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We prove that the set of directions of (n− 2)-dimensional balls which are contained in the boundary ∂K

of a convex body K ⊂ Rn but in no (n− 1)-dimensional convex subset of ∂K is σ-1-rectifiable. We also
show that there exists a close connection between smallness of the set of directions of line segments on
∂K and smallness of the set of tangent hyperplanes to the graph of a d.c. (delta-convex) function on
Rn−2. Using this connection, we construct K ⊂ R3 such that the set of directions of segments on ∂K

cannot be covered by countably many simple Jordan arcs having half-tangents at all points. Also new
results on directions of r-dimensional balls in ∂K parallel to a fixed linear subspace are proved.
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1. Introduction

Put Sn−1 := {x ∈ Rn : ‖x‖ = 1} and denote by G(n, r) the Grassmann manifold of all
r-dimensional linear subspaces of Rn. (We recall that G(n, r) is a compact differentiable
manifold of dimension r(n−r).) If K ⊂ Rn is a convex closed set with non-empty interior,
we denote by D(K) the set of all u ∈ Sn−1 that are parallel to a segment in ∂K. For
1 ≤ r ≤ n − 2, we denote by Fr(K) (F ∗

r (K)) the set of all linear spaces V ∈ G(n, r)
which are parallel to an r-dimensional ball in ∂K (to an r-dimensional ball in ∂K which
is contained in no (r + 1)-dimensional convex subset of ∂K, respectively).

In the following, if K is not specified, we suppose that it is a convex body in Rn. Klee
([7]) in 1957 (see also [8]) asked whether (for n ≥ 3) the set D(K) is always of (n − 1)-
dimensional measure zero. Mc Minn [12] (see [2] for a more transparent proof) showed
that for n = 3 the set D(K) is even σ-1-rectifiable. Ewald, Larman and Rogers [5] (see
also [17]) proved the following deep results:

(ELR 1) The set D(K) has always σ-finite (n− 2)-dimensional Hausdorff measure.

(ELR 2) The set Fr(K) has always σ-finite [r(n−r−1)]-dimensional Hausdorff measure.

(ELR 3) If Fn−1(K) = ∅ and r ≥ 2, then Fr(K) has zero [r(n − r − 1)]-dimensional
Hausdorff measure.
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The proofs of these results from [5] use rather sophisticated geometrical methods and it
seems that no simple proof of D(K) 6= Sn−1 for n > 3 is known (cf. [18, p. 277]). Also
the following natural question seems to be open.

Question 1.1. Is it true that (for n ≥ 4) the set D(K) is always

a) σ-(n− 2)-rectifiable?

b) σ-Hn−2-rectifiable?

We recall that a subset M of a metric space X is called σ-n-rectifiable (σ-Hn-rectifiable)
if there exist Lipschitz mappings ϕk (k = 1, 2, . . . ) from [0, 1]n to X whose images cover
M (whose images cover M except a set of zero n-dimensional Hausdorff measure, respec-
tively).

McMinn’s result shows that Question 1.1 has positive answer for n = 3. In this case the
following natural question is open.

Question 1.2. Does there exist a simple characterization of the smallest σ-ideal I con-
taining all sets of the form D(K), where K ⊂ R3 is a convex body? In particular, is I
equal to the system of all σ-1-rectifiable sets?

(Recall that a system I of sets is called a σ-ideal if it is stable with respect to countable
unions and I contains all subsets of any set A ∈ I.)

In Section 3 we prove Theorem 3.2 which says that the set F ∗
n−2(K) is σ-1-rectifiable.

It improves the theorem (ELR 3) in the case r = n − 2 and can be considered as a
generalization of McMinn’s [12] result (see Remark 3.4). Our proof is a modification of
Besicovitch’s proof [2] of McMinn’s result.

Theorem 3.2 suggests that (ELR 3) can perhaps be improved also for some 1 < r < n−2.
Also the following question naturally arises.

Question 1.3. Is it true that F ∗
r has σ-finite (n− r− 1)-dimensional Hausdorff measure

for each convex body K ⊂ Rn and 1 < r < n− 2 ?

In Section 4 we show how Besicovitch’s method [2] and the Fenchel duality imply a dual
formulation (Proposition 4.2) of results and problems concerning smallness of the set
D(K). As an immediate consequence, we show that (ELR 1) implies that the set T (f)
of all tangent hyperplanes to the graph of any d.c. function (i.e. a function which is the
difference of two convex functions) f : Rk → R has σ-finite k-dimensional Hausdorff
measure. Note that there exists a C1-function f : Rk → R such that T (f) has positive
(k + 1)-dimensional Hausdorff measure (see [3] for a stronger example).

Further, we show that the Morse-Sard theorem for d.c. functions f : R2 → R of Landis [9]
easily implies that T (f) has zero 3-dimensional Hausdorff measure for such f (see Remark
4.6) and that this result on T (f) implies (using Besicovitch’s method) that D(K) has zero
3-dimensional Hausdorff measure for K ⊂ R4. Thus the answer to Klee’s question in the
case n = 4 was easily available after Besicovitch’s note [2]. Underline, however, that the
proof in [9] is not easy and it is sketched only. A complete proof, using the main idea of
[9] and results of [1], is given in [15].

Using the duality result of Proposition 4.2 and a theorem of Larman and Rogers [10], we
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also obtain that the set T (f) of all tangent hyperplanes to the graph of a d.c. function
f : Rk → R which contain a fixed point (or are parallel to a fixed line) has zero k-
dimensional Hausdorff measure.

In Section 5 we show, using the duality result of Proposition 4.2, that McMinn’s result is
in a sense close to the best one. In particular there exists a convex body K ⊂ R3 such
that D(K) cannot be covered by countably many simple Jordan arcs having half-tangents
at all points. (For more information see Remark 5.5.) Remember that the set N(K) of
all non-smooth points of the boundary of such K admits a covering of this type ([19,
Theorem 3]).

We believe that Proposition 4.2 can be also used (in a way similar to that used in Section
5) to give a negative answer to Question 1.1 a).

To describe the results of Section 6 we introduce the following notation. For S ∈ G(n, s)
denote by F S

r (K) the set of all V ∈ G(n, r) such that V ⊂ S and V is parallel to an
r-dimensional ball B ⊂ ∂K for which (B + S) ∩ intK 6= ∅. Using (ELR 1), we can
reformulate a result of [10] (see Theorem 4.7 and Remark 4.8 below) as follows.

(LR) The set F S
1 (K) has zero (n − 2)-dimensional Hausdorff measure whenever n ≥ 3

and S ∈ G(n, n− 1).

In Section 6 we prove two analogous results. Theorem 6.2 asserts that the set F S
n−2(K)

has zero 1/2-dimensional Hausdorff measure whenever n ≥ 3 and S ∈ G(n, n− 1). Thus,
in the case n = 3, we obtain an improvement of (LR).

Theorem 6.5 asserts that the set F S
n−3(K) has zero 1-dimensional Hausdorff measure

whenever n ≥ 4 and S ∈ G(n, n− 2).

The proofs are based on Besicovitch’s method and Morse-Sard theorems for d.c. mappings
of [15] (see Theorem 2.6 and Theorem 2.7 below).

2. Preliminaries

If f : Rn−1 → R is a convex function, we denote by epi f its closed epigraph {(x, y) ∈ Rn :
f(x) ≤ y}. The following lemma is an easy consequence of the Hahn-Banach theorem.

Lemma 2.1. Let f be a convex function on Rn−1 and let C be a convex subset of graph f .
Then there exists an affine function ϕ on Rn−1 such that C ⊂ graph ϕ and ϕ(x) ≤ f(x)
for each x ∈ Rn−1.

The relative interior of a convex set C ⊂ Rn, which we denote following Rockafellar [16]
by riC, is defined as the interior of C relative to the affine hull of C.

We shall need also the following easy well known fact.

Lemma 2.2. Let f : Rk → R be a convex function and let I, J ⊂ graph f be convex sets
such that I ∩ ri J 6= ∅. Then conv(I ∪ J) ⊂ graph f .

Proof. By Lemma 2.1 there exists an affine function ϕ on Rn such that I ⊂ graphϕ and
ϕ ≤ f . From graphϕ ∩ ri J 6= ∅ and J ⊂ epiϕ we easily get that J ⊂ graphϕ. Therefore
conv(I ∪ J) ⊂ graph f ∩ graphϕ, since graph f ∩ graphϕ is a convex set.
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Whenever f : Rn → R is a convex function, we define the dual function

f ∗(x∗) = sup
x∈Rn

(〈x, x∗〉 − f(x)) , x∗ ∈ (Rn)∗.

As usual, we identify the dual space (Rn)∗ with Rn and 〈·, ·〉 denotes both the duality and
the scalar product. We shall use frequently (without a reference) the following basic facts
on Fenchel duality (see [16, Theorem 12.2 and Theorem 23.5]).

Lemma 2.3. Let f : Rn → R be a convex function such that f ∗ is finite everywhere.
Then

(1) (f ∗)∗ = f ,

(2) x∗ ∈ ∂f(x) ⇔ x ∈ ∂f ∗(x∗) and

(3) if x∗ ∈ ∂f(x) then f ∗(x∗) = 〈x, x∗〉 − f(x).

We will need also the following easy fact.

Lemma 2.4. Let s be a finite convex function on Rk (k > 1) and m ∈ N. Then there
exists a finite convex function s̃ on Rk such that s(x) = s̃(x) for x ∈ B(0,m) and the dual
convex functions (s̃)∗ and (s̃(0, ·))∗, (s̃(1, ·))∗ are finite on Rk and Rk−1, respectively.

Proof. Obviously, we can put s̃(x) := max{s(x), ‖x‖2 − C}, where C ∈ R is sufficiently
large.

Remark 2.5. All above results and questions on D(K) (Fr(K), F ∗
r (K)) concern the

problem whether this set belongs to a diffeomorphism invariant σ-ideal. So we can write
equivalently “K ⊂ Rn is a convex set with a non-empty interior� or “K is the closed
epigraph of a convex function f : Rn−1 → R� instead of “K ⊂ Rn is a convex body� in all
these results and questions. We omit the obvious proof, whose only non-trivial ingredients
are the following well-known facts:

1. The boundary of a convex body K ⊂ Rn is locally described by an equation yn =
g(y1, . . . , yn−1) where (y1, . . . , yn) is a suitable system of cartesian coordinates and
g is a convex function on an open convex subset of Rn−1.

2. If f is a convex function on an open convex set C ⊂ Rn−1 and x ∈ C then there
exists a convex function f̃ on Rn−1 such that f and f̃ coincide on a neighbourhood
of x.

A function on Rn is said to be d.c. (delta-convex) if it is the difference of two convex
functions. A mapping f : Rn → Rk is said to be a d.c. mapping if its components are d.c.
functions.

We will use the following (relatively deep) Morse-Sard theorem for d.c. mappings of [15]
which is contained in [9] (with a sketched proof) in the case k = 1.

Theorem 2.6. Let f : R2 → Rk be a d.c. mapping. Let C := {u ∈ R2 : f ′(u) = 0}.
Then H1(f(C)) = 0.

We also use (relatively easy) Morse-Sard theorem, whose proof can be found in [13].

Theorem 2.7. Let f : R → Rk be a d.c. mapping. Let C := {u ∈ R : f ′(u) = 0}. Then
H1/2(f(C)) = 0.
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The basic properties of the Grassmann manifold G(n, k) are described in [5, p. 2] (where
it is denoted by Ink ). We will use only the following easy fact.

Lemma 2.8 (see [5, p. 15]). Let 1 < k < n. Then the set N of all linearly indepen-
dent k-tuples (v1, . . . , vk) ∈ (Rn)k is open and the mapping G : N → G(n, k); G(v1, . . . ,
vk) = Lin{v1, . . . , vk} is locally Lipschitz.

Finally, we introduce the following notation.

Definition 2.9. Let K ⊂ Rn be a convex closed set and I ⊂ ∂K be a convex set.
Then we define m(I,K) ∈ N as the maximum number such that I is contained in an
m(I,K)-dimensional convex subset of ∂K.

Further, for j = 1, . . . , n − 1, denote by Uj(K) the set of all segments I ⊂ ∂K such
that m(I,K) = j and denote by Dj(K) the set of all u ∈ Sn−1 that are parallel to some
I ∈ Uj(K).

3. Directions of maximal (n− 2)-dimensional convex subsets of ∂K

Lemma 3.1. Let f : Rn−1 → R be a convex function and let ui ∈ Rn−2, i = 1, . . . n− 1,
be affinely independent vectors. Denote by F∗ the set of all (n − 2)-dimensional convex
subsets of ∂K, where K := epi f , which are contained in no (n − 1)-dimensional convex
subset of ∂K and intersect each hyperplane {(ui, v, y) : v, y ∈ R}. Then the set V∗ of all
V ∈ G(n, n− 2), which are parallel to some F ∈ F∗, is σ-1-rectifiable.

Proof. Let i ∈ {1, . . . , n − 1}. Then put fi(v) = f(ui, v) and for each t ∈ R choose a
number si(t) for which t ∈ ∂fi (si(t)), whenever such a number exists. Obviously, each si
is an increasing function defined on an interval Ii.

Now consider F ∈ F∗ and an affine function ϕ on Rn−1 such that F ⊂ graphϕ and
ϕ(x) ≤ f(x) for each x ∈ Rn−1 (see Lemma 2.1). By the definition of F∗, we can choose
numbers v1, . . . , vn−1 such that (ui, vi, fi(vi)) ∈ F, i = 1, . . . , n − 1. There exists t ∈ R

(t = ϕ′
n−1(x) for each x ∈ Rn−1) such that t ∈ ∂fi(vi), i = 1, . . . , n− 1.

We have vi = si(t) for each i. Indeed, otherwise there exists 1 ≤ j ≤ n − 1 and v∗j 6= vj
such that t ∈ ∂fj(v

∗
j ). Consequently (uj, v

∗
j , fj(v

∗
j )) ∈ graphϕ. Therefore n affinely

independent points

(u1, v1, f1(v1)), . . . , (un−1, vn−1, fn−1(vn−1)), (uj, v
∗
j , fj(v

∗
j ))

are contained in the convex set C := epi f ∩ {(x, y) : y ≤ ϕ(x)}. This contradicts the
definition of F∗, since clearly F ⊂ C ⊂ graph f = ∂K.

Consequently V∗ is contained in the image of the mapping

Φ(t) := G(w1(t), . . . , wj−1(t), wj+1(t), . . . , wn−1(t)), t ∈ I :=
n−1
⋂

i=1

Ii,

(see the definition of G in Section 2), where

wi(t) = (ui − uj, si(t)− sj(t), fi(si(t))− fj(sj(t))), 1 ≤ i ≤ n− 1, i 6= j.
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To prove that the image of Φ is σ-1-rectifiable, we can clearly suppose that I is a compact
non-degenerate interval. Since the functions fi are locally Lipschitz, the functions fi ◦ si
have bounded variation on I and therefore, by Lemma 2.8, Φ has bounded variation.
Using [6, 2.5.16], we obtain that Φ(I), and therefore also V∗, is σ-1-rectifiable.

Theorem 3.2. For each n-dimensional convex closed set K ⊂ Rn, the set F ∗
n−2(K) is

σ-1-rectifiable.

Proof. By Remark 2.5, it suffices to prove the theorem forK = epi f , where f : Rn−1 → R

is a convex function.

Let F be an (n − 2)-dimensional convex subset of ∂K that is contained in no (n − 1)-

dimensional convex subset of ∂K. Choose n−1 affinely independent points (e
(r)
1 , . . . , e

(r)
n ),

r = 0, . . . , n − 2, in F . Clearly (e
(r)
1 , . . . , e

(r)
n−1), r = 0, . . . , n − 2, are also affinely inde-

pendent. Therefore the matrix (e
(r)
j − e

(0)
j ), r = 1, . . . , n − 2, j = 1, . . . , n − 1, has rank

n− 2.

Thus there exists a sequence 1 ≤ l1 < l2 < · · · < ln−2 ≤ n − 1 such that (e
(r)
l1
, . . . , e

(r)
ln−2

),
r = 0, . . . , n−2, are affinely independent. Therefore there exist (n−1) affinely independent

points (s
(i)
1 , s

(i)
2 , . . . , s

(i)
n−2) ∈ Qn−2, i = 1, . . . , n− 1, in

conv{(e(r)l1
, . . . , e

(r)
ln−2

) : r = 0, . . . , n− 2}.

So F intersects each hyperplane

{(x1, . . . , xn) ∈ Rn : xlq = s(i)q , q = 1, . . . , n− 2}, i = 1, . . . , n− 1.

Since there are finitely many sequences l1, . . . , ln−2 and countably many sequences (s
(i)
1 , . . . ,

s
(i)
n−2) ∈ Qn−2, i = 1, . . . , n − 1, Theorem 3.2 follows from Lemma 3.1 (using suitable
permutations of coordinates).

Remark 3.3. It follows from the proof of Lemma 3.1 that, for an n-dimensional convex
closed setK ⊂ Rn, Dn−2(K) is σ-(n−2)-rectifiable. Indeed, there exist Lipschitz functions
zi,k, i = 1, . . . , n− 2, k ∈ N, on R such that V∗ is contained in the union of sets

Zk := {Lin{z1,k(t), . . . , zn−2,k(t)}, t ∈ R}, k ∈ N.

Further, for every k ∈ N and every line segment J in

Lin{z1,k(t), . . . , zn−2,k(t)}, t ∈ R,

J is parallel to

ψ(

j−1
∑

i=1

ti · zi,k(t) + zj,k(t) +
n−2
∑

i=j+1

ti−1 · zi,k(t)),

for some (t1, . . . , tn−3) ∈ Rn−3 and j = 1, . . . , n− 2, where ψ(x) = x
‖x‖

.

Since ψ is locally Lipschitz on Rn \ {0}, the set of all u ∈ Sn−1 parallel to a segment in
Zk is contained in a union of n− 2 locally Lipschitz images of R× Rn−3.

Remark 3.4. For n = 3, Theorem 3.2 is clearly equivalent to the statement that D1(K)
(see Definition 2.9) is σ-1-rectifiable, and so generalizes Mc Minn’s result. Indeed, D2(K)
consists of countably many circles, since F2(K) is obviously countable.
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4. A dual formulation of questions on D(K); results on tangent hyperplanes
of d.c. functions

As usual, a hyperplane T ⊂ Rk+1 of the form T = {(x, y) ∈ Rk ×R : y = 〈a, x〉+ c} will
be identified with (a, c) ∈ Rk+1.

If f : Rk → R is a function, then the set of all tangent hyperplanes to the graph of f
will be denoted by T (f). So T (f) ⊂ Rk+1 consists of all (c, d), where c = f ′(a) and
d = f(a)− 〈a, f ′(a)〉.

We will need the following easy lemma.

Lemma 4.1. Let g, h be convex functions on Rk. Set

E(g, h) := {(x∗ − y∗, g(a)− h(a)− 〈a, x∗ − y∗〉) :

a ∈ Rn−2, x∗ ∈ ∂g(a), y∗ ∈ ∂h(a)}.

Then T (g − h) ⊂ E(g, h).

Proof. Let c ∈ Rk, d ∈ R and (c, d) ∈ T (g − h). Choose a ∈ Rk such that c = f ′(a),
d = f(a) − 〈a, f ′(a)〉. Further, choose an arbitrary y∗ ∈ ∂h(a). Then it is easy to see
that x∗ := y∗ + f ′(a) ∈ ∂g(a) and therefore (c, d) = (f ′(a), f(a) − 〈a, f ′(a)〉) belongs to
E(g, h).

For a short and sufficiently general formulation of our duality results, suppose that I1 is a
σ-ideal of subsets Sn−1 and I2 is a σ-ideal of subsets of R

n−1 with the following property:
If G ⊂ Rn−1, H ⊂ Sn−1 are open sets and ϕ : G → H is a diffeomorphism (where we
consider H as an (n− 1)-dimensional C1 manifold), then A ⊂ G belongs to I2 if and only
if ϕ(A) belongs to I1.

Proposition 4.2. Let n ≥ 3 and I1, I2 be as above. Then the following two assertions
hold.

(i) The following statements are equivalent.
(a) If K ⊂ Rn is a convex body, then D(K) ∈ I1.
(b) For each pair of convex functions g : Rn−2 → R, h : Rn−2 → R, the set

E(g, h) := {(x∗ − y∗, g(a)− h(a)− 〈a, x∗ − y∗〉) :

a ∈ Rn−2, x∗ ∈ ∂g(a), y∗ ∈ ∂h(a)}

belongs to I2.

(ii) Let T (w) ∈ I2 for each d.c. function w : Rn−2 → R. Then D1(K) ∈ I1 for each
convex body K ⊂ Rn.

(Of course, E(g, h) ⊂ Rn−1 after the usual identifications (Rn−2)∗ = Rn−2 and Rn−2×R =
Rn−1.)

Proof. Denote P := {(x1, . . . , xn) ∈ Rn : x1 > 0} and define the function Φ1 : P → Rn−1

by

Φ1(x1, x2, . . . , xn) =

(

−
x2
x1
,−

x3
x1
, . . . ,−

xn−1

x1
,
xn
x1

)

.
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The restriction of Φ1 to P ∩ Sn−1 is clearly a diffeomorphism of P ∩ Sn−1 onto Rn−1.

First suppose that (a) holds. It is clearly sufficient to prove that for all m ∈ N the set

Em(g, h) := {(x∗ − y∗, g(a)− h(a)− 〈a, x∗ − y∗〉) :

a ∈ BRn−2(0,m), x∗ ∈ ∂g(a), y∗ ∈ ∂h(a)}

belongs to I2. Fix m ∈ N. By Lemma 2.4 we can suppose that g∗ and h∗ are finite. Set

B0 := {0} × epi g∗, B1 := {1} × epi h∗, B := conv(B0 ∪B1).

It is clear that the closed convex set B has a non-empty interior. By (a) and Remark
2.5 we obtain D(B) ∈ I1 and so Φ1(D(B) ∩ P ) ∈ I2. Thus it is sufficient to prove that
Φ1(D(B) ∩ P ) ⊃ Em(g, h).

Let a ∈ BRn−2(0,m), x∗ ∈ ∂g(a), y∗ ∈ ∂h(a). Then a ∈ ∂g∗(x∗) ∩ ∂h∗(x∗). Let us define
the affine function q on Rn−1 = R× Rn−2 by

q(t, v) := g∗(x∗) + 〈a, v〉 − 〈a, x∗〉

+t · (h∗(y∗)− g∗(x∗) + 〈a, x∗ − y∗〉), t ∈ R, v ∈ Rn−2.

Obviously,

q(0, v) = g∗(x∗) + 〈a, v − x∗〉 ≤ g∗(v),

q(1, v) = h∗(y∗) + 〈a, v − y∗〉 ≤ h∗(v).

Thus, for (e, f) ∈ B0 ∪ B1 with e ∈ Rn−1, f ∈ R, we have q(e) ≤ f. Hence q(e) ≤ f also
for each (e, f) ∈ B with e ∈ Rn−1, f ∈ R. Clearly q(0, x∗) = g∗(x∗) and q(1, y∗) = h∗(y∗).
Therefore the line segment with endpoints (0, x∗, g∗(x∗)), (1, y∗, h∗(y∗)) lies in ∂B. Letting
w := (1, y∗, h∗(y∗))− (0, x∗, g∗(x∗)), we obtain w/‖w‖ ∈ D(B) ∩ P . Since

Φ1(w/‖w‖) = Φ1(w) = (x∗ − y∗, h∗(y∗)− g∗(x∗))

= (x∗ − y∗,−h(a) + 〈a, y∗〉+ g(a)− 〈a, x∗〉)

= ((x∗ − y∗), g(a)− h(a)− 〈a, x∗ − y∗〉),

we have proved Φ1(D(B) ∩ P ) ⊃ Em(g, h).

Now we will prove simultaneously the opposite implication of (i) and the statement (ii).
Consider an arbitrary convex function f : Rn−1 → R. By Remark 2.5 and a similar
observation concerning D1(K), it is sufficient to prove that

(α) D(epi f) ∈ I1, if (b) holds,

(β) D1(epi f) ∈ I1, if T (w) ∈ I2 for each d.c. function w : Rn−2 → R.

Denote πr,i := {(x1, . . . , xn) ∈ Rn : xi = r} for r ∈ Q, i = 1, . . . , n − 1. For every pair
of parallel hyperplanes πr0,i, πr1,i with r0, r1 ∈ Q, r0 6= r1, i = 1, . . . , n − 1, and for every
m ∈ N, let us denote by F (f, r0, r1, i,m) the set of all u ∈ Sn−1 parallel to a segment J
on the graph of f such that the endpoints of J belong to B(0,m) and ri J intersects both
πr0,i and πr1,i. It is easy to see that

D(epi f) =
⋃

F (f, r0, r1, i,m), D1(epi f) =
⋃

(F (f, r0, r1, i,m) ∩D1), (1)
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where the union is taken over all r0, r1, i, m considered above. Now consider m ∈ N and
an arbitrary s ∈ Fm := P ∩F (f, 0, 1, 1,m). Choose a segment J parallel to s on the graph
of f such that the endpoints of J belong to B(0,m) and ri J contains points (a0, f(a0)),
(a1, f(a1)), where a0 = (0, a′0) and a1 = (1, a′1). Obviously,

Φ1(s) = Φ1((a1, f(a1))− (a0, f(a0))).

Denote f0 := f(0, ·), f1 := f(1, ·), and g := (f0)
∗, h := (f1)

∗. Lemma 2.4 easily implies
that we can suppose that the dual functions g, h are finite.

By Lemma 2.1 there exists an affine function ϕ : Rn−1 → R such that

ϕ(z) ≤ f(z) for z ∈ Rn−1,

ϕ(λa0 + (1− λ)a1) = f(λa0 + (1− λ)a1) for λ ∈ [0, 1].

Let u1, v ∈ R, u2 ∈ Rn−2 be such that

ϕ(z) = v + 〈(u1, u2), z〉, z ∈ Rn−1.

Since, for each x ∈ Rn−2,

f0(x) ≥ ϕ(0, x) = v + 〈u2, a
′
0〉+ 〈u2, x− a′0〉 = f0(a

′
0) + 〈u2, x− a′0〉,

we get u2 ∈ ∂f0(a
′
0). Similarly we get f1(x) ≥ f1(a

′
1) + 〈u2, x − a′1〉 and u2 ∈ ∂f1(a

′
1).

Hence a′0 ∈ ∂g(u2), a
′
1 ∈ ∂h(u2).

Further,

Φ1(s) = Φ1((a1, f(a1))− (a0, f(a0))) = (a′0 − a′1, f1(a
′
1)− f0(a

′
0))

= (a′0 − a′1, h
∗(a′1)− g∗(a′0))

= (a′0 − a′1,−h(u2) + 〈u2, a
′
1〉+ g(u2)− 〈u2, a

′
0〉)

= (a′0 − a′1, g(u2)− h(u2)− 〈u2, a
′
0 − a′1〉) ∈ E(g, h).

We have proved Φ1(Fm) ⊂ E(g, h). Therefore Φ1(Fm) ∈ I2, and so Fm ∈ I1. Obviously,
also F (f, 0, 1, 1,m) ∈ I1. By a similar argument we can prove that each F (f, r0, r1, i,m)
belongs to I1. So (1) implies (α).

To prove (β), it is clearly sufficient to prove that Φ1(s) ∈ T (g − f), if J is as above and
moreover J ∈ U1(epi f) (see Definition 2.9).

Proceeding as above, we then obtain that g is differentiable at u2. Otherwise there exists
a′′0 6= a′0, a

′′
0 ∈ ∂g(u2). Then u2 ∈ ∂f0(a

′
0) ∩ ∂f0(a

′′
0). Hence the function f is affine on

conv{(0, a′0), (0, a
′′
0)} and therefore

I ′ := conv{(0, a′0, f(a0)), (0, a
′′
0, f(0, a

′′
0))} ⊂ graph f.

By Lemma 2.2, conv(J ∪ I ′) ⊂ graph f and dim conv(J ∪ I ′) = 2. But this is impossible
because J ∈ U1(epi f).

Similarly we see that h is differentiable at u2. Thus, a
′
0−a′1 = (g−h)′(u2). So (2) implies

Φ1(s) = ((g − h)′(u2), (g − h)(u2)− 〈u2, (g − h)′(u2)〉) ∈ T (g − h).
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Combining Lemma 4.1, Proposition 4.2 and (ELR 1), we obtain the following result on
tangent hyperplanes of d.c. functions.

Theorem 4.3. Let f : Rk → R be a d.c. function (i.e. a difference of two convex func-
tions). Let T (f) denote the set of all tangent hyperplanes to the graph Gf of f . Then
T (f) has σ-finite k-dimensional Hausdorff measure.

We note that there exists a C1-function f : Rk → R such that T (f) has positive (k + 1)-
dimensional Hausdorff measure (see [3]).

Remark 4.4. Theorem 4.3 can be slightly generalized. Indeed, the proof of Lemma 4.1
shows that the set T (f) can be replaced, in Lemma 4.1 and hence also in Theorem 4.3,
by the larger set T s(f) of all “almost supporting hyperplanes�. We say that a hyperplane
H ⊂ Rk+1 belongs to T s(f), if it is the graph of an affine function g such that there exists
a ∈ Rk for which f(a) = g(a) and lim supx→a(g(x)− f(x))/‖x− a‖ ≤ 0.

Consequently, if f is convex, then the set T s(f) (which is equal to the set of all supporting
hyperplanes to epi f in this case) has σ-finite k-dimensional Hausdorff measure. However,
it is an obvious fact, since T s(f) = {(x,−f ∗(x)) : f ∗(x) <∞} is even σ-k-rectifiable.

Using Proposition 4.2 and Remark 3.3, we easily show (without using any deeper result
from literature) that the duality between D(K) and T (f) is very sharp for n = 3 and
n = 4.

Proposition 4.5. Let I1 and I2 be σ-ideals having the property formulated before Propo-
sition 4.2. Suppose that n = 4 and I1 contains all σ-2-rectifiable sets or n = 3 and I1

contains all intersections S2 ∩ V , where V ∈ G(3, 2).

Then the following assertions are equivalent.

(i) For each convex body K ⊂ Rn, the set D(K) belongs to I1.

(ii) For each d.c. function f : Rn−2 → R, the set T (f) belongs to I2.

Proof. Combining Lemma 4.1 and Proposition 4.2, we get the implication (i) ⇒ (ii) in
both cases.

Now suppose (ii) holds. Then Proposition 4.2 implies D1(K) ∈ I1 in both cases. Further,
in both cases, Fn−1 is countable and consequently Dn−1 is covered by countably many
sets of the form Sn−1 ∩ V , where V ∈ G(n, n− 1). So, in the case n = 3, D2(K) ∈ I1 and
therefore (i) holds.

Now, let n = 4. Since, for each V ∈ G(4, 3), S3 ∩ V is σ-2-rectifiable, we obtain D3(K) ∈
I1. Since D2(K) is σ-2-rectifiable by Remark 3.3, we obtain (i).

Applying Proposition 4.5 in the case when n = 4 and I1 and I2 are systems of all σ-2-
rectifiable sets (or σ-H2-rectifiable sets), we obtain a reformulation of Question 1.1 (for
n = 4) in the language of tangent hyperplanes of d.c. functions f : R2 → R.

Using Proposition 4.5 in the case n = 3, we obtain a reformulation of Question 1.2 in the
language of tangent hyperplanes of d.c. functions f : R → R.

Another application of Proposition 4.5 is contained in the following remark.

Remark 4.6. Proposition 4.5 and the Morse-Sard theorem of Landis [9] (Theorem 2.6
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above, case k = 1) easily imply that the set D(K) has zero 3-dimensional Hausdorff
measure for each convex body K ⊂ R4.

Indeed, for each d.c. function f on R2 and for each a ∈ R2, Theorem 2.6 (applied to the
function f̃ = f − 〈a, ·〉) implies that the set

{f(x)− 〈a, x〉 : x ∈ R2, f ′(x)− a = 0}

is Lebesgue null.

In other words, the set {c ∈ R : (a, c) ∈ T (f)} is Lebesgue null for each a ∈ R2.
Consequently Fubini’s theorem implies that T (f) is Lebesgue null. Applying Proposition
4.5 in the case when n = 4 and I1 and I2 are the systems of all sets of zero 3-dimensional
Hausdorff measure, we obtain the desired result.

Thus, for n = 4, we get the answer to the question of Klee ([7]) using a completely
different proof than that in [5].

Larman and Rogers proved the following theorem [10, Theorem 2].

Theorem 4.7. Let B ⊂ Rn be an n-dimensional convex closed set, n ≥ 3, and S be
a hyperplane in Rn. Let DS(B) be the set of all u ∈ Sn−1 parallel to S and parallel
to some line segment in ∂B which do not meet the intersection of B with supporting
hyperplanes, that are parallel to S, at points in the interior of these intersections relative to
the supporting hyperplanes. Then DS(B) has zero (n−2)-dimensional Hausdorff measure.

Remark 4.8. 1. In fact, this theorem is proved in [10] in the case when B is a convex
body. But this special case obviously implies the general case (cf. Remark 2.5).

2. Using (ELR 1), one easily sees that (LR) in Section 1 is a reformulation of The-
orem 4.7. Indeed, the vectors in DS(B) \ F S

1 (B) are parallel to a segment in the
relative boundary of the intersection of B with a supporting hyperplane parallel to
S (relative to this supporting hyperplane). Therefore (ELR 1) easily implies that
DS(B) \ F S

1 (B) has σ-finite (n− 3)-dimensional Hausdorff measure.

From Theorem 4.7 we now deduce two theorems on special tangent hyperplanes to the
graph of a d.c. function. In fact, we repeat the proof of Proposition 4.2, the implication
(a) ⇒ (b), with some additional arguments.

Proposition 4.9. Let n ≥ 3, z ∈ Rn−1 and f : Rn−2 → R be a d.c. function. Denote by
Tz(f) the set of all tangent hyperplanes to the graph of f containing z. Then Tz(f) has
zero (n− 2)-dimensional Hausdorff measure.

Proof. We can assume that z = 0. Indeed, (a, c) ∈ Rn−2×R belongs to Tz(f), if and only
if (a, c) belongs to T0(g), where g(u) = f(u+z1)−z2, u ∈ Rn−2 and z = (z1, z2) ∈ Rn−2×R.

We can also suppose that f = g−h, where g, h are convex and f ∗, g∗ are finite (otherwise
we take g + ‖ ·‖2, h+ ‖ ·‖2 instead of g, h).

Let P , Φ1 and B have the same meaning as in the proof of Proposition 4.2, implication
(a) ⇒ (b). Set

S := {(u1, . . . , un) ∈ Rn : un = 0}.



160 D. Pavlica, L. Zaj́ıček / On the Directions of Segments and r-Dimensional Balls

Then the set DS(B) in Theorem 4.7 has zero (n− 2)-dimensional Hausdorff measure. We
shall prove that

T̃0(f) := {(f ′(a), 0) ∈ Rn−1 : 0 6= a ∈ Rn−2, (2)

f ′(a) exists, f(a) = 〈a, f ′(a)〉} ⊂ Φ1(DS(B) ∩ P ).

Let 0 6= a ∈ Rn−2, f(a) = 〈a, f ′(a)〉. Then there exist x∗ ∈ ∂g(a), y∗ ∈ ∂h(a), such that
x∗ − y∗ = f ′(a) (see Lemma 4.1). Therefore a ∈ ∂g∗(x∗) ∩ ∂h∗(y∗). We define the affine
function q as in the proof of Proposition 4.2 and obtain that the line segment J with
endpoints w0 = (0, x∗, g∗(x∗)) and w1 = (1, y∗, h∗(y∗)) lies in ∂B. Since

h∗(y∗)− g∗(x∗) = g(a)− h(a)− 〈a, x∗ − y∗〉 = f(a)− 〈a, f ′(a)〉 = 0,

the segment J is parallel to S. We have also

Φ1(
w1 − w0

‖w1 − w0‖
) = Φ1(w1 − w0) = (x∗ − y∗, g(a)− h(a)− 〈a, x∗ − y∗〉) = (f ′(a), 0).

Now suppose that H is a supporting hyperplane to B, that is parallel to S, and J meets
B ∩ H at a point z in the interior of B ∩ H relative to H. Then H is the unique
supporting hyperplane to B at z. Since epi q ⊃ B and graph q ⊃ conv{w0, w1}, we obtain
H = graph q. Therefore a = 0, which is a contradiction.

So we have proved w1−w0

‖w1−w0‖
∈ DS(B)∩P , which implies (2). Since Φ1 is locally Lipschitz,

(2) implies that T̃0(f) has zero (n − 2)-dimensional Hausdorff measure. Observing that
there is at most one hyperplane in T0(f)\T̃0(f), we obtain the assertion of the theorem.

Proposition 4.10. Let n ≥ 3, f : Rn−2 → R be a d.c. function and let L be a line in
Rn−1. Denote by TL(f) the set of all tangent hyperplanes to the graph of f that are parallel
to L. Then TL(f) has zero (n− 2)-dimensional Hausdorff measure.

Proof. Using a suitable change of the coordinates, we can assume that L is parallel
to ((1, 0, . . . , 0), α) for some α ∈ R. We can also assume α = 0. Indeed, denoting
by L∗ a line parallel to ((1, 0, . . . , 0), 0), we easily see that (a, c) ∈ Rn−2 × R belongs
to TL(f), if and only if (a − (α, 0, . . . , 0), c) belongs to TL∗(g), where g(u1, . . . , un−2) =
f(u1, . . . , un−2)− α · u1. So

TL(f) = {(f ′(a), f(a)− 〈a, f ′(a)〉) : a ∈ Rn−2, f ′(a) exists , f ′
1(a) = 0}

(where f ′
1 denotes the first partial derivative).

As in the proof of Proposition 4.9, we can suppose that f = g − h, where g, h are convex
functions and g∗, h∗ are finite. Let P , Φ1 and B have again the same meaning as in the
proof of Proposition 4.2, implication (a) ⇒ (b). Set

S := {(u1, . . . , un) ∈ Rn : u2 = 0}.

We shall prove that Φ1(DS(B)) ⊃ TL(f).

Let a ∈ Rn−2 with f ′
1(a) = 0. There exist x∗ = (x∗1, . . . , x

∗
n−2) ∈ ∂g(a) and y∗ =

(y∗1, . . . , y
∗
n−2) ∈ ∂h(a) such that x∗ − y∗ = f ′(a). Obviously, x∗1 = y∗1. The line segment
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with endpoints w0 = (0, x∗, g∗(x∗)) and w1 = (1, y∗, h∗(y∗)) lies in ∂B, is parallel to S and
Φ1(w1 − w0) = (f ′(a), f(a)− 〈a, f ′(a)〉). Obviously, there is no supporting hyperplane to
B parallel to L. So we esily see that TL(f) ⊂ Φ1(DS(B)∩P ). Since Φ1 is locally Lipschitz,
Theorem 4.7 implies that TP (f) has zero (n− 2)-dimensional Hausdorff measure.

Remark 4.11. For n = 3 we can assert in Proposition 4.9 and Proposition 4.10 that
the corresponding sets of tangent hyperplanes are even of zero 1/2-dimensional Hausdorff
measure. This fact easily follows from Theorem 2.7. We could also use, in the above
proofs, Theorem 6.2 (cf. Remark 6.3) instead of Theorem 4.7.

For n = 4, we could deduce the above-mentioned propositions from Theorem 2.6 as in
Remark 4.6.

5. McMinn’s result is close to the best possible one

Let us consider the space BV C([0, 1]) of all continuous functions on [0, 1] of bounded
variation equipped with the norm defined by

‖g‖ := sup
[0,1]

g +V1
0 g,

where V1
0 g means the variation of g on [0, 1]. It is well known that BV C([0, 1]) is a

Banach space. (It follows easily from the fact that the space BV ([0, 1]) equipped with
the norm

‖g‖1 := |g(0+)|+V1
0 g

is a Banach space; see [4, Chap. IV.12]. Indeed, these two norms are equivalent on
BV C([0, 1]) and BV C([0, 1]) is closed in BV ([0, 1]).)

Lemma 5.1. There exist a dense subset A of (0, 1) and a function g ∈ BV C([0, 1]) such
that, for each a ∈ A and each ε > 0, there exist e, e′ ∈ (a, a + ε) ∩ (0, 1) such that e < e′

and

(i ) g(a) = g(e),

(ii )

e
∫

a

(g(x)− g(a)) dx < 0,

(iii ) g(x) > g(a) for each x ∈ (e, e′],

(iv) g(e′)− g(a) ≥ |g(a)− g(x)| for each x ∈ (a, e′).

Proof. For each a ∈ (0, 1) and n ∈ N, denote by Q(a, n) the set of all functions g ∈
BV C([0, 1]) such that there exist e, e′ ∈ (a, a+ 1

n
)∩ (0, 1), e < e′, for which (i), (ii), (iii)

and (iv) hold.

Now we shall prove that intQ(a, n) is dense in BV C([0, 1]).

Let h ∈ BV C([0, 1]) and δ > 0 be given. Choose 0 < δ2 <
1
6
min{ 1

n
, 1− a} so small that
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the function f defined by

f(x) = h(x) for x ≥ a+ 6δ2 or x ≤ a,

f(a+ δ2) = f(a)− δ2,

f(a+ 4δ2) = f(a) + 2δ2,

f(x) is affine on [a, a+ δ2], [a+ δ2, a+ 4δ2], [a+ 4δ2, a+ 6δ2],

fulfils ‖h− f‖ ≤ δ. Set δ1 :=
δ2
24

and suppose that g ∈ BV C([0, 1]) with ‖g − f‖ < δ1 be
given. We shall prove g ∈ Q(a, n).

Obviously, g(a+ δ2) < g(a) and g(x) > g(a) for all x ∈ [a+ 3δ2, a+ 4δ2]. Set

e := sup{x ∈ [a+ δ2, a+ 4δ2] : g(x) = g(a)}

and choose e′ ∈ [a, a + 4δ2] such that g(e′) = sup{g(x) : x ∈ [a, a + 4δ2]}. We easily get
e ∈ [a+ δ2, a+ 3δ2), e

′ ∈ [a+ 3δ2, a+ 4δ2] and (i), (iii) and (iv) clearly hold. Since

e
∫

a

(g(x)− g(a)) dx ≤

e
∫

a

(f(x)− f(a)) dx+ 2δ1(e− a)

≤

a+δ2
∫

a

(f(x)− f(a)) dx+ 2δ1 · 3δ2 = −
1

2
δ22 +

1

4
δ22 < 0,

the condition (ii) holds too.

So the set Q :=
⋂

Q(a, n), where the intersection is taken over all a ∈ Q ∩ (0, 1) and
n ∈ N, is residual. Now, to prove the lemma, it is sufficient to choose g ∈ Q and to put
A = Q ∩ (0, 1).

If M ⊂ Rn and a ∈ Rn, we denote by Tan(M,a) the tangent (contingent) cone of M at a
(see [6, 3.1.21]). Recall that 0 ∈ Tan(M,a) if and only if a ∈M and b ∈ Rn \ {0} belongs
to Tan(M,a) if and only if there exists a sequence (an) in M \ {a} with

an → a and
an − a

‖an − a‖
→

b

‖b‖
.

For a d.c. function G : R → R of class C1 we define the mapping G̃(x) = (G′(x), G(x)−
xG′(x)), x ∈ R.

Lemma 5.2. There exists a d.c. function G : R → R of class C1 such that, in every
non-empty open interval I ⊂ (0, 1), there exists a ∈ I such that Tan(G̃(I), G̃(a)) contains
infinitely many half-lines starting at 0.

Proof. Take g and A as in Lemma 5.1. Choose increasing continuous functions g1, g2 on
R such that g = g1 − g2 on [0, 1]. Define G(x) :=

∫ x

0
(g1(t)− g2(t)) dt, x ∈ R. Obviously,

G is a d.c. function of class C1 on R.

Given an open interval I ⊂ (0, 1), choose a point a ∈ I ∩ A and put

H(x) =
(G(x)− xG′(x))− (G(a)− aG′(a))

G′(x)−G′(a)
,
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whenever x ∈ R with G′(x) 6= G′(a).

Observe that (1, u) ∈ Tan(G̃(I), G̃(a)), whenever there exists a sequence an → a such
that G′(an) > G′(a) and H(an) = u.

A simple computation gives

H(x) =

x
∫

a

(g(t)− g(a)) dt

g(x)− g(a)
− x.

Let ε > 0. Choose e, e′ ∈ (a, a+ ε) ∩ (0, 1), which correspond to g, A and ε according to
Lemma 5.1. Then, by (iii) and (iv),

H(e′) + e′ ≥ −

e′
∫

a

|g(t)− g(a)| dt

g(e′)− g(a)
≥ a− e′,

and, by (i), (ii) and (iii), H(e+) = −∞. Therefore H((e, e′]) ⊃ (−∞, a− 2e′]. Therefore,
since ε > 0 was arbitrary and (iii) holds, for each u ∈ (−∞,−a) there exists a sequence
an → a as above. Hence, {1} × (−∞,−a) ⊂ Tan(G̃(I), G̃(a)), which completes the
proof.

Proposition 5.3. Let I1 be the σ-ideal generated by all closed sets C ⊂ S2 such that, for
all c ∈ C, Tan(C, c) consists of points of finitely many half-lines starting at 0. Then there
exists a convex set K such that D(K) /∈ I1.

Proof. Denote by I2 the σ-ideal generated by all closed sets D ⊂ R2 such that, for all
d ∈ D, Tan(D, d) consists of points of finitely many half-lines starting at 0.

Take G from Lemma 5.2. By Proposition 4.2 and Lemma 4.1, it suffices to prove T (G) =
{(G′(a), G(a)− aG′(a)) : a ∈ R} /∈ I2.

Suppose, on the contrary, T (G) ∈ I2. Then G̃([0, 1]) ⊂
⋃∞

i=1Di, where Di are closed sets
such that, for all d ∈ Di, Tan(Di, d) consists of points of finitely many half-lines starting
at 0. The sets Mi := (G̃)−1(Di), i ∈ N, are closed and

⋃∞
i=1Mi ⊃ [0, 1]. By the Baire

Category Theorem, for some i ∈ N there is a non-empty open interval I ⊂ Mi ∩ [0, 1].
Since G̃(I) ⊂ Di, we obtain that, for each a ∈ I, Tan(Di, G̃(a)) consists of finitely many
half-lines starting at 0. But this contradicts the choice of G.

We shall say that ϕ : [0, 1] → Rn has the half-tangents at a ∈ (0, 1), if the limits

lim
t→a+

ϕ(t)− ϕ(a)

‖ϕ(t)− ϕ(a)‖
, lim

t→a−

ϕ(t)− ϕ(a)

‖ϕ(t)− ϕ(a)‖

exist. We shall say that ϕ has the half-tangent at a ∈ {0, 1}, if one of the limits exists.

As a consequence of Proposition 5.3, we get the following proposition.

Proposition 5.4. There exists a convex body K ⊂ R3 such that D(K) cannot be covered
by countably many images of simple curves ϕi : [0, 1] → S2 having the half-tangents at all
points of [0, 1].
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Proof. If ϕ : [0, 1] → Rn is a simple curve having half-tangents at all points of [0, 1],
then, for all a ∈ [0, 1], Tan(ϕ([0, 1]), ϕ(a)) contains at most two half-lines starting at 0.
Thus Proposition 5.4 follows from Proposition 5.3.

Let us note that the set N(K) of all non-smooth points of the boundary of a convex
body K ⊂ R3 can be covered by countably many simple curves having half tangents at
all points ([19, Theorem 3]).

Remark 5.5. It is possible to prove (see [14] for a stronger example) that there exists
even a convex body K ⊂ R3 such that D(K) cannot be covered by images of continuous
curves ϕk : [0, 1] → S3, k ∈ N, having half-tangents at all points except a countable set.
We have proved only the weaker result, since the proof in [14] is much more complicated
and a full characterization of the σ-ideal generated by the sets D(K) is not known; it is
even possible that this σ-ideal is that of all σ-1-rectifiable sets.

6. The directions of special (n−2)-dimensional and (n−3)-dimensional convex
subsets of ∂K

Remember that, for S ∈ G(n, s), we denote by F S
r (K) the set of all V ∈ G(n, r) such that

V ⊂ S and V is parallel to an r-dimensional ball B ⊂ ∂K for which (B + S)∩ intK 6= ∅.

Lemma 6.1. Let f : Rn−1 → R be a convex function, n ≥ 3, and let ui ∈ Rn−2, i =
1, . . . , n−1, be affinely independent vectors. Denote by F the set of all (n−2)-dimensional
convex subsets F of ∂K, where K = epi f , that are parallel to S := {(y1, . . . , yn) ∈ Rn :
yn−1 = 0} and for which

{(ui, v, y) : v, y ∈ R} ∩ riF 6= ∅, i = 1, . . . , n− 1.

Then the set V of all V ∈ G(n, n − 2) that are parallel to an F ∈ F has zero 1/2-
dimensional Hausdorff measure.

Proof. For i ∈ {n− 2, n− 1}, denote by Fi the set of all F ∈ F such that m(F,K) = i
and denote by Vi the set of all V ∈ G(n, n− 2) parallel to an F ∈ Fi.

Then Vn−1 is countable since there exist only countably many V ∈ G(n, n−1) parallel to an
(n−1)-dimensional ball in ∂K and in each such V there exists exactly one V ′ ∈ G(n, n−2)
parallel to S.

We shall prove that Vn−2 has zero 1/2-dimensional Hausdorff measure.

Let F ∈ Fn−2 and V ∈ Vn−2 be parallel to F . Put fi(v) = f(ui, v), v ∈ R. We
can assume (cf. the proof of Lemma 2.4) that f ∗

i are finite, i = 1, . . . , n − 1. Choose
v1, . . . , vn−1 ∈ R such that (ui, vi, f(vi)) ∈ riF , i = 1, . . . , n− 1. Since F is parallel to S,
vi = v, i = 1, . . . , n − 1, for some v ∈ R. By Lemma 2.1, there exists an affine function
ϕ on Rn−1 such that F ⊂ graphϕ and ϕ ≤ f . Then clearly t := ϕ′

n−1(x) ∈ ∂fi(v) for
x ∈ Rn−1. Thus v ∈ ∂f ∗

i (t) for i = 1, . . . , n− 1.

For each 1 ≤ i ≤ n − 1, the function f ∗
i is differentiable at t. Otherwise there exists

v 6= v′ ∈ ∂f ∗
i (t). Then fi is affine on conv{v, v′} and thus f is affine on {ui}× conv{v, v′}.

Therefore I := conv{(ui, v, f(ui, v)), (ui, v
′, f(ui, v

′))} ⊂ graph f . Then, by Lemma 2.2,
conv(I ∪ F ) ⊂ graph f , which contradicts F ∈ Fn−2.
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We have V = G(w2, . . . , wn−1), where

wi := (ui − u1, 0, fi(v)− f1(v)) = (ui − u1, 0, f
∗
1 (t)− f ∗

i (t)).

For each i ∈ {2, . . . , n− 1}, define the mapping zi(s) := (ui − u1, 0, f
∗
1 (s)− f ∗

i (s)), s ∈ R.
Since the mapping z = (z2, . . . , zn−1) is a d.c. mapping from R to R3(n−2), Theorem 2.7
implies that the set

A := {(z2(s), . . . , zn−1(s)) : s ∈ R, (f ∗
1 − f ∗

i )
′(s) = 0, i = 2, . . . , n− 1}

has zero 1/2-dimensional Hausdorff measure. Obviously, (f ∗
1−f

∗
i )

′(t) = 0, i = 2, . . . , n−1.
Consequently V ∈ G(A) and Lemma 2.8 implies the assertion of the lemma.

Denote by HS(K) the set of all points x ∈ ∂K such that (x+S)∩ intK 6= ∅. Then clearly
F S
r (K) is the set of all V ∈ G(n, r) such that V ⊂ S and V is parallel to an r-dimensional

ball B ⊂ HS(K).

Theorem 6.2. Let K ⊂ Rn, n ≥ 3, be an n-dimensional convex closed set and S ∈
G(n, n− 1). Then F S

n−2(K) has zero 1/2-dimensional Hausdorff measure.

Proof. For each x ∈ HS(K), we can choose a system (y1, . . . , yn) of cartesian coordinates,
an open neighbourhood U of x and a convex function f defined on an open convex subset
of Rn−1 such that U ∩∂K = U ∩HS(K) is described by the equation yn = f(y1, . . . , yn−1).
(For a proof choose z ∈ (x + S) ∩ intK and put un := z−x

‖z−x‖
. Further, choose a unit

vector un−1 orthogonal to S and u1, . . . , un−2 such that u1, . . . , un form an orthonormal
basis. Take the system of cartesian coordinates (y1, . . . , yn) with respect to u1, . . . , un and
take a suitable small open neighbourhood U of x.) Therefore it is sufficient to prove the
theorem for K = epi f , where f : Rn−1 → R is convex, and S = {(y1, . . . , yn) : yn−1 = 0}.

Let F be an (n−2)-dimensional convex subset of ∂K parallel to S. Consider the projection
π(y1, . . . , yn) := (y1, . . . , yn−2). Then dimπ(F ) = n − 2 and thus there exist affinely
independent u1, . . . , un−1 ∈ Qn−2∩ intπ(F ). Obviously, π−1(ui)∩riF 6= ∅, i = 1, . . . , n−
1. Since the set (Qn−2)n−1 is countable, the assertion of Theorem 6.2 follows from Lemma
6.1.

Remark 6.3. For n = 3, the above theorem improves (LR) (or, eqivalently, Theorem
4.7).

Further, note that the result of Theorem 6.2 is the best possible in the sense that we can
write “s-dimensional Hausdorff measure� instead of “1/2-dimensional Hausdorff measure�
in the assertion of Theorem 6.2 for no s < 1/2. For the proof we can use the construction
from the proof of Proposition 4.2, the implication (a) ⇒ (b), and the fact (see [13, Remark
3]) that Theorem 2.7 does not hold with s < 1/2 instead of 1/2.

Lemma 6.4. Let f : Rn−1 → R be a convex function, n ≥ 4, and let ui ∈ Rn−3, i =
1, . . . , n−2, be affinely independent vectors. Denote by F the set of all (n−3)-dimensional
convex subsets F of ∂K, where K = epi f , that are parallel to S := {(y1, . . . , yn) ∈ Rn :
yn−2 = yn−1 = 0} such that

{(ui, v1, v2, y) : v1, v2, y ∈ R} ∩ riF 6= ∅, i = 1, . . . , n− 2.

Then the set V of all V ∈ G(n, n−3) that are parallel to an F ∈ F has zero 1-dimensional
Hausdorff measure.
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Proof. For i ∈ {n − 3, n − 2, n − 1}, denote by Fi the set of all F ∈ F such that
m(F,K) = i and by Vi the set of all V ∈ G(n, n− 3) parallel to an F ∈ Fi.

First we shall prove that Vn−2 ∪ Vn−1 has zero 1-dimensional Hausdorff measure.

Let F ∈ Fn−2 ∪ Fn−1 and V ∈ G(n, n − 3) be parallel to F . There exists a convex set
E ⊂ graph f , E ⊃ F , dimE = n − 2. Let us consider the projection π1(y1, . . . , yn) :=
(yn−2, yn−1). Then dimπ1(E) ≥ 1 and so there exist r ∈ Q and i ∈ {n−2, n−1} such that
{ui = r}∩riE 6= ∅. Choose x in this intersection. Then there exists F̃ ⊂ E, dim F̃ = n−3,
parallel to F such that x ∈ F̃ . Thus F̃ ⊂ {ui = r}.

Now denote π2(y1, . . . , yn) := (y1, . . . , yi−1, yi+1, . . . , yn). The set F̃ is parallel to S and
therefore π2(V ) is parallel both to π2(F̃ ) and to π2(S). Thus π2(V ) ∈ F S1

n−3(K1), where
S1 := π2(S) and K1 := π2(K∩{ui = r}). Therefore Theorem 6.2 implies that Vn−2∪Vn−1

has zero 1-dimensional Hausdorff measure.

Now we shall prove that Vn−3 has zero 1-dimensional Hausdorff measure. Let F ∈ Fn−3

and V ∈ Vn−3 be parallel to F . Put fi(v1, v2) = f(ui, v1, v2). We can assume that f ∗
i

are finite, i = 1, . . . , n − 1. Choose v1, v2 ∈ R such that (ui, v1, v2, fi(v1, v2)) ∈ riF ,
i = 1, . . . , n − 1. By Lemma 2.1 there exists an affine function ϕ on Rn−1 such that
F ⊂ graphϕ and ϕ ≤ f . Then t := (ϕ′

n−2(x), ϕ
′
n−1(x)) ∈ ∂fi(v1, v2) for each x ∈ Rn−1,

and so (v1, v2) ∈ ∂f ∗
i (t), i = 1, . . . , n− 1.

As in the proof of Lemma 6.1, we get, by Lemma 2.2, that each f ∗
i , i = 1, . . . , n − 2, is

differentiable at t, since F ∈ Fn−3.

If we define zi(s) := (ui − u1, 0, 0, f
∗
1 (s)− f ∗

i (s)), i = 2, . . . , n− 2, and

A := {(z2(s), . . . , zn−1(s)) : s ∈ R2, (f ∗
1 − f ∗

i )
′(s) = 0, i = 2, . . . , n− 1},

then V ∈ G(A). It follows from the Morse-Sard Theorem on d.c. mappings (Theorem
2.6) that the set A has zero 1-dimensional Hausdorff measure. So Lemma 2.8 implies that
G(A) has zero 1-dimensional Hausdorff measure.

Theorem 6.5. Let K ⊂ Rn, n ≥ 4, be an n-dimensional convex closed set and S ∈
G(n, n− 2). Then F S

(n−3) has zero 1-dimensional Hausdorff measure.

Proof. The assertion of the theorem follows from Lemma 6.4 in the same way as Theorem
6.2 follows from Lemma 6.1.
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