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In a former paper the concept of n−ary connectedness was introduced, where 1−ary connectedness
coincides with the usual notion of (abstract) connectedness. In the present paper, sets endowed with a
convexity structure are studied, where the polytopes are n−ary connected. Interrelations between the
classical Helly and Carathéodory numbers are evaluated as a pre-stage of Helly and Carathéodory type
intersection theorems. Various other applications such as intersection theorems and fixed point theorems
for trees and hyperconvex metric spaces are presented.
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1. Notation

Let S be a nonvoid set and 2S the power set of S. Then every nonvoid subset P ⊂ 2S

is called a paving in S and (S,P) is a paved space. Especially, E(S) denotes the paving
of all nonvoid finite subsets of S, En(S) (with E0(S) = {∅}) is the paving of all subsets
of S with n elements, PC is the paving of all complements S \ P, P ∈ P, and P ∩ T :=
{P ∩ T : P ∈ P} is the trace of a subset T of S.

A paving P is called ∩f−closed (∪f−closed) iff A,B ∈ P implies A∩B ∈ P (A∪B ∈ P),
and ∩a−closed iff

⋂

R∈RR ∈ P for all nonvoid R ⊂ P, and P is called compact iff every
subpaving R ⊂ P with the finite intersection property

⋂

R∈F R 6= ∅ ∀F ∈ E(R) has the
global intersection property

⋂

R∈RR 6= ∅.

For n ∈ N a subset T ⊂ S will be called n−ary connected for P [20] iff for all {P0, . . . , Pn}
⊂ P the relations

⋂

j∈J Pj ∈ P for all nonvoid proper subsets J of {0, . . . , n}, T ⊂
⋃n

i=0 Pi,
and T ∩P−i 6= ∅, i ∈ {0, . . . , n}, with P−i :=

⋂n

j=0,j 6=i Pj, imply T ∩
⋂n

i=0 Pi 6= ∅. A subset
T is called connected for P iff it is 1−ary connected for P, and T is called finitary connected
for P iff it is n−ary connected for P for every n ∈ N.

If K is another paving in S, then we say that K is (n−ary/finitary) connected for P
if every K ∈ K has this property. In case K = P we say that P is (n−ary/finitary)
connected.

If S is a topological space, then we denote by F(S), G(S), K(S), and C(S) the pavings
of all closed, open, compact, and connected subsets, respectively. Here the empty set is
considered to be connected. Of course, F(S) is compact iff S is compact, and a subset
is connected iff it is (1-ary) connected for F(S) or for G(S), respectively. Observe that
the paving C(S) is not connected in general, but C(S)∩F(S) and C(S)∩G(S) are always
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connected. Similarly, K(S) need not be compact, but K(S) ∩ F(S) is always compact.
We write clT , intT , and bdT for the closure, interior, and boundary of a subset T ⊂ S.
A topological space is called discrete iff G(S) is ∩a−closed.

2. Abstract convexity

A quasiconvex space is a pair (X,Ψ) where X is a nonvoid set and Ψ : E(X) ∪ {∅} → 2X

is a function with Ψ(∅) = ∅ and A ⊂ Ψ(A), A ∈ E(X).
The function Ψ is a quasiconvexity (for X). The subsets C ⊂ X with Ψ(A) ⊂ C for all
A ∈ E(C) are called convex. In the following, CΨ denotes the paving of all convex subsets
of X, and we set Ψ(E(X)) := {Ψ(A) : A ∈ E(X)} for the paving of polytopes. The paving
CΨ is an alignment, i.e., {∅, X} ⊂ P, P is ∩a−closed, and

⋃

{A : A ∈ A} ∈ P for every
totally ordered A ⊂ P.

A quasiconvexity Ψ is

• monotone iff B ⊂ A implies Ψ(B) ⊂ Ψ(A),

• a convexity, and (X,Ψ) is a convex space, provided that all polytopes are convex, i.e.,
A,B ∈ E(X), A ⊂ Ψ(B) =⇒ Ψ(A) ⊂ Ψ(B).

• said to possess the join-hull property iff
(1) Ψ(A ∪ {y}) ⊂

⋃

x∈Ψ(A)Ψ({x, y}), A ∈ E(X), y ∈ X

(Here a subset T ⊂ X is convex iff Ψ(A) ⊂ T for all A ∈ E1(T ) ∪ E2(T ).) and Ψ is
join-hull commutative [27] provided relation (1) holds with equality.

• said to have the subdivision property [27] iff
(2) Ψ(A) ⊂

⋃

x∈AΨ((A \ {x}) ∪ {y}) ∀y ∈ Ψ(A), A ∈ E(X) \ E1(X).

Monotone quasiconvexities are also called “prehull operators� [27]. Convexities were in-
troduced by Fuchssteiner [10] under the name �Konvexe“. The classical example is the
standard convexity on a vector space (Cf. Example 3.9 below). Other examples are metric
convexity (Examples 2.7, 4.12, 6.14), order convexity (Examples 6.6, 6.8), and convexity
on trees (Example 6.13). A source of further examples is van de Vel’s book [27].

A subset A ∈ E(X) is called dependent iff there exists an x0 ∈ A with x0 ∈ Ψ(A \ {x0}).
Otherwise, A is independent.

A subset A ∈ E(X) is called C-dependent (Carathéodory-dependent) provided that

(3) Ψ(A) ⊂
⋃

x∈AΨ(A \ {x}).

A subset A ∈ E(X) is called H-dependent (Helly-dependent) provided that

(4)
⋂

x∈AΨ(A \ {x}) 6= ∅.

c = c(X,Ψ) := sup{cardA : A ∈ E(X), A is C − independent}

is the Carathéodory-number, and

h = h(X,Ψ) := sup{cardA : A ∈ E(X), A is H − independent}

is the Helly-number of Ψ or (X,Ψ), respectively.

Lemma 2.1. In a quasiconvex space (X,Ψ) the following holds:

a) Every singleton is (C-,H-) independent.

b) Every dependent finite subset is H-dependent.



J. Kindler / Abstract Convexity and Connectedness 567

c) If Ψ is monotone, then
(i) every nonvoid subset of a finite independent set is independent, and
(ii) every nonvoid subset of a finite H-independent set is H-independent.

d) If Ψ is join-hull commutative, then every nonvoid subset of a finite C-independent
set is C-independent.

Proof. b) For x ∈ A ∩Ψ(A \ {x}) we have x ∈
⋂

x∈AΨ(A \ {x}).
c)(ii) follows from the relation

⋂

x∈B Ψ(B\{x}) ⊂
⋂

x∈B Ψ(A\{x})∩
⋂

y∈A\B Ψ(A\ {y}) =
⋂

x∈AΨ(A \ {x}), ∅ 6= B ⊂ A ∈ E(X).
d) Let A ∈ E(X) be C-independent. Suppose that A\{x} is C-dependent for some x ∈ A,
i.e., Ψ(A \ {x}) ⊂

⋃

x∈A\{x}Ψ(A \ {x, x}). Then

Ψ(A) =
⋃

y∈Ψ(A\{x})

Ψ({x, y}) ⊂
⋃

x∈A\{x}

⋃

t∈Ψ(A\{x,x})

Ψ({x, t})

=
⋃

x∈A\{x}

Ψ(A \ {x}) ⊂
⋃

x∈A

Ψ(A \ {x})

leads to a contradiction.
The other assertions are obvious.

Lemma 2.2 (Cf. [4], [27]). In a convex space (X,Ψ) the following holds:

a) Ψ is monotone.

b) Every dependent finite subset is C-dependent.

c) If Ψ has the join-hull property, then Ψ is join-hull commutative.

d) If Ψ has the subdivision property, then relation (2) holds with equality, and the
following holds:
(i) Every H-dependent finite subset is C-dependent. In particular, c(X,Ψ) ≤

h(X,Ψ).
(ii) For all A ∈ En(X) with n ≥ h(X,Ψ) we have Ψ(A) ⊂

⋃

x∈AΨ((A \ {x}) ∪
{y}) ∀y ∈ X, A ∈ E(X) \ E1(X).

Proof. a) and c) are obvious.
b) A = (A \ {x}) ∪ {x} ⊂ Ψ(A \ {x}) implies Ψ(A) ⊂

⋃

x∈AΨ(A \ {x}).
d)(i) Here we have Ψ(A) =

⋃

x∈AΨ((A\{x})∪{y}) =
⋃

x∈AΨ(A\{x}) for y ∈
⋂

x∈AΨ(A\
{x}).
(ii) Without loss of generality we may assume y /∈ A. Then A∪ {y} is H-dependent, i.e.,
there exists an

x ∈
⋂

x∈A∪{y}

Ψ((A ∪ {y}) \ {x}) = Ψ(A) ∩
⋂

x∈A

Ψ((A ∪ {y}) \ {x})

and with the subdivision property we obtain

Ψ(A) =
⋃

x∈A

Ψ((A \ {x}) ∪ {x}) ⊂
⋃

x∈A

Ψ((A \ {x}) ∪ {y}).
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Lemma 2.3. Let (X,Ψ) be a quasiconvex space, and let A ∈ En+1(X) with n ∈ N be a
C-dependent set. Suppose that there exists a ∩f−closed paving Q such that

(i) Ψ(A) is n−ary connected for Q, and

(ii) Ψ(A \ {x}) ∈ Q ∀x ∈ A.

Then A is H-dependent.

Proof. For A = {x0, . . . , xn} and Qi = Ψ(A \ {xi}) we have
⋂

j∈J Qj ∈ Q for ∅ 6= J ⊂
{0, . . . , n} by (ii) and ∩f−closedness of Q, Ψ(A) ⊂

⋃n

i=0 Qi since A is C-dependent, and
xi ∈ Ψ(A)∩Q−i. Together with (i) we arrive at Ψ(A)∩

⋂n

i=0 Qi 6= ∅ which yields (4).

For convexities the Lemmas 2.4 and 4.5 below are well-known ([27], Ch. II, §1, 1.7).

Lemma 2.4. Let (X,Ψ) be a quasiconvex space with Carathéodory-number c = c(X,Ψ).
Then for n ∈ N the implication (a) =⇒ (b) holds for the following conditions:

(a) n ≥ c.

(b) For each A ∈ E(X) and y ∈ Ψ(A) there exists an m ≤ n and a B ∈ Em(A) with
y ∈ Ψ(B).

If Ψ is monotone, then both conditions are equivalent.

Proof. (a) =⇒ (b): Let A ∈ E(X) and y ∈ Ψ(A). Choose B ∈ E(A) with minimal
cardinality m such that y ∈ Ψ(B). Suppose that m > n (≥ c). Then B is C-dependent,
i.e., y ∈ Ψ(B) ⊂

⋃

x∈B Ψ(B \ {x}), a contradiction.
(b) =⇒ (a): Now let Ψ be monotone. Suppose that c > n. Then there exists a C-
independent set A ∈ E(X) with card A > n, and there exists a y ∈ Ψ(A)\

⋃

x∈AΨ(A\{x})
in contradiction to (b).

Example 2.5. Every paved space (X,K) gives rise to a convexity according to

ΨK(A) :=
⋂

{K : K ∈ K ∪ {∅, X}, K ⊃ A}, A ∈ E(X) ∪ {∅}.

Here, the following holds:

a) K ⊂ CΨK
.

b) If K contains E(X), then ΨK(A) = A, A ∈ E(X) ∪ {∅}, is the free convexity with
c = 1 and h = card X if X is finite and h = ∞ otherwise.

c) K ⊂ {∅, X} leads to the coarse convexity ΨK(A) = X, A ∈ E(X), with c = h = 1 .

d) Suppose that K is ∩a−closed, and for every A ∈ E(X) there exists a K ∈ K with
A ⊂ K. Then ΨK(E(X)) ⊂ K holds. In this case, ΨK(A) is called the K−hull of A.

Remark 2.6. For a quasiconvex space (X,Ψ) the following are equivalent:

(a) Ψ is a convexity.

(b) Ψ = ΨCΨ .

(c) There exists a paving K in X with Ψ = ΨK.

Example 2.7. A segment space is a pair (X, 〈·, ·〉) where X is a nonvoid set and 〈·, ·〉 :
X × X → 2X is a set–valued map with 〈x, y〉 ⊃ {x, y} for all x, y ∈ X. The sets 〈x, y〉
are called segments, and 〈·, ·〉 is called a segment function for X. A subset T ⊂ X is
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(〈·, ·〉−)convex iff {x, y} ⊂ T implies 〈x, y〉 ⊂ T . Let C denote the alignment of all convex
subsets of X. Then ΨC is a convexity with CΨC

= C and ΨC({x, y}) ⊃ 〈x, y〉, x, y ∈ X.

Every metric space (X, d) can be endowed with the geodesic segment function

〈x, y〉d = {s ∈ X : d(x, s) + d(s, y) = d(x, y)}, x, y ∈ X.

The alignment Cd of all 〈·, ·〉d−convex subsets of X generates the geodesic convexity Ψd :=
ΨCd .

A metric space is called Menger–convex iff 〈x, y〉d \ {x, y} 6= ∅ for all x, y ∈ X with
x 6= y. Every nonvoid convex subset of a normed linear space is Menger–convex w.r.t. the
induced metric. In [11] various examples of Menger–convex metric spaces in hyperbolic
geometry can be found. A classical example is the Poincaré disc. By a theorem of Menger
[24, 12] in a complete Menger–convex metric space every geodesic segment is isometric
to the unit interval, and therefore Cd ⊂ C(X). In general, 〈x, y〉d is a proper subset of
Ψd({x, y}), i.e., a geodesic segment 〈x, y〉d need not be Ψd−convex. (Compare Example
9.3 in [1]; Ch. II.)

Many other examples of segment spaces can be found in the books of Coppel [4], van de
Vel [27], and Verheul [28], and in the paper [19].

3. Quasiconvex paved spaces

A triplet (X,Q,Ψ) is a (quasi)convex paved space provided that (X,Q) is a paved space
and Ψ is a (quasi)convexity for X. A (quasi)convex paved space (X,Q,Ψ) will be called
a CP-space (QP-space) provided that Ψ(En+1(X)) is n−ary connected for Q for every
n ∈ N with n < card X.

Remark 3.1. Let (X,Q,Ψ) be a QP-space with ∩f−closed Q and T a nonvoid convex
subset of S. Then the subspace (T,Q∩ T,Ψ|E(T ) ∪ {∅}) is also a QP-space.

Remark 3.2.

a) In a QP-space (X,Q,Ψ) with Ψ(E(X)) ⊂ Q and ∩f−closed Q every C-dependent
finite subset is H-dependent according to Lemma 2.3. In particular, c(X,Ψ) ≥
h(X,Ψ) holds.

b) In a CP-space (X,Q,Ψ) with Ψ(E(X)) ⊂ Q with ∩f−closed Q and with the sub-
division property a finite subset is C-dependent iff it is H-dependent. This follows
with Lemma 2.2 d)(i).

Remark 3.3. Let (X,Q,Ψ) be a quasiconvex paved space.

a) If T is a nonvoid convex subset of X, and if Ψ(En+1(T )) is n−ary connected for Q,
then T is n−ary connected for Q.

b) If (X,Q,Ψ) is a QP-space such that every Q ∈ Q is convex, then Q is finitary
connected.

Proof. a) Let {Q0, . . . , Qn} ⊂ Q with
⋂

j∈J Qj ∈ Q for all nonvoid proper subsets J
of {0, . . . , n} such that T ⊂

⋃n

i=0 Qi, and let xi ∈ T ∩ Q−i, i ∈ {0, . . . , n}. We have
to show that T ∩

⋂n

i=0 Qi is nonvoid. Without loss of generality we may assume A :=
{x0, . . . , xn} ∈ En+1(X), whence Ψ(A) is n−ary connected for Q. Now Ψ(A) ⊂

⋃n

i=0 Qi
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together with xi ∈ Ψ(A)∩Q−i, i ∈ {0, . . . , n}, implies T ∩
⋂n

i=0 Qi ⊃ Ψ(A)∩
⋂n

i=0 Qi 6= ∅.
b) follows from a).

Let (X,Ψ) be a quasiconvex space. Then for T ∈ 2X \ {∅} the set ker T := {x ∈ X :
Ψ({x, t}) ⊂ T ∀t ∈ T} is the kernel of T , and T is star-shaped iff ker T is nonvoid. Of
course, ker T ⊂ T , and ker T = T for every nonvoid convex T .

Lemma 3.4 (Compare [20]; Lemma 9). Let (X,Q,Ψ) be a quasiconvex paved space such
that Ψ(E1(X) ∪ E2(X)) is connected for Q. Then the following holds:

a) Every set P ∗Q :=
⋃

p∈P,q∈QΨ({p, q}), P,Q ∈ 2X \ {∅}, is connected for Q.

b) Every star-shaped (in particular, every convex) subset T ⊂ X is connected for Q.

Proof. a) If H is a paving in S with
⋂

H∈H H 6= ∅ such that every H ∈ H is connected
for Q, then

⋃

H∈H H is again connected for Q [20]. In particular, the sets {p} ∗ Q =
⋃

q∈QΨ({p, q}), p ∈ P , and P ∗Q =
⋃

p∈P{p} ∗Q are connected for Q.
b) If T is star-shaped, then T = {x} ∗ T, x ∈ ker T , is connected for Q.

The following two theorems were inspired by results of Levi [23] and Kołodziejczyk [21].
(Compare Examples 4.9 and 4.11 and Remark 4.10 below.)

Theorem 3.5. Let (X,Q,Ψ) be a convex paved space with ∩f−closed Q such that 2 ≤
h = h(X,Ψ) < ∞. Suppose that Ψ has the subdivision property and the join-hull property,
and Ψ(Eh(X)) is (h− 1)−ary connected for Q. Then for convex sets Q1, . . . , Qh ∈ Q the
following are equivalent:

(a)
⋂h

i=1 Qi 6= ∅.

(b)
⋃h

i=1 Qi is star-shaped, and Q−i :=
⋂

j∈I\{i}Qj 6= ∅, i ∈ I := {1, . . . , h}.

Proof. (a) =⇒ (b) is obvious.
(b) =⇒ (a): Choose xi ∈ Q−i, i ∈ {1, . . . , h}. Without loss of generality we may assume
A := {x1, . . . , xh} ∈ Eh(X). For T :=

⋃h

i=1 Qi let p ∈ ker T . By Lemma 2.2 d)(ii) we
have Ψ(A) ⊂

⋃

x∈AΨ((A\{x})∪{p}). Since Qi is convex, we have Ψ(A\{xi}) ⊂ Qi, and
therefore, by the join-hull property,

Ψ((A \ {x}) ∪ {p}) ⊂
⋃

t∈Ψ(A\{x})

Ψ({t, p}) ⊂ T, x ∈ A

and we arrive at Ψ(A) ⊂ T . Now the assertion follows since Ψ(A) is (h−1)−ary connected
for Q.

Let (X,Ψ) be a quasiconvex space. We consider an associated quasiconvexity Ψ∆ : E(X)∪
{∅} → 2X defined as

Ψ∆(A) =

{

Ψ(A) : A ∈ E1(X) ∪ {∅}
⋃

x∈AΨ(A \ {x}) : A ∈ E(X) \ E1(X)

Obviously, Ψ∆(A) ⊂ Ψ(A) ∀A ∈ E(X) iff Ψ is monotone, and an A ∈ E(X) \ E1(X) is
C-dependent iff Ψ(A) ⊂ Ψ∆(A).
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Proposition 3.6. Let X be a topological space endowed with a quasiconvexity Ψ, and let
A ∈ E(X) such that

(i) Ψ(A) is closed, and

(ii) bd Ψ(A) ⊂ Ψ∆(A).

Let T be a closed (open) subset of X such that

(iii) X \ T is connected,

(iv) T ⊃ Ψ∆(A), and

(v) T ⊂ C 6= X for some convex set C.

Then Ψ(A) ⊂ T .

Proof. We set G1 := X \ (Ψ(A) ∪ T ), F1 := X \ (intΨ(A) ∪ T ), G2 := intΨ(A) \ T , and
F2 := Ψ(A)\T . By (ii) and (iv) we have G2 = F2, and by (v), F1 ⊃ G1 ⊃ X \C 6= ∅, since
A ⊂ Ψ∆(A) ⊂ T ⊂ C implies Ψ(A) ⊂ C. In case T ∈ F(X) the sets G1 and G2 are open,
and in case T ∈ G(X) the sets F1 and F2 are closed. Since the setX\T = G1∪G2 = F1∪F2

is connected and F1 ∩ F2 = G1 ∩ G2 = ∅, we obtain G2 = ∅ respectively F2 = ∅, and
therefore Ψ(A) ⊂ T .

Example 3.7. Let X be a topological space endowed with a convexity Ψ. Let A ∈
E(X) \ E1(X) such that Ψ(E(A)) ⊂ F(X) and X \ Ψ∆(A) is nonvoid and connected.
Then the following are equivalent:

(a) A is C-dependent.

(b) bd Ψ(A) ⊂ Ψ∆(A) and Ψ∆(A) ⊂ C for some convex set C 6= X.

Proof. (a) =⇒ (b): Take C = Ψ(A).
(b) =⇒ (a): Apply Proposition 3.6 with T = Ψ∆(A) (∈ F(X)).

Theorem 3.8. Let X be a topological space endowed with a quasiconvexity Ψ, and let Q
denote the paving of all closed (open) convex subsets of X. Let {Q0, . . . , Qn} ⊂ Q, n ∈ N,
such that

(i) Q−i 6= ∅ ∀i ∈ {0, . . . , n},

(ii) X \
⋃n

i=0 Qi is connected, and

(iii)
⋃n

i=0 Qi ⊂ C for some convex set C 6= X.

Suppose that for every H-independent subset A ∈ En+1(X)

(iv) Ψ(A) is closed,

(v) Ψ(A) is n−ary connected for Q, and

(vi) bd Ψ(A) ⊂ Ψ∆(A).

Then
⋂n

i=0 Qi is nonvoid.

Proof. We choose points xi ∈ Q−i and set A = {x0, . . . , xn}. Then A \ {xi} ⊂ Qi ∈ Q ⊂
CΨ implies Ψ∆(A) ⊂ T :=

⋃n

i=0 Qi, and we may assume without loss of generality that
A ∈ En+1(X) is H-independent. But then we have Ψ(A) ⊂ T according to Proposition
3.6, and the assertion follows with condition (v).

A vector space X can be endowed with several ’intrinsic’ convexities, for example



572 J. Kindler / Abstract Convexity and Connectedness

the standard convexity

conv(A) :=

{

n
∑

i=1

λixi : λi ≥ 0, i ∈ {1, . . . , n},
n

∑

i=1

λi = 1

}

,

the affine convexity

aff(A) :=

{

n
∑

i=1

λixi : λi ∈ R, i ∈ {1, . . . , n},
n

∑

i=1

λi = 1

}

,

the linear convexity

lin(A) :=

{

n
∑

i=1

λixi : λi ∈ R, i ∈ {1, . . . , n}

}

,

or the positive convexity

pos(A) :=

{

n
∑

i=1

λixi : λi ≥ 0, i ∈ {1, . . . , n}

}

,

for A = {x1, . . . , xn} ∈ E(X).

The elements of Cconv, Caff, Clin, and Cpos are called convex subsets, affine subspaces (or
flats), linear subspaces, and convex cones (with apex 0), respectively.

In the following, if not otherwise stated, a vector space is always assumed to be endowed
with the standard convexity.

Example 3.9. Let X be a vector space.

a) (Cf. [27]) The convexity conv is join-hull commutative with the subdivision property.
The convexities lin and pos are join-hull commutative, but the subdivision property
only holds in case dimX = 1. Conversely, the convexity aff has the subdivision
property, but it is join-hull commutative only in case dimX = 1.

b) Let X be endowed with a topology that induces the Euclidean topology on every
finite dimensional linear subspace. Then the paving C = Cconv of all convex subsets
of X is finitary connected for C ∩ F(X) and for C ∩ G(X). In particular, (X, C ∩
F(X), conv) and (X, C ∩ G(X), conv) are CP-spaces.
Compare the proof of [20]; Theorem 8.

c) For an A ∈ E(X) the following are equivalent.
(i) A is H-independent in (X, conv).
(ii) A is C-independent in (X, conv).
(iii) A is independent in (X, aff).
Here (i) ⇐⇒ (ii) follows from b) with the finite topology [14, 27] on X together
with a) and Remark 3.2 b). For the proof of (ii) =⇒ (iii) =⇒ (i) compare [27]; II.1.3
and 1.4.1.
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4. Helly pavings

Let n ∈ N. A paved space (S,P) will be called anHn−space and P is called an Hn−paving
[20] iff for all {P0, . . . , Pm} ⊂ P with m ≥ n the relations

(5)
⋂

j∈J Pj 6= ∅ for all subsets J ∈ En({0, . . . ,m}),

(6)
⋂

j∈J Pj ∈ P for all nonvoid proper subsets J of {0, . . . ,m}, and

(7)
⋂m

i=0 Pi = ∅

cannot hold simultaneously.

In a paved space (S,P) the paving P⊤ := {T ⊂ S : T ∩P ∈ P ∀P ∈ P} is the transporter
of P.

Remark 4.1.

a) ([20]) A paving P is an Hn-paving iff for all {P0, . . . , Pn} ⊂ P relations (5), (6), and
(7) with m = n cannot hold simultaneously. In this case, P is l−ary connected for
P⊤ for all l ≥ n.

b) If P is a lattice (i.e., a ∩f−closed and ∪f−closed paving), then P is an Hn-paving
iff it is n−ary connected.

c) ([20]) A ∩f−closed connected H2−paving is finitary connected.

Lemma 4.2. Let (X,Q,Ψ) be a quasiconvex paved space. If every trace Q ∩ Ψ(A), A ∈
En+1(X), is an Hn-paving, then Q is also an Hn-paving.

Proof. Let {Q0, . . . , Qn} ⊂ Q with
⋂

j∈J Qj ∈ Q \ {∅} for all nonvoid proper subsets J
of {0, . . . , n}. Choose xi ∈ Q−i, i ∈ {0, . . . , n}, and set A = {x0, . . . , xn}. Without loss
of generality we may assume A ∈ En+1(X), since otherwise

⋂n

i=0 Qi 6= ∅ trivially holds.
Now relations (5) and (6) are satisfied for P = Q ∩ Ψ(A),m = n, and Pi = Qi ∩ Ψ(A).
Since the trace Q∩Ψ(A) is an Hn-paving, we arrive at Ψ(A)∩

⋂n

i=0 Qi 6= ∅. The assertion
follows with Remark 4.1 a).

Let (S,P) be a paved space and F a family of real-valued functions on S. Then we say
that F is point separating iff

∀{s, t} ∈ E2(S) ∃f ∈ F : f(s) 6= f(t),

and F is minimal point separating provided that F but no proper subfamily of F is point
separating.

Theorem 4.3. Let (S,P) be a paved space and F = {f1, . . . , fn} a finite family of real-
valued functions on S such that

(8) {f ≤ α} := {s ∈ S : f(s) ≤ α} ∈ P⊤ for all α ∈ R and all f in the linear hull of F.

Then the following holds.

a) If P is compact and connected, and if F is point separating, thenP is an Hn+1−paving.

b) If F is minimal point separating with the property
(9) ∀s, t ∈ S ∃z ∈ S ∀i ∈ {1, . . . , n} : fi(s) = fi(t) ⇐⇒ fi(z) = 0,
then P⊤ is not an Hn−paving.

Proof. a) This is a special case of Theorem 5 in [20].
b) Since {f1, . . . , fn} is minimal point separating, there exist pairs {si, ti} ∈ E2(S), i ∈
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{1, . . . , n}, with fj(si) = fj(ti) for j 6= i and fi(si) 6= fi(ti). By (9) there exist points
zi ∈ S, i ∈ {1, . . . , n}, with

(10) fj(zi) = 0 for j 6= i and fi(zi) 6= 0.

Now, for i ∈ {1, . . . , n} take Pi := {fi = 0} (= {fi ≤ 0} ∩ {−fi ≤ 0} ∈ P⊤ since P⊤

is ∩f−closed) and P0 := {
∑n

i=1 fi(zi)
−1fi = 1} ∈ P⊤. Then relations (9) (with s = t)

and (10) yield P−i 6= ∅, i ∈ {0, . . . , n}. Since
⋂n

i=0 Pi = ∅, the paving P⊤ is not an
Hn−paving.

Remark 4.4. Let S be an additive group or, more generally, an additive semigroup with
the property

∀s, t ∈ S ∃z ∈ S and m,n ∈ N : ms = mt+ nz or mt = ms+ nz.

Then relation (9) is satisfied for all additive real-valued functions fi on S.

Lemma 4.5. Let (X,Ψ) be a quasiconvex space with finite Helly-number h = h(X,Ψ).
Then for n ∈ N the implication (a) =⇒ (b) holds for the following conditions:

(a) n ≥ h.

(b) CΨ is an Hn-paving.

If Ψ is a convexity, then (a), (b), and

(c) There exists a ∩f−closed Hn−paving Q in X with Ψ(En(X)) ⊂ Q.

are equivalent.

Proof. (a) =⇒ (b): Let {Q0, . . . , Qn} ⊂ CΨ and xi ∈ Q−i, i ∈ {0, . . . , n}. By Remark
4.1 a) we have to show that

⋂n

i=0 Qi 6= ∅. Without loss of generality we may assume
A ∈ En+1(X). By (a) the set A is H-dependent, and Ψ(A\{xi}) ⊂ Qi implies

⋂n

i=0 Qi 6= ∅.
Now let Ψ be a convexity.
(b) =⇒ (c): Take Q = CΨ.
(c) =⇒ (a): Let A ∈ En+1(X). Then y ∈

⋂

x∈A\{y}Ψ(A \ {x}), y ∈ A, together with (c)

yields
⋂

x∈AΨ(A \ {x}) 6= ∅, i.e., A is H-dependent. Together with Lemmas 2.1 c)(ii) and
2.2 a) we get (a).

Corollary 4.6. Let (X,Q,Ψ) be a convex paved space such that Ψ(En+1(X)) ⊂ Q⊤ and
every trace Q⊤∩Ψ(A), A ∈ En+2(X), is compact and connected. Suppose that there exists
a minimal point separating family F = {f1, . . . , fn} of real-valued functions on X such
that

{f ≤ α} ∈ Q⊤ ∩ CΨ for all α ∈ R and all f in the linear hull of F,

and that relation (9) with S = X is satisfied. Then h(X,Ψ) = n+ 1.

Proof. Let A ∈ En+2(X) and set P = Q⊤ ∩Ψ(A). Then {x ∈ Ψ(A) : f(x) ≤ α} ∈ P ⊂
P⊤ for all α ∈ R and all f in the linear hull of F, since Q⊤ and therefore P is ∩f−closed.
By Theorem 4.3 a) (with S = Ψ(A)) the trace P = Q⊤ ∩ Ψ(A) is an Hn+1−paving.
Hence, by Lemma 4.2, Q⊤ is an Hn+1−paving as well, and Lemma 4.5 yields h ≤ n + 1.
On the other hand, CΨ = C⊤

Ψ is not an Hn−paving according to Theorem 4.3 b), and with
Lemma 4.5 we obtain h ≥ n+ 1.
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Example 4.7. Let (X,K) be a paved space with ∩a−closed K. Then h(X,ΨK) ≤ n iff
K is an Hn−paving.

Proof. Let h(X,ΨK) ≤ n. Then according to Lemma 4.5, K(⊂ CΨK
) is an Hn−paving.

Conversely, let K be an Hn−paving. Then K∪{∅, X} is an Hn−paving as well. Therefore,
without loss of generality we may assume {∅, X} ⊂ K. Now, h(X,ΨK) ≤ n follows from
Example 2.5 d) together with Lemma 4.5 “(c) =⇒ (a)�.

The following result is classical [3, 13].

Example 4.8.

a) h(Rd, conv) = c(Rd, conv) = d+ 1.

b) For an A ∈ Ed+1(Rd) the following are equivalent:
(i) A is H-independent in (Rd, conv).
(ii) conv(A) is a d−dimensional simplex.
(iii) bd conv(A) = conv∆(A), and int conv (A) is nonvoid.

Proof. a) By Corollary 4.6, applied to (X,Q,Ψ) = (Rd, Cconv ∩ F(Rd), conv) and to the
projections fi(x1, . . . , xi, . . . , xd) = xi, i ∈ {1, . . . , d}, we obtain h = d+1, and by Example
3.9 c) we have h = c.
b) This is a simple consequence of Example 3.9 c) (Cf. [8]; Ch. 2.1).

Example 4.9. Let C0, . . . , Cd be closed (open) convex subsets of Rd. Suppose that

(i) C−i 6= ∅, i ∈ {0, . . . , d},

(ii)
⋃d

i=0 Ci ⊂ C for some convex set C 6= R
d, and

(iii) R
d \

⋃d

i=0 Ci is connected.

Then
⋂d

i=0 Ci 6= ∅.

Proof. Apply Theorem 3.8 together with Example 3.9 b) and Example 4.8 b).

Remark 4.10. The “closed version� of Example 4.9 is due to Levi [23]. In [23] the
assumption (ii) is missing. But without such an additional assumption the result is false.

For example, take C0 = {(x1, . . . , xd) ∈ R
d :

∑d

i=1 xi

(>)
≥ 1} and Ci = {(x1, . . . , xd) ∈ R

d :

xi

(<)
≤ 0}, i ∈ {1, . . . , d}. On the other hand, if all sets are intersected with the halfspace

H = {(x1, . . . , xd) ∈ R
d : x1

(>)
≥ −1}, then (ii) is satisfied (with Ci replaced by Ci ∩H),

but now the conclusion of Example 4.9 fails because condition (iii) is violated.

The �closed version“ of the following example is due to Kołodziejczyk [21].

Example 4.11. Let C0, . . . , Cd be closed (open) convex subsets of Rd such that C−i 6=
∅, i ∈ {0, . . . , d}. Then

⋂d

i=0 Ci 6= ∅ iff
⋃d

i=0 Ci is star-shaped.

Proof. Let (X,Q,Ψ) be (Rd, Cconv ∩ F(Rd), conv) respectively (Rd, Cconv ∩ G(Rd), conv).
By Example 3.9 b) the paving of polytopes conv(E(X)) is finitary connected for Q, and
the assertion follows from Theorem 3.5 together with Examples 3.9 a) and 4.8 a).
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Example 4.12. Let X be the unit circle in R
2, and let d(x, y) be the length of the minor

arc joining x and y (with d(x,−x) = π). Let Ψd = ΨCd be the corresponding geodesic
convexity. Then Ψd(A) is the least minor arc containing A(∈ E(X)) if A is contained
in an arc without diametral points, and Ψd(A) = X otherwise. Here, every polytope
is a geodesic segment. Moreover [20], Cd is an Hn−paving ⇐⇒ Cd is n−ary connected
⇐⇒ n ≥ 3. Hence, by Example 4.7, h(X,Ψd) = 3. Since the polytope X is not 2−ary
connected forQ := Cd∩F(X), Lemma 2.3 cannot be applied for n = 2. Indeed, c(X,Ψd) =
2 < h(X,Ψd). Finally, it is easy to see that Ψd is join-hull commutative, but Ψd does not
possess the subdivision property, since condition (2) is violated for A = ((1, 0), (−1, 0)),
say.

More on Helly and Carathéodory type theorems in R
d can be found in the survey papers

[6, 7].

5. Set-valued functions

Let S and X be two nonvoid sets and Φ : X → 2S a set-valued function from X to S.
The sets Φ(x), x ∈ X, are the values of Φ, valΦ = {Φ(x) : x ∈ X} is the value set of Φ,
and Φ(K) :=

⋃

x∈K Φ(x) with Φ(∅) = ∅ is the image of K ⊂ X. A function f : X → S is
a selector for Φ iff f(x) ∈ Φ(x), x ∈ X. Clearly, a set-valued function possesses a selector
iff it is a correspondence, i.e., iff all its values are nonvoid. If P is a paving in S, then Φ
will be called P−valued provided that valΦ ⊂ P. Finally, the dual of Φ is the set-valued
function Φ∗ : S → 2X with Φ∗(s) = {x ∈ X : s /∈ Φ(x)}, s ∈ S.

We want to study the problem, whether Φ possesses a constant selector or, equivalently,
whether

⋂

x∈X Φ(x) is nonvoid.

Remark 5.1. Let (X,Ψ) be a quasiconvex space, S a nonvoid set and Φ : X → 2S a
set-valued function. Then the dual Φ∗ is convex-valued (i.e., every Φ∗(s), s ∈ S, is convex)
iff Φ(Ψ(A)) = Φ(A) for every A ∈ E(X).

Proposition 5.2. Let a quasiconvex space (X,Ψ), a paved space (S,P), a set-valued
function Φ : X → 2S, and a dependent subset A ∈ En+2(X) with n ∈ N ∪ {0} be given.
Suppose that

(i)
⋂

t∈B Φ(t) 6= ∅ ∀B ∈ En+1(A),

(ii) Φ(Ψ(B)) = Φ(B) ∀ B ∈ En+1(A),

and in case n 6= 0,

(iii)
⋂

t∈C Φ(t) ∈ P ∀C ∈ Em(A), m ∈ {1, . . . , n}, and

(iv) valΦ is n−ary connected for P.

Then
⋂

x∈AΦ(x) 6= ∅.

Proof. Choose x0 ∈ Ψ(A \ {x0}) ∩ A. In case n = 0 we have A = {x0, x1} and x0 ∈
Ψ({x1}), and from (i) and (ii) we infer ∅ 6= Φ(x0) = Φ(x0) ∩ Φ(x1). In case n ≥ 1
we have Φ(x0) ⊂

⋃

t∈A\{x0}
Φ(t) by (ii), and (i), (iii) imply Φ(x0) ∩

⋂

t∈C Φ(t) 6= ∅ and
⋂

t∈C Φ(t) ∈ P for every proper subset C of A \ {x0}. Now (iv) yields
⋂

x∈AΦ(x) =
Φ(x0) ∩

⋂

t∈A\{x0}
Φ(t) 6= ∅.
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Our next two theorems were inspired by a �Dual Helly Theorem“ due to Fl̊am and Greco
(Cf. Example 5.7 below).

Theorem 5.3. Let a quasiconvex space (X,Ψ), a paved space (S,P) with ∩f−closed P,
and a set-valued function Φ : X → P with convex-valued dual Φ∗ be given. Suppose that
valΦ is finitary connected for P. Then every set A ∈ E(X) with

⋂

x∈AΦ(x) = ∅ contains
an independent subset B with

⋂

x∈B Φ(x) = ∅.

Proof. Since every singleton is independent, we may assume A ∈ En+2(X) for some
n ∈ {0, 1, 2, . . .}. If A is dependent, then by Remark 5.1 and Proposition 5.2 there exists
an A′ ∈ En+1(A) with

⋂

x∈A′ Φ(x) = ∅. Proceeding inductively we obtain the desired
result.

A modified version of Proposition 5.2 holds for H-independent sets:

Proposition 5.4. Let n ∈ N ∪ {0}, let (X,Ψ) be a quasiconvex space, and let (S,P) be
a paved space. Let a set-valued function Φ : X → 2S be given such that

(i)
⋂

t∈B Φ(t) ∈ P \ {∅} ∀B ∈ Em(X), m ∈ {1, . . . , n+ 1},

(ii) Φ(Ψ(B)) = Φ(B) ∀B ∈ En+1(X),

and in case n 6= 0,

(iii) valΦ is n−ary and (n+ 1)−ary connected for P.

Then
⋂

x∈AΦ(x) 6= ∅ for every H-dependent set A ∈ En+2(X).

Proof. Let A ∈ En+2(X) be H-dependent, i.e.,

(11) ∃x ∈
⋂

x∈AΨ(A \ {x}).

In case n = 0 we have
⋂

x∈AΦ(x) =
⋂

x∈AΦ(A \ {x}) =
⋂

x∈AΦ(Ψ(A \ {x})) ⊃ Φ(x) 6= ∅.
Now let n > 0. If A is dependent, then the assertion follows from Proposition 5.2. Now
let A be independent. Then we have x /∈ A and therefore Ax := (A \ {x}) ∪ {x} ∈
En+2(X), x ∈ A. By (11) every set Ax is dependent, and from Proposition 5.2 we infer

∅ 6=
⋂

t∈Ax

Φ(t) = Φ(x) ∩
⋂

t∈A\{x}

Φ(t) ∀x ∈ A.

But (ii) and (11) imply Φ(x) ⊂
⋃

t∈AΦ(t), and together with (i) we arrive at Φ(x) ∩
⋂

t∈AΦ(t) 6= ∅, since valΦ is (n+ 1)−ary connected for P.

As a consequence, we obtain as in the proof of Theorem 5.3:

Theorem 5.5. Let a quasiconvex space (X,Ψ), a paved space (S,P) with ∩f−closed P,
and a set-valued function Φ : X → P with convex-valued dual Φ∗ be given. Suppose that
valΦ is finitary connected for P. Then for every set A ∈ E(X) with

⋂

x∈AΦ(x) = ∅ there
exists an H-independent set B ∈ E(X) with card B ≤ card A and

⋂

x∈B Φ(x) = ∅.

Together with Remark 3.2 a) we obtain:

Corollary 5.6. Let a QP-space (X,Q,Ψ) with Ψ(E(X)) ⊂ Q and ∩f−closed Q, a paved
space (S,P) with ∩f−closed finitary connected P, and a set-valued function Φ : X → P
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with convex-valued dual Φ∗ be given. Then for every set A ∈ E(X) with
⋂

x∈AΦ(x) = ∅
there exists a C-independent set B ∈ E(X) with card B ≤ card A and

⋂

x∈B Φ(x) = ∅.

The �closed version“ of the following �Dual Helly Theorem“ is due to Fl̊am and Greco
[9].

Example 5.7. Let E be a vector space endowed with a topology that induces the Eu-
clidean topology on every finite dimensional linear subspace, and let X ⊂ R

d and S ⊂ E
be nonvoid convex sets. Let Φ : X → 2S be a set-valued function with the following
properties:

(i) every Φ(x), x ∈ X, is closed (open) and convex,

(ii) every Φ∗(s), s ∈ S, is convex, and

(iii)
⋂

x∈B Φ(x) 6= ∅ for all B ∈ Em(X), m ≤ d+ 1.

Then
⋂

x∈AΦ(x) 6= ∅ for all A ∈ E(X).

Proof. By Example 3.9 b) the assumptions of Theorem 5.5 (or of Corollary 5.6) are
satisfied, and the assertion follows together with Example 4.8.

If (X,Q) and (S,P) are paved spaces, then a set-valued function Φ : X → 2S will be
called (n-ary) Q − P−connected iff Φ(C) is (n-ary) connected for P for every subset C
of X which is (n-ary) connected for Q.

Proposition 5.8. Let (X,Q,Ψ) be a quasiconvex paved space, (S,P) a paved space, Φ :
X → 2S a correspondence, and A ∈ En+1(X) such that the following holds:

(i)
⋂

t∈B Φ(t) ∈ P \ {∅} ∀B ∈ Em(A), m ∈ {1, . . . , n},

(ii) Φ(Ψ(A)) = Φ(A),

(iii) Ψ(A) is n−ary connected for Q, and

(iv) Φ is n−ary Q−P−connected.

Then
⋂

x∈AΦ(x) 6= ∅.

Proof. By (ii), (iii), and (iv), T := Φ(Ψ(A)) = Φ(A) is n−ary connected for P. Together
with (i) the assertion follows.

Theorem 5.9. Let (X,Q,Ψ) be a QP-space, (S,P) a paved space with ∩f−closed P, and
Φ : X → P a correspondence such that Φ is n−ary Q− P−connected for every n ∈ N,
valΦ is compact, and Φ∗ is convex-valued. Then Φ has a constant selector.

Proof. Suppose, to the contrary, that
⋂

x∈X Φ(x) is empty. Since valΦ is compact, there
exists an A ∈ En+1(X), n ∈ N, with

⋂

x∈AΦ(x) = ∅. Without loss of generality we may
assume that

⋂

x∈B Φ(x) 6= ∅ for all B ∈ En(A). Now Ψ(A) is n−ary connected for Q,
since (X,Q,Ψ) is a QP-space, and Proposition 5.8 together with Remark 5.1 leads to a
contradiction.

For a set-valued function Φ : X → 2S we set

ΦE(x) :=
⋂

t∈E∪{x}

Φ(t), x ∈ X,E ⊂ X.
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Proposition 5.10. Let a paved space (X,Q), a nonvoid set S, a set-valued function
Φ : X → 2S, and a set A ∈ En+1(X), n ∈ N, be given such that the following holds:

(i) For every B ∈ E2(A) there exists a subset D of X with B ⊂ D and Φ(B) = Φ(D)
such that D is connected for Q.

(ii) ΦE is a Q− valΦ−connected correspondence for every E ∈ En−1(A) .

Then
⋂

x∈AΦ(x) 6= ∅.

Proof. Take B = {x1, x2} ∈ E2(A), choose D according to (i), and set E = A \B. Then
(i) implies C := ΦE(D) = ΦE(B) ⊂ Φ(x1)∪Φ(x2). Since D is connected for Q, it follows
from (ii) that C is connected for valΦ. Therefore, fromC∩Φ(xi) = ΦE(xi) 6= ∅, i ∈ {1, 2},
we infer

⋂

x∈AΦ(x) = C ∩ Φ(x1) ∩ Φ(x2) 6= ∅.

Lemma 5.11. Let (X,Q) be a paved space such that Q is ∩a−closed and contains X,
and let Φ : X → 2S be a correspondence with valΦ∗ ⊂ Q. Then for E ∈ E(X) ∪ {∅} with
ΦE(x) 6= ∅ ∀x ∈ X the implications (a) =⇒ (b) =⇒ (c) hold for the following conditions:

(a) There exists a connected paving P in S with valΦ ⊂ P which is ∩f−closed in case
E 6= ∅.

(b) valΦE is connected for valΦ.

(c) ΦE is Q− valΦ−connected.

Proof. (a) =⇒ (b) is obvious, and (b) =⇒ (c) follows from [18]; Lemma 3 and 4. (Compare
also Remark 6.23 below.)

Example 5.12 (Cf. [16]; Corollary 1). Let (X,Q) and (S,P) be paved spaces such that
Q is ∩a−closed and connected with X ∈ Q, and P is ∩f−closed, compact, and connected.
Then every correspondence Φ : X → 2S with valΦ ⊂ P and valΦ∗ ⊂ Q has a constant
selector.

Proof. Suppose, to the contrary, that
⋂

x∈X Φ(x) = ∅. Since valΦ ⊂ P and P is compact,
there exists an A ∈ E(X) with minimal cardinality such that

⋂

x∈AΦ(x) = ∅. Now Propo-
sition 5.10 with D = ΨQ(B)(∈ Q) together with Lemma 5.11 leads to a contradiction.

6. Quasiconvexities with c ≤ 2 or h ≤ 2

We shall now study in some detail quasiconvex spaces (X,Ψ) with “small� Carathéodory-
number or Helly-number, i.e., with c(X,Ψ) ≤ 2 or h(X,Ψ) ≤ 2, respectively. Convexities
Ψ with h(X,Ψ) ≤ 2 are often called binary convexities.

Example 6.1. In a quasiconvex paved space (X,Ψ) the following holds:

a) c(X,Ψ) = 1 =⇒ Ψ(A) ⊂
⋃

x∈AΨ({x}) ∀A ∈ E(X) =⇒ CΨ is a discrete topology
⇐⇒ CΨ is ∪f−closed. Conversely, if Ψ is a convexity and CΨ is ∪f−closed, then
c(X,Ψ) = 1.

b) If CΨ is ∪f−closed, then it is finitary connected iff it is connected.

c) Ψ is additive, i.e., Ψ(A) =
⋃

x∈AΨ({x}), A ∈ E(X), iff Ψ is monotone with c(X,Ψ) =
1. In this case Ψ has the join-hull property and the subdivision property.

d) Let Ψ be additive. Then (α) Ψ is a convexity. ⇐⇒ (β) Ψ is join-hull commutative.
⇐⇒ (γ) Ψ(E1(X)) ⊂ CΨ.



580 J. Kindler / Abstract Convexity and Connectedness

Proof. a) The first implication follows by induction. Let V =
⋃

i∈I Ci with Ci ∈ CΨ, i ∈
I. Then for A ∈ E(V ) there exist ix with x ∈ Cix , x ∈ A. Now Ψ(A) ⊂

⋃

x∈AΨ({x})
or A ⊂

⋃

x∈ACix ∈ CΨ implies Ψ(A) ⊂ V , i.e., V ∈ CΨ. But CΨ is an alignment and
therefore a discrete topology. If Ψ is a convexity, then for A ∈ E(X) \ E1(X) the relation
A ⊂

⋃

x∈AΨ(A \ {x}) ∈ CΨ implies relation (3).
b) This follows from the fact that a lattice of sets is finitary connected iff it is connected
[20].
c) The first part follows from a), and the second part is obvious.
d) (α) =⇒ (β) follows from c) together with Lemma 2.2 c).
(β) =⇒ (γ): Ψ({y}) =

⋃

x∈Ψ({y})Ψ({x}) ∪ Ψ({y}) ⊃ Ψ({x}), x ∈ Ψ({y}), yields Ψ(A) =
⋃

x∈AΨ({x}) ⊂ Ψ({y}), A ∈ E(Ψ({y})).
(γ) =⇒ (α): For A,B ∈ E(X) with B ⊂ Ψ(A) we have Ψ({y}) ⊂ Ψ(A) ∀y ∈ B, and
therefore, Ψ(B) ⊂ Ψ(A).

Example 6.2. In a quasiconvex paved space (X,Ψ) the following holds:

a) If h(X,Ψ) = 1, then CΨ is an H1-paving. If Ψ is monotone and Ψ(E1(X)) ⊂ CΨ,
then the converse is also true.

b) For an additive convexity Ψ we have (α) CΨ is connected ⇐⇒ (β) Ψ(E2(X)) is
connected for Ψ(E1(X)) ⇐⇒ (γ) h(X,Ψ) = 1.

Proof. a) The first part follows from Lemma 4.5. Let Ψ be monotone with Ψ(E1(X)) ⊂
CΨ. If CΨ is an H1-paving, then Ψ({x}) ∩ Ψ({y}) 6= ∅ for {x, y} ∈ E2(X), and together
with Lemma 2.1 c)(ii) we obtain h(X,Ψ) = 1.
b) (α) =⇒ (β) is obvious.
(β) =⇒ (γ): Ψ({x, y}) = Ψ({x})∪Ψ({y}), {x, y} ∈ E2(X), implies Ψ({x})∩Ψ({y}) 6= ∅,
and therefore h(X,Ψ) = 1 as above.
(γ) =⇒ (α): Let C0, C1, C2 ∈ CΨ with C0 ⊂ C1 ∪C2. Then for xi ∈ C0 ∩Ci, i ∈ {1, 2}, we
have C0 ∩ C1 ∩ C2 ⊃ Ψ({x1}) ∩Ψ({x2}) 6= ∅.

Example 6.3. Let X be a topological space endowed with the convexity cl : E(X) ∪
{∅} → 2X . Here the following holds:

a) The convexity cl coincides with the hull convexity ΨF(X), and F(X) ⊂ Ccl.

b) An A ∈ E(X) is dependent iff it contains an accumulation point.

c) The convexity cl is additive. In particular, by Example 6.1, cl is join-hull commu-
tative with the subdivision property and with Carathéodory number c(X, cl) = 1,
and Ccl is a discrete topology.

d) X is discrete iff F(X) = Ccl.
(If X is discrete, then C =

⋃

x∈C cl({x}) ∈ F(X) for every C ∈ Ccl. Together with
a) we obtain F(X) = Ccl. Conversely, by c), F(X) = Ccl implies that F(X) and
G(X) = F(X)C are discrete topologies.)
Similarly, X is discrete iff G(X) = Cop, where op = ΨG(X) is the “open hull convex-
ity�.

e) The following properties are equivalent:
(i) X is a T1−space.
(ii) The closure operation coincides with the free convexity Υ.
(iii) Every A ∈ E(X) is H-independent.
(iv) Every A ∈ E2(X) is H-independent.
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f) For n ∈ N the following properties are equivalent:
(i) F(X) is n−ary connected.
(ii) F(X) is l−ary connected for every l ≥ n.
(iii) F(X) is an Hn−paving.
(iv) h(X, cl) ≤ n.
(Here, (iii) ⇐⇒ (iv) follows from a) together with Example 4.7, and (i) ⇐⇒ (ii)
⇐⇒ (iii) follows from Remark 4.1.)

g) The following properties are equivalent:
(i) F(X) is connected (i.e., X is ultraconnected [26]).
(ii) F(X) is finitary connected.
(iii) F(X) is an H1−paving.
(iv) F(X) \ {∅} is ∩f−closed.
(v) (S,F(X), cl) is a CP-space.
(vi) h(X, cl) = 1.
(Here, (i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (vi) follows from f), (iii) ⇐⇒ (iv) and (ii)
=⇒ (v) are obvious, and (v) =⇒ (vi) follows from c) and Remark 3.2 b).)

Example 6.4. Let X be a nonvoid set, and let x ∈ X be fixed. Then G(X) := {G ⊂
X : x /∈ G} ∪ {X} is a topology on X, the excluded point topology [26]. This topology is
compact, discrete, and ultraconnected. By Example 6.3 (X,F(X), cl) is a CP-space, and
h(X, cl) = c(X, cl) = 1.

Example 6.5. For a quasiconvex space (X,Ψ) with monotone Ψ we have (a) ⇐⇒ (b)
=⇒ (c) for the following conditions:

(a) c(X,Ψ) ≤ 2.

(b) Ψ(A) =
⋃

x,y∈AΨ({x, y}) for all A ∈ E(X).

(c) Ψ has the join-hull property, and every A ∈ E3(X) is C-dependent.

If Ψ is a convexity, then the three conditions are equivalent.

Proof. (a) ⇐⇒ (b) follows from Lemma 2.4.
(b) =⇒ (c): For {x, y, z} ∈ E3(A), A ∈ E(X), we have Ψ({x, y}) ⊂ Ψ(A \ {z}) ⊂ Ψ∆(A),
and (b) implies Ψ(A) ⊂ Ψ∆(A), i.e., every A ∈ E(X) with card A ≥ 3 is C-dependent.
For A ∈ E(X) and y ∈ X relation (b) implies

Ψ(A ∪ {y}) = Ψ(A) ∪
⋃

x∈A

Ψ({x, y}) ⊂
⋃

x∈Ψ(A)

Ψ({x, y}).

The last assertion follows with Lemmas 2.1 d) and 2.2 c).

Example 6.6. Let �⊂ X ×X be a relation. Then

Ψ(A) = {x ∈ X : ∃x1, x2 ∈ A with x1 � x and x � x2}, A ∈ E(X) ∪ {∅}

defines a quasiconvexity iff � is reflexive. In this case, Ψ satisfies condition (b) in Example
6.5, and therefore Ψ is monotone with c(X,Ψ) ≤ 2. If � is a preorder (i.e., reflexive and
transitive), then Ψ is a convexity, the order convexity of (X,�).

Example 6.7. For a quasiconvex space (X,Ψ) we have (a) =⇒ (b) ⇐⇒ (c) =⇒ (d) for
the following conditions:
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(a) h(X,Ψ) ≤ 2.

(b) Ψ is modular, i.e., Ψ({x, y}) ∩Ψ({y, z}) ∩Ψ({z, x}) 6= ∅ for all {x, y, z} ⊂ X.

(c) Every A ∈ E3(X) is H-dependent.

(d) CΨ is an H2−paving.

If Ψ is monotone, then (a) and (b) are equivalent, and if all segments Ψ(A), A ∈ E2(X)
are convex, then (c) and (d) are equivalent.
If Ψ is a convexity with property (a) such that every pair of points can be screened with
convex sets (i.e., ∀{x, y} ∈ E2(X) ∃C,D ∈ CΨ : C ∪D = X, x ∈ C \D, and y ∈ D \ C),
then Ψ is join-hull commutative.

Proof. (a) =⇒ (b) ⇐⇒ (c) is obvious.
(b) =⇒ (d): Let {C0, C1, C2} ⊂ CΨ and let xi ∈ C−i, i ∈ {0, 1, 2}. Then C0 ∩ C1 ∩ C2 ⊃
Ψ({x1, x2}) ∩Ψ({x0, x2}) ∩Ψ({x0, x1}) 6= ∅. Hence (d) follows with Remark 4.1 a).
If Ψ is monotone, then (c) =⇒ (a) follows with Lemma 2.1 c)(ii).
Let A := {x0, x1, x2} ∈ E3(X). Suppose that each Ci = Ψ({xj, xk}), {i, j, k} = {0, 1, 2},
is convex. Since xi ∈ C−i, i ∈ {0, 1, 2}, condition (d) implies C0 ∩ C1 ∩ C2 6= ∅, i.e., A is
H-dependent.
The last assertion is proved in [27]; p. 172 f.

Example 6.8. Let (X, 〈·, ·〉) be a modular segment space, i.e., a segment space with
〈x, y〉 ∩ 〈y, z〉 ∩ 〈z, x〉 6= ∅ for all {x, y, z} ∈ E3(X), and let C be the paving of all
〈·, ·〉−convex subsets of X. Then, by Examples 2.7 and 6.7, we have h(X,ΨC) ≤ 2.
The segment function 〈·, ·〉d of a metric space (X, d) is modular iff every triple of pairwise
intersecting closed balls has a common point ([27]; p. 134, [28]; p. 32). Another example
is a lattice (X,∧,∨) [27] endowed with the segment function

〈x, y〉 = {s ∈ X : x ∧ y ≤ s ≤ x ∨ y}, x, y ∈ X.

Here we have (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) ∈ 〈x, y〉 ∩ 〈y, z〉 ∩ 〈z, x〉.

Theorem 6.9. Let Φ : X → 2S be a correspondence. Then the following conditions are
equivalent:

(a) Φ has a constant selector.

(b) There exist topologies on X and S and a quasiconvexity Ψ on X such that
(i) the values of Φ are connected, closed, and compact,
(ii) the values of Φ∗ are convex,
(iii) Φ is F(X)−F(S)−connected,
(iv) every segment Ψ(A) ∈ Ψ(E2(X)) is connected, and
(v) K(S) ∩ F(S) is an H2−paving.

(c) valΦ is connected, and there exists a paving Q in X and a quasiconvexity Ψ for X
such that Ψ(E2(X)) is connected for Q, Φ is Q − valΦ−connected, Φ∗ is convex-
valued, and there exists a compact ∩f−closed H2−paving P in S such that Φ is
P−valued.

Proof. (a) =⇒ (b): On X take the coarse topology G(X) = {∅, X} and the free convexity
Ψ(A) ≡ A. For s ∈

⋂

x∈X Φ(x) take the excluded point topology on S according to
Example 6.4.
(b) =⇒ (c): Take Q = F(X) and P = K(S) ∩ F(S).
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(c) =⇒ (a): From Proposition 5.8 with n = 1 and P = valΦ together with Remark
5.1 it follows that Φ(x1) ∩ Φ(x2) is nonvoid for all x1, x2 ∈ X. Since P is a ∩f−closed
H2−paving paving we infer from valΦ ⊂ P that valΦ has the finite intersection property.
Since valΦ is compact, we arrive at (a).

Theorem 6.10. Let a quasiconvex paved space (X,Q,Ψ) with h(X,Ψ) ≤ 2, a paved space
(S,P) with compact and ∩f−closed P, and a correspondence Φ : X → P with convex-
valued dual Φ∗ be given. Suppose that the paving of segments Ψ(E2(X)) is connected for
Q, Φ is Q−valΦ−connected, and valΦ is finitary connected for P. Then Φ has a constant
selector.

Proof. From Proposition 5.8 with n = 1 together with Remark 5.1 it follows that Φ(x1)∩
Φ(x2) is nonvoid for all x1, x2 ∈ X. Hence, val Φ has the finite intersection property
according to Theorem 5.5, and the assertion follows since valΦ is compact.

Corollary 6.11. Let (X,Q) and (S,P) be paved spaces such that Q is ∩a−closed, con-
nected and contains X, and P is ∩f−closed and compact. Let Φ : X → 2S be a corre-
spondence with valΦ∗ ⊂ Q and valΦ ⊂ P. Assume, moreover, that either

(i) val Φ is connected, and P is an H2−paving, or

(ii) val Φ is finitary connected for P, and Q is an H2−paving.

Then Φ has a constant selector.

Proof. By Lemma 5.11, Φ is Q − valΦ−connected. Obviously, ΨQ(E
2(X))(⊂ Q) is

connected for Q, and Φ∗ is ΨQ−convex-valued. In case (i) the assertion follows from
Theorem 6.9 “(c) =⇒ (a)�. In case (ii) we have h(X,ΨQ) ≤ 2 according to Example 4.7.
Hence, Theorem 6.10 can be applied.

Theorem 6.12. Let two paved spaces (X,Q) and (S,P) be given such that Q is ∩f−closed
and compact, and P is ∩a−closed, connected and contains S. Let Φ : X → 2S be a
correspondence such that valΦ∗ ⊂ Q and valΦ ⊂ P. Assume, moreover, that either

(i) valΦ∗ is connected, and Q is an H2−paving, or

(ii) valΦ∗ is finitary connected for Q, and P is an H2−paving.

Then Φ has a constant selector.

Proof. Suppose that
⋂

x∈X Φ(x) = ∅. Then Φ∗ is a correspondence, and by Corollary
6.11, applied to Φ∗ instead of Φ, there exists an x ∈

⋂

s∈S Φ
∗(s) in contradiction to

Φ(x) 6= ∅.

Example 6.13. A tree-like space is a connected Hausdorff space X in which every two
points x and y can be separated by a third point z, i.e., x and y belong to different
components of X \ {z}. For a locally connected tree-like space X the following holds:

a) ([20, 29]) C(X) is an alignment, and Ψ = ΨC(X) is a convexity with Ψ({x}) =
{x}, x ∈ X. For {x, y} ∈ E2(X) the segment

[x, y] := {x, y} ∪ {z ∈ X : z separates x from y}

is compact, and it is the smallest connected set containing x and y. Hence, [x, y] =
Ψ({x, y}). By Lemma 3.4 a) the polytopes Ψ(A) =

⋃

x,y∈A[x, y], A ∈ E(X), are
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connected (and compact) as well, and therefore, Ψ = ΨC(X)∩K(X). Moreover, the
pavings of convex, star-shaped, respectively connected subsets coincide according
to Lemma 3.4 b).

b) CΨ = C(X) is an H2−paving [20]. Therefore, h = h(X,Ψ) ≤ 2. From Ψ({x}) ∩
Ψ({y}) = {x} ∩ {y} = ∅, x 6= y, we infer h = 2. Together with a), Example 6.5,
and Lemma 2.2 we get c = c(X,Ψ) ≤ 2, and Ψ is join-hull commutative. Hence,
Ψ({x, y}) 6= {x, y}, x 6= y, implies c = 2. In particular, relation (3) and therefore
(2) holds for every A ∈ En(X), n ≥ 3. Let {x, y} ∈ E2(X) and t ∈ [x, y]. Then
D := [x, t] ∪ [t, y] is connected, and {x, y} ⊂ D implies [x, y] ⊂ D. Hence, relation
(2) is also satisfied for every A ∈ E2(X). Therefore, Ψ has the subdivision property.

c) C(X) is finitary connected for C(X)∩F(X) [20]. In particular, (X, C(X)∩F(X),Ψ)
is a CP-space.

A metric space (X, d) is hyperconvex iff any paving {B(xi, ri) : i ∈ I} of closed balls
in X satisfying d(xi, xj) ≤ ri + rj for all i, j ∈ I, has the global intersection property
⋂

i∈I B(xi, ri) 6= ∅. We denote by Ad the paving of arbitrary intersections of closed balls
(the paving of ’admissible’ subsets of X).

Example 6.14. Let (X, d) be a hyperconvex metric space. Then (X, d) is complete and
Menger-convex [15], and Ad is a finitary connected and compact H2−paving [20]. Hence,
(X,Ad, cov) with the convexity cov(A) = ΨAd

(A), A ∈ E(X), is a CP-space with Ad ⊂
Ccov. Together with cov({x})∩ cov({y}) = {x}∩{y} = ∅, x 6= y, we obtain h(X, cov) = 2
according to Example 4.7. In particular, by Lemma 4.5, Ccov is an H2−paving. By
Remark 3.3 a), Ccov is finitary connected for Ad and, by Lemma 3.4 b), Ccov ⊂ C(X), since
according to Examples 20 and 21 in [20] we have Ad ⊂ C(X). By Remark 4.1 c) the
pavings F(X) ∩ Ccov and G(X) ∩ Ccov are finitary connected. Hence, by Remark 3.3 a),
Ccov is is finitary connected for F(X) ∩ Ccov, and (X,F(X) ∩ Ccov, cov) is a CP-space.

In the following, a hyperconvex metric space will always be endowed with the convexity
cov.

Example 6.15. LetX and S be nonvoid sets and Φ : X → 2S a correspondence. Suppose
that either

(i) there exists a locally connected tree-like topology on X such that the dual Φ∗ has
connected values, or

(ii) there exists a hyperconvex metric d on X such that the dual Φ∗ has convex values.

Then the following are equivalent:

(a) Φ has a constant selector.

(b) Φ is F(X)− valΦ−connected, and there exists a ∩f−closed compact paving P in S
such that Φ is P−valued and valΦ is finitary connected for P.

Proof. (a) =⇒ (b): For s ∈
⋂

x∈X Φ(x) take the excluded point topology according to
Example 6.4, and take P = F(S).
(b) =⇒ (a): Apply Theorem 6.10 with Q = F(X) together with Example 6.13 in case (i)
and Example 6.14 in case (ii).

Example 6.16. LetX and S be nonvoid sets and Φ : X → 2S a correspondence. Suppose
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that one of the following three conditions is satisfied:

(i) there exists a locally connected tree-like topology on X such that the dual Φ∗ has
compact connected values,

(ii) there exists a hyperconvex metric d on X such that the dual Φ∗ has compact convex
values, or

(iii) there exists a hyperconvex metric d on X such that the dual Φ∗ has admissible
values.

Then the following are equivalent:

(a) Φ has a constant selector.

(b) There exists a ∩a−closed connected paving P in S with S ∈ P such that Φ is
P−valued.

Proof. (a) =⇒ (b): Compare the proof of Example 6.15.
(b) =⇒ (a): Let Q = K(X)∩ C(X) in case (i), Q = K(X)∩ Ccov in case (ii), and Q = Ad

in case (iii). Then, by Examples 6.13 and 6.14, Q is a ∩a−closed, connected, and compact
H2−paving with valΦ∗ ⊂ Q. From Theorem 6.12(i) the assertion follows.

Example 6.17. Let (X,Q) be a paved space such that Q is ∩f−closed and compact,
and let Φ : X → 2S be a correspondence with valΦ∗ ⊂ Q such that valΦ∗ is finitary
connected for Q. Suppose that either

(i) there exists a locally connected tree-like topology on S such that Φ has closed
connected values, or

(ii) there exists a hyperconvex metric on S such that Φ has closed convex values.

Then Φ has a constant selector.

Proof. Apply Theorem 6.12(ii) with P = F(S) ∩ C(S) together with Example 6.13 in
case (i), and with P = F(S) ∩ Ccov together with Example 6.14 in case (ii).

The following generalization of Darboux’s Theorem is well–known. (Compare Remark
6.23 below.)

Lemma 6.18. Let X and S be topological spaces, and let Φ : X → 2S be a correspondence
with a continuous selector f : X → S. Then Φ is F(X) − F(S)−connected iff valΦ ⊂
C(S).

Proof. Suppose that valΦ ⊂ C(S). Let C ∈ C(X) and F1, F2 ∈ F(S) with Φ(C) ⊂ F1∪F2

and Φ(C) ∩ F1 ∩ F2 = ∅. We have to show that either Φ(C) ∩ F1 = ∅ or Φ(C) ∩ F2 = ∅
holds. Suppose, to the contrary, that Φ(xi) ∩ Fi 6= ∅ for xi ∈ C, i ∈ {1, 2}. Then we
have Φ(xi) ⊂ Fi, i ∈ {1, 2}, since valΦ is connected for F(S). Now xi ∈ f−1(Fi) ∩ C, i ∈
{1, 2}, C ⊂ f−1(F1) ∪ f−1(F2), and f−1(Fi) ∈ F(X) imply C ∩ f−1(F1) ∩ f−1(F2) 6= ∅ in
contradiction to Φ(C) ∩ F1 ∩ F2 = ∅. The converse is obvious.

Example 6.19. Let X and S be locally connected tree-like spaces, and let Φ : X → 2S

be a connected-valued compact-valued correspondence with connected-valued dual Φ∗.
Then the following are equivalent:

(a) Φ has a constant selector.

(b) Φ has a continuous selector.
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(c) Φ is F(X)−F(S)−connected.

(d) Φ is F(X)−K(S) ∩ C(S)−connected.

Proof. (a) =⇒ (b) and (c) =⇒ (d) is obvious, and (b) =⇒ (c) follows from Lemma 6.18.
Finally, (d) =⇒ (a) follows from Examples 6.13 and 6.15 (with P = C(S) ∩ K(S)).

Example 6.20. Let (X, dX) and (S, dS) be two hyperconvex metric spaces, and let Φ :
X → 2S be a correspondence such that Φ has either admissible or compact, convex values
and Φ∗ has convex values. Then Φ has a constant selector iff it has a continuous selector.

Proof. Apply Example 6.15 with P = AdS or P = K(S) ∩ Ccov, respectively, together
with Example 6.14 and Lemma 6.18.

It is easy to formulate more results of the above type, for example in combination with Ex-
ample 6.7 and/or Remark 6.23 below together with many examples of modular convexities
which can be found in [4, 20, 27, 28].

Our theorems above can also be used to derive fixed-point theorems. Recall that a point
x ∈ X is a fixed point of a correspondence Φ : X → 2X provided that x ∈ Φ(x).

Example 6.21. Let X be a locally connected tree-like space, and let Φ : X → 2X be
a connected-valued correspondence with connected-valued and compact-valued dual Φ∗.
Then Φ has a fixed point.

Similar results can be found in [2, 25].

Proof. Suppose, to the contrary, that Φ has no fixed point, which means that x ∈ Φ∗(x)
for every x ∈ X. In particular, Φ∗ has a continuous selector, and by Example 6.19 – with
Φ replaced by Φ∗ – there exists an x ∈

⋂

x∈X Φ∗(x), i.e., Φ(x) = ∅, a contradiction.

Similarly together with Example 6.20 we obtain the following:

Example 6.22. Let (X, d) be a hyperconvex metric space. Then every convex-valued
correspondence Φ : X → 2X with convex-valued and compact-valued or with admissible-
valued dual Φ∗ has a fixed point.

Remark 6.23. Let X and S be topological spaces. Then a correspondence Φ : X → 2S

is quartercontinuous [22] (respectively semicontinuous in the sense of Correa et al. [5])
provided that for all x ∈ X and G ∈ G(S) with Φ(x) ⊂ G there exists an U ∈ G(X) with
x ∈ U and Φ(u) ∩G 6= ∅ for all u ∈ U . Obviously, every correspondence with continuous
selector is quartercontinuous. Further examples of quartercontinuous correspondences can
be found in [17, 18].

According to Correa et al. [5], Lemma 6.18 can be generalized as follows:

Every quartercontinuous correspondence Φ : X → 2S with connected values is F(X) −
F(S)−connected.

An abstract version of this theorem for paved spaces was proved in [18]. For an application
of Theorem 5.9 one needs practicable conditions for n−ary Q − P−conncetedness of a
correspondence Φ for n > 1. It is intended to study this problem in a separate paper.
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