Abstract Convexity and Connectedness

Jürgen Kindler

Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstr. 7, 64289 Darmstadt, Germany kindler@mathematik.tu-darmstadt.de

Received: March 17, 2005 Revised manuscript received: March 25, 2006

In a former paper the concept of n-ary connectedness was introduced, where 1-ary connectedness coincides with the usual notion of (abstract) connectedness. In the present paper, sets endowed with a convexity structure are studied, where the polytopes are n-ary connected. Interrelations between the classical Helly and Carathéodory numbers are evaluated as a pre-stage of Helly and Carathéodory type intersection theorems. Various other applications such as intersection theorems and fixed point theorems for trees and hyperconvex metric spaces are presented.

Keywords: Connected, convex, star-shaped, selector, set-valued function

2000 Mathematics Subject Classification: 52A01, 52A30, 52A35, 54D05

1. Notation

Let S be a nonvoid set and 2^S the power set of S. Then every nonvoid subset $\mathcal{P} \subset 2^S$ is called a *paving* in S and (S, \mathcal{P}) is a *paved space*. Especially, $\mathcal{E}(S)$ denotes the paving of all nonvoid finite subsets of S, $\mathcal{E}^n(S)$ (with $\mathcal{E}^0(S) = \{\emptyset\}$) is the paving of all subsets of S with n elements, \mathcal{P}^C is the paving of all complements $S \setminus P$, $P \in \mathcal{P}$, and $\mathcal{P} \cap T :=$ $\{P \cap T : P \in \mathcal{P}\}$ is the *trace* of a subset T of S.

A paving \mathcal{P} is called $\cap_f - closed \ (\cup_f - closed)$ iff $A, B \in \mathcal{P}$ implies $A \cap B \in \mathcal{P} \ (A \cup B \in \mathcal{P})$, and $\cap_a - closed$ iff $\bigcap_{R \in \mathcal{R}} R \in \mathcal{P}$ for all nonvoid $\mathcal{R} \subset \mathcal{P}$, and \mathcal{P} is called *compact* iff every subpaving $\mathcal{R} \subset \mathcal{P}$ with the *finite intersection property* $\bigcap_{R \in \mathcal{F}} R \neq \emptyset \quad \forall \mathcal{F} \in \mathcal{E}(\mathcal{R})$ has the global intersection property $\bigcap_{R \in \mathcal{R}} R \neq \emptyset$.

For $n \in \mathbb{N}$ a subset $T \subset S$ will be called n-ary connected for \mathcal{P} [20] iff for all $\{P_0, \ldots, P_n\}$ $\subset \mathcal{P}$ the relations $\bigcap_{j \in J} P_j \in \mathcal{P}$ for all nonvoid proper subsets J of $\{0, \ldots, n\}, T \subset \bigcup_{i=0}^n P_i$, and $T \cap P_{-i} \neq \emptyset$, $i \in \{0, \ldots, n\}$, with $P_{-i} := \bigcap_{j=0, j \neq i}^n P_j$, imply $T \cap \bigcap_{i=0}^n P_i \neq \emptyset$. A subset T is called *connected for* \mathcal{P} iff it is 1-ary connected for \mathcal{P} , and T is called *finitary connected* for \mathcal{P} iff it is n-ary connected for \mathcal{P} for every $n \in \mathbb{N}$.

If \mathcal{K} is another paving in S, then we say that \mathcal{K} is (n-ary/finitary) connected for \mathcal{P} if every $K \in \mathcal{K}$ has this property. In case $\mathcal{K} = \mathcal{P}$ we say that \mathcal{P} is (n-ary/finitary) connected.

If S is a topological space, then we denote by $\mathcal{F}(S)$, $\mathcal{G}(S)$, $\mathcal{K}(S)$, and $\mathcal{C}(S)$ the pavings of all closed, open, compact, and connected subsets, respectively. Here the empty set is considered to be connected. Of course, $\mathcal{F}(S)$ is compact iff S is compact, and a subset is connected iff it is (1-ary) connected for $\mathcal{F}(S)$ or for $\mathcal{G}(S)$, respectively. Observe that the paving $\mathcal{C}(S)$ is not connected in general, but $\mathcal{C}(S) \cap \mathcal{F}(S)$ and $\mathcal{C}(S) \cap \mathcal{G}(S)$ are always

ISSN 0944-6532 / \$2.50 © Heldermann Verlag

connected. Similarly, $\mathcal{K}(S)$ need not be compact, but $\mathcal{K}(S) \cap \mathcal{F}(S)$ is always compact. We write clT, intT, and bdT for the closure, interior, and boundary of a subset $T \subset S$. A topological space is called *discrete* iff $\mathcal{G}(S)$ is \cap_a -closed.

2. Abstract convexity

A quasiconvex space is a pair (X, Ψ) where X is a nonvoid set and $\Psi : \mathcal{E}(X) \cup \{\emptyset\} \to 2^X$ is a function with $\Psi(\emptyset) = \emptyset$ and $A \subset \Psi(A), A \in \mathcal{E}(X)$.

The function Ψ is a quasiconvexity (for X). The subsets $C \subset X$ with $\Psi(A) \subset C$ for all $A \in \mathcal{E}(C)$ are called *convex*. In the following, \mathcal{C}_{Ψ} denotes the paving of all convex subsets of X, and we set $\Psi(\mathcal{E}(X)) := \{\Psi(A) : A \in \mathcal{E}(X)\}$ for the paving of *polytopes*. The paving \mathcal{C}_{Ψ} is an *alignment*, i.e., $\{\emptyset, X\} \subset \mathcal{P}, \mathcal{P}$ is \cap_a -closed, and $\bigcup \{A : A \in \mathcal{A}\} \in \mathcal{P}$ for every totally ordered $\mathcal{A} \subset \mathcal{P}$.

A quasiconvexity Ψ is

- monotone iff $B \subset A$ implies $\Psi(B) \subset \Psi(A)$,
- a convexity, and (X, Ψ) is a convex space, provided that all polytopes are convex, i.e., $A, B \in \mathcal{E}(X), \ A \subset \Psi(B) \Longrightarrow \Psi(A) \subset \Psi(B).$
- said to possess the *join-hull property* iff (1) $\Psi(A \cup \{y\}) \subset \bigcup_{x \in \Psi(A)} \Psi(\{x, y\}), A \in \mathcal{E}(X), y \in X$ (Here a subset $T \subset X$ is convex iff $\Psi(A) \subset T$ for all $A \in \mathcal{E}^1(T) \cup \mathcal{E}^2(T)$.) and Ψ is *join-hull commutative* [27] provided relation (1) holds with equality.
- said to have the subdivision property [27] iff (2) $\Psi(A) \subset \bigcup_{x \in A} \Psi((A \setminus \{x\}) \cup \{y\}) \ \forall y \in \Psi(A), \ A \in \mathcal{E}(X) \setminus \mathcal{E}^1(X).$

Monotone quasiconvexities are also called "prehull operators" [27]. Convexities were introduced by Fuchssteiner [10] under the name "Konvexe". The classical example is the standard convexity on a vector space (Cf. Example 3.9 below). Other examples are metric convexity (Examples 2.7, 4.12, 6.14), order convexity (Examples 6.6, 6.8), and convexity on trees (Example 6.13). A source of further examples is van de Vel's book [27].

A subset $A \in \mathcal{E}(X)$ is called *dependent* iff there exists an $x_0 \in A$ with $x_0 \in \Psi(A \setminus \{x_0\})$. Otherwise, A is *independent*.

A subset $A \in \mathcal{E}(X)$ is called *C*-dependent (Carathéodory-dependent) provided that

(3)
$$\Psi(A) \subset \bigcup_{x \in A} \Psi(A \setminus \{x\}).$$

A subset $A \in \mathcal{E}(X)$ is called *H*-dependent (Helly-dependent) provided that

(4)
$$\bigcap_{x \in A} \Psi(A \setminus \{x\}) \neq \emptyset.$$

$$c = c(X, \Psi) := \sup\{ \operatorname{card} A : A \in \mathcal{E}(X), A \text{ is } C - \operatorname{independent} \}$$

is the Carathéodory-number, and

$$h = h(X, \Psi) := \sup\{\operatorname{card} A : A \in \mathcal{E}(X), A \text{ is } H - \operatorname{independent}\}\$$

is the *Helly-number* of Ψ or (X, Ψ) , respectively.

Lemma 2.1. In a quasiconvex space (X, Ψ) the following holds:

- a) Every singleton is (C-,H-) independent.
- b) Every dependent finite subset is H-dependent.

- c) If Ψ is monotone, then
 - (i) every nonvoid subset of a finite independent set is independent, and
 - (ii) every nonvoid subset of a finite H-independent set is H-independent.
- d) If Ψ is join-hull commutative, then every nonvoid subset of a finite C-independent set is C-independent.

Proof. b) For $\hat{x} \in A \cap \Psi(A \setminus \{\hat{x}\})$ we have $\hat{x} \in \bigcap_{x \in A} \Psi(A \setminus \{x\})$. c)(ii) follows from the relation $\bigcap_{x \in B} \Psi(B \setminus \{x\}) \subset \bigcap_{x \in B} \Psi(A \setminus \{x\}) \cap \bigcap_{y \in A \setminus B} \Psi(A \setminus \{y\}) = \bigcap_{x \in A} \Psi(A \setminus \{x\}), \ \emptyset \neq B \subset A \in \mathcal{E}(X).$

d) Let $A \in \mathcal{E}(X)$ be C-independent. Suppose that $A \setminus \{\hat{x}\}$ is C-dependent for some $\hat{x} \in A$, i.e., $\Psi(A \setminus \{\hat{x}\}) \subset \bigcup_{x \in A \setminus \{\hat{x}\}} \Psi(A \setminus \{\hat{x}, x\})$. Then

$$\begin{split} \Psi(A) &= \bigcup_{y \in \Psi(A \setminus \{\hat{x}\})} \Psi(\{\hat{x}, y\}) \subset \bigcup_{x \in A \setminus \{\hat{x}\}} \bigcup_{t \in \Psi(A \setminus \{\hat{x}, x\})} \Psi(\{\hat{x}, t\}) \\ &= \bigcup_{x \in A \setminus \{\hat{x}\}} \Psi(A \setminus \{x\}) \subset \bigcup_{x \in A} \Psi(A \setminus \{x\}) \end{split}$$

leads to a contradiction.

The other assertions are obvious.

Lemma 2.2 (Cf. [4], [27]). In a convex space (X, Ψ) the following holds:

- a) Ψ is monotone.
- b) Every dependent finite subset is C-dependent.
- c) If Ψ has the join-hull property, then Ψ is join-hull commutative.
- d) If Ψ has the subdivision property, then relation (2) holds with equality, and the following holds:
 - (i) Every H-dependent finite subset is C-dependent. In particular, $c(X, \Psi) \leq h(X, \Psi)$.
 - (ii) For all $A \in \mathcal{E}^n(X)$ with $n \ge h(X, \Psi)$ we have $\Psi(A) \subset \bigcup_{x \in A} \Psi((A \setminus \{x\}) \cup \{y\}) \ \forall y \in X, \ A \in \mathcal{E}(X) \setminus \mathcal{E}^1(X).$

Proof. a) and c) are obvious.

b) $A = (A \setminus \{\hat{x}\}) \cup \{\hat{x}\} \subset \Psi(A \setminus \{\hat{x}\})$ implies $\Psi(A) \subset \bigcup_{x \in A} \Psi(A \setminus \{x\})$. d)(i) Here we have $\Psi(A) = \bigcup_{x \in A} \Psi((A \setminus \{x\}) \cup \{y\}) = \bigcup_{x \in A} \Psi(A \setminus \{x\})$ for $y \in \bigcap_{x \in A} \Psi(A \setminus \{x\})$.

(*ii*) Without loss of generality we may assume $y \notin A$. Then $A \cup \{y\}$ is H-dependent, i.e., there exists an

$$\hat{x} \in \bigcap_{x \in A \cup \{y\}} \Psi((A \cup \{y\}) \setminus \{x\}) = \Psi(A) \cap \bigcap_{x \in A} \Psi((A \cup \{y\}) \setminus \{x\})$$

and with the subdivision property we obtain

$$\Psi(A) = \bigcup_{x \in A} \Psi((A \setminus \{x\}) \cup \{\hat{x}\}) \subset \bigcup_{x \in A} \Psi((A \setminus \{x\}) \cup \{y\}).$$

Lemma 2.3. Let (X, Ψ) be a quasiconvex space, and let $A \in \mathcal{E}^{n+1}(X)$ with $n \in \mathbb{N}$ be a *C*-dependent set. Suppose that there exists a \cap_f -closed paving \mathcal{Q} such that

- (i) $\Psi(A)$ is n-ary connected for Q, and
- $(ii) \quad \Psi(A \setminus \{x\}) \in \mathcal{Q} \ \forall x \in A.$

Then A is H-dependent.

Proof. For $A = \{x_0, \ldots, x_n\}$ and $Q_i = \Psi(A \setminus \{x_i\})$ we have $\bigcap_{j \in J} Q_j \in \mathcal{Q}$ for $\emptyset \neq J \subset \{0, \ldots, n\}$ by (*ii*) and \bigcap_f -closedness of \mathcal{Q} , $\Psi(A) \subset \bigcup_{i=0}^n Q_i$ since A is C-dependent, and $x_i \in \Psi(A) \cap Q_{-i}$. Together with (*i*) we arrive at $\Psi(A) \cap \bigcap_{i=0}^n Q_i \neq \emptyset$ which yields (4). \Box

For convexities the Lemmas 2.4 and 4.5 below are well-known ([27], Ch. II, $\S1$, 1.7).

Lemma 2.4. Let (X, Ψ) be a quasiconvex space with Carathéodory-number $c = c(X, \Psi)$. Then for $n \in \mathbb{N}$ the implication $(a) \Longrightarrow (b)$ holds for the following conditions:

- $(a) \quad n \ge c.$
- (b) For each $A \in \mathcal{E}(X)$ and $y \in \Psi(A)$ there exists an $m \leq n$ and a $B \in \mathcal{E}^m(A)$ with $y \in \Psi(B)$.

If Ψ is monotone, then both conditions are equivalent.

Proof. $(a) \implies (b)$: Let $A \in \mathcal{E}(X)$ and $y \in \Psi(A)$. Choose $B \in \mathcal{E}(A)$ with minimal cardinality m such that $y \in \Psi(B)$. Suppose that $m > n \ (\geq c)$. Then B is C-dependent, i.e., $y \in \Psi(B) \subset \bigcup_{x \in B} \Psi(B \setminus \{x\})$, a contradiction.

 $(b) \Longrightarrow (a)$: Now let Ψ be monotone. Suppose that c > n. Then there exists a C-independent set $A \in \mathcal{E}(X)$ with card A > n, and there exists a $y \in \Psi(A) \setminus \bigcup_{x \in A} \Psi(A \setminus \{x\})$ in contradiction to (b).

Example 2.5. Every paved space (X, \mathcal{K}) gives rise to a convexity according to

$$\Psi_{\mathcal{K}}(A) := \bigcap \{ K : K \in \mathcal{K} \cup \{ \emptyset, X \}, K \supset A \}, A \in \mathcal{E}(X) \cup \{ \emptyset \}.$$

Here, the following holds:

- a) $\mathcal{K} \subset \mathcal{C}_{\Psi_{\mathcal{K}}}.$
- b) If \mathcal{K} contains $\mathcal{E}(X)$, then $\Psi_{\mathcal{K}}(A) = A$, $A \in \mathcal{E}(X) \cup \{\emptyset\}$, is the *free convexity* with c = 1 and h = card X if X is finite and $h = \infty$ otherwise.
- c) $\mathcal{K} \subset \{\emptyset, X\}$ leads to the *coarse convexity* $\Psi_{\mathcal{K}}(A) = X, A \in \mathcal{E}(X)$, with c = h = 1.
- d) Suppose that \mathcal{K} is \cap_a -closed, and for every $A \in \mathcal{E}(X)$ there exists a $K \in \mathcal{K}$ with $A \subset K$. Then $\Psi_{\mathcal{K}}(\mathcal{E}(X)) \subset \mathcal{K}$ holds. In this case, $\Psi_{\mathcal{K}}(A)$ is called the \mathcal{K} -hull of A.

Remark 2.6. For a quasiconvex space (X, Ψ) the following are equivalent:

- (a) Ψ is a convexity.
- (b) $\Psi = \Psi_{\mathcal{C}_{\Psi}}.$
- (c) There exists a paving \mathcal{K} in X with $\Psi = \Psi_{\mathcal{K}}$.

Example 2.7. A segment space is a pair $(X, \langle \cdot, \cdot \rangle)$ where X is a nonvoid set and $\langle \cdot, \cdot \rangle : X \times X \to 2^X$ is a set-valued map with $\langle x, y \rangle \supset \{x, y\}$ for all $x, y \in X$. The sets $\langle x, y \rangle$ are called *segments*, and $\langle \cdot, \cdot \rangle$ is called a *segment function* for X. A subset $T \subset X$ is

 $(\langle \cdot, \cdot \rangle -)$ convex iff $\{x, y\} \subset T$ implies $\langle x, y \rangle \subset T$. Let \mathcal{C} denote the alignment of all convex subsets of X. Then $\Psi_{\mathcal{C}}$ is a convexity with $\mathcal{C}_{\Psi_{\mathcal{C}}} = \mathcal{C}$ and $\Psi_{\mathcal{C}}(\{x, y\}) \supset \langle x, y \rangle, x, y \in X$.

Every metric space (X, d) can be endowed with the geodesic segment function

$$\langle x, y \rangle_d = \{ s \in X : d(x, s) + d(s, y) = d(x, y) \}, \ x, y \in X.$$

The alignment \mathcal{C}_d of all $\langle \cdot, \cdot \rangle_d$ -convex subsets of X generates the *geodesic convexity* $\Psi_d := \Psi_{\mathcal{C}_d}$.

A metric space is called *Menger-convex* iff $\langle x, y \rangle_d \setminus \{x, y\} \neq \emptyset$ for all $x, y \in X$ with $x \neq y$. Every nonvoid convex subset of a normed linear space is Menger-convex w.r.t. the induced metric. In [11] various examples of Menger-convex metric spaces in hyperbolic geometry can be found. A classical example is the Poincaré disc. By a theorem of Menger [24, 12] in a complete Menger-convex metric space every geodesic segment is isometric to the unit interval, and therefore $C_d \subset C(X)$. In general, $\langle x, y \rangle_d$ is a proper subset of $\Psi_d(\{x, y\})$, i.e., a geodesic segment $\langle x, y \rangle_d$ need not be Ψ_d -convex. (Compare Example 9.3 in [1]; Ch. II.)

Many other examples of segment spaces can be found in the books of Coppel [4], van de Vel [27], and Verheul [28], and in the paper [19].

3. Quasiconvex paved spaces

A triplet (X, \mathcal{Q}, Ψ) is a *(quasi)convex paved space* provided that (X, \mathcal{Q}) is a paved space and Ψ is a (quasi)convexity for X. A (quasi)convex paved space (X, \mathcal{Q}, Ψ) will be called a *CP-space* (*QP-space*) provided that $\Psi(\mathcal{E}^{n+1}(X))$ is *n*-ary connected for \mathcal{Q} for every $n \in \mathbb{N}$ with n < card X.

Remark 3.1. Let (X, \mathcal{Q}, Ψ) be a QP-space with \cap_f -closed \mathcal{Q} and T a nonvoid convex subset of S. Then the subspace $(T, \mathcal{Q} \cap T, \Psi | \mathcal{E}(T) \cup \{\emptyset\})$ is also a QP-space.

Remark 3.2.

- a) In a QP-space (X, \mathcal{Q}, Ψ) with $\Psi(\mathcal{E}(X)) \subset \mathcal{Q}$ and \cap_f -closed \mathcal{Q} every C-dependent finite subset is H-dependent according to Lemma 2.3. In particular, $c(X, \Psi) \geq h(X, \Psi)$ holds.
- b) In a CP-space (X, \mathcal{Q}, Ψ) with $\Psi(\mathcal{E}(X)) \subset \mathcal{Q}$ with \cap_f -closed \mathcal{Q} and with the subdivision property a finite subset is C-dependent iff it is H-dependent. This follows with Lemma 2.2 d)(i).

Remark 3.3. Let (X, \mathcal{Q}, Ψ) be a quasiconvex paved space.

- a) If T is a nonvoid convex subset of X, and if $\Psi(\mathcal{E}^{n+1}(T))$ is n-ary connected for \mathcal{Q} , then T is n-ary connected for \mathcal{Q} .
- b) If (X, \mathcal{Q}, Ψ) is a QP-space such that every $Q \in \mathcal{Q}$ is convex, then \mathcal{Q} is finitary connected.

Proof. a) Let $\{Q_0, \ldots, Q_n\} \subset \mathcal{Q}$ with $\bigcap_{j \in J} Q_j \in \mathcal{Q}$ for all nonvoid proper subsets J of $\{0, \ldots, n\}$ such that $T \subset \bigcup_{i=0}^n Q_i$, and let $x_i \in T \cap Q_{-i}, i \in \{0, \ldots, n\}$. We have to show that $T \cap \bigcap_{i=0}^n Q_i$ is nonvoid. Without loss of generality we may assume $A := \{x_0, \ldots, x_n\} \in \mathcal{E}^{n+1}(X)$, whence $\Psi(A)$ is n-ary connected for \mathcal{Q} . Now $\Psi(A) \subset \bigcup_{i=0}^n Q_i$

together with $x_i \in \Psi(A) \cap Q_{-i}$, $i \in \{0, \ldots, n\}$, implies $T \cap \bigcap_{i=0}^n Q_i \supset \Psi(A) \cap \bigcap_{i=0}^n Q_i \neq \emptyset$. b) follows from a).

Let (X, Ψ) be a quasiconvex space. Then for $T \in 2^X \setminus \{\emptyset\}$ the set ker $T := \{x \in X : \Psi(\{x,t\}) \subset T \ \forall t \in T\}$ is the *kernel* of T, and T is *star-shaped* iff ker T is nonvoid. Of course, ker $T \subset T$, and ker T = T for every nonvoid convex T.

Lemma 3.4 (Compare [20]; Lemma 9). Let (X, \mathcal{Q}, Ψ) be a quasiconvex paved space such that $\Psi(\mathcal{E}^1(X) \cup \mathcal{E}^2(X))$ is connected for \mathcal{Q} . Then the following holds:

- a) Every set $P * Q := \bigcup_{p \in P, q \in Q} \Psi(\{p, q\}), P, Q \in 2^X \setminus \{\emptyset\}$, is connected for Q.
- b) Every star-shaped (in particular, every convex) subset $T \subset X$ is connected for Q.

Proof. a) If \mathcal{H} is a paving in S with $\bigcap_{H \in \mathcal{H}} H \neq \emptyset$ such that every $H \in \mathcal{H}$ is connected for \mathcal{Q} , then $\bigcup_{H \in \mathcal{H}} H$ is again connected for \mathcal{Q} [20]. In particular, the sets $\{p\} * Q = \bigcup_{q \in Q} \Psi(\{p,q\}), p \in P$, and $P * Q = \bigcup_{p \in P} \{p\} * Q$ are connected for \mathcal{Q} . b) If T is star-shaped, then $T = \{x\} * T, x \in \ker T$, is connected for \mathcal{Q} .

The following two theorems were inspired by results of Levi [23] and Kołodziejczyk [21]. (Compare Examples 4.9 and 4.11 and Remark 4.10 below.)

Theorem 3.5. Let (X, \mathcal{Q}, Ψ) be a convex paved space with \cap_f -closed \mathcal{Q} such that $2 \leq h = h(X, \Psi) < \infty$. Suppose that Ψ has the subdivision property and the join-hull property, and $\Psi(\mathcal{E}^h(X))$ is (h-1)-ary connected for \mathcal{Q} . Then for convex sets $Q_1, \ldots, Q_h \in \mathcal{Q}$ the following are equivalent:

(a) $\bigcap_{i=1}^{h} Q_i \neq \emptyset.$ (b) $\bigcup_{i=1}^{h} Q_i \text{ is star-shaped, and } Q_{-i} := \bigcap_{j \in I \setminus \{i\}} Q_j \neq \emptyset, i \in I := \{1, \dots, h\}.$

Proof. $(a) \Longrightarrow (b)$ is obvious.

 $(b) \Longrightarrow (a)$: Choose $x_i \in Q_{-i}, i \in \{1, \ldots, h\}$. Without loss of generality we may assume $A := \{x_1, \ldots, x_h\} \in \mathcal{E}^h(X)$. For $T := \bigcup_{i=1}^h Q_i$ let $p \in \ker T$. By Lemma 2.2 d)(ii) we have $\Psi(A) \subset \bigcup_{x \in A} \Psi((A \setminus \{x\}) \cup \{p\})$. Since Q_i is convex, we have $\Psi(A \setminus \{x_i\}) \subset Q_i$, and therefore, by the join-hull property,

$$\Psi((A \setminus \{x\}) \cup \{p\}) \subset \bigcup_{t \in \Psi(A \setminus \{x\})} \Psi(\{t, p\}) \subset T, \ x \in A$$

and we arrive at $\Psi(A) \subset T$. Now the assertion follows since $\Psi(A)$ is (h-1)-ary connected for Q.

Let (X, Ψ) be a quasiconvex space. We consider an associated quasiconvexity $\Psi^{\Delta} : \mathcal{E}(X) \cup \{\emptyset\} \to 2^X$ defined as

$$\Psi^{\Delta}(A) = \begin{cases} \Psi(A) : A \in \mathcal{E}^{1}(X) \cup \{\emptyset\} \\ \bigcup_{x \in A} \Psi(A \setminus \{x\}) : A \in \mathcal{E}(X) \setminus \mathcal{E}^{1}(X) \end{cases}$$

Obviously, $\Psi^{\Delta}(A) \subset \Psi(A) \ \forall A \in \mathcal{E}(X)$ iff Ψ is monotone, and an $A \in \mathcal{E}(X) \setminus \mathcal{E}^{1}(X)$ is C-dependent iff $\Psi(A) \subset \Psi^{\Delta}(A)$.

Proposition 3.6. Let X be a topological space endowed with a quasiconvexity Ψ , and let $A \in \mathcal{E}(X)$ such that

- (i) $\Psi(A)$ is closed, and
- (*ii*) bd $\Psi(A) \subset \Psi^{\Delta}(A)$.

Let T be a closed (open) subset of X such that

- (*iii*) $X \setminus T$ is connected,
- (iv) $T \supset \Psi^{\Delta}(A)$, and
- (v) $T \subset C \neq X$ for some convex set C.

Then $\Psi(A) \subset T$.

Proof. We set $G_1 := X \setminus (\Psi(A) \cup T)$, $F_1 := X \setminus (\operatorname{int} \Psi(A) \cup T)$, $G_2 := \operatorname{int} \Psi(A) \setminus T$, and $F_2 := \Psi(A) \setminus T$. By (*ii*) and (*iv*) we have $G_2 = F_2$, and by (*v*), $F_1 \supset G_1 \supset X \setminus C \neq \emptyset$, since $A \subset \Psi^{\Delta}(A) \subset T \subset C$ implies $\Psi(A) \subset C$. In case $T \in \mathcal{F}(X)$ the sets G_1 and G_2 are open, and in case $T \in \mathcal{G}(X)$ the sets F_1 and F_2 are closed. Since the set $X \setminus T = G_1 \cup G_2 = F_1 \cup F_2$ is connected and $F_1 \cap F_2 = G_1 \cap G_2 = \emptyset$, we obtain $G_2 = \emptyset$ respectively $F_2 = \emptyset$, and therefore $\Psi(A) \subset T$.

Example 3.7. Let X be a topological space endowed with a convexity Ψ . Let $A \in \mathcal{E}(X) \setminus \mathcal{E}^1(X)$ such that $\Psi(\mathcal{E}(A)) \subset \mathcal{F}(X)$ and $X \setminus \Psi^{\Delta}(A)$ is nonvoid and connected. Then the following are equivalent:

- (a) A is C-dependent.
- (b) bd $\Psi(A) \subset \Psi^{\Delta}(A)$ and $\Psi^{\Delta}(A) \subset C$ for some convex set $C \neq X$.

Proof. (a) \Longrightarrow (b): Take $C = \Psi(A)$. (b) \Longrightarrow (a): Apply Proposition 3.6 with $T = \Psi^{\Delta}(A) \ (\in \mathcal{F}(X))$.

Theorem 3.8. Let X be a topological space endowed with a quasiconvexity Ψ , and let Q denote the paving of all closed (open) convex subsets of X. Let $\{Q_0, \ldots, Q_n\} \subset Q$, $n \in \mathbb{N}$, such that

- (i) $Q_{-i} \neq \emptyset \ \forall i \in \{0, \dots, n\},\$
- (*ii*) $X \setminus \bigcup_{i=0}^{n} Q_i$ is connected, and
- (iii) $\bigcup_{i=0}^{n} Q_i \subset C$ for some convex set $C \neq X$.

Suppose that for every H-independent subset $A \in \mathcal{E}^{n+1}(X)$

(iv) $\Psi(A)$ is closed,

- (v) $\Psi(A)$ is n-ary connected for Q, and
- (vi) bd $\Psi(A) \subset \Psi^{\Delta}(A)$.

Then $\bigcap_{i=0}^{n} Q_i$ is nonvoid.

Proof. We choose points $x_i \in Q_{-i}$ and set $A = \{x_0, \ldots, x_n\}$. Then $A \setminus \{x_i\} \subset Q_i \in \mathcal{Q} \subset C_{\Psi}$ implies $\Psi^{\Delta}(A) \subset T := \bigcup_{i=0}^{n} Q_i$, and we may assume without loss of generality that $A \in \mathcal{E}^{n+1}(X)$ is H-independent. But then we have $\Psi(A) \subset T$ according to Proposition 3.6, and the assertion follows with condition (v).

A vector space X can be endowed with several 'intrinsic' convexities, for example

the standard convexity

$$\operatorname{conv}(A) := \left\{ \sum_{i=1}^{n} \lambda_i x_i : \lambda_i \ge 0, \ i \in \{1, \dots, n\}, \ \sum_{i=1}^{n} \lambda_i = 1 \right\},$$

the affine convexity

the *linear convexity*

$$\ln(A) := \left\{ \sum_{i=1}^{n} \lambda_i x_i : \lambda_i \in \mathbb{R}, \ i \in \{1, \dots, n\} \right\},\$$

or the *positive convexity*

$$\operatorname{pos}(A) := \left\{ \sum_{i=1}^{n} \lambda_i x_i : \lambda_i \ge 0, \ i \in \{1, \dots, n\} \right\},\$$

for $A = \{x_1, \ldots, x_n\} \in \mathcal{E}(X)$.

The elements of $C_{\text{conv}}, C_{\text{aff}}, C_{\text{lin}}$, and C_{pos} are called *convex subsets, affine subspaces* (or *flats*), *linear subspaces*, and *convex cones* (with apex 0), respectively.

In the following, if not otherwise stated, a vector space is always assumed to be endowed with the standard convexity.

Example 3.9. Let X be a vector space.

- a) (Cf. [27]) The convexity conv is join-hull commutative with the subdivision property. The convexities lin and pos are join-hull commutative, but the subdivision property only holds in case dimX = 1. Conversely, the convexity aff has the subdivision property, but it is join-hull commutative only in case dimX = 1.
- b) Let X be endowed with a topology that induces the Euclidean topology on every finite dimensional linear subspace. Then the paving $\mathcal{C} = \mathcal{C}_{conv}$ of all convex subsets of X is finitary connected for $\mathcal{C} \cap \mathcal{F}(X)$ and for $\mathcal{C} \cap \mathcal{G}(X)$. In particular, $(X, \mathcal{C} \cap \mathcal{F}(X), conv)$ and $(X, \mathcal{C} \cap \mathcal{G}(X), conv)$ are CP-spaces. Compare the proof of [20]; Theorem 8.
- c) For an $A \in \mathcal{E}(X)$ the following are equivalent.
 - (i) A is H-independent in (X, conv).
 - (ii) A is C-independent in (X, conv).
 - (iii) A is independent in (X, aff).

Here (i) \iff (ii) follows from b) with the finite topology [14, 27] on X together with a) and Remark 3.2 b). For the proof of (ii) \implies (iii) \implies (i) compare [27]; II.1.3 and 1.4.1.

4. Helly pavings

Let $n \in \mathbb{N}$. A paved space (S, \mathcal{P}) will be called an H_n -space and \mathcal{P} is called an H_n -paving [20] iff for all $\{P_0, \ldots, P_m\} \subset \mathcal{P}$ with $m \ge n$ the relations

- (5) $\bigcap_{i \in J} P_j \neq \emptyset$ for all subsets $J \in \mathcal{E}^n(\{0, \dots, m\}),$
- (6) $\bigcap_{j \in J} P_j \in \mathcal{P}$ for all nonvoid proper subsets J of $\{0, \ldots, m\}$, and
- (7) $\bigcap_{i=0}^{m} P_i = \emptyset$

cannot hold simultaneously.

In a paved space (S, \mathcal{P}) the paving $\mathcal{P}^{\top} := \{T \subset S : T \cap P \in \mathcal{P} \ \forall P \in \mathcal{P}\}$ is the transporter of \mathcal{P} .

Remark 4.1.

- a) ([20]) A paving \mathcal{P} is an H_n -paving iff for all $\{P_0, \ldots, P_n\} \subset \mathcal{P}$ relations (5), (6), and (7) with m = n cannot hold simultaneously. In this case, \mathcal{P} is l-ary connected for \mathcal{P}^{\top} for all $l \geq n$.
- b) If \mathcal{P} is a lattice (i.e., a \cap_f -closed and \cup_f -closed paving), then \mathcal{P} is an H_n -paving iff it is n-ary connected.
- c) ([20]) A \cap_f -closed connected H_2 -paving is finitary connected.

Lemma 4.2. Let (X, \mathcal{Q}, Ψ) be a quasiconvex paved space. If every trace $\mathcal{Q} \cap \Psi(A), A \in \mathcal{E}^{n+1}(X)$, is an H_n -paving, then \mathcal{Q} is also an H_n -paving.

Proof. Let $\{Q_0, \ldots, Q_n\} \subset \mathcal{Q}$ with $\bigcap_{j \in J} Q_j \in \mathcal{Q} \setminus \{\emptyset\}$ for all nonvoid proper subsets J of $\{0, \ldots, n\}$. Choose $x_i \in Q_{-i}$, $i \in \{0, \ldots, n\}$, and set $A = \{x_0, \ldots, x_n\}$. Without loss of generality we may assume $A \in \mathcal{E}^{n+1}(X)$, since otherwise $\bigcap_{i=0}^n Q_i \neq \emptyset$ trivially holds. Now relations (5) and (6) are satisfied for $\mathcal{P} = \mathcal{Q} \cap \Psi(A), m = n$, and $P_i = Q_i \cap \Psi(A)$. Since the trace $\mathcal{Q} \cap \Psi(A)$ is an H_n -paving, we arrive at $\Psi(A) \cap \bigcap_{i=0}^n Q_i \neq \emptyset$. The assertion follows with Remark 4.1 a).

Let (S, \mathcal{P}) be a paved space and F a family of real-valued functions on S. Then we say that F is *point separating* iff

$$\forall \{s,t\} \in \mathcal{E}^2(S) \; \exists f \in \mathsf{F} : \; f(s) \neq f(t),$$

and F is minimal point separating provided that F but no proper subfamily of F is point separating.

Theorem 4.3. Let (S, \mathcal{P}) be a paved space and $\mathsf{F} = \{f_1, \ldots, f_n\}$ a finite family of realvalued functions on S such that

(8) $\{f \le \alpha\} := \{s \in S : f(s) \le \alpha\} \in \mathcal{P}^{\top} \text{ for all } \alpha \in \mathbb{R} \text{ and all } f \text{ in the linear hull of } \mathsf{F}.$

Then the following holds.

- a) If \mathcal{P} is compact and connected, and if F is point separating, then \mathcal{P} is an H_{n+1} -paving.
- b) If F is minimal point separating with the property (9) $\forall s, t \in S \; \exists z \in S \; \forall i \in \{1, \dots, n\} : f_i(s) = f_i(t) \iff f_i(z) = 0,$ then \mathcal{P}^{\top} is not an H_n -paving.

Proof. a) This is a special case of Theorem 5 in [20]. b) Since $\{f_1, \ldots, f_n\}$ is minimal point separating, there exist pairs $\{s_i, t_i\} \in \mathcal{E}^2(S), i \in$ $\{1,\ldots,n\}$, with $f_j(s_i) = f_j(t_i)$ for $j \neq i$ and $f_i(s_i) \neq f_i(t_i)$. By (9) there exist points $z_i \in S, i \in \{1,\ldots,n\}$, with

(10) $f_j(z_i) = 0$ for $j \neq i$ and $f_i(z_i) \neq 0$.

Now, for $i \in \{1, \ldots, n\}$ take $P_i := \{f_i = 0\} (= \{f_i \leq 0\} \cap \{-f_i \leq 0\} \in \mathcal{P}^\top$ since \mathcal{P}^\top is \cap_f -closed) and $P_0 := \{\sum_{i=1}^n f_i(z_i)^{-1}f_i = 1\} \in \mathcal{P}^\top$. Then relations (9) (with s = t) and (10) yield $P_{-i} \neq \emptyset, i \in \{0, \ldots, n\}$. Since $\bigcap_{i=0}^n P_i = \emptyset$, the paving \mathcal{P}^\top is not an H_n -paving.

Remark 4.4. Let S be an additive group or, more generally, an additive semigroup with the property

 $\forall s, t \in S \exists z \in S \text{ and } m, n \in \mathbb{N} : ms = mt + nz \text{ or } mt = ms + nz.$

Then relation (9) is satisfied for all additive real-valued functions f_i on S.

Lemma 4.5. Let (X, Ψ) be a quasiconvex space with finite Helly-number $h = h(X, \Psi)$. Then for $n \in \mathbb{N}$ the implication $(a) \Longrightarrow (b)$ holds for the following conditions:

- $(a) \quad n \ge h.$
- (b) C_{Ψ} is an H_n -paving.
- If Ψ is a convexity, then (a), (b), and
- (c) There exists $a \cap_f closed H_n paving \mathcal{Q}$ in X with $\Psi(\mathcal{E}^n(X)) \subset \mathcal{Q}$.

are equivalent.

Proof. $(a) \Longrightarrow (b)$: Let $\{Q_0, \ldots, Q_n\} \subset C_{\Psi}$ and $x_i \in Q_{-i}, i \in \{0, \ldots, n\}$. By Remark 4.1 a) we have to show that $\bigcap_{i=0}^n Q_i \neq \emptyset$. Without loss of generality we may assume $A \in \mathcal{E}^{n+1}(X)$. By (a) the set A is H-dependent, and $\Psi(A \setminus \{x_i\}) \subset Q_i$ implies $\bigcap_{i=0}^n Q_i \neq \emptyset$. Now let Ψ be a convexity.

 $(b) \Longrightarrow (c)$: Take $\mathcal{Q} = \mathcal{C}_{\Psi}$.

 $(c) \Longrightarrow (a)$: Let $A \in \mathcal{E}^{n+1}(X)$. Then $y \in \bigcap_{x \in A \setminus \{y\}} \Psi(A \setminus \{x\}), y \in A$, together with (c) yields $\bigcap_{x \in A} \Psi(A \setminus \{x\}) \neq \emptyset$, i.e., A is H-dependent. Together with Lemmas 2.1 c)(ii) and 2.2 a) we get (a).

Corollary 4.6. Let (X, Q, Ψ) be a convex paved space such that $\Psi(\mathcal{E}^{n+1}(X)) \subset Q^{\top}$ and every trace $Q^{\top} \cap \Psi(A), A \in \mathcal{E}^{n+2}(X)$, is compact and connected. Suppose that there exists a minimal point separating family $\mathsf{F} = \{f_1, \ldots, f_n\}$ of real-valued functions on X such that

 $\{f \leq \alpha\} \in \mathcal{Q}^{\top} \cap \mathcal{C}_{\Psi} \text{ for all } \alpha \in \mathbb{R} \text{ and all } f \text{ in the linear hull of } \mathsf{F},$

and that relation (9) with S = X is satisfied. Then $h(X, \Psi) = n + 1$.

Proof. Let $A \in \mathcal{E}^{n+2}(X)$ and set $\mathcal{P} = \mathcal{Q}^{\top} \cap \Psi(A)$. Then $\{x \in \Psi(A) : f(x) \leq \alpha\} \in \mathcal{P} \subset \mathcal{P}^{\top}$ for all $\alpha \in \mathbb{R}$ and all f in the linear hull of F , since \mathcal{Q}^{\top} and therefore \mathcal{P} is \cap_f -closed. By Theorem 4.3 a) (with $S = \Psi(A)$) the trace $\mathcal{P} = \mathcal{Q}^{\top} \cap \Psi(A)$ is an H_{n+1} -paving. Hence, by Lemma 4.2, \mathcal{Q}^{\top} is an H_{n+1} -paving as well, and Lemma 4.5 yields $h \leq n+1$. On the other hand, $\mathcal{C}_{\Psi} = \mathcal{C}_{\Psi}^{\top}$ is not an H_n -paving according to Theorem 4.3 b), and with Lemma 4.5 we obtain $h \geq n+1$. **Example 4.7.** Let (X, \mathcal{K}) be a paved space with \cap_a -closed \mathcal{K} . Then $h(X, \Psi_{\mathcal{K}}) \leq n$ iff \mathcal{K} is an H_n -paving.

Proof. Let $h(X, \Psi_{\mathcal{K}}) \leq n$. Then according to Lemma 4.5, $\mathcal{K}(\subset \mathcal{C}_{\Psi_{\mathcal{K}}})$ is an H_n -paving. Conversely, let \mathcal{K} be an H_n -paving. Then $\mathcal{K} \cup \{\emptyset, X\}$ is an H_n -paving as well. Therefore, without loss of generality we may assume $\{\emptyset, X\} \subset \mathcal{K}$. Now, $h(X, \Psi_{\mathcal{K}}) \leq n$ follows from Example 2.5 d) together with Lemma 4.5 " $(c) \implies (a)$ ".

The following result is classical [3, 13].

Example 4.8.

- $h(\mathbb{R}^d, \operatorname{conv}) = c(\mathbb{R}^d, \operatorname{conv}) = d + 1.$ a)
- For an $A \in \mathcal{E}^{d+1}(\mathbb{R}^d)$ the following are equivalent: b)
 - A is H-independent in $(\mathbb{R}^d, \text{conv})$. (i)
 - (ii) $\operatorname{conv}(A)$ is a *d*-dimensional simplex.
 - (iii) $\operatorname{bd}\operatorname{conv}(A) = \operatorname{conv}^{\Delta}(A)$, and $\operatorname{int}\operatorname{conv}(A)$ is nonvoid.

Proof. a) By Corollary 4.6, applied to $(X, \mathcal{Q}, \Psi) = (\mathbb{R}^d, \mathcal{C}_{conv} \cap \mathcal{F}(\mathbb{R}^d), conv)$ and to the projections $f_i(x_1, \ldots, x_i, \ldots, x_d) = x_i, i \in \{1, \ldots, d\}$, we obtain h = d+1, and by Example 3.9 c we have h = c.

b) This is a simple consequence of Example 3.9 c) (Cf. [8]; Ch. 2.1).

Example 4.9. Let C_0, \ldots, C_d be closed (open) convex subsets of \mathbb{R}^d . Suppose that

- (i)
- $C_{-i} \neq \emptyset, \ i \in \{0, \dots, d\},$ $\bigcup_{i=0}^{d} C_i \subset C \text{ for some convex set } C \neq \mathbb{R}^d, \text{ and}$ (ii)
- (iii) $\mathbb{R}^d \setminus \bigcup_{i=0}^d C_i$ is connected.

Then $\bigcap_{i=0}^{d} C_i \neq \emptyset$.

Proof. Apply Theorem 3.8 together with Example 3.9 b) and Example 4.8 b).

Remark 4.10. The "closed version" of Example 4.9 is due to Levi [23]. In [23] the assumption (ii) is missing. But without such an additional assumption the result is false.

For example, take $C_0 = \{(x_1, ..., x_d) \in \mathbb{R}^d : \sum_{i=1}^d x_i \geq 1\}$ and $C_i = \{(x_1, ..., x_d) \in \mathbb{R}^d :$

 $x_i \stackrel{(<)}{\leq} 0$, $i \in \{1, \ldots, d\}$. On the other hand, if all sets are intersected with the halfspace

 $H = \{(x_1, \ldots, x_d) \in \mathbb{R}^d : x_1 \stackrel{(>)}{\geq} -1\}, \text{ then (ii) is satisfied (with } C_i \text{ replaced by } C_i \cap H),$ but now the conclusion of Example 4.9 fails because condition (iii) is violated.

The "closed version" of the following example is due to Kołodziejczyk [21].

Example 4.11. Let C_0, \ldots, C_d be closed (open) convex subsets of \mathbb{R}^d such that $C_{-i} \neq \emptyset$, $i \in \{0, \ldots, d\}$. Then $\bigcap_{i=0}^d C_i \neq \emptyset$ iff $\bigcup_{i=0}^d C_i$ is star-shaped.

Proof. Let (X, \mathcal{Q}, Ψ) be $(\mathbb{R}^d, \mathcal{C}_{conv} \cap \mathcal{F}(\mathbb{R}^d), conv)$ respectively $(\mathbb{R}^d, \mathcal{C}_{conv} \cap \mathcal{G}(\mathbb{R}^d), conv)$. By Example 3.9 b) the paving of polytopes $\operatorname{conv}(\mathcal{E}(X))$ is finitary connected for \mathcal{Q} , and the assertion follows from Theorem 3.5 together with Examples 3.9 a) and 4.8 a). **Example 4.12.** Let X be the unit circle in \mathbb{R}^2 , and let d(x, y) be the length of the minor arc joining x and y (with $d(x, -x) = \pi$). Let $\Psi_d = \Psi_{\mathcal{C}_d}$ be the corresponding geodesic convexity. Then $\Psi_d(A)$ is the least minor arc containing $A \in \mathcal{E}(X)$ if A is contained in an arc without diametral points, and $\Psi_d(A) = X$ otherwise. Here, every polytope is a geodesic segment. Moreover [20], \mathcal{C}_d is an H_n -paving $\iff \mathcal{C}_d$ is n-ary connected $\iff n \geq 3$. Hence, by Example 4.7, $h(X, \Psi_d) = 3$. Since the polytope X is not 2-ary connected for $Q := \mathcal{C}_d \cap \mathcal{F}(X)$, Lemma 2.3 cannot be applied for n = 2. Indeed, $c(X, \Psi_d) =$ $2 < h(X, \Psi_d)$. Finally, it is easy to see that Ψ_d is join-hull commutative, but Ψ_d does not possess the subdivision property, since condition (2) is violated for A = ((1, 0), (-1, 0)), say.

More on Helly and Carathéodory type theorems in \mathbb{R}^d can be found in the survey papers [6, 7].

5. Set-valued functions

Let S and X be two nonvoid sets and $\Phi: X \to 2^S$ a set-valued function from X to S. The sets $\Phi(x), x \in X$, are the values of Φ , $\operatorname{val}\Phi = \{\Phi(x) : x \in X\}$ is the value set of Φ , and $\Phi(K) := \bigcup_{x \in K} \Phi(x)$ with $\Phi(\emptyset) = \emptyset$ is the image of $K \subset X$. A function $f: X \to S$ is a selector for Φ iff $f(x) \in \Phi(x), x \in X$. Clearly, a set-valued function possesses a selector iff it is a correspondence, i.e., iff all its values are nonvoid. If \mathcal{P} is a paving in S, then Φ will be called \mathcal{P} -valued provided that $\operatorname{val}\Phi \subset \mathcal{P}$. Finally, the dual of Φ is the set-valued function $\Phi^*: S \to 2^X$ with $\Phi^*(s) = \{x \in X : s \notin \Phi(x)\}, s \in S$.

We want to study the problem, whether Φ possesses a constant selector or, equivalently, whether $\bigcap_{x \in X} \Phi(x)$ is nonvoid.

Remark 5.1. Let (X, Ψ) be a quasiconvex space, S a nonvoid set and $\Phi : X \to 2^S$ a set-valued function. Then the dual Φ^* is convex-valued (i.e., every $\Phi^*(s), s \in S$, is convex) iff $\Phi(\Psi(A)) = \Phi(A)$ for every $A \in \mathcal{E}(X)$.

Proposition 5.2. Let a quasiconvex space (X, Ψ) , a paved space (S, \mathcal{P}) , a set-valued function $\Phi : X \to 2^S$, and a dependent subset $A \in \mathcal{E}^{n+2}(X)$ with $n \in \mathbb{N} \cup \{0\}$ be given. Suppose that

(i) $\bigcap_{t \in B} \Phi(t) \neq \emptyset \ \forall B \in \mathcal{E}^{n+1}(A),$

(*ii*) $\Phi(\Psi(B)) = \Phi(B) \ \forall \ B \in \mathcal{E}^{n+1}(A),$

and in case $n \neq 0$,

(*iii*) $\bigcap_{t \in C} \Phi(t) \in \mathcal{P} \ \forall C \in \mathcal{E}^m(A), \ m \in \{1, \dots, n\}, \ and$

(iv) val Φ is n-ary connected for \mathcal{P} .

Then
$$\bigcap_{x \in A} \Phi(x) \neq \emptyset$$
.

Proof. Choose $x_0 \in \Psi(A \setminus \{x_0\}) \cap A$. In case n = 0 we have $A = \{x_0, x_1\}$ and $x_0 \in \Psi(\{x_1\})$, and from (i) and (ii) we infer $\emptyset \neq \Phi(x_0) = \Phi(x_0) \cap \Phi(x_1)$. In case $n \geq 1$ we have $\Phi(x_0) \subset \bigcup_{t \in A \setminus \{x_0\}} \Phi(t)$ by (ii), and (i), (iii) imply $\Phi(x_0) \cap \bigcap_{t \in C} \Phi(t) \neq \emptyset$ and $\bigcap_{t \in C} \Phi(t) \in \mathcal{P}$ for every proper subset C of $A \setminus \{x_0\}$. Now (iv) yields $\bigcap_{x \in A} \Phi(x) = \Phi(x_0) \cap \bigcap_{t \in A \setminus \{x_0\}} \Phi(t) \neq \emptyset$.

Our next two theorems were inspired by a "Dual Helly Theorem" due to Flåm and Greco (Cf. Example 5.7 below).

Theorem 5.3. Let a quasiconvex space (X, Ψ) , a paved space (S, \mathcal{P}) with $\bigcap_f - closed \mathcal{P}$, and a set-valued function $\Phi : X \to \mathcal{P}$ with convex-valued dual Φ^* be given. Suppose that val Φ is finitary connected for \mathcal{P} . Then every set $A \in \mathcal{E}(X)$ with $\bigcap_{x \in A} \Phi(x) = \emptyset$ contains an independent subset B with $\bigcap_{x \in B} \Phi(x) = \emptyset$.

Proof. Since every singleton is independent, we may assume $A \in \mathcal{E}^{n+2}(X)$ for some $n \in \{0, 1, 2, ...\}$. If A is dependent, then by Remark 5.1 and Proposition 5.2 there exists an $A' \in \mathcal{E}^{n+1}(A)$ with $\bigcap_{x \in A'} \Phi(x) = \emptyset$. Proceeding inductively we obtain the desired result.

A modified version of Proposition 5.2 holds for H-independent sets:

Proposition 5.4. Let $n \in \mathbb{N} \cup \{0\}$, let (X, Ψ) be a quasiconvex space, and let (S, \mathcal{P}) be a paved space. Let a set-valued function $\Phi : X \to 2^S$ be given such that

(i) $\bigcap_{t \in B} \Phi(t) \in \mathcal{P} \setminus \{\emptyset\} \ \forall B \in \mathcal{E}^m(X), \ m \in \{1, \dots, n+1\},\$

(*ii*) $\Phi(\Psi(B)) = \Phi(B) \ \forall B \in \mathcal{E}^{n+1}(X),$

and in case $n \neq 0$,

(iii) val Φ is n-ary and (n+1)-ary connected for \mathcal{P} .

Then $\bigcap_{x \in A} \Phi(x) \neq \emptyset$ for every H-dependent set $A \in \mathcal{E}^{n+2}(X)$.

Proof. Let $A \in \mathcal{E}^{n+2}(X)$ be H-dependent, i.e.,

(11) $\exists \hat{x} \in \bigcap_{x \in A} \Psi(A \setminus \{x\}).$

In case n = 0 we have $\bigcap_{x \in A} \Phi(x) = \bigcap_{x \in A} \Phi(A \setminus \{x\}) = \bigcap_{x \in A} \Phi(\Psi(A \setminus \{x\})) \supset \Phi(\hat{x}) \neq \emptyset$. Now let n > 0. If A is dependent, then the assertion follows from Proposition 5.2. Now let A be independent. Then we have $\hat{x} \notin A$ and therefore $A_x := (A \setminus \{x\}) \cup \{\hat{x}\} \in \mathcal{E}^{n+2}(X), x \in A$. By (11) every set A_x is dependent, and from Proposition 5.2 we infer

$$\emptyset \neq \bigcap_{t \in A_x} \Phi(t) = \Phi(\hat{x}) \cap \bigcap_{t \in A \setminus \{x\}} \Phi(t) \quad \forall x \in A.$$

But (*ii*) and (11) imply $\Phi(\hat{x}) \subset \bigcup_{t \in A} \Phi(t)$, and together with (*i*) we arrive at $\Phi(\hat{x}) \cap \bigcap_{t \in A} \Phi(t) \neq \emptyset$, since val Φ is (n+1)-ary connected for \mathcal{P} .

As a consequence, we obtain as in the proof of Theorem 5.3:

Theorem 5.5. Let a quasiconvex space (X, Ψ) , a paved space (S, \mathcal{P}) with $\bigcap_f - closed \mathcal{P}$, and a set-valued function $\Phi : X \to \mathcal{P}$ with convex-valued dual Φ^* be given. Suppose that val Φ is finitary connected for \mathcal{P} . Then for every set $A \in \mathcal{E}(X)$ with $\bigcap_{x \in A} \Phi(x) = \emptyset$ there exists an H-independent set $B \in \mathcal{E}(X)$ with card $B \leq card A$ and $\bigcap_{x \in B} \Phi(x) = \emptyset$.

Together with Remark 3.2 a) we obtain:

Corollary 5.6. Let a QP-space (X, \mathcal{Q}, Ψ) with $\Psi(\mathcal{E}(X)) \subset \mathcal{Q}$ and \cap_f -closed \mathcal{Q} , a paved space (S, \mathcal{P}) with \cap_f -closed finitary connected \mathcal{P} , and a set-valued function $\Phi : X \to \mathcal{P}$

with convex-valued dual Φ^* be given. Then for every set $A \in \mathcal{E}(X)$ with $\bigcap_{x \in A} \Phi(x) = \emptyset$ there exists a C-independent set $B \in \mathcal{E}(X)$ with card $B \leq \text{card } A$ and $\bigcap_{x \in B} \Phi(x) = \emptyset$.

The "closed version" of the following "Dual Helly Theorem" is due to Flåm and Greco [9].

Example 5.7. Let *E* be a vector space endowed with a topology that induces the Euclidean topology on every finite dimensional linear subspace, and let $X \subset \mathbb{R}^d$ and $S \subset E$ be nonvoid convex sets. Let $\Phi : X \to 2^S$ be a set-valued function with the following properties:

- (i) every $\Phi(x), x \in X$, is closed (open) and convex,
- (ii) every $\Phi^*(s), s \in S$, is convex, and
- (iii) $\bigcap_{x \in B} \Phi(x) \neq \emptyset$ for all $B \in \mathcal{E}^m(X), \ m \le d+1$.

Then $\bigcap_{x \in A} \Phi(x) \neq \emptyset$ for all $A \in \mathcal{E}(X)$.

Proof. By Example 3.9 b) the assumptions of Theorem 5.5 (or of Corollary 5.6) are satisfied, and the assertion follows together with Example 4.8. \Box

If (X, \mathcal{Q}) and (S, \mathcal{P}) are paved spaces, then a set-valued function $\Phi : X \to 2^S$ will be called *(n-ary)* $\mathcal{Q} - \mathcal{P} - connected$ iff $\Phi(C)$ is *(n-ary)* connected for \mathcal{P} for every subset C of X which is *(n-ary)* connected for \mathcal{Q} .

Proposition 5.8. Let (X, \mathcal{Q}, Ψ) be a quasiconvex paved space, (S, \mathcal{P}) a paved space, $\Phi : X \to 2^S$ a correspondence, and $A \in \mathcal{E}^{n+1}(X)$ such that the following holds:

- (i) $\bigcap_{t \in B} \Phi(t) \in \mathcal{P} \setminus \{\emptyset\} \ \forall B \in \mathcal{E}^m(A), \ m \in \{1, \dots, n\},\$
- (*ii*) $\Phi(\Psi(A)) = \Phi(A),$
- (iii) $\Psi(A)$ is n-ary connected for Q, and
- (iv) Φ is $n-ary \mathcal{Q} \mathcal{P}-connected$.

Then $\bigcap_{x \in A} \Phi(x) \neq \emptyset$.

Proof. By (*ii*), (*iii*), and (*iv*), $T := \Phi(\Psi(A)) = \Phi(A)$ is *n*-ary connected for \mathcal{P} . Together with (*i*) the assertion follows.

Theorem 5.9. Let (X, \mathcal{Q}, Ψ) be a QP-space, (S, \mathcal{P}) a paved space with \cap_f -closed \mathcal{P} , and $\Phi: X \to \mathcal{P}$ a correspondence such that Φ is n-ary $\mathcal{Q} - \mathcal{P}$ -connected for every $n \in \mathbb{N}$, val Φ is compact, and Φ^* is convex-valued. Then Φ has a constant selector.

Proof. Suppose, to the contrary, that $\bigcap_{x \in X} \Phi(x)$ is empty. Since val Φ is compact, there exists an $A \in \mathcal{E}^{n+1}(X), n \in \mathbb{N}$, with $\bigcap_{x \in A} \Phi(x) = \emptyset$. Without loss of generality we may assume that $\bigcap_{x \in B} \Phi(x) \neq \emptyset$ for all $B \in \mathcal{E}^n(A)$. Now $\Psi(A)$ is *n*-ary connected for \mathcal{Q} , since (X, \mathcal{Q}, Ψ) is a QP-space, and Proposition 5.8 together with Remark 5.1 leads to a contradiction.

For a set-valued function $\Phi: X \to 2^S$ we set

$$\Phi_E(x) := \bigcap_{t \in E \cup \{x\}} \Phi(t), x \in X, E \subset X.$$

Proposition 5.10. Let a paved space (X, \mathcal{Q}) , a nonvoid set S, a set-valued function $\Phi: X \to 2^S$, and a set $A \in \mathcal{E}^{n+1}(X), n \in \mathbb{N}$, be given such that the following holds:

- (i) For every $B \in \mathcal{E}^2(A)$ there exists a subset D of X with $B \subset D$ and $\Phi(B) = \Phi(D)$ such that D is connected for Q.
- (ii) Φ_E is a \mathcal{Q} -val Φ -connected correspondence for every $E \in \mathcal{E}^{n-1}(A)$.

Then $\bigcap_{x \in A} \Phi(x) \neq \emptyset$.

Proof. Take $B = \{x_1, x_2\} \in \mathcal{E}^2(A)$, choose D according to (i), and set $E = A \setminus B$. Then (*i*) implies $C := \Phi_E(D) = \Phi_E(B) \subset \Phi(x_1) \cup \Phi(x_2)$. Since D is connected for \mathcal{Q} , it follows from (*ii*) that C is connected for val Φ . Therefore, from $C \cap \Phi(x_i) = \Phi_E(x_i) \neq \emptyset$, $i \in \{1, 2\}$, we infer $\bigcap_{x \in A} \Phi(x) = C \cap \Phi(x_1) \cap \Phi(x_2) \neq \emptyset$.

Lemma 5.11. Let (X, \mathcal{Q}) be a paved space such that \mathcal{Q} is \cap_a -closed and contains X, and let $\Phi: X \to 2^S$ be a correspondence with $\operatorname{val}\Phi^* \subset \mathcal{Q}$. Then for $E \in \mathcal{E}(X) \cup \{\emptyset\}$ with $\Phi_E(x) \neq \emptyset \ \forall x \in X$ the implications $(a) \Longrightarrow (b) \Longrightarrow (c)$ hold for the following conditions:

- (a) There exists a connected paving \mathcal{P} in S with $\operatorname{val}\Phi \subset \mathcal{P}$ which is \cap_f -closed in case $E \neq \emptyset$.
- (b) val Φ_E is connected for val Φ .
- (c) Φ_E is \mathcal{Q} -val Φ -connected.

Proof. $(a) \Longrightarrow (b)$ is obvious, and $(b) \Longrightarrow (c)$ follows from [18]; Lemma 3 and 4. (Compare also Remark 6.23 below.)

Example 5.12 (Cf. [16]; Corollary 1). Let (X, \mathcal{Q}) and (S, \mathcal{P}) be paved spaces such that \mathcal{Q} is \cap_a -closed and connected with $X \in \mathcal{Q}$, and \mathcal{P} is \cap_f -closed, compact, and connected. Then every correspondence $\Phi : X \to 2^S$ with $\operatorname{val}\Phi \subset \mathcal{P}$ and $\operatorname{val}\Phi^* \subset \mathcal{Q}$ has a constant selector.

Proof. Suppose, to the contrary, that $\bigcap_{x \in X} \Phi(x) = \emptyset$. Since val $\Phi \subset \mathcal{P}$ and \mathcal{P} is compact, there exists an $A \in \mathcal{E}(X)$ with minimal cardinality such that $\bigcap_{x \in A} \Phi(x) = \emptyset$. Now Proposition 5.10 with $D = \Psi_{\mathcal{Q}}(B) (\in \mathcal{Q})$ together with Lemma 5.11 leads to a contradiction. \Box

6. Quasiconvexities with $c \leq 2$ or $h \leq 2$

We shall now study in some detail quasiconvex spaces (X, Ψ) with "small" Carathéodorynumber or Helly-number, i.e., with $c(X, \Psi) \leq 2$ or $h(X, \Psi) \leq 2$, respectively. Convexities Ψ with $h(X, \Psi) \leq 2$ are often called *binary convexities*.

Example 6.1. In a quasiconvex paved space (X, Ψ) the following holds:

- a) $c(X,\Psi) = 1 \Longrightarrow \Psi(A) \subset \bigcup_{x \in A} \Psi(\{x\}) \ \forall A \in \mathcal{E}(X) \Longrightarrow \mathcal{C}_{\Psi} \text{ is a discrete topology} \Leftrightarrow \mathcal{C}_{\Psi} \text{ is } \cup_f -\text{closed. Conversely, if } \Psi \text{ is a convexity and } \mathcal{C}_{\Psi} \text{ is } \cup_f -\text{closed, then } c(X,\Psi) = 1.$
- b) If \mathcal{C}_{Ψ} is \cup_f -closed, then it is finitary connected iff it is connected.
- c) Ψ is *additive*, i.e., $\Psi(A) = \bigcup_{x \in A} \Psi(\{x\}), A \in \mathcal{E}(X)$, iff Ψ is monotone with $c(X, \Psi) = 1$. In this case Ψ has the join-hull property and the subdivision property.
- d) Let Ψ be additive. Then $(\alpha) \Psi$ is a convexity. $\iff (\beta) \Psi$ is join-hull commutative. $\iff (\gamma) \Psi(\mathcal{E}^1(X)) \subset \mathcal{C}_{\Psi}.$

Proof. a) The first implication follows by induction. Let $V = \bigcup_{i \in I} C_i$ with $C_i \in C_{\Psi}$, $i \in I$. Then for $A \in \mathcal{E}(V)$ there exist i_x with $x \in C_{i_x}, x \in A$. Now $\Psi(A) \subset \bigcup_{x \in A} \Psi(\{x\})$ or $A \subset \bigcup_{x \in A} C_{i_x} \in C_{\Psi}$ implies $\Psi(A) \subset V$, i.e., $V \in C_{\Psi}$. But C_{Ψ} is an alignment and therefore a discrete topology. If Ψ is a convexity, then for $A \in \mathcal{E}(X) \setminus \mathcal{E}^1(X)$ the relation $A \subset \bigcup_{x \in A} \Psi(A \setminus \{x\}) \in C_{\Psi}$ implies relation (3).

b) This follows from the fact that a lattice of sets is finitary connected iff it is connected [20].

c) The first part follows from a), and the second part is obvious.

d) (α) \implies (β) follows from c) together with Lemma 2.2 c).

 $\begin{aligned} &(\beta) \Longrightarrow (\gamma) \colon \Psi(\{y\}) = \bigcup_{x \in \Psi(\{y\})} \Psi(\{x\}) \cup \Psi(\{y\}) \supset \Psi(\{x\}), x \in \Psi(\{y\}), \text{ yields } \Psi(A) = \\ &\bigcup_{x \in A} \Psi(\{x\}) \subset \Psi(\{y\}), \ A \in \mathcal{E}(\Psi(\{y\})). \end{aligned}$

 $(\gamma) \Longrightarrow (\alpha)$: For $A, B \in \mathcal{E}(X)$ with $B \subset \Psi(A)$ we have $\Psi(\{y\}) \subset \Psi(A) \ \forall y \in B$, and therefore, $\Psi(B) \subset \Psi(A)$.

Example 6.2. In a quasiconvex paved space (X, Ψ) the following holds:

- a) If $h(X, \Psi) = 1$, then \mathcal{C}_{Ψ} is an H_1 -paving. If Ψ is monotone and $\Psi(\mathcal{E}^1(X)) \subset \mathcal{C}_{\Psi}$, then the converse is also true.
- b) For an additive convexity Ψ we have (α) \mathcal{C}_{Ψ} is connected $\iff (\beta)$ $\Psi(\mathcal{E}^2(X))$ is connected for $\Psi(\mathcal{E}^1(X)) \iff (\gamma)$ $h(X, \Psi) = 1$.

Proof. a) The first part follows from Lemma 4.5. Let Ψ be monotone with $\Psi(\mathcal{E}^1(X)) \subset \mathcal{C}_{\Psi}$. If \mathcal{C}_{Ψ} is an H_1 -paving, then $\Psi(\{x\}) \cap \Psi(\{y\}) \neq \emptyset$ for $\{x, y\} \in \mathcal{E}^2(X)$, and together with Lemma 2.1 c)(ii) we obtain $h(X, \Psi) = 1$. b) $(\alpha) \Longrightarrow (\beta)$ is obvious.

 $(\beta) \Longrightarrow (\gamma)$: $\Psi(\{x, y\}) = \Psi(\{x\}) \cup \Psi(\{y\}), \{x, y\} \in \mathcal{E}^2(X)$, implies $\Psi(\{x\}) \cap \Psi(\{y\}) \neq \emptyset$, and therefore $h(X, \Psi) = 1$ as above.

 $(\gamma) \Longrightarrow (\alpha)$: Let $C_0, C_1, C_2 \in \mathcal{C}_{\Psi}$ with $C_0 \subset C_1 \cup C_2$. Then for $x_i \in C_0 \cap C_i, i \in \{1, 2\}$, we have $C_0 \cap C_1 \cap C_2 \supset \Psi(\{x_1\}) \cap \Psi(\{x_2\}) \neq \emptyset$.

Example 6.3. Let X be a topological space endowed with the convexity $cl : \mathcal{E}(X) \cup \{\emptyset\} \to 2^X$. Here the following holds:

- a) The convexity cl coincides with the hull convexity $\Psi_{\mathcal{F}(X)}$, and $\mathcal{F}(X) \subset \mathcal{C}_{cl}$.
- b) An $A \in \mathcal{E}(X)$ is dependent iff it contains an accumulation point.
- c) The convexity cl is additive. In particular, by Example 6.1, cl is join-hull commutative with the subdivision property and with Carathéodory number c(X, cl) = 1, and C_{cl} is a discrete topology.
- d) X is discrete iff $\mathcal{F}(X) = \mathcal{C}_{cl}$. (If X is discrete, then $C = \bigcup_{x \in C} cl(\{x\}) \in \mathcal{F}(X)$ for every $C \in \mathcal{C}_{cl}$. Together with a) we obtain $\mathcal{F}(X) = \mathcal{C}_{cl}$. Conversely, by c), $\mathcal{F}(X) = \mathcal{C}_{cl}$ implies that $\mathcal{F}(X)$ and $\mathcal{G}(X) = \mathcal{F}(X)^C$ are discrete topologies.) Similarly, X is discrete iff $\mathcal{G}(X) = \mathcal{C}_{op}$, where $op = \Psi_{\mathcal{G}(X)}$ is the "open hull convexity".
- e) The following properties are equivalent:
 - (i) X is a T_1 -space.
 - (ii) The closure operation coincides with the free convexity Υ .
 - (iii) Every $A \in \mathcal{E}(X)$ is H-independent.
 - (iv) Every $A \in \mathcal{E}^2(X)$ is H-independent.

- f) For $n \in \mathbb{N}$ the following properties are equivalent:
 - (i) $\mathcal{F}(X)$ is *n*-ary connected.
 - (ii) $\mathcal{F}(X)$ is *l*-ary connected for every $l \ge n$.
 - (iii) $\mathcal{F}(X)$ is an H_n -paving.
 - (iv) $h(X, cl) \le n$.

(Here, (iii) \iff (iv) follows from a) together with Example 4.7, and (i) \iff (ii) \iff (iii) follows from Remark 4.1.)

- g) The following properties are equivalent:
 - (i) $\mathcal{F}(X)$ is connected (i.e., X is ultraconnected [26]).
 - (ii) $\mathcal{F}(X)$ is finitary connected.
 - (iii) $\mathcal{F}(X)$ is an H_1 -paving.
 - (iv) $\mathcal{F}(X) \setminus \{\emptyset\}$ is \cap_f -closed.
 - (v) $(S, \mathcal{F}(X), cl)$ is a CP-space.
 - (vi) h(X, cl) = 1.

(Here, (i) \iff (ii) \iff (iii) \iff (vi) follows from f), (iii) \iff (iv) and (ii) \implies (v) are obvious, and (v) \implies (vi) follows from c) and Remark 3.2 b).)

Example 6.4. Let X be a nonvoid set, and let $\hat{x} \in X$ be fixed. Then $\mathcal{G}(X) := \{G \subset X : \hat{x} \notin G\} \cup \{X\}$ is a topology on X, the excluded point topology [26]. This topology is compact, discrete, and ultraconnected. By Example 6.3 $(X, \mathcal{F}(X), cl)$ is a CP-space, and h(X, cl) = c(X, cl) = 1.

Example 6.5. For a quasiconvex space (X, Ψ) with monotone Ψ we have (a) \iff (b) \implies (c) for the following conditions:

- (a) $c(X, \Psi) \leq 2.$
- (b) $\Psi(A) = \bigcup_{x,y \in A} \Psi(\{x, y\})$ for all $A \in \mathcal{E}(X)$.
- (c) Ψ has the join-hull property, and every $A \in \mathcal{E}^3(X)$ is C-dependent.

If Ψ is a convexity, then the three conditions are equivalent.

Proof. (a) \iff (b) follows from Lemma 2.4. (b) \implies (c): For $\{x, y, z\} \in \mathcal{E}^3(A)$, $A \in \mathcal{E}(X)$, we have $\Psi(\{x, y\}) \subset \Psi(A \setminus \{z\}) \subset \Psi^{\Delta}(A)$, and (b) implies $\Psi(A) \subset \Psi^{\Delta}(A)$, i.e., every $A \in \mathcal{E}(X)$ with card $A \ge 3$ is C-dependent. For $A \in \mathcal{E}(X)$ and $y \in X$ relation (b) implies

$$\Psi(A \cup \{y\}) = \Psi(A) \cup \bigcup_{x \in A} \Psi(\{x, y\}) \subset \bigcup_{x \in \Psi(A)} \Psi(\{x, y\}).$$

The last assertion follows with Lemmas 2.1 d) and 2.2 c).

Example 6.6. Let $\preceq \subset X \times X$ be a relation. Then

$$\Psi(A) = \{x \in X : \exists x_1, x_2 \in A \text{ with } x_1 \leq x \text{ and } x \leq x_2\}, A \in \mathcal{E}(X) \cup \{\emptyset\}$$

defines a quasiconvexity iff \leq is reflexive. In this case, Ψ satisfies condition (b) in Example 6.5, and therefore Ψ is monotone with $c(X, \Psi) \leq 2$. If \leq is a preorder (i.e., reflexive and transitive), then Ψ is a convexity, the *order convexity* of (X, \leq) .

Example 6.7. For a quasiconvex space (X, Ψ) we have (a) \Longrightarrow (b) \iff (c) \Longrightarrow (d) for the following conditions:

- (a) $h(X, \Psi) \le 2.$
- (b) Ψ is modular, i.e., $\Psi(\{x, y\}) \cap \Psi(\{y, z\}) \cap \Psi(\{z, x\}) \neq \emptyset$ for all $\{x, y, z\} \subset X$.
- (c) Every $A \in \mathcal{E}^3(X)$ is H-dependent.
- (d) C_{Ψ} is an H_2 -paving.

If Ψ is monotone, then (a) and (b) are equivalent, and if all segments $\Psi(A), A \in \mathcal{E}^2(X)$ are convex, then (c) and (d) are equivalent.

If Ψ is a convexity with property (a) such that every pair of points can be screened with convex sets (i.e., $\forall \{x, y\} \in \mathcal{E}^2(X) \exists C, D \in \mathcal{C}_{\Psi} : C \cup D = X, x \in C \setminus D$, and $y \in D \setminus C$), then Ψ is join-hull commutative.

Proof. (a) \implies (b) \iff (c) is obvious.

(b) \Longrightarrow (d): Let $\{C_0, C_1, C_2\} \subset C_{\Psi}$ and let $x_i \in C_{-i}, i \in \{0, 1, 2\}$. Then $C_0 \cap C_1 \cap C_2 \supset \Psi(\{x_1, x_2\}) \cap \Psi(\{x_0, x_2\}) \cap \Psi(\{x_0, x_1\}) \neq \emptyset$. Hence (d) follows with Remark 4.1 a). If Ψ is monotone, then (c) \Longrightarrow (a) follows with Lemma 2.1 c)(ii).

Let $A := \{x_0, x_1, x_2\} \in \mathcal{E}^3(X)$. Suppose that each $C_i = \Psi(\{x_j, x_k\}), \{i, j, k\} = \{0, 1, 2\}$, is convex. Since $x_i \in C_{-i}, i \in \{0, 1, 2\}$, condition (d) implies $C_0 \cap C_1 \cap C_2 \neq \emptyset$, i.e., A is H-dependent.

The last assertion is proved in [27]; p. 172 f.

Example 6.8. Let $(X, \langle \cdot, \cdot \rangle)$ be a modular segment space, i.e., a segment space with $\langle x, y \rangle \cap \langle y, z \rangle \cap \langle z, x \rangle \neq \emptyset$ for all $\{x, y, z\} \in \mathcal{E}^3(X)$, and let \mathcal{C} be the paving of all $\langle \cdot, \cdot \rangle$ -convex subsets of X. Then, by Examples 2.7 and 6.7, we have $h(X, \Psi_{\mathcal{C}}) \leq 2$. The segment function $\langle \cdot, \cdot \rangle_d$ of a metric space (X, d) is modular iff every triple of pairwise intersecting closed balls has a common point ([27]; p. 134, [28]; p. 32). Another example is a lattice (X, \wedge, \vee) [27] endowed with the segment function

$$\langle x, y \rangle = \{ s \in X : x \land y \le s \le x \lor y \}, x, y \in X.$$

Here we have $(x \wedge y) \lor (x \wedge z) \lor (y \wedge z) \in \langle x, y \rangle \cap \langle y, z \rangle \cap \langle z, x \rangle$.

Theorem 6.9. Let $\Phi : X \to 2^S$ be a correspondence. Then the following conditions are equivalent:

- (a) Φ has a constant selector.
- (b) There exist topologies on X and S and a quasiconvexity Ψ on X such that
 - (i) the values of Φ are connected, closed, and compact,
 - (ii) the values of Φ^* are convex,
 - (iii) Φ is $\mathcal{F}(X) \mathcal{F}(S)$ -connected,
 - (iv) every segment $\Psi(A) \in \Psi(\mathcal{E}^2(X))$ is connected, and
 - (v) $\mathcal{K}(S) \cap \mathcal{F}(S)$ is an H_2 -paving.
- (c) val Φ is connected, and there exists a paving Q in X and a quasiconvexity Ψ for Xsuch that $\Psi(\mathcal{E}^2(X))$ is connected for Q, Φ is Q-val Φ -connected, Φ^* is convexvalued, and there exists a compact \cap_f -closed H_2 -paving \mathcal{P} in S such that Φ is \mathcal{P} -valued.

Proof. $(a) \Longrightarrow (b)$: On X take the coarse topology $\mathcal{G}(X) = \{\emptyset, X\}$ and the free convexity $\Psi(A) \equiv A$. For $\hat{s} \in \bigcap_{x \in X} \Phi(x)$ take the excluded point topology on S according to Example 6.4.

$$(b) \Longrightarrow (c)$$
: Take $\mathcal{Q} = \mathcal{F}(X)$ and $\mathcal{P} = \mathcal{K}(S) \cap \mathcal{F}(S)$.

 $(c) \implies (a)$: From Proposition 5.8 with n = 1 and $\mathcal{P} = \text{val}\Phi$ together with Remark 5.1 it follows that $\Phi(x_1) \cap \Phi(x_2)$ is nonvoid for all $x_1, x_2 \in X$. Since \mathcal{P} is a \cap_f -closed H_2 -paving paving we infer from $\text{val}\Phi \subset \mathcal{P}$ that $\text{val}\Phi$ has the finite intersection property. Since $\text{val}\Phi$ is compact, we arrive at (a).

Theorem 6.10. Let a quasiconvex paved space (X, \mathcal{Q}, Ψ) with $h(X, \Psi) \leq 2$, a paved space (S, \mathcal{P}) with compact and \cap_f -closed \mathcal{P} , and a correspondence $\Phi : X \to \mathcal{P}$ with convexvalued dual Φ^* be given. Suppose that the paving of segments $\Psi(\mathcal{E}^2(X))$ is connected for \mathcal{Q}, Φ is \mathcal{Q} -val Φ -connected, and val Φ is finitary connected for \mathcal{P} . Then Φ has a constant selector.

Proof. From Proposition 5.8 with n = 1 together with Remark 5.1 it follows that $\Phi(x_1) \cap \Phi(x_2)$ is nonvoid for all $x_1, x_2 \in X$. Hence, val Φ has the finite intersection property according to Theorem 5.5, and the assertion follows since val Φ is compact. \Box

Corollary 6.11. Let (X, \mathcal{Q}) and (S, \mathcal{P}) be paved spaces such that \mathcal{Q} is \cap_a -closed, connected and contains X, and \mathcal{P} is \cap_f -closed and compact. Let $\Phi : X \to 2^S$ be a correspondence with $val\Phi^* \subset \mathcal{Q}$ and $val\Phi \subset \mathcal{P}$. Assume, moreover, that either

- (i) val Φ is connected, and \mathcal{P} is an H_2 -paving, or
- (ii) val Φ is finitary connected for \mathcal{P} , and \mathcal{Q} is an H_2 -paving.

Then Φ has a constant selector.

Proof. By Lemma 5.11, Φ is \mathcal{Q} – val Φ -connected. Obviously, $\Psi_{\mathcal{Q}}(\mathcal{E}^2(X))(\subset \mathcal{Q})$ is connected for \mathcal{Q} , and Φ^* is $\Psi_{\mathcal{Q}}$ -convex-valued. In case (i) the assertion follows from Theorem 6.9 " $(c) \Longrightarrow (a)$ ". In case (ii) we have $h(X, \Psi_{\mathcal{Q}}) \leq 2$ according to Example 4.7. Hence, Theorem 6.10 can be applied.

Theorem 6.12. Let two paved spaces (X, \mathcal{Q}) and (S, \mathcal{P}) be given such that \mathcal{Q} is \cap_f -closed and compact, and \mathcal{P} is \cap_a -closed, connected and contains S. Let $\Phi : X \to 2^S$ be a correspondence such that $\operatorname{val}\Phi^* \subset \mathcal{Q}$ and $\operatorname{val}\Phi \subset \mathcal{P}$. Assume, moreover, that either

- (i) val Φ^* is connected, and Q is an H_2 -paving, or
- (ii) val Φ^* is finitary connected for Q, and \mathcal{P} is an H_2 -paving.

Then Φ has a constant selector.

Proof. Suppose that $\bigcap_{x \in X} \Phi(x) = \emptyset$. Then Φ^* is a correspondence, and by Corollary 6.11, applied to Φ^* instead of Φ , there exists an $\hat{x} \in \bigcap_{s \in S} \Phi^*(s)$ in contradiction to $\Phi(\hat{x}) \neq \emptyset$.

Example 6.13. A *tree-like space* is a connected Hausdorff space X in which every two points x and y can be separated by a third point z, i.e., x and y belong to different components of $X \setminus \{z\}$. For a locally connected tree-like space X the following holds:

a) ([20, 29]) $\mathcal{C}(X)$ is an alignment, and $\Psi = \Psi_{\mathcal{C}(X)}$ is a convexity with $\Psi(\{x\}) = \{x\}, x \in X$. For $\{x, y\} \in \mathcal{E}^2(X)$ the segment

$$[x, y] := \{x, y\} \cup \{z \in X : z \text{ separates } x \text{ from } y\}$$

is compact, and it is the smallest connected set containing x and y. Hence, $[x, y] = \Psi(\{x, y\})$. By Lemma 3.4 a) the polytopes $\Psi(A) = \bigcup_{x,y \in A} [x, y], A \in \mathcal{E}(X)$, are

connected (and compact) as well, and therefore, $\Psi = \Psi_{\mathcal{C}(X) \cap \mathcal{K}(X)}$. Moreover, the pavings of convex, star-shaped, respectively connected subsets coincide according to Lemma 3.4 b).

- b) $C_{\Psi} = \mathcal{C}(X)$ is an H_2 -paving [20]. Therefore, $h = h(X, \Psi) \leq 2$. From $\Psi(\{x\}) \cap \Psi(\{y\}) = \{x\} \cap \{y\} = \emptyset, x \neq y$, we infer h = 2. Together with a), Example 6.5, and Lemma 2.2 we get $c = c(X, \Psi) \leq 2$, and Ψ is join-hull commutative. Hence, $\Psi(\{x, y\}) \neq \{x, y\}, x \neq y$, implies c = 2. In particular, relation (3) and therefore (2) holds for every $A \in \mathcal{E}^n(X), n \geq 3$. Let $\{x, y\} \in \mathcal{E}^2(X)$ and $t \in [x, y]$. Then $D := [x, t] \cup [t, y]$ is connected, and $\{x, y\} \subset D$ implies $[x, y] \subset D$. Hence, relation (2) is also satisfied for every $A \in \mathcal{E}^2(X)$. Therefore, Ψ has the subdivision property.
- c) C(X) is finitary connected for $C(X) \cap \mathcal{F}(X)$ [20]. In particular, $(X, C(X) \cap \mathcal{F}(X), \Psi)$ is a CP-space.

A metric space (X, d) is hyperconvex iff any paving $\{B(x_i, r_i) : i \in I\}$ of closed balls in X satisfying $d(x_i, x_j) \leq r_i + r_j$ for all $i, j \in I$, has the global intersection property $\bigcap_{i \in I} B(x_i, r_i) \neq \emptyset$. We denote by \mathcal{A}_d the paving of arbitrary intersections of closed balls (the paving of 'admissible' subsets of X).

Example 6.14. Let (X, d) be a hyperconvex metric space. Then (X, d) is complete and Menger-convex [15], and \mathcal{A}_d is a finitary connected and compact H_2 -paving [20]. Hence, $(X, \mathcal{A}_d, \operatorname{cov})$ with the convexity $\operatorname{cov}(A) = \Psi_{\mathcal{A}_d}(A), A \in \mathcal{E}(X)$, is a CP-space with $\mathcal{A}_d \subset \mathcal{C}_{\operatorname{cov}}$. Together with $\operatorname{cov}(\{x\}) \cap \operatorname{cov}(\{y\}) = \{x\} \cap \{y\} = \emptyset, x \neq y$, we obtain $h(X, \operatorname{cov}) = 2$ according to Example 4.7. In particular, by Lemma 4.5, $\mathcal{C}_{\operatorname{cov}}$ is an H_2 -paving. By Remark 3.3 a), $\mathcal{C}_{\operatorname{cov}}$ is finitary connected for \mathcal{A}_d and, by Lemma 3.4 b), $\mathcal{C}_{\operatorname{cov}} \subset \mathcal{C}(X)$, since according to Examples 20 and 21 in [20] we have $\mathcal{A}_d \subset \mathcal{C}(X)$. By Remark 4.1 c) the pavings $\mathcal{F}(X) \cap \mathcal{C}_{\operatorname{cov}}$ and $\mathcal{G}(X) \cap \mathcal{C}_{\operatorname{cov}}$, and $(X, \mathcal{F}(X) \cap \mathcal{C}_{\operatorname{cov}}, \operatorname{cov})$ is a CP-space.

In the following, a hyperconvex metric space will always be endowed with the convexity cov.

Example 6.15. Let X and S be nonvoid sets and $\Phi: X \to 2^S$ a correspondence. Suppose that either

- (i) there exists a locally connected tree-like topology on X such that the dual Φ^* has connected values, or
- (ii) there exists a hyperconvex metric d on X such that the dual Φ^* has convex values.

Then the following are equivalent:

- (a) Φ has a constant selector.
- (b) Φ is $\mathcal{F}(X)$ val Φ -connected, and there exists a \cap_f -closed compact paving \mathcal{P} in S such that Φ is \mathcal{P} -valued and val Φ is finitary connected for \mathcal{P} .

Proof. (a) \implies (b): For $\hat{s} \in \bigcap_{x \in X} \Phi(x)$ take the excluded point topology according to Example 6.4, and take $\mathcal{P} = \mathcal{F}(S)$.

(b) \implies (a): Apply Theorem 6.10 with $Q = \mathcal{F}(X)$ together with Example 6.13 in case (i) and Example 6.14 in case (ii).

Example 6.16. Let X and S be nonvoid sets and $\Phi: X \to 2^S$ a correspondence. Suppose

that one of the following three conditions is satisfied:

- (i) there exists a locally connected tree-like topology on X such that the dual Φ^* has compact connected values,
- (ii) there exists a hyperconvex metric d on X such that the dual Φ^* has compact convex values, or
- (iii) there exists a hyperconvex metric d on X such that the dual Φ^* has admissible values.

Then the following are equivalent:

- (a) Φ has a constant selector.
- (b) There exists a \cap_a -closed connected paving \mathcal{P} in S with $S \in \mathcal{P}$ such that Φ is \mathcal{P} -valued.

Proof. (a) \implies (b): Compare the proof of Example 6.15.

(b) \Longrightarrow (a): Let $\mathcal{Q} = \mathcal{K}(X) \cap \mathcal{C}(X)$ in case (i), $\mathcal{Q} = \mathcal{K}(X) \cap \mathcal{C}_{cov}$ in case (ii), and $\mathcal{Q} = \mathcal{A}_d$ in case (iii). Then, by Examples 6.13 and 6.14, \mathcal{Q} is a \cap_a -closed, connected, and compact H_2 -paving with val $\Phi^* \subset \mathcal{Q}$. From Theorem 6.12(*i*) the assertion follows.

Example 6.17. Let (X, \mathcal{Q}) be a paved space such that \mathcal{Q} is \cap_f -closed and compact, and let $\Phi : X \to 2^S$ be a correspondence with $\operatorname{val}\Phi^* \subset \mathcal{Q}$ such that $\operatorname{val}\Phi^*$ is finitary connected for \mathcal{Q} . Suppose that either

- (i) there exists a locally connected tree-like topology on S such that Φ has closed connected values, or
- (ii) there exists a hyperconvex metric on S such that Φ has closed convex values.

Then Φ has a constant selector.

Proof. Apply Theorem 6.12(*ii*) with $\mathcal{P} = \mathcal{F}(S) \cap \mathcal{C}(S)$ together with Example 6.13 in case (i), and with $\mathcal{P} = \mathcal{F}(S) \cap \mathcal{C}_{cov}$ together with Example 6.14 in case (ii).

The following generalization of Darboux's Theorem is well-known. (Compare Remark 6.23 below.)

Lemma 6.18. Let X and S be topological spaces, and let $\Phi : X \to 2^S$ be a correspondence with a continuous selector $f : X \to S$. Then Φ is $\mathcal{F}(X) - \mathcal{F}(S)$ -connected iff val $\Phi \subset \mathcal{C}(S)$.

Proof. Suppose that val $\Phi \subset C(S)$. Let $C \in C(X)$ and $F_1, F_2 \in \mathcal{F}(S)$ with $\Phi(C) \subset F_1 \cup F_2$ and $\Phi(C) \cap F_1 \cap F_2 = \emptyset$. We have to show that either $\Phi(C) \cap F_1 = \emptyset$ or $\Phi(C) \cap F_2 = \emptyset$ holds. Suppose, to the contrary, that $\Phi(x_i) \cap F_i \neq \emptyset$ for $x_i \in C, i \in \{1, 2\}$. Then we have $\Phi(x_i) \subset F_i, i \in \{1, 2\}$, since val Φ is connected for $\mathcal{F}(S)$. Now $x_i \in f^{-1}(F_i) \cap C, i \in \{1, 2\}, C \subset f^{-1}(F_1) \cup f^{-1}(F_2)$, and $f^{-1}(F_i) \in \mathcal{F}(X)$ imply $C \cap f^{-1}(F_1) \cap f^{-1}(F_2) \neq \emptyset$ in contradiction to $\Phi(C) \cap F_1 \cap F_2 = \emptyset$. The converse is obvious.

Example 6.19. Let X and S be locally connected tree-like spaces, and let $\Phi : X \to 2^S$ be a connected-valued compact-valued correspondence with connected-valued dual Φ^* . Then the following are equivalent:

- (a) Φ has a constant selector.
- (b) Φ has a continuous selector.

(c) Φ is $\mathcal{F}(X) - \mathcal{F}(S)$ -connected.

(d) Φ is $\mathcal{F}(X) - \mathcal{K}(S) \cap \mathcal{C}(S)$ -connected.

Proof. (a) \implies (b) and (c) \implies (d) is obvious, and (b) \implies (c) follows from Lemma 6.18. Finally, (d) \implies (a) follows from Examples 6.13 and 6.15 (with $\mathcal{P} = \mathcal{C}(S) \cap \mathcal{K}(S)$). \Box

Example 6.20. Let (X, d_X) and (S, d_S) be two hyperconvex metric spaces, and let Φ : $X \to 2^S$ be a correspondence such that Φ has either admissible or compact, convex values and Φ^* has convex values. Then Φ has a constant selector iff it has a continuous selector.

Proof. Apply Example 6.15 with $\mathcal{P} = \mathcal{A}_{d_S}$ or $\mathcal{P} = \mathcal{K}(S) \cap \mathcal{C}_{cov}$, respectively, together with Example 6.14 and Lemma 6.18.

It is easy to formulate more results of the above type, for example in combination with Example 6.7 and/or Remark 6.23 below together with many examples of modular convexities which can be found in [4, 20, 27, 28].

Our theorems above can also be used to derive fixed-point theorems. Recall that a point $x \in X$ is a *fixed point* of a correspondence $\Phi : X \to 2^X$ provided that $x \in \Phi(x)$.

Example 6.21. Let X be a locally connected tree-like space, and let $\Phi : X \to 2^X$ be a connected-valued correspondence with connected-valued and compact-valued dual Φ^* . Then Φ has a fixed point.

Similar results can be found in [2, 25].

Proof. Suppose, to the contrary, that Φ has no fixed point, which means that $x \in \Phi^*(x)$ for every $x \in X$. In particular, Φ^* has a continuous selector, and by Example 6.19 – with Φ replaced by Φ^* – there exists an $\hat{x} \in \bigcap_{x \in X} \Phi^*(x)$, i.e., $\Phi(\hat{x}) = \emptyset$, a contradiction. \Box

Similarly together with Example 6.20 we obtain the following:

Example 6.22. Let (X, d) be a hyperconvex metric space. Then every convex-valued correspondence $\Phi : X \to 2^X$ with convex-valued and compact-valued or with admissible-valued dual Φ^* has a fixed point.

Remark 6.23. Let X and S be topological spaces. Then a correspondence $\Phi : X \to 2^S$ is quartercontinuous [22] (respectively semicontinuous in the sense of Correa et al. [5]) provided that for all $x \in X$ and $G \in \mathcal{G}(S)$ with $\Phi(x) \subset G$ there exists an $U \in \mathcal{G}(X)$ with $x \in U$ and $\Phi(u) \cap G \neq \emptyset$ for all $u \in U$. Obviously, every correspondence with continuous selector is quartercontinuous. Further examples of quartercontinuous correspondences can be found in [17, 18].

According to Correa et al. [5], Lemma 6.18 can be generalized as follows:

Every quarter continuous correspondence $\Phi : X \to 2^S$ with connected values is $\mathcal{F}(X) - \mathcal{F}(S)$ -connected.

An abstract version of this theorem for paved spaces was proved in [18]. For an application of Theorem 5.9 one needs practicable conditions for n-ary Q - P-conncetedness of a correspondence Φ for n > 1. It is intended to study this problem in a separate paper. Acknowledgements. The author is indebted to the referee whose helpful suggestions and comments led to an improvement of the presentation.

References

- V. Boltyanski, H. Martini, P. S. Soltan: Excursions into Combinatorial Geometry, Springer, Berlin (1997).
- [2] C. E. Capel, W. L. Strother: Multi-valued functions and partial order, Portugal. Math. 17 (1958) 41–47.
- [3] C. Carathéodory: Über den Variabilitätsbereich der Fourierschen Konstanten von positiven harmonischen Funktionen, Rend. Circ. Mat. Palermo 32 (1911) 193–217.
- [4] W. A. Coppel: Foundations of Convex Geometry, Cambridge University Press, Cambridge (1998).
- [5] R. Correa, J. B. Hiriart-Urruty, J.-P. Penot: A note on connected set-valued mappings, Boll. Unione Mat. Ital., VI. Ser., C, Anal. Funz. Appl. 5 (1986) 357–366.
- [6] L. Danzer, B. Grünbaum, V. Klee: Helly's theorem and its relatives, in: Convexity, V. Klee (ed.), Proc. Sympos. Pure Math. 7, American Mathematical Society, Providence (1963) 101–180.
- [7] J. Eckhoff: Helly, Radon, and Carathéodory type theorems, in: Handbook of Convex Geometry, P. M. Gruber, J. M. Wills (eds.), Vol. A, North-Holland, Amsterdam (1993) 389–448.
- [8] R. Engelking, K. Sieklucki: Topology. A Geometric Approach, Heldermann, Berlin (1992).
- [9] S. D. Flåm, G. H. Greco: Minimax and intersection theorems, in: Fixed Point Theory and Applications, M. A. Théra and J.-B. Baillon (eds.), Longman, Harlow (1991) 123–140.
- [10] B. Fuchssteiner: Verallgemeinerte Konvexitätsbegriffe und der Satz von Krein-Milman, Math. Ann. 186 (1970) 149–154.
- [11] K. Goebel, S. Reich: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York (1984).
- [12] K. Goebel, W. A. Kirk: Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge (1990).
- [13] E. Helly: Über Mengen konvexer Körper mit gemeinschaftlichen Punkten, Jber. Deutsch. Math. Verein 32 (1923) 175–176.
- [14] S. Kakutani, V. Klee: The finite topology of a linear space, Arch. Math. 14 (1963) 55–58.
- [15] M. A. Khamsi, W. A. Kirk: An Introduction to Metric Spaces and Fixed Point Theory, Wiley, New York (2001).
- [16] J. Kindler: Intersection theorems and minimax theorems based on connectedness, J. Math. Anal. Appl. 178 (1993) 529–546.
- [17] J. Kindler: Intersecting sets in midset spaces I, Arch. Math. 62 (1994) 49–57; and II, Arch. Math. 62 (1994) 168–176.
- [18] J. Kindler: Intersection theorems, minimax theorems and abstract connectedness, in: Minimax Theory and Applications (Erice, 1996), B. Ricceri, S. Simons (eds.), Nonconvex Optim. Appl. 26, Kluwer, Dordrecht (1998) 105–120.
- [19] J. Kindler: Separation theorems for abstract convex structures, J. Convex Analysis 9 (2002) 73–96.
- [20] J. Kindler: Helly and Klee type intersection theorems for finitary connected paved spaces, Topology Appl. 144 (2004) 271–291.

- [21] K. Kołodziejczyk: On intersections of convex sets, Discuss. Math. 6 (1983) 185–188.
- [22] H. Komiya: On minimax theorems without linear structure, Hiyoshi Rev. Nat. Sci. 8 (1990) 74–78.
- [23] F. W. Levi: Eine Ergänzung zum Hellyschen Satze, Arch. Math. 4 (1953) 222–224.
- [24] K. Menger: Untersuchungen über allgemeine Metrik, I, II, III, Math. Ann. 100 (1928) 75–163.
- [25] R. E. Smithson: Fixed point theorems for certain classes of multifunctions, Proc. Amer. Math. Soc. 31 (1972) 595–600.
- [26] L. A. Steen, J. A. Seebach: Counterexamples in Topology, Holt, Rinehart and Winston, New York (1970).
- [27] M. van de Vel: Theory of Convex Structures, North-Holland, Amsterdam (1993).
- [28] E. R. Verheul: Multimedians in Metric and Normed Spaces, CWI Tracts 91, CWI, Amsterdam (1993).
- [29] G. T. Whyburn: Cut points in general topological spaces, Proc. Natl. Acad. Sci. USA 61 (1968) 380–387.