for f = ‖·‖,
τ ∈ {w(1), w∗, τ‖·‖} and X complete.

Of course, other topologies on the family CC∗(X∗) of w∗-closed convex subsets of X∗ could
be considered, and not only topologies of the type H+

τ . Such topologies are the (upper)
Vietoris topologies (weak∗ and strong), slice∗, Wijsman, etc. (see [4], [33] for some of
them).

First let us note the following result.

Lemma 3.11. Let (Ai)i∈I be a net of nonempty subsets of X∗ and ∅ 6= A ⊂ X∗. If Ai

V
+
w∗

−→
A then lim inf gap(Ai, C) ≥ gap(A,C) for every w∗-closed subset C of X∗. Conversely,
if A is w∗-compact and lim inf gap(Ai, C) ≥ gap(A,C) for every w∗-closed subset of X∗

then Ai

V
+
w∗

−→ A.

Proof. Assume Ai

V+
w∗

−→ A and take C ⊂ X∗ a nonempty w∗-closed set. Let lim inf gap(Ai,
C) < µ <∞. Then the set J := {i ∈ I | gap(Ai, C) < µ} is cofinal. The set C + µUX∗ is
w∗-closed (as the sum of a w∗-compact set and a w∗-closed set) and Ai ∩ (C + µUX∗) 6= ∅
for every i ∈ J . It follows that A ∩ (C + µUX∗) 6= ∅, whence gap(A,C) ≤ µ. Hence
lim inf gap(Ai, C) ≥ gap(A,C).

Conversely, assume that A is w∗-compact and lim inf gap(Ai, C) ≥ gap(A,C) for every
w∗-closed subset C of X∗. Let C ⊂ X∗ be a w∗-closed set such that A ∩ C = ∅. Then
A − C is w∗-closed and 0 /∈ A − C. It follows that gap(A,C) = d(0, A− C) > 0, and so
there exists some i0 ∈ I such that gap(Ai, C) > 0 for every i ≥ i0. Hence Ai ∩ C = ∅ for

i ≥ i0. It follows that Ai

V +
w∗

−→ A.
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Proposition 3.12. Let f ∈ Λ(X) be continuous at x ∈ dom f . Then ∂ηf(y)
V

+
w∗

−→ ∂f(x)
for (η, y) → (0, x). In particular (∂ηf(x)) slice∗-converges to ∂f(x) for η ↓ 0, and so

∂ηf(x)
W
−→ ∂f(x) for η ↓ 0.

Proof. Because ∂f(x) is nonempty and w∗-compact, it is sufficient to show that ∂ηf(y)
H+

w∗

−→ ∂f(x). Assume that this is not true. Then there exists V a w∗-neighborhood of 0 in
X∗ and a net ((ηi, xi))i∈I ⊂ [0,∞)×X converging to (0, x) such that ∂ηif(xi) 6⊂ ∂f(x)+V
for every i ∈ I. Take x∗i ∈ ∂ηif(xi)\(∂f(x) + V ) for every i ∈ I. Using f.i. [39, Th. 2.4.13],
there exists a r,m > 0 such that ∂1f(y) ⊂ mUX∗ for every y ∈ x + rUX . There exists
some i0 ∈ I such that ηi ≤ 1 and xi ∈ x+rUX for every i ≥ i0. Hence (x

∗
i )i≥i0 is bounded,

and taking a subnet if necessary, we may assume that x∗i →w∗

x∗. Using now [39, Th.
2.4.2(ix)] we obtain x∗ ∈ ∂f(x), which contradicts our choice of the net (x∗i )i∈I . The rest
follows using the preceding lemma and the fact that ∂f(x) ⊂ ∂ηf(x) for η ≥ 0.

The preceding results can be formulated easily for the conjugate f ∗ of a function f ∈ Γ(X).
It is known that f ∗ ∈ Γ∗(X∗), that is, f ∗ ∈ Γ(X∗) and f ∗ is also w∗-lower semicontinuous.
Since X∗ is a Banach space, instead of asking that f ∗ is continuous at x∗ ∈ dom f ∗ we
have to ask that x∗ ∈ int(dom f ∗). But when dealing with f ∗ it is more interesting to have
continuity properties for the multifunction SX

f∗ , for example, than for the multifunction
Sf∗ . For doing such a study we need first some results concerning higher order conjugates
and higher order duals.

4. Auxiliary results

Given the normed vector space (X, ‖·‖) and a function f ∈ Γ(X), we define inductively
the n-th conjugate of f : f ∗(0) := f , f ∗(n+1) := (f ∗(n))∗ for n ∈ N ∪ {0}; hence f ∗(1) = f ∗.
We shall denote f ∗(2) by f ∗∗. So f ∗(n) ∈ Γ∗

(

X∗(n)
)

⊂ Γ
(

X∗(n)
)

for n ≥ 1. We have the
following result.

Lemma 4.1. Let f ∈ Γ(X). Then f ∗∗|X = f , dom f = X ∩ dom f ∗∗ and

X∗ ∩ ∂ηf
∗∗(x) = ∂ηf(x) ∀x ∈ X, ∀η ≥ 0. (4)

Moreover,

f ∗(n+2k)|X∗(n) = f ∗(n) ∀n, k ∈ N (5)

and

X∗(n+1) ∩ ∂ηf
∗(n+2)(x) = ∂ηf

∗(n)(x) ∀x ∈ X∗(n), ∀η ≥ 0. (6)

Proof. The first relation is nothing else, but the biconjugate theorem (see f.i. [39, Th.
2.3.3]), while the second follows immediately from the first one. Recalling that x∗ ∈ ∂ηf(x)
if and only if f(x) + f ∗(x∗) ≤ 〈x, x∗〉 + η, one obtains immediately (4) from f ∗∗|X = f .
By induction one gets easily (5) and (6).

From (4) we obtain the function f ∈ Λ(X) is Gateaux differentiable at x ∈ dom f when-
ever f is continuous at x and f ∗∗ is Gateaux differentiable at x. A more interesting result
is established in Corollary 5.12.
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Let now B ⊂ X∗ be a nonempty convex set and consider the function

sB : X → R, sB(x) := sup{〈x, x∗〉 | x∗ ∈ B};

it is known that sB = s
B

w∗ and (sB)
∗ = ι

B
w∗ (see f.i. [39, Th. 2.4.14(vi) and (i)]). If

A ⊂ X is a nonempty convex set, then

(ιA)
∗ = σA = sA = s

A
w∗(2) (7)

with A considered as a subset of X∗∗. It follows (see [39, Th. 2.4.14(i)]) that

(ιA)
∗∗ = σ∗

A = ι
A

w∗(2) and A
w∗(2)

= clA
w∗(2)

.

The last equality is an immediate consequence of the relation (ιA)
∗ = (ιclA)

∗. On the
other hand, for C ⊂ X∗ a convex set we have

X∗ ∩ C
w∗(3)

⊂ C
w(1)

= clC ⊂ C
w∗

,

but generally, C
w∗

6⊂ C
w∗(3)

. However, if u, ui ∈ X∗(n) for i in the upward directed set I
and A ⊂ X∗(n), then

ui →
w(n) u⇔ ui →

w∗(n+2) u,

A is w(n)-compact ⇔ A is w∗(n+ 2)-compact. (8)

Proposition 4.2. Let f ∈ Γ(X), x ∈ dom f and x∗ ∈ dom f ∗. Then for every ε > 0

∂εf
∗(x∗) = X ∩ ∂εf ∗(x∗)

w∗(2)
(9)

and
(f ′

ε(x, ·))
∗∗

= (f ∗∗)′ε (x, ·). (10)

Proof. Fix ε > 0. As f ∗ ∈ Γ∗(X∗) and x∗ ∈ dom f ∗, using [39, Th. 2.4.11] for the duality
(X∗, X), we have

(f ∗)′ε(x
∗, u∗) = sup{〈u, u∗〉 | u ∈ X ∩ ∂εf

∗(x∗)} = σX∩∂εf∗(x∗)(u
∗),

while, applying the same result for the duality (X∗, X∗∗), we have

(f ∗)′ε(x
∗, u∗) = sup{〈u∗, u∗∗〉 | u∗∗ ∈ ∂εf

∗(x∗)} = s∂εf∗(x∗)(u
∗).

Since ∂εf
∗(x∗) is w∗(2)-closed and convex, by [39, Th. 2.4.14(vi)], it follows that

∂εf
∗(x∗) = convw

∗(2)(X ∩ ∂εf
∗(x∗)) = X ∩ ∂εf ∗(x∗)

w∗(2)

(X ∩ ∂εf
∗(x∗) being convex).

Applying the preceding estimates for f replaced by f ∗ and using (4), we get

(f ∗∗)′ε (x, ·) = ((f ∗)∗)′ε (x, ·) = s∂εf∗∗(x) = s
X∗∩∂εf∗∗(x)

w∗(3) = s
∂εf(x)

w∗(3) ,

while f ′
ε(x, ·) = s∂εf(x), and so, using (7),

(f ′
ε(x, ·))

∗∗
=

(

s∂εf(x)
)∗∗

= (ι∂εf(x))
∗ = σ∂εf(x) = s

∂εf(x)
w∗(3) .

The conclusion follows.
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Taking f = ιUX
(hence f ∗ = ‖·‖) and x∗ ∈ SX∗ , the preceding result shows that

S(x∗, η) = X ∩ S(x∗, η)
w∗(2)

∀x∗ ∈ SX∗ , ∀η > 0. (11)

This is [14, Lem. 2.1].

We need the following (perhaps known) result.

Lemma 4.3. Let f ∈ Γ(X) be continuous at x ∈ dom f . Then f ∗∗ is continuous at x.

Proof. W.l.o.g. we may assume that x = 0 and f(0) = 0. Because f is Lipschitz on a
neighborhood of 0 (see f.i. [39, Cor. 2.2.13]), there exist r,m > 0 such that f(y) ≤ m ‖y‖
for every y ∈ rUX . This inequality can be written as f ≤ m ‖·‖ + ιrUX

. Taking the
conjugate we obtain

f ∗ ≥ (m ‖·‖+ ιrUX
)∗ = (m ‖·‖)∗�(ιrUX

)∗ = ιmUX∗
�(r ‖·‖)

(the convolution being even exact becausem ‖·‖ is continuous; see [39, Th. 2.8.7]). Taking
again the conjugates (for the duality (X∗, X∗∗)), we obtain

f ∗∗ ≤ (ιmUX∗
�(r ‖·‖))∗ = m ‖·‖+ ιrUX∗∗

.

Hence f ∗∗(x∗∗) ≤ m ‖x∗∗‖ for every x∗∗ ∈ rUX∗∗ , which implies that f ∗∗ is continuous at
0, too.

The proof of the preceding result shows that if f ∈ Λ(X) is bounded on bounded sets
then f ∗∗ is also bounded on bounded sets (see [32, p. 134]); as observed in [32], if f is
continuous on X = dom f , it does not follow that f ∗∗ is continuous (and so dom f ∗∗ could
be distinct from X∗∗).

Consider f ∈ Γ(X) and x ∈ dom f . Because for every α > 0 we have f ′(x, u) ≤
α−1 (f(x+ αu)− f(x)) for every u ∈ X, proceeding as above (taking conjugates with
respect to the dualities (X,X∗) and (X∗, X∗∗)), we obtain

(f ′(x, ·))∗∗(u∗∗) ≤ α−1 (f ∗∗(x+ αu∗∗)− f(x)) ∀u∗∗ ∈ X∗∗,

which shows that

(f ′(x, ·))∗∗ ≤ (f ∗∗)′ (x, ·). (12)

A natural question is whether

(f ∗∗)′ (x, ·) = (f ′(x, ·))∗∗, (13)

at least when f ∈ Γ(X) is continuous at x ∈ dom f . But in this case (f continuous
at x ∈ dom f), we have (see [39, Th. 2.4.9]) that f ′(x, ·) = s∂f(x), and so (f ′(x, ·))∗∗ =
(

s∂f(x)
)∗∗

= s
∂f(x)

w∗(3) . On the other hand (f ∗∗)′ (x, ·) = s∂f∗∗(x). Hence (13) holds if and

only if

∂f ∗∗(x) = ∂f(x)
w∗(3)

. (14)

The next result gives a condition under which (13) holds. In fact it gives more information.
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Proposition 4.4. Let f ∈ Γ(X) be continuous at x ∈ dom f . Then f is directionally
Fréchet differentiable at x if and only if f ∗∗ is directionally Fréchet differentiable at x;
moreover, if f is directionally Fréchet differentiable at x then (13) and (14) hold.

Proof. First note from Lemma 4.1 that f(x+ tu) = f ∗∗(x+ tu) for all t ∈ R and u ∈ X.
It follows that

(f ∗∗)′(x, u) = f ′(x, u) ∀u ∈ X. (15)

Assume that f is directionally Fréchet differentiable at x and take ε > 0. There exists
α > 0 such that

f(x+ αu)− f(x)

α
≤ f ′(x, u) + ε ∀u ∈ UX ,

or, equivalently, f(x + α·) ≤ f(x) + αε + αf ′(x, ·) + ιUX
. Taking the biconjugates we

obtain

f ∗∗(x+ αu∗∗)− f ∗∗(x)

α
=
f ∗∗(x+ αu∗∗)− f(x)

α
≤ (f ′(x, ·))∗∗(u∗∗) + ε (16)

for all u∗∗ ∈ UX∗∗ . Using (12), it follows that

f ∗∗(x+ αu∗∗)− f ∗∗(x)

α
≤ (f ∗∗)′ (x, u∗∗) + ε ∀u∗∗ ∈ UX∗∗ .

Since f ∗∗ is continuous at x (see Lemma 4.3), f ∗∗ is directionally Fréchet differentiable
at x. Moreover, from (16) we also obtain that (f ∗∗)′ (x, u∗∗) ≤ (f ′(x, ·))∗∗(u∗∗) + ε for all
u∗∗ ∈ UX∗∗ and ε > 0. Letting ε→ 0 we obtain (f ∗∗)′ (x, ·) ≤ (f ′(x, ·))∗∗ on UX∗∗ , and by
positive homogeneity of both functions, we get the inequality on X∗∗. As the converse is
always true (see (12)), we have (13) holds.

Assume now that f ∗∗ is directionally Fréchet differentiable at x. Taking (15) into account
and the fact that UX ⊂ UX∗∗ , we obtain immediately that f is directionally Fréchet
differentiable at x.

Taking into account the equivalence of (i) and (iv) in Theorem 3.6, from the preceding
result we get [14, Cor. 2.1] which is stated for X complete, f = ‖ · ‖ and x ∈ SX .

Before studying continuity properties of the multifunction SX
f∗ , we establish other useful

auxiliary results.

Lemma 4.5. Let y ∈ X, f ∈ Γ(X), x∗ ∈ dom f ∗, γ ≥ 0 and x∗∗ ∈ ∂γf
∗(x∗) be such

that ‖y − x∗∗‖ < α. Then for every δ > 0 and every w∗(2)-neighborhood V of x∗∗ in X∗∗,
there exists xδ ∈ X ∩ V ∩ ∂γ+δf

∗(x∗) such that ‖y − xδ‖ < α.

Proof. Let us fix some δ > 0 and V0 a convex w
∗(2)-neighborhood of x∗∗ inX∗∗. For every

η ∈ (0, δ] we have x∗∗ ∈ ∂γf
∗(x∗) ⊂ ∂γ+ηf

∗(x∗) = X ∩ ∂γ+ηf ∗(x∗)
w∗(2)

(the last equality
being provided by (9)). Hence, for every i = (η, V ) ∈ I := (0, δ]×Nw∗(2)(x

∗∗), there exists
xi ∈ X ∩V ∩∂γ+ηf

∗(x∗). Endowing I with the order defined by (η, V ) ≥ (η′, V ′) if η ≤ η′

and V ⊂ V ′, we have (xi)i∈I →
w∗(2) x∗∗. It follows that there exists some i0 ∈ I such that

xi ∈ V0 for i ≥ i0. Let C := conv{xi | i ∈ I, i ≥ i0} ⊂ X ∩ V0 ∩ ∂γ+δf
∗(x∗). We have that
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d(y, C) < α. In the contrary case (y + αBX) ∩ C = ∅, and so, by a separation theorem,
there exists u∗ ∈ SX∗ such that

〈y + αu, u∗〉 ≥ 〈z, u∗〉 ∀u ∈ UX , ∀z ∈ C.

It follows that 〈y, u∗〉 − α ≥ 〈xi, u
∗〉 for every i ∈ I with i ≥ i0. Taking the limit,

because (xi) →
w∗(2) x∗∗, we obtain 〈y, u∗〉−α ≥ 〈u∗, x∗∗〉, and so we get the contradiction

‖y − x∗∗‖ ≥ 〈u∗, y − x∗∗〉 ≥ α. The conclusion follows.

When γ = 0 the conclusion of the preceding result can be reformulated (partially) as
follows: If f ∈ Γ(X), x∗∗ ∈ ∂f ∗(x∗), y ∈ X and ‖y − x∗∗‖ < α then

f ∗(x∗) = sup{〈x, x∗〉 − f(x) | x ∈ y + αBX}. (17)

The preceding result yields the next one.

Corollary 4.6. Let y ∈ X, f ∈ Γ(X) and x∗∗ ∈ dom f ∗∗ be such that ‖y − x∗∗‖ < α.
Then for every µ > f∗∗(x∗∗) and every w∗(2)-neighborhood V of x∗∗ in X∗∗, there exists
xµ ∈ X ∩ V such that f(xµ) ≤ µ and ‖y − xµ‖ < α.

Proof. Fix some x∗ ∈ dom f ∗ and take γ := f ∗(x∗) + f ∗∗(x∗∗) − 〈x∗, x∗∗〉 ≥ 0; then
x∗∗ ∈ ∂γf

∗(x∗). Let µ > f∗∗(x∗∗) and V a w∗(2)-neighborhood of x∗∗ in X∗∗. Consider
δ := 1

2
[µ− f ∗∗(x∗∗)] > 0 and V ′ := V ∩ {y∗∗ ∈ X∗∗ | | 〈x∗, y∗∗ − x∗∗〉 | < δ} ∈ Nw∗(2)(x

∗∗).
Applying the preceding result for δ and V ′ we get some xδ ∈ X ∩ V ′ ∩ ∂γ+δf

∗(x∗) such
that ‖y − xδ‖ < α. Then

f(xδ) ≤ 〈xδ, x
∗〉+ γ + δ − f ∗(x∗) = 〈x∗, xδ − x∗∗〉+ f ∗∗(x∗∗) + δ

= 〈x∗, xδ − x∗∗〉+ µ− 2δ + δ ≤ µ.

Setting xµ := xδ, the conclusion follows.

From the preceding result we get the following description of f ∗∗ stated by Gossez [21,
Lem. 3.1] for X complete (see also the proof of Prop. 1 in Rockafellar [31] and Voisei [38]).

Corollary 4.7. Let f ∈ Γ(X) and x∗∗ ∈ X∗∗. Then there exists a net (xi)i∈I ⊂ X such
that

xi →
w∗(2) x∗∗, ‖xi‖ → ‖x∗∗‖ and f(xi) → f ∗∗(x∗∗).

Proof. Assume first that x∗∗ ∈ dom f ∗∗ and take µn := f ∗∗(x∗∗)+n−1 and αn := ‖x∗∗‖+
n−1 for n ∈ N. Applying the preceding result with y = 0, for every i = (n, V ) ∈ I :=
N×Nw∗(2)(x

∗∗), there exists xi ∈ X ∩ V such that f(xi) ≤ µn and ‖xi‖ < αn. Endowing

I with the order given by (n, V ) ≥ (n′, V ′) if n ≥ n′ and V ⊂ V ′, we have xi →
w∗(2) x∗∗,

lim sup ‖xi‖ ≤ ‖x∗∗‖ and lim sup f(xi) ≤ f ∗∗(x∗∗). Since f ∗∗ is w∗(2)-lsc and f ∗∗|X = f ,
we obtain f ∗∗(x∗∗) ≤ lim inf f(xi), and so f(xi) → f ∗∗(x∗∗). For x∗ ∈ SX∗ we have
‖xi‖ ≥ 〈xi, x

∗〉 → 〈x∗, x∗∗〉, and so lim inf ‖xi‖ ≥ 〈x∗, x∗∗〉. Taking the supremum w.r.t.
x∗ ∈ SX∗ , we obtain lim inf ‖xi‖ ≥ ‖x∗∗‖, and so ‖xi‖ → ‖x∗∗‖. If x∗∗ /∈ dom f ∗∗ take an
arbitrary net (xi)i∈I ⊂ ‖x∗∗‖·UX w∗(2)-converging to x∗∗. As above we get the conclusion.
The proof is complete.

Using Lemma 4.5 we obtain once again the next result stated by Rockafellar [31, Prop.
1].
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Corollary 4.8. Let X be complete, x∗ ∈ X∗, x∗∗ ∈ X∗∗ and f ∈ Γ(X). Then x∗∗ ∈
∂f ∗(x∗) if and only if there exists a bounded net (xi)i∈I ⊂ X w∗(2)-converging to x∗∗ and
a net (x∗i )i∈I ⊂ X∗ norm-converging to x∗ such that x∗i ∈ ∂f(xi) for every i ∈ I.

Proof. The sufficiency is immediate (even without X complete); just note that f ∗∗(xi)+
f ∗(x∗i ) = f(xi)+f

∗(x∗i ) = 〈xi, x
∗
i 〉 and f

∗ and f ∗∗ are norm-lsc and w∗(2)-lsc, respectively.

Assume that x∗∗ ∈ ∂f ∗(x∗). By Lemma 4.5, for every i = (n, V ) ∈ I := N×Nw∗(2)(x
∗∗),

there exists x′i ∈ X ∩ V ∩ ∂n−1f ∗(x∗) such that ‖x′i‖ < ‖x∗∗‖ + n−1. By the Brøndsted–
Rockafellar theorem (see f.i. [39, Th. 3.1.2]), there exists xi ∈ X and x∗i ∈ X∗ such that
‖xi − x′i‖ ≤ n−1/2, ‖x∗i − x∗‖ ≤ n−1/2 and x∗i ∈ ∂f(xi). It is obvious that the nets (xi)i∈I
and (x∗i )i∈I satisfy the desired conditions.

Corollary 4.9. Let A ⊂ X be a nonempty convex set, y ∈ X and x∗∗ ∈ A
w∗(2)

with
‖y − x∗∗‖ < α. Then for every δ > 0 and every w∗(2)-neighborhood V of x∗∗ in X∗∗ there
exists xδ ∈ A ∩ V such that ‖y − xδ‖ < α.

Proof. Consider f := ιclA ∈ Γ(X). Since x∗∗ ∈ A
w∗(2)

= ∂f ∗(0), applying Lemma 4.5 for
x∗ = 0 and γ = 0, for every δ > 0 and every w∗(2)-open neighborhood V of x∗∗ in X∗∗

there exists x′δ ∈ X ∩V ∩∂δf
∗(0) = V ∩ clA such that ‖y − x′δ‖ < α. Taking into account

the continuity of the norm and the (w∗(2)-) openness of V , we get some xδ ∈ A∩ V with
the desired properties.

As an immediate consequence of the preceding result we get the following one which is
related to (9).

Corollary 4.10. Let A ⊂ (X, ‖·‖) be a nonempty convex set. Then

d(x,A) = d(x,A
w∗(2)

) ∀x ∈ X.

Proof. Fix some x ∈ X. Of course, we have d(x,A) ≥ d(x,A
w∗(2)

). Let d(x,A
w∗(2)

) <

γ < ∞. Then ‖x− x∗∗‖ < γ for some x∗∗ ∈ A
w∗(2)

. From Corollary 4.9 we get some

x′ ∈ A such that ‖x− x′‖ < γ, and so d(x,A) < γ. It follows that d(x,A) ≤ d(x,A
w∗(2)

).
The conclusion follows.

Related to this result we mention that for every nonempty bounded set A ⊂ X we have

diamA = diamA
w∗(2)

; this formula was established in [14, Cor. 3.1] in a special case, but
the proof is the same.

Another immediate consequence of Corollary 4.9 is the following.

Corollary 4.11. Let x ∈ X and x∗∗ ∈ X∗∗ be such that ‖x− x∗∗‖ < α. Then for every
δ > 0 and every w∗(2)-neighborhood V of x∗∗ in X∗∗, there exists xδ ∈ V ∩X such that
‖xδ‖ ≤ ‖x∗∗‖ and ‖x− xδ‖ < α.

Proof. If x∗∗ ∈ X we just take xδ := x∗∗. In the other case, take γ := ‖x∗∗‖ > 0

and A := γUX . It is clear that x∗∗ ∈ A
w∗(2)

. From Corollary 4.9 we get the desired
conclusion.

We are now in a position to establish continuity results for the multifunction SX
f∗ .
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5. Continuity properties for the ε-subdifferential of the conjugate of a convex

function

Because we are interested in the continuity properties of the multifunction SX
f∗ , we shall

assume directly that f ∈ Γ(X); this can always be done if we want f ∗ to be proper

(because in such a case f ∗ = f
∗
, where f is the lsc envelope of f). Also note that f ∗ is

automatically continuous at x∗ ∈ int(dom f ∗) because f ∗ is lsc and X∗ is complete.

In this section the continuity results will be presented in an (almost) reversed order than
that in Section 3. We begin with a result which corresponds to Proposition 3.10 for the
conjugate function f ∗.

Proposition 5.1. Let f ∈ Γ(X), x∗ ∈ dom f ∗ and τ a locally convex topology on X.
Consider the following assertions:

(i) the multifunction SX
f∗(·, x∗) is τ0-τ H-usc at 0;

(ii) the multifunction SX
f∗(0, ·) is τ‖·‖-τ H-usc at x∗;

(iii) the multifunction SX
f∗ is τ0 × τ‖·‖-τ H-usc at (0, x∗).

If x∗ ∈ int(dom f ∗) then (i) ⇔ (iii); if X is complete and τ is weaker than the norm
topology, then (ii) ⇔ (iii); if X is complete, x∗ ∈ int(dom f ∗) and τ is weaker than the
norm topology, then (i) ⇔ (ii) ⇔ (iii).

Proof. Of course, (iii) ⇒ (i) ∧ (ii) always.

(i) ⇒ (iii) The proof being very close to that of the proof of the implication (i) ⇒ (iii)
of Proposition 3.10, we omit it.

(ii) ⇒ (iii) Assume that X is complete, τ is weaker than the norm topology and SX
f∗(0, ·)

is τ‖·‖-τ H-usc at x∗. Because dom f ∗ ⊂ cl(Im ∂f) (see f.i. [39, Th. 3.1.2]), we have
X ∩ ∂f ∗(x∗) 6= ∅ in our situation.

Let V be a convex τ -neighborhood of 0 in X. By hypothesis, there exists η ∈ (0, 1) such
that X ∩ ∂f ∗(y∗) ⊂ (X ∩ ∂f ∗(x∗)) + 1

2
V for ‖y∗ − x∗‖ < η. Let γ > 0 satisfy 2γ < η and

γUX ⊂ 1
2
V . Consider ‖y∗ − x∗‖ < γ and y ∈ X ∩ ∂γ2f ∗(y∗), that is, y∗ ∈ ∂γ2f(y). By

Brøndsted–Rockafellar theorem (see f.i. [39, Th. 3.1.2]), there exists (z, z∗) ∈ gph ∂f such
that ‖z − y‖ ≤ γ and ‖z∗ − y∗‖ ≤ γ. It follows that ‖z∗ − x∗‖ ≤ ‖z∗ − y∗‖+ ‖y∗ − x∗‖ ≤
γ + γ < η. Hence z ∈ (X ∩ ∂f ∗(x∗)) + 1

2
V , and so y ∈ (X ∩ ∂f ∗(x∗)) + γUX + 1

2
V ⊂

(X ∩ ∂f ∗(x∗)) + V .

The equivalence of (i) and (ii) in Proposition 5.1 is obtained in [19, Lem. 2.1] for f = ιUX

(that is, f ∗ = ‖·‖), τ = w and X complete.

We have seen that (9) holds for every ε > 0 provided f ∈ Γ(X) and x∗ ∈ dom f ∗. The
next result provides a useful characterization of (9) for ε = 0.

Proposition 5.2. Let f ∈ Γ(X) and x∗ ∈ int(dom f ∗). Then

∂f ∗(x∗) = X ∩ ∂f ∗(x∗)
w∗(2)

(18)

if and only if the multifunction SX
f∗(·, x∗) is τ0-w H-usc at 0.
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Proof. Assume (18) holds but the multifunction SX
f∗(·, x∗) is not τ0-w usc at 0; of course,

X ∩ ∂f ∗(x∗) 6= ∅ in our conditions. It follows that there exists a w∗(2)-open, convex and
symmetric neighborhood V of 0 in X∗∗ such that for every η > 0 there exists

xη ∈ (X ∩ ∂ηf
∗(x∗)) \ ((X ∩ ∂f ∗(x∗)) + VX) ,

where VX := V ∩X. Since (xη)η∈(0,1] ⊂ X ∩ ∂1f
∗(x∗) ⊂ ∂1f

∗(x∗) and f ∗ is continuous at
x∗, we have (xη)η∈(0,1] is bounded (see f.i. [39, Th. 2.4.9]). It follows that the net (xη)η∈(0,1]
(for η → 0) has a subnet (xi)i∈I w

∗(2)-converging to x∗∗ in X∗∗. Of course,

f ∗∗(xi) + f ∗(x∗) = f(xi) + f ∗(x∗) ≤ 〈xi, x
∗〉+ ηi ∀i ∈ I (with ηi → 0),

and so, taking the liminf, we get f ∗∗(x∗∗) + f ∗(x∗) ≤ 〈x∗, x∗∗〉. Hence x∗∗ ∈ ∂f ∗(x∗).
Because xi /∈ (X ∩ ∂f ∗(x∗)) + V and this set is w∗(2)-open in X∗∗, we obtain x∗∗ /∈

(X∩∂f ∗(x∗))+V . This is a contradiction because X ∩ ∂f ∗(x∗)
w∗(2)

⊂ (X∩∂f ∗(x∗))+V .

Assume now that SX
f∗(·, x∗) is τ0-w usc at 0; of course, X ∩ ∂f ∗(x∗) is nonempty. Take

x∗∗ /∈ X ∩ ∂f ∗(x∗)
w∗(2)

. By a separation theorem, there exist x∗ ∈ X∗ and α′ ∈ R such
that

〈x∗, x∗∗〉 > α′ > α := sup{〈x, x∗〉 | x ∈ X ∩ ∂f ∗(x∗)}.

Because VX := {u ∈ X | 〈u, x∗〉 ≤ α′ − α} is a weak neighborhood of 0 in X, it follows
that there exists η > 0 such that X ∩ ∂ηf

∗(x∗) ⊂ (X ∩ ∂f ∗(x∗)) + VX . It follows (using
also Proposition 4.2) that

∂f ∗(x∗) ⊂ ∂ηf
∗(x∗) = X ∩ ∂ηf ∗(x∗)

w∗(2)
⊂ {u∗∗ ∈ X∗∗ | 〈x∗, u∗∗〉 ≤ α′}.

Hence x∗∗ /∈ ∂f ∗(x∗). The conclusion follows.

When X is complete, f = ιUX
(hence f ∗ = ‖·‖) and x∗ ∈ SX∗ , the preceding result is

equivalent to [19, Lem. 2.2] (taking into account Proposition 5.1).

Corollary 5.3. Let f ∈ Γ(X) be continuous at x ∈ dom f . Then

∂f ∗∗(x) = ∂f(x)
w∗(3)

(19)

if and only if the multifunction Sf (·, x) is τ0-w(1) H-usc at 0.

Proof. Because f is continuous at x, by Lemma 4.3, f ∗∗ is also continuous at x. Taking

into account Lemma 4.1, (19) can be written as ∂f ∗∗(x) = X∗ ∩ ∂f ∗∗(x)
w∗(3)

. Applying
Proposition 5.2 for f ∗ and x ∈ int(dom(f ∗)∗), the last equality is equivalent to the fact
that the mapping η → X∗∩∂ηf

∗∗(x) = ∂ηf(x) (by Lemma 4.1) is τ0-w(1) H-usc at 0.

When X is complete, f = ‖·‖ and x ∈ SX , Corollary 5.3 is nothing else but [14, Th. 3.1].

Corollary 5.4. Let X be a Banach space, f ∈ Γ(X) and x ∈ int(dom f). The following
assertions are equivalent:

(i) ∂f ∗∗(x) = ∂f(x);

(ii) ∂f(x) is w(1)-compact and Sf (·, x) is τ0-w(1) H-usc at 0;

(iii) ∂f(x) is w(1)-compact and Sf (0, ·) is τ‖·‖-w(1) H-usc at x;
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(iv) ∂f(x) is w(1)-compact and Sf is τ0 × τ‖·‖-w(1) H-usc at (0, x).

Proof. In view of Proposition 3.10, it is enough to prove that (i) ⇔ (ii).

(i) ⇒ (ii) By Lemma 4.3, f ∗∗ is continuous at x, and so, by [39, Th. 2.4.9], ∂f ∗∗(x) is
w∗(3)-compact in X∗(3). Hence, by (i) and (8), ∂f(x) is w(1)-compact in X∗. The rest
follows from Corollary 5.3.

(ii) ⇒ (i) By Corollary 5.3, we have ∂f ∗∗(x) = ∂f(x)
w∗(3)

. Since ∂f(x) is w(1)-compact,
using (8) we get ∂f ∗∗(x) = ∂f(x).

Corollary 5.5. Let X be a Banach space, f ∈ Γ(X) and x ∈ int(dom f). The following
assertions are equivalent:

(i) f is Gateaux differentiable at x and Sf (0, ·) is τ‖·‖-w(1) H-usc at x;

(ii) f ∗∗ is Gateaux differentiable at x.

Proof. (i) ⇒ (ii) This follows from the implication (iii) ⇒ (i) of Corollary 5.4 because
∂f(x) is a singleton.

(ii) ⇒ (i) Since ∂f ∗∗(x) is a singleton, ∂f(x) 6= ∅ (because f is continuous), and (by
(4)) ∂f(x) = ∂f ∗∗(x) ∩ X∗, it follows that ∂f(x) is a singleton; hence f is Gateaux
differentiable at x; it follows that assertion (i) in Corollary 5.4 holds. The second part of
(i) also follows from Corollary 5.4.

From Corollary 5.5 one obtains the following result in Giles [12, p. 72]: For a Banach
space X and x ∈ SX , X

∗∗ is smooth at x ∈ SX∗∗ if and only if every support mapping of
X into X∗ is τ‖·‖-w(1) continuous at x.

Corollary 5.6. Let X be a Banach space, f ∈ Γ(X) and x ∈ int(dom f). If f is Fréchet
differentiable at x, then f ∗∗ is Gateaux differentiable at x and ∇f ∗∗(x) = ∇f(x) ∈ X∗.

Proof. The assertion follows from the previous corollary and Theorem 3.8.

We continue this section with the version for convex functions of [19, Th. 2.3] where the
implications (i) ⇔ (iii) ⇒ (iv) ⇔ (vi) below were stated for f = ιUX

(that is, f ∗ = ‖·‖)
and x∗ ∈ SX∗ .

Theorem 5.7. Let X be a Banach space, f ∈ Γ(X) and x∗ ∈ int(dom f ∗). Consider the
following assertions:

(i) the multifunction Sf∗(0, ·) is τ‖·‖-w(2) H-usc at x∗;

(ii) the multifunction Sf∗(·, x∗) is τ0-w(2) H-usc at 0;

(iii) ∂f ∗(3)(x∗) = ∂f ∗(x∗)
w∗(4)

;

(iv) the multifunction SX
f∗(0, ·) is τ‖·‖-w H-usc at x∗;

(v) the multifunction SX
f∗(·, x∗) is τ0-w H-usc at 0;

(vi) ∂f ∗(x∗) = X ∩ ∂f ∗(x∗)
w∗(2)

.

Then (i) ⇔ (ii) ⇔ (iii) ⇒ (iv) ⇔ (v) ⇔ (vi).

Proof. The equivalence of (i) and (ii) follows from Proposition 3.10, the equivalence of
(ii) and (iii) follows from Corollary 5.3, while the equivalence of (iv) and (v) follows from
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Proposition 5.1, the equivalence of (v) and (vi) follows from Proposition 5.2 (applied all
for f ∗). In order to obtain the implication (iii) ⇒ (vi) we shall follow several steps, the
final one, Fact 5.11, providing our implication; we follow the lines of the proof of [19, Th.
2.3].

Fact 5.8. Let f ∈ Γ(X) and x∗ ∈ dom f ∗. Assume that C ⊂ X is a convex bounded set

such that f ∗(x∗) = sup{〈x, x∗〉 − f(x) | x ∈ C}. Then C
w∗(2k+2)

∩ ∂f ∗(2k+1)(x∗) 6= ∅ for

every k ≥ 0. Moreover, if ∂f ∗(3)(x∗) = ∂f ∗(x∗)
w∗(4)

, then gap(C, ∂f∗(x∗)) = 0.

Proof. Of course, taking into account (5), we have (also) that f ∗(2k+1)(x∗) = sup{〈x, x∗〉−
f ∗(2k)(x) | x ∈ C}. There exists a net (xi)i∈I ⊂ C such that γi := 〈xi, x

∗〉 − f ∗(2k)(xi) →
f ∗(2k+1)(x∗). Because (xi) is bounded, taking possibly a subnet, we have xi →w∗(2k+2)

u ∈ C
w∗(2k+2)

. As f ∗(2k+2)(xi) = f ∗(2k)(xi) = 〈xi, x
∗〉 − γi, taking the lim inf, we get

f ∗(2k+2)(u) ≤ 〈x∗, u〉 − f ∗(2k+1)(x∗), whence we get u ∈ ∂f ∗(2k+1)(x∗).

Assume now that ∂f ∗(3)(x∗) = ∂f ∗(x∗)
w∗(4)

. Then C
w∗(4)

∩ ∂f ∗(x∗)
w∗(4)

6= ∅, whence

0 ∈ C
w∗(4)

− ∂f ∗(x∗)
w∗(4)

⊂ C − ∂f ∗(x∗)
w∗(4)

, and so

0 ∈ X∗(2) ∩ C − ∂f ∗(x∗)
w∗(4)

⊂ C − ∂f ∗(x∗)
w(2)

= C − ∂f ∗(x∗)
‖·‖
.

Hence gap(C, ∂f∗(x∗)) = 0.

Fact 5.9. Let X be a Banach space, f ∈ Γ(X) and x∗ ∈ dom f ∗. Assume that ∂f ∗(3)(x∗)

= ∂f ∗(x∗)
w∗(4)

. Then d(y, ∂f ∗(x∗)) = d(y,X ∩ ∂f ∗(x∗)) for every y ∈ X. In particular
X ∩ ∂f ∗(x∗) 6= ∅ if ∂f ∗(x∗) 6= ∅ (for example if x∗ ∈ int(dom f ∗)).

Proof. If ∂f ∗(x∗) = ∅ there is nothing to prove. So, let ∂f ∗(x∗) be nonempty, fix some
y ∈ X and take d(y, ∂f ∗(x∗)) < β <∞. Take some α ∈ R such that d(y, ∂f ∗(x∗)) < α < β
and ε := β − α > 0. There exists x∗∗ ∈ ∂f ∗(x∗) such that ‖y − x∗∗‖ < α. By Lemma 4.5
relation (17) holds. Using Fact 5.8 with C := y+αBX , we have gap(y+αBX , ∂f

∗(x∗)) = 0.
Then, there exists x1 ∈ y+αBX such that d(x1, ∂f

∗(x∗)) < ε/2. Applying Lemma 4.5 for y
and α replaced by x1 and ε/2 we get the relation (17) for these elements, and then applying
Fact 5.8 we obtain gap(x1 + (ε/2)BX , ∂f

∗(x∗)) = 0. So, there exists x2 ∈ x1 + (ε/2)BX

such that d(x2, ∂f
∗(x∗)) < ε/22. Continuing in this way, we get a sequence (xn)n≥1 such

that xn+1 ∈ xn + (ε/2n)BX and d(xn, ∂f
∗(x∗)) < ε/2n for every n ≥ 1. It is clear that

(xn)n≥1 ⊂ X is a Cauchy sequence, and so it converges to some x ∈ X. Moreover, from
the continuity of d(·, ∂f∗(x∗)), we obtain d(x, ∂f∗(x∗)) = 0, and so x ∈ X ∩ ∂f ∗(x∗). But

‖y − xn+1‖ ≤ ‖y − x1‖+ ‖x1 − x2‖+ · · ·+ ‖xn − xn+1‖ < α+
ε

2
+ · · ·+

ε

2n
< β.

Taking the limit, we obtain ‖y − x‖ ≤ β, and so d(y,X ∩ ∂f ∗(x∗)) ≤ β. Hence d(y,X ∩
∂f ∗(x∗)) ≤ d(y, ∂f ∗(x∗)). As the reverse inequality is obvious, the conclusion follows.

An immediate consequence of the preceding result is the following reinforcement of Fact
5.8.

Fact 5.10. Let X be a Banach space, f ∈ Γ(X) and x∗ ∈ dom f ∗. Assume that C ⊂ X
is a convex bounded set such that f ∗(x∗) = sup{〈x, x∗〉 − f(x) | x ∈ C}. If ∂f ∗(3)(x∗) =

∂f ∗(x∗)
w∗(4)

, then gap(C,X ∩ ∂f ∗(x∗)) = 0.
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Proof. By Fact 5.8 we have gap(C, ∂f∗(x∗)) = 0 (in particular ∂f ∗(x∗) is nonempty).
Using Fact 5.9 we obtain

0 = gap(C, ∂f∗(x∗)) = inf
y∈C

d(y, ∂f ∗(x∗)) = inf
y∈C

d(y,X ∩ ∂f ∗(x∗))

= gap(C,X ∩ ∂f ∗(x∗)).

Fact 5.11. Let X be a Banach space, f ∈ Γ(X) and x∗ ∈ int(dom f ∗). Assume that

∂f ∗(3)(x∗) = ∂f ∗(x∗)
w∗(4)

; then ∂f ∗(x∗) = X ∩ ∂f ∗(x∗)
w∗(2)

.

Proof. Let x∗∗ ∈ ∂f ∗(x∗). Because ∂f ∗(x∗) ⊂ ∂ηf
∗(x∗) = X ∩ ∂ηf ∗(x∗)

w∗(2)
for η > 0,

for every w∗(2)-neighborhood V of 0 in X∗∗ and every η ∈ (0, 1], there exists xη,V ∈
X ∩ (x∗∗ + V ) ∩ ∂ηf

∗(x∗). Taking I := (0, 1]×Nw∗(2)(0) with the order (η, V ) ≥ (η′, V ′)
if η ≤ η′ and V ⊂ V ′, the net (xη,V )(η,V )∈I w

∗(2)-converges to x∗∗. Let us fix some
V0 a convex w∗(2)-neighborhood of 0 in X∗∗ and take A := conv{xη,V | η ∈ (0, 1],
V ⊂ 1

2
V0}. Then A ⊂ ∂1f

∗(x∗), and so A is bounded (because f ∗ is continuous at x∗);

moreover, A ⊂ x∗∗ + 1
2
V0. Because f ∗(x∗) − η ≤ 〈xη,V , x

∗〉 − f(xη,V ), we have also that
sup{〈x, x∗〉 − f(x) | x ∈ A} = f ∗(x∗). From Fact 5.10 we have gap(A,X ∩ ∂f ∗(x∗)) = 0.
Taking ε > 0 such that εUX∗∗ ⊂ 1

2
V0, we find x ∈ A, and x′ ∈ X ∩ ∂f ∗(x∗) such that

x′ − x ∈ 1
2
V0. It follows that x′ ∈ x + 1

2
V0 ⊂ x∗∗ + 1

2
V0 + 1

2
V0 = x∗∗ + V0. Hence

x∗∗ ∈ X ∩ ∂f ∗(x∗)
w∗(2)

.

Corollary 5.12. Let X be a Banach space, f ∈ Γ(X) and x∗ ∈ int(dom f ∗). If f ∗(3) is
Gateaux differentiable at x∗, then f ∗ is also Gateaux differentiable at x∗ and ∇f ∗(3)(x∗) =
∇f ∗(x∗) ∈ X.

Proof. Suppose f ∗(3) is Gateaux differentiable at x∗. Since ∂f ∗(x∗) is nonempty and, by
(2), ∂f ∗(x∗) = ∂f ∗(3)(x∗)∩X∗∗, we have f ∗ is Gateaux differentiable at x∗ and ∇f ∗(x∗) =
∇f ∗(3)(x∗). By the implication (iii) ⇒ (vi) of Theorem 5.7 we have ∇f ∗(x∗) ∈ X.

By taking f = ιUX
(that is, f ∗ = ‖·‖) and x∗ ∈ SX∗ in Corollary 5.12 we obtain the main

result of [11] that a non reflexive Banach space has non smooth third dual (see also [13,
Th. 3.4.8]).

Corollaries 5.6 and 5.12 yield immediately the next result.

Corollary 5.13. Let X be a Banach space, f ∈ Γ(X) and x∗ ∈ int(dom f ∗). If f ∗ is
Fréchet differentiable at x∗, then f ∗(3) is Gateaux differentiable at x∗ and ∇f ∗(3)(x∗) =
∇f ∗(x∗) ∈ X.

Corollary 5.14. Let X be a Banach space, f ∈ Γ(X) and x∗ ∈ int(dom f ∗). Then the
following assertions are equivalent:

(i) ∂f ∗(x∗) ⊂ X;

(ii) X ∩ ∂f ∗(x∗) is w-compact and SX
f∗(0, ·) is τ‖·‖-w H-usc at x∗.

Proof. (i) ⇒ (ii) Since ∂f ∗(x∗) is w∗(2)-compact in X∗∗, by (i) and (8), X ∩ ∂f ∗(x∗) =
∂f ∗(x∗) is w-compact. The rest of the conclusion follows from the implication (vi) ⇒ (iv)
of Theorem 5.7.
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(ii) ⇒ (i) By the implication (iv) ⇒ (vi) of Theorem 5.7, we have ∂f ∗(x∗) =

∂f ∗(x∗) ∩X
w∗(2)

. Since ∂f ∗(x∗) ∩ X is w-compact, by (8) we have ∂f ∗(x∗) ∩X
w∗(2)

=
∂f ∗(x∗) ∩X = ∂f ∗(x∗).

Corollary 5.15. Let X be a Banach space, f ∈ Γ(X) and x ∈ int(dom f). Consider the
following assertions:

(i) Sf (0, ·) is τ‖·‖-w(1) H-usc at x;

(ii) SX∗

f∗∗(0, ·) is τ‖·‖-w(1) H-usc at x;

(iii) Sf∗∗(0, ·) is τ‖·‖-w(3) H-usc at x.

Then (iii) ⇒ (ii) ⇔ (i).

Proof. (i)⇔ (ii) By Proposition 3.10 and Corollary 5.3, the statement (i) is equivalent to

the fact ∂f ∗∗(x) = ∂f(x)
w∗(3)

, which in turn is equivalent to ∂f ∗∗(x) = ∂f ∗∗(x) ∩X∗
w∗(3)

by (2). By Lemma 4.3 f ∗∗ is continuous at x, and so, by Proposition 5.2, the last equality
is equivalent to (ii).

(iii) ⇒ (ii) This is just the implication (i) ⇒ (iv) of Theorem 5.7 for f ∗.

By taking f = ‖·‖ and x ∈ SX in Corollary 5.15 we obtain [19, Th. 4.2].

In the sequel we are interested in the continuity of the multifunction SX
f∗ when we consider

the norm topology on X. We begin with the following interesting result; its proof is
inspired by that of [10, Th. 3.3], given for f = ιUX

(that is, f ∗ = ‖·‖) and x∗ ∈ SX∗ .

Lemma 5.16. Let X be a Banach space and f ∈ Γ(X). If f ∗ is directionally Fréchet
differentiable at x∗ ∈ int(dom f ∗) then X ∩ ∂f ∗(x∗) 6= ∅ and (18) holds.

Proof. Because f ∗ is continuous at x∗, by [39, Th. 2.4.9], we have

f ∗′(x∗, u∗) = max{〈u∗, u∗∗〉 | u∗∗ ∈ ∂f ∗(x∗)} ∀u∗ ∈ X∗.

Let us prove that f ∗′(x∗, ·) is w∗-lsc (when f ∗ is directionally Fréchet differentiable at x∗).
If this is done, then, by [39, Th. 2.4.14(ii) and Th. 2.4.4(i)], we obtain X ∩ ∂f ∗(x∗) =
X ∩ ∂f ∗′(x∗, ·)(0) 6= ∅ and

f ∗′(x∗, u∗) = sup{〈u, u∗〉 | u ∈ X ∩ ∂f ∗(x∗)} ∀u∗ ∈ X∗,

and so, by [39, Th. 2.4.14(vi)], our conclusion follows (like in Proposition 4.2).

So consider first (for r > 0) the function ψr : (0,∞) → R defined by

ψr(t) := sup

{

f ∗(x∗ + tu∗)− f ∗(x∗)

t
− f ∗′(x∗, u∗)

∣

∣

∣

∣

u∗ ∈ rUX∗

}

.

Then limt→0+ ψr(t) = 0. Let Lγ be the sublevel set {u∗ ∈ X∗ | f ∗′(x∗, u∗) ≤ γ} at height
γ ∈ R. Because X is complete, in order to show that Lγ is w∗-closed, by Krein–Smulian
Theorem (see [7, Th. V.5.7]), it is sufficient to show that Lγ ∩ rUX∗ is w∗-closed for
every r > 0. Indeed, take the net (u∗i )i∈I ⊂ Lγ ∩ rUX∗ w∗-converging to u∗. Of course,
u∗ ∈ rUX∗ . Fix t > 0. Then

f ∗(x∗ + tu∗i )− f ∗(x∗)

t
≤ f ∗′(x∗, u∗i ) + ψr(t) ≤ γ + ψr(t).
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Since f ∗ is w∗-lsc, we obtain [f ∗(x∗ + tu∗)− f ∗(x∗)]/t ≤ γ + ψr(t) for every t > 0, and so
f ∗′(x∗, u∗) ≤ γ. Hence u∗ ∈ Lγ ∩ rUX∗ .

The preceding result extends [20, Cor. 2.4], where f is the indicator function of a bounded
closed convex set.

The next result corresponds to Theorem 3.6; we do not write those characterizations of
(i) which are obtained by just replacing f by f ∗ in Theorem 3.6. The equivalence of (i)
and (ii) below extends [20, Prop. 2.2].

Theorem 5.17. Let X be a Banach space, f ∈ Γ(X) and x∗ ∈ int(dom f ∗). The follow-
ing assertions are equivalent:

(i) f ∗ is directionally Fréchet differentiable at x∗;

(ii) the multifunction SX
f∗(·, x∗) is τ0-τ‖·‖ H-usc at 0;

(iii) the multifunction SX
f∗ is τ0 × τ‖·‖-τ‖·‖ H-usc at (0, x∗);

(iv) the multifunction SX
f∗(0, ·) is τ‖·‖-τ‖·‖ H-usc at x∗;

(v) limy∗∈Im ∂f, y∗→x∗ gap(X ∩ ∂f ∗(y∗), X ∩ ∂f ∗(x∗)) = 0;

(vi) for every sequence (ηn) ⊂ [0,∞) converging to 0 and every sequence (xn) with
xn ∈ X ∩ ∂ηnf

∗(x∗) (⇔ x∗ ∈ ∂ηnf(xn)) for n ∈ N, we have d(xn, X ∩ ∂f ∗(x∗)) → 0;

(vii) for every sequence (ηn) ⊂ [0,∞) converging to 0, for every sequence (x∗n) ⊂ X∗

converging to x∗ and every sequence (xn) with xn ∈ X ∩ ∂ηnf
∗(x∗n) for n ∈ N, we

have d(xn, X ∩ ∂f ∗(x∗)) → 0;

(viii) for every sequence (x∗n) ⊂ X converging to x∗ and every sequence (xn) with xn ∈
X ∩ ∂f ∗(x∗n) for n ∈ N, we have d(xn, X ∩ ∂f ∗(x∗)) → 0;

(ix) for every ε > 0 there exists η > 0 such that X ∩ ∂ηf
∗(x∗) ⊂ ∂f ∗(x∗) + εUX∗∗.

Proof. (i) ⇔ (ii) Taking into account Theorem 3.6 (for f ∗), we have (i) is equivalent to

∀ε > 0, ∃η > 0 : ∂ηf
∗(x∗) ⊂ ∂f ∗(x∗) + εUX∗∗ . (20)

So we have to show that (20) is equivalent to

∀ε > 0, ∃η > 0 : X ∩ ∂ηf
∗(x∗) ⊂ X ∩ ∂f ∗(x∗) + εUX . (21)

(Of course, if (21) holds then necessarily X ∩ ∂f ∗(x∗) is nonempty.)

If (21) holds, using Proposition 4.2 and taking the w∗(2)-closures, we obtain

∂ηf
∗(x∗) = X ∩ ∂ηf ∗(x∗)

w∗(2)
⊂ clw∗(2)

(

X ∩ ∂f ∗(x∗)
w∗(2)

+ εUX
w∗(2))

(22)

⊂ ∂f ∗(x∗) + εUX∗∗ ,

the last set being even w∗(2)-compact. Hence (20) holds.

Assume now that (20) holds. Again by Theorem 3.6 we have f ∗ is directionally Fréchet
differentiable at x∗, and so, by Lemma 5.16, (18) holds. Fix ε > 0 and let η > 0 correspond
to ε′ := ε/2 given by (20). Let u ∈ X∩∂ηf

∗(x∗). By (20) we have d(u, ∂f∗(x∗)) ≤ ε′. From
Corollary 4.10 we have d(u, ∂f∗(x∗)) = d(u,X∩∂f ∗(x∗)), and so u ∈ (X∩∂f ∗(x∗))+εUX .

The equivalence of (ii), (iii) and (iv) follows from Proposition 5.1 taking τ = τ‖·‖; (vi),
(vii) and (viii) are the sequential characterizations of (ii), (iii) and (iv), respectively.
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(iv) ⇒ (v) Let ε > 0; by hypothesis, there exists r > 0 such that X ∩ ∂f ∗(y∗) ⊂
(X ∩ ∂f ∗(x∗)) + εUX for all y∗ ∈ x∗ + rUX∗ . So, taking y∗ ∈ Im ∂f ∩ (x∗ + rUX∗), we
find y ∈ X ∩ ∂f ∗(y∗) = (∂f)−1(y∗). Then there exists x ∈ X ∩ ∂f ∗(x∗) and u ∈ UX such
that y = x+ εu. It follows that gap(X ∩ ∂f ∗(y∗), X ∩ ∂f ∗(x∗)) ≤ ‖y − x‖ ≤ ε. Hence (v)
holds.

(v) ⇒ (i) Let ε > 0. Then there exists η > 0 such that gap(X ∩∂f ∗(y∗), X ∩∂f ∗(x∗)) ≤ ε
for every y∗ ∈ Im ∂f∩(x∗+ηUX∗); we may assume that x∗+ηUX∗ ⊂ int(dom f ∗), and so f ∗

is continuous at any point of x∗+ηUX∗ . Let u∗ ∈ UX∗ be such that y∗ := x∗+ηu∗ ∈ Im ∂f
and take y ∈ X∩∂f ∗(y∗) ⊂ ∂f ∗(y∗); take also x ∈ X∩∂f ∗(x∗) ⊂ ∂f ∗(x∗) (such an element
exists!). Then

f ∗(x∗ + ηu∗)− f ∗(x∗)

η
− f ∗′(x∗, u∗) ≤ 〈u∗, y〉 − 〈u∗, x〉 = 〈y − x, u∗〉 ≤ ‖y − x‖ .

It follows that

f ∗(x∗ + ηu∗)− f ∗(x∗)

η
− f ∗′(x∗, u∗) ≤ gap(X ∩ ∂f ∗(x∗ + ηu∗), X ∩ ∂f ∗(x∗)) ≤ ε. (23)

Consider now v∗ ∈ BX∗ ; then z∗ := x∗ + ηv∗ ∈ x∗ + ηUX∗ . By Brøndsted–Rockafellar
theorem (see f.i. [39, Th. 3.1.2]), there exists a sequence (z∗n) ⊂ Im ∂f converging to z∗;
we may assume that z∗n ∈ x∗ + ηBX∗ for every n. Taking v∗n := η−1(z∗n − x∗) ∈ BX∗ , from
(23) we obtain

f ∗(x∗ + ηv∗n)− f ∗(x∗)

η
− f ∗′(x∗, v∗n) ≤ ε.

Taking into account that f ∗ and f ∗′(x∗, ·) are continuous on int(dom f ∗) ⊃ x∗+ηUX∗ and
X∗, respectively, passing to the limit for n→ ∞ in the above inequality we obtain

f ∗(x∗ + ηv∗)− f ∗(x∗)

η
− f ∗′(x∗, v∗) ≤ ε ∀v∗ ∈ BX∗ .

This proves that f ∗ is directionally Fréchet differentiable at x∗.

(i) ⇔ (ix) We have seen above that (i) is equivalent to (20) which obviously implies
(ix). For the converse, observe that the set ∂f ∗(x∗) + εUX∗∗ is w∗(2)-closed (even w∗(2)-
compact), and so, using Proposition 4.2, we obtain (20) holds when (ix) is satisfied.

The equivalence of assertions (iv) and (ix) for f = ιUX
and x∗ ∈ SX∗ in the preceding

theorem is [14, Th. 2.2].

Similar to Corollary 5.15, we have the following result for the norm topology.

Corollary 5.18. Let X be a Banach space, f ∈ Γ(X) and x ∈ int(dom f). The following
assertions are equivalent:

(i) Sf (0, ·) is τ‖·‖-τ‖·‖ H-usc at x;

(ii) SX∗

f∗∗(0, ·) is τ‖·‖-τ‖·‖ H-usc at x;

(iii) Sf∗∗(0, ·) is τ‖·‖-τ‖·‖ H-usc at x.

Proof. (i) ⇔ (iii) follows from Theorem 3.6 and Proposition 4.4.

(ii) ⇔ (iii) Taking into account Theorem 3.6 (for f ∗), the proof follows from the equiva-
lence of (i) and (iv) of Theorem 5.17.
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The result which corresponds to Theorem 3.7 is the following.

Theorem 5.19. Let X be a Banach space, f ∈ Γ(X) and x∗ ∈ int(dom f ∗). The follow-
ing assertions are equivalent:

(i) X ∩ ∂f ∗(x∗) is compact and f ∗ is directionally Fréchet differentiable at x∗;

(ii) X ∩ ∂f ∗(x∗) is compact and the multifunction SX
f∗(·, x∗) is τ0-τ‖·‖ H-usc at 0;

(iii) X ∩ ∂f ∗(x∗) is compact and the multifunction SX
f∗ is τ0 × τ‖·‖-τ‖·‖ H-usc at (0, x∗);

(iv) X ∩ ∂f ∗(x∗) is compact and the multifunction SX
f∗(0, ·) is τ‖·‖-τ‖·‖ H-usc at x∗;

(v) X ∩ ∂f ∗(x∗) is compact and limy∗∈Im ∂f, y∗→x∗ gap(X ∩ ∂f ∗(y∗), X ∩ ∂f ∗(x∗)) = 0;

(vi) for every sequence (ηn) ⊂ [0,∞) converging to 0 and every sequence (xn) with
xn ∈ X ∩ ∂ηnf

∗(x∗) for n ∈ N, (xn) has a convergent subsequence;

(vii) for every sequence (ηn) ⊂ [0,∞) converging to 0, for every sequence (x∗n) ⊂ X∗

converging to x∗ and every sequence (xn) with xn ∈ X ∩ ∂ηnf
∗(x∗n) for n ∈ N, (xn)

has a convergent subsequence;

(viii) for every sequence (x∗n) ⊂ X converging to x∗ and every sequence (xn) with xn ∈
X ∩ ∂f ∗(x∗n) for n ∈ N, (xn) has a convergent subsequence;

(ix) limη↓0 α (X ∩ ∂ηf
∗(x∗)) = 0.

(x) limη↓0 α (∂ηf
∗(x∗)) = 0.

Proof. The equivalence of (i)–(viii) follows immediately from Theorem 5.17, while the
equivalence of (vi) and (ix) follows from Corollary 2.3.

(ii) ⇒ (x) Because X ∩ ∂f ∗(x∗) is τ‖·‖-compact in X, it is also τ‖·‖-compact in X∗∗.
It follows that X ∩ ∂f ∗(x∗) is w∗(2)-compact in X∗∗. As in the proof of (i) ⇔ (ii) of
Theorem 5.17, for ε > 0 there exists η > 0 such that (22) holds. Because X ∩ ∂f ∗(x∗) is
w∗(2)-compact in X∗∗, we obtain ∂ηf

∗(x∗) ⊂ (X ∩ ∂ηf
∗(x∗)) + εUX∗∗ . Hence

α (∂ηf
∗(x∗)) ≤ α ((X ∩ ∂ηf

∗(x∗)) + εUX∗∗) ≤ α(X ∩ ∂ηf
∗(x∗)) + α (εUX∗∗)

= 0 + ε = ε.

It follows that limη↓0 α (∂ηf
∗(x∗)) = 0, that is, (x) holds.

(x) ⇒ (i) By Theorem 3.7, we have ∂f ∗(x∗) is compact and f ∗ is directionally Fréchet
differentiable at x∗. Since X is closed in X∗∗, it follows that X ∩∂f ∗(x∗) is compact. The
proof is complete.

The following result corresponds to Theorem 3.8.

Theorem 5.20. Let X be a Banach space, f ∈ Γ(X) and x∗ ∈ int(dom f ∗). The follow-
ing assertions are equivalent:

(i) f ∗ is Fréchet differentiable at x∗;

(ii) limη↓0 diam (X ∩ ∂ηf
∗(x∗)) = 0;

(iii) limη↓0,y∗→x∗ diam (X ∩ ∂ηf
∗(y∗)) = 0;

(iv) ∂f ∗(x∗) = {x∗∗} and limy∗∈Im ∂f,y∗→x∗ d(x∗∗, X ∩ ∂f ∗(y∗)) = 0;

(v) for every sequence (ηn) ⊂ [0,∞) converging to 0 and any sequence (xn) with xn ∈
X ∩ ∂ηnf

∗(x∗) for n ∈ N, (xn) is τ‖·‖-convergent;

(vi) for every sequence (ηn) ⊂ [0,∞) converging to 0, for every sequence (x∗n) ⊂ X∗

converging to x∗ and every sequence (xn) with xn ∈ X ∩ ∂ηnf
∗(x∗n) for n ∈ N, (xn)

is τ‖·‖-convergent;
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(vii) for every sequence (x∗n) ⊂ X converging to x∗ and every sequence (xn) with xn ∈
X ∩ ∂f ∗(x∗n) for n ∈ N, (xn) is τ‖·‖-convergent.

Note that from the preceding result we obtain ∇f ∗(x∗) ∈ X when f ∗ is Fréchet differen-
tiable at x∗; see also Corollary 5.13 (and [39, Cor. 3.3.4]). When f = ιUX

and x∗ ∈ SX∗ ,
the equivalence of (i) and (v) in the previous result is stated by Smulian [36, p. 645].

We end this section with a result related to continuity with respect to other convergences.

Theorem 5.21. Let f ∈ Γ(X) and x∗ ∈ int(dom f ∗). Consider the following assertions:

(i) X ∩ ∂ηf
∗(x∗)

V
+
w−→ X ∩ ∂f ∗(x∗) for η ↓ 0;

(ii) X ∩ ∂ηf
∗(x∗)

H
+
w−→ X ∩ ∂f ∗(x∗) for η ↓ 0;

(iii) ∂f ∗(x∗) = X ∩ ∂f ∗(x∗)
w∗(2)

;

(iv) d(x,X ∩ ∂f ∗(x∗)) = d(x, ∂f∗(x∗)) for every x ∈ X;

(v) X ∩ ∂ηf
∗(x∗)

W
−→ X ∩ ∂f ∗(x∗) for η ↓ 0.

Then (i) ⇒ (ii) ⇔ (iii) ⇒ (iv) ⇔ (v).

Proof. (i) ⇒ (ii) is obvious, (ii) ⇔ (iii) is established in Proposition 5.2, while (iii) ⇒
(iv) follows directly from Corollary 4.10.

(iv) ⇒ (v) Fix x ∈ X and take lim inf d(x,X ∩ ∂ηf
∗(x∗)) = supη>0 d(x,X ∩ ∂ηf

∗(x∗)) <
γ < ∞. Then for every n ≥ 1 there exists xn ∈ X ∩ ∂1/nf

∗(x∗) such that ‖x− xn‖ < γ.
The sequence (xn)n≥1 ⊂ ∂1f

∗(x∗) being bounded, it has a subnet (xi)i∈I w
∗(2)-convergent

to x∗∗ ∈ X∗∗. Because

f ∗∗(xi) + f ∗(x∗) = f(xi) + f ∗(x∗) ≤ 〈xi, x
∗〉+ ηi = 〈x∗, xi〉+ ηi,

where (ηi)i∈I is the subnet of (1/n) corresponding to (xi)i∈I , and taking into account that
f ∗∗ is w∗(2)-lsc, we obtain f ∗∗(x∗∗) + f ∗(x∗) ≤ 〈x∗, x∗∗〉, that is, x∗∗ ∈ ∂f ∗(x∗). We get

d(x,X ∩ ∂f ∗(x∗)) = d(x, ∂f∗(x∗)) ≤ ‖x− x∗∗‖ ≤ lim inf ‖x− xi‖ ≤ γ.

Hence d(x,X ∩ ∂f ∗(x∗)) ≤ lim infη↓0 d(x,X ∩ ∂ηf
∗(x∗)) = limη↓0 d(x,X ∩ ∂ηf

∗(x∗)). The
reverse inequality being always true, we get the conclusion.

(v) ⇒ (iv) Fix x ∈ X and take α > d(x, ∂f∗(x∗)). Then there exists x∗∗ ∈ ∂f ∗(x∗) such
that ‖x− x∗∗‖ < α. Take now δ > 0. By Lemma 4.5, there exists xδ ∈ X ∩ ∂δf

∗(x∗) such

that ‖xδ − x‖ < α. It follows that d(x,X ∩ ∂δf
∗(x∗)) < α. Because X ∩ ∂ηf

∗(x∗)
W
−→

X ∩ ∂f ∗(x∗) for η ↓ 0, we obtain d(x,X ∩ ∂f ∗(x∗)) ≤ α. Hence d(x,X ∩ ∂f ∗(x∗)) ≤
d(x, ∂f∗(x∗)). The converse inequality being always true, the conclusion follows.

6. Convergence of slices of the unit ball of X

In this section we shall point out some new results concerning the convergence of slices of
the closed unit ball of X for several convergences (upper Vietoris, Wijsman, . . . ) either
as applications of the preceding results or with direct proofs.

Recall that for x ∈ SX∗(n) and δ ≥ 0, S(x, δ) is the nonempty w∗(n + 1)-compact convex
set {x∗ ∈ UX∗(n+1) | 〈x, x∗〉 ≥ 1− δ} ⊂ X∗(n+1); of course, S(x, δ) ⊂ S(x, δ′) if 0 ≤ δ ≤ δ′
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and S(x, 0) ⊂ SX∗(n+1) . Because S(x, δ) = ∂δ ‖·‖ (x) for x ∈ SX∗(n) and δ ≥ 0 (see f.i.
[39, Th. 2.4.14(iii) and Cor. 2.4.16]), the results established in the previous section can
be applied. If x∗ ∈ SX∗ , we always have that X ∩ S(x∗, δ) is nonempty for δ > 0, but
X ∩ S(x∗, 0) might be empty.

It is worth observing that if for some x∗ ∈ SX∗ and some (δn) ⊂ (0,∞) converging to 0
there exists a sequence (xn) ⊂ X converging weakly to x ∈ X with xn ∈ S(x∗, δn) for
every n ≥ 1, then x ∈ S(x∗, 0). Indeed, 〈x, x∗〉 = lim 〈xn, x

∗〉 ≥ 1; as UX is w-closed,
we have also x ∈ UX , and so 〈x, x∗〉 ≤ 1, whence x ∈ S(x∗, 0). In the next statements
(δn)n≥1 ⊂ (0, 1] is an arbitrary decreasing sequence with limit 0; we can take δn = 1/n for
n ≥ 1.

Theorem 6.1. Let x∗ ∈ SX∗. Consider the following assertions:

(i) X ∩ S(x∗, δn)
V

+
w−→ X ∩ S(x∗, 0);

(ii) X ∩ S(x∗, 0) is w-totally bounded and X ∩ S(x∗, δn)
H

+
w−→ X ∩ S(x∗, 0);

(iii) X ∩ S(x∗, δn)
H

+
w−→ X ∩ S(x∗, 0);

(iv) ∀u∗ ∈ SX∗, ∀α > sup{〈x, u∗〉 | x ∈ X ∩ S(x∗, 0)}, ∃n0, ∀n ≥ n0, X ∩ S(x∗, δn) ⊂
{x ∈ X | 〈x, u∗〉 < α};

(v) S(x∗, 0) = X ∩ S(x∗, 0)
w∗(2)

;

(vi) d(x,X ∩ S(x∗, 0)) = d(x, S(x∗, 0)) for every x ∈ X;

(vii) X ∩ S(x∗, δn)
W
−→ X ∩ S(x∗, 0).

Then (i) ⇒ (ii) ⇒ (iii) ⇔ (iv) ⇔ (v) ⇒ (vi) ⇔ (vii). Moreover, each of these conditions
implies that X ∩ S(x∗, 0) 6= ∅.

Proof. The fact that X ∩ S(x∗, 0) 6= ∅ whenever one of the conditions (i)–(vii) holds is
evident. The implications (ii) ⇒ (iii) ⇒ (iv) are obvious. Applying Theorem 5.21 to the
function f = ιUX

, we have (iii) ⇔ (v) ⇒ (vi) ⇔ (vii). So, we have to show that (i) ⇒
(ii) and (iv) ⇒ (v).

(i) ⇒ (ii) It is sufficient to show that X ∩ S(x∗, 0) is w-totally bounded. In the contrary
case there exists a symmetric convex neighborhood V of 0 for the weak topology such
that X ∩ S(x∗, 0) is not included in any set ∪x∈F (x + V ) with F ⊂ X ∩ S(x∗, 0) finite.
Hence, there exists a sequence (xn)n≥1 ⊂ X ∩ S(x∗, 0) such that xn+1 /∈ {x1, . . . , xn}+ V
for every n ≥ 1. Let yn := (1 − δn)xn and E := {yn | n ≥ 1}. The set E is w-closed;

for if not there exists some y ∈ E
w
\ E, and so y + 1

4
V contains an infinity of elements

of E, say {ynk
| k ≥ 1}, where (nk) ⊂ N is an increasing sequence. Since (xn) is (norm)

bounded, we have δnxn →w 0, and so there exists n0 ≥ 1 such that δnxn− δmxm ∈ 1
2
V for

n,m ≥ n0. Taking k ≥ n0, we have ynk+1
− ynk

∈ 1
2
V , whence

xnk+1
− xnk

= ynk+1
− ynk

+ δnk+1
xnk+1

− δnk
xnk

∈ 1
2
V + 1

2
V = V,

a contradiction.

(iv) ⇒ (v) First observe that X∩S(x∗, 0) is nonempty in our conditions. Assume that (v)

does not hold. Then there exists some x∗∗ ∈ S(x∗, 0) \X ∩ S(x∗, 0)
w∗(2)

. By a separation
theorem there exist u∗ ∈ SX∗ and α ∈ R such that

〈u∗, x∗∗〉 > α > sup{〈x, u∗〉 | x ∈ X ∩ S(x∗, 0)}.
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From our hypothesis, there exists n0 such that

X ∩ S(x∗, δn0) ⊂ {u ∈ X | 〈u, u∗〉 < α} ⊂ H∗∗ := {u∗∗ ∈ X∗∗ | 〈u∗, u∗∗〉 ≤ α}.

Taking into account (11) we obtain

S(x∗, 0) ⊂ S(x∗, δn0) = X ∩ S(x∗, δn0)
w∗(2)

⊂ H∗∗.

This yields the contradiction 〈u∗, x∗∗〉 ≤ α.

If X ∩ S(x∗, 0) is weakly compact then (i) ⇔ (iii) in Theorem 6.1. Note that the equiva-
lence of (iii) and (v) in Theorem 6.1 is stated in [19, Lem. 2.2] for X complete.

Corollary 6.2. Let X be complete. The following assertions are equivalent:

(i) X ∩ S(x∗, δn)
V

+
w−→ X ∩ S(x∗, 0) for every x∗ ∈ SX∗;

(ii) X ∩ S(x∗, δn)
H

+
w−→ X ∩ S(x∗, 0) for every x∗ ∈ SX∗;

(iii) X ∩ S(x∗, δn)
W
−→ X ∩ S(x∗, 0) for every x∗ ∈ SX∗;

(iv) X is reflexive.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) are immediate consequences of the preceding
theorem.

(iii) ⇒ (iv) Because d(0, X ∩ S(x∗, δn)) ≤ 1, we obtain d(0, X ∩ S(x∗, 0)) < ∞, and so
X ∩S(x∗, 0) 6= ∅. Hence every x∗ ∈ SX∗ attains its supremum on UX . By James’ theorem
we obtain X is reflexive.

(iv) ⇒ (i) Taking f to be the norm on X∗ and x∗ ∈ SX∗ , from Proposition 3.12 we

obtain S(x∗, δn)
V +
w∗

−→ S(x∗, 0). Because X is reflexive this means that X ∩ S(x∗, δn)
V +
w−→

X ∩ S(x∗, 0).

Applying Theorem 5.17 and the preceding result for f = iUX
and x∗ ∈ SX , we obtain [10,

Th. 3.3] that X is reflexive if the norm of X∗ is directionally Fréchet differentiable on X∗.
When the weak topology is replaced by the strong topology we have the following result.

Proposition 6.3. Let x∗ ∈ SX∗. Consider the following assertions:

(i) S(x∗, δn)
V

+

−→ S(x∗, 0);

(ii) S(x∗, 0) is compact and S(x∗, δn)
H

+

−→ S(x∗, 0);

(iii) X ∩ S(x∗, δn)
V

+

−→ X ∩ S(x∗, 0);

(iv) X ∩ S(x∗, 0) is compact and X ∩ S(x∗, δn)
H

+

−→ X ∩ S(x∗, 0);

(v) for every sequence (xn) ⊂ UX with 〈xn, x
∗〉 → 1, (xn) has a convergent subsequence;

(vi) X ∩ S(x∗, δn)
H

+

−→ X ∩ S(x∗, 0);

(vii) for every sequence (xn) ⊂ UX with 〈xn, x
∗〉 → 1 we have d(xn, X ∩ S(x∗, 0)) → 0;

(viii) S(x∗, δn)
H

+

−→ S(x∗, 0).

Then (i) ⇔ (ii) and (iii) ⇔ (iv) ⇔ (v) ⇒ (vi) ⇔ (vii).

Moreover, if X is complete then (ii) ⇔ (iv), (vi) ⇔ (viii), and each of the above assertions
implies that X ∩ S(x∗, 0) is nonempty.
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Proof. (i) ⇔ (ii) It is sufficient to show that S(x∗, δn)
V+

−→ S(x∗, 0) implies that S(x∗, 0)

is compact. Indeed, assume that S(x∗, δn)
V+

−→ S(x∗, 0) but S(x∗, 0) is not compact. Then
there exists a sequence (x∗∗n ) ⊂ S(x∗, 0) which has not convergent subsequences. Consider
y∗∗n := (1 − δn)x

∗∗
n for n ≥ 1. It follows that also (y∗∗n ) has not convergent subsequences,

and so the set F := {y∗∗n | n ≥ 1} is closed and disjoint of S(x∗, 0). But y∗∗n ∈ S(x∗, δn)∩F ,
and so we must have that S(x∗, 0) ∩ F is nonempty, a contradiction.

(iii) ⇔ (iv) The proof follows the same lines as that of (i) ⇔ (ii).

(vi) ⇒ (vii) Take (xn) ⊂ UX with 〈xn, x
∗〉 → 1. Consider δ′n := max{δn, 1 − 〈xn, x

∗〉} ∈
(0,∞). Then δ′n → 0 and xn ∈ X∩S(x∗, δ′n) for every n. We get that d(xn, X∩S(x∗, 0)) →
0 by the sequential characterization of the H+-convergence.

(vii)⇒ (vi) Take the sequence (xn) such that xn ∈ X∩S(x∗, δn) (⊂ UX) for every n. Since
1 ≥ 〈xn, x

∗〉 ≥ 1−δn, we obtain 〈xn, x
∗〉 → 1. By hypothesis, we get d(xn, X∩S(x∗, 0)) →

0. The conclusion follows by the sequential characterization of the H+-convergence.

(iv) ⇒ (v) Take (xn) ⊂ UX with 〈xn, x
∗〉 → 1. Because (vi) ⇒ (vii), we have d(xn, X ∩

S(x∗, 0)) → 0. Hence there exists (x′n) ⊂ X ∩ S(x∗, 0) with ‖ xn − x′n ‖→ 0. Since X ∩
S(x∗, 0) is compact, (x′n) has a convergent subsequence (x′nk

), and so (xnk
) is convergent.

(v) ⇒ (iv) Consider first (xn) ⊂ X ∩ S(x∗, 0). Because 〈xn, x
∗〉 = 1 → 1, (xn) has a

convergent subsequence. As X ∩S(x∗, 0) is closed, X ∩S(x∗, 0) is compact. Consider now
the sequence (xn) such that xn ∈ X∩S(x∗, δn) (⊂ UX) for every n and take a subsequence
(xnk

) of (xn) such that γ := lim sup d(xn, X ∩ S(x∗, 0)) = lim d(xnk
, X ∩ S(x∗, 0)). Since

1 ≥ 〈xnk
, x∗〉 ≥ 1− δnk

, we obtain 〈xnk
, x∗〉 → 1. By (v), possibly taking a subsequence,

we may suppose (and we do) that (xnk
) converges to x ∈ X ∩ S(x∗, 0). This implies that

γ = lim d(xnk
, X ∩ S(x∗, 0)) = 0.

(v) ⇒ (vii) Take (xn) ⊂ UX with 〈xn, x
∗〉 → 1. As in the proof of the implication (v) ⇒

(iv) we obtain γ := lim sup d(xn, X ∩ S(x∗, 0)) = 0.

Assume now that X is complete. Then the equivalence of (vi) and (viii) is nothing else
but the equivalence of (20) and (21) for f := ιUX

stated in the proof of Theorem 5.17.
The equivalence of (ii) and (iv) follows from the equivalence of (ix) and (x) in Theorem
5.19 and Corollary 2.3.

Because assertion (iv) of the preceding result is nothing else but assertion (ii) of Theorem
5.19 for the function f := ιUX

(that is, f ∗ = ‖·‖) and x∗ ∈ SX∗ , when X is complete, to
the equivalent conditions (i)–(v) above we can add those obtained from Theorem 5.19;
similarly, because assertion (vi) of the preceding result is nothing else but assertion (ii) of
Theorem 5.17, to the equivalent conditions (vi)–(viii) above we can add those obtained
from Theorem 5.17 (for example that the norm ofX∗ is directionally Fréchet differentiable
at x∗).

The V+-convergence of (X ∩ S(x∗, δn)) for every x
∗ ∈ SX∗ is related to important prop-

erties of the space X, as the next result shows.

Corollary 6.4. Let X be complete. The following assertions are equivalent:

(i) X is reflexive and has the Kadec–Klee property;

(ii) X ∩ S(x∗, δn)
V

+

−→ X ∩ S(x∗, 0) for every x∗ ∈ SX∗;
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(iii) S(x∗, δn)
V

+

−→ S(x∗, 0) for every x∗ ∈ SX∗.

Recall that a normed vector space X has the Kadec–Klee property if ‖xn − x‖ → 0
whenever xn →w x and ‖xn‖ → ‖x‖ (or equivalently, ‖xn − x‖ → 0 whenever x, xn ∈ SX

and xn →w x).

Proof. The equivalence of (ii) and (iii) follows immediately from Proposition 6.3 [(i) ⇔
(iii)].

(ii) ⇒ (i) It follows from Corollary 6.2 that X is reflexive. Let x, xn ∈ SX with xn →w x.
Assuming that for some ε > 0 and an infinite set P ⊂ N we have ‖xn − x‖ ≥ ε for every
n ∈ P , from the equivalence of (iii) and (v) in Proposition 6.3, a subsequence (xn)n∈Q
converges strongly to x′ ∈ SX (with Q ⊂ P an infinite set). By the uniqueness of the
weak limit, it follows that x′ = x, contradicting the choice of (xn)n∈P .

(i) ⇒ (ii) Fix x∗ ∈ SX∗ . It is sufficient to show that assertion (v) in Proposition 6.3
holds. For this take (xn) ⊂ UX with 〈xn, x

∗〉 → 1. It follows that ‖xn‖ → 1. Because
X is reflexive there exists an infinite set P ⊂ N such that (xn)n∈P converges weakly to
x ∈ UX . It follows that 〈x, x

∗〉 = 1, and so ‖x‖ = 1 = limn∈P ‖xn‖. By our hypothesis we
obtain limn∈P ‖xn − x‖ = 0, and so our aim is satisfied.

Of course, we could write the result obtained from Theorem 5.20 for f = ιUX
and x∗ ∈ SX∗ .

Assertion (ii) of Theorem 5.20 is related to an important class of normed vector spaces,
namely that of strongly convex spaces.

The normed vector space (X, ‖·‖) is strongly convex if for every nonempty convex set
C ⊂ X one has limt↓d(0,C) diam(C ∩ tUX) = 0. The next result can be found in [9] (see f.i.
[27]).

Proposition 6.5. Let X be a normed vector space. The following assertions are equiva-
lent:

(i) (X, ‖·‖) is strongly convex;

(ii) limδ↓0 diam(X ∩ S(x∗, δ)) = 0 for every x∗ ∈ SX∗.

Moreover, if X is complete, the assertions above are equivalent to

(iii) X is reflexive, strictly convex and has the Kadec–Klee property.

Asking the limit to be uniform with respect to x∗ ∈ SX∗ in Proposition 6.5 is a very strong
condition, as the next result due to Smulian [36] shows.

Proposition 6.6. Let X be a Banach space. The following assertions are equivalent:

(i) X is uniformly convex;

(ii) limδ↓0 diam(X ∩ S(x∗, δ)) = 0 uniformly with respect to x∗ ∈ SX∗;

(iii) limδ↓0 diam(S(x∗, δ)) = 0 uniformly with respect to x∗ ∈ SX∗;

(iv) ‖·‖ is uniformly Fréchet differentiable on SX∗ .
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continuity properties of the approximate subdifferential mapping, as well as for other useful

remarks.
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J. Math. Anal. Appl. 34 (1971) 371–395.

[22] D. A. Gregory: Upper semicontinuity of subdifferential mappings, Canad. Math. Bull. 23
(1980) 11–19.

[23] J.-B. Hiriart-Urruty: Lipschitz r-continuity of the approximate subdifferential of a convex
function, Math. Scand. 47 (1980) 123–134.

[24] J.-B. Hiriart-Urruty: ε-subdifferential calculus, in: Convex Analysis and Optimization, J.-P.
Aubin, R. B. Vinter (eds.), Research Notes in Mathematics 57, Pitman Advanced Publishing
Program, Boston (1982) 43–92.

[25] R. B. Holmes: Geometric Functional Analysis and its Applications, Graduate Texts in
Mathematics 24, Springer, New York (1975).

[26] Z. Hu, B.-L. Lin: Smoothness and the asymptotic-norming properties of Banach spaces,
Bull. Austral. Math. Soc. 45 (1992) 285–296.

[27] R. E. Megginson: An Introduction to Banach Space Theory, Graduate Texts in Mathematics
183, Springer, New York (1998).
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