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1. Introduction

In this paper we study the following problem

min

{

ess.sup
x∈Ω

H(x,Dv(x)) : v ∈ g +W 1,∞(Ω) ∩ C0(Ω)

}

, (1)

where Ω is a connected and bounded open subset of RN , H satisfies the natural assumptions
to have the measurability ofH(., Dv(.)) for all v ∈ W 1,∞(Ω), g is a map inW 1,∞(Ω)∩C(Ω).

This is a relevant class of variational problems associated with supremal functionals (see
for example [15]). This type of functionals has received in the last few years a lot of
attention because of many applications (see the bibliography of [1] for more details).
A peculiarity of supremal functionals is the distinction between minimizers (defined as
usually) and a class of particular minimizers, called absolute minimizers, defined as it
follows:

Definition 1.1. An absolute minimizer for (1) is a function u ∈ W 1,∞(Ω) ∩ C(Ω) such
that u = g on ∂Ω and for all open subset V ⊂⊂ Ω one has

ess.sup
x∈V

H(x,Du(x)) ≤ ess.sup
x∈V

H(x,Dv(x))
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for all v in W 1,∞(V ) ∩ C(V ) such that v = u on ∂V .

We recall that V ⊂⊂ Ω means that V ⊂ Ω, i.e. V is relatively compact in Ω. Notice that
in the above definition, we restrict ourselves to the open subsets V which are relatively
compact in Ω, which is the common definition for absolute minimizers (see [1]), but we do
not assume that u is a minimizer of (1) which is in fact a consequence of this definition (see
Lemma B.1 in the appendix). The existence of minimizers as well as absolute minimizers
for problem (1) holds under mild assumptions, see [3, 4, 9]. Unlike usual minimizers of
the problem (1), the absolute minimizer may be characterized as the unique solution of
an associated PDE in the viscosity sense when the supremand H is smooth enough and
satisfies some strict level convexity assumptions (we refer to [4, 10, 18]).

For the basic supremal functional

u 7→ ‖Du‖L∞(Ω) = ess.sup
x∈Ω

|Du(x)| (2)

where the supremand is H : (x, p) 7→ |p|, the absolute minimizers are also characterized by
a geometric property introduced in [12] and called principle of comparison with cones. The
principle of comparison with cones permitted some understanding toward the regularity
of absolute minimizers of (2), also called ∞-harmonic functions. Using the principle of
comparisons with cones it was recently proved in [20] that in 2 dimensions ∞-harmonic
functions are C1.

The aim of this paper is to provide a characterization of absolute minimizers of (1) through
a generalized version of the Comparison with Cones that will be called Comparison with
Distance Functions (see Definition 3.3 in §3). In fact, the “distance functions� we deal
with are pseudo-distances whose definition involves the sublevel sets of H as well as the
paths included in the open subsets V ⊂ Ω on which they are defined (see Definitions 2.3
and 2.5 in §2). Indeed, since the supremands H we consider depend on the variable x,
the distance functions we use for the comparison must depend on the subset V on which
that comparison holds (see Theorem 2.11 in §2).

The usual Comparison with Cones property for absolute minimizers of (2) as given in [1]
is mainly based on the following fact. Let V ⊂ Ω \ {x0} be open and consider the cone
u : x 7→ a|x−x0|+ b. If we denote by Lip(u, ∂V ) the Lipschitz constant of u on ∂V , then
the maximal MacShane-Whitney extension u+ of u from ∂V to V , given by

u+ : x 7→ inf{u(y) + Lip(u, ∂V )|x− y| : y ∈ ∂V },

is equal to u on V . In the same spirit, the main tool of our Comparison with Distance
Functions is to use the fact that, for any open subsets V ⊂ Ω and U ⊂⊂ V , one can
still compare the distance function associated with H and V and its natural MacShane-
Whitney extension on U (see Remark 2.12 in §2 and Proposition 3.1 in §3).

We show in §6 that the Comparison with Distance Functions may be adapted to the
setting of length spaces (see Definition 6.2) and still characterizes absolute minimizers.
We point out that our definition of Comparison with Distance Functions, when written in
the special case of problem (2), suggests that when defining the Comparison with Cones
from Above (see Definition 2.2 in [1]) one should consider cones x 7→ a|x − x0| + b with
a non-negative coefficient a (see Remark 6.3). This remark, in fact, ensures that our
characterization for absolute minimizers holds even in the length space setting.
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The importance of the relation between the supremal functional in (1) and the intrinsic
distances associated with H was recently observed by many authors. In particular in [17],
under the assumptions of homogeneity of H with respect to the gradient variable, the
authors use the intrinsic distance function to characterize the relaxation of a supremal
functional. In [16] for a C2 supremand H which does not depend on x a comparison
principle similar to the one we introduce here is investigated (see in particular Section 4).

As final remark let us recall that we deal with an irregular function H then a-priori one
cannot expect that the absolute minimizers are solutions of a PDE (see Example 3.2).

The paper is organized as follows: in Section §2, we define the distances we use in the se-
quel and give a first upper-bound and lower-bound result for optimal solutions of problem
(1) using these distances (see Theorem 2.11). Section §3 is devoted to the definition of
the Comparison with Distance Functions (see Definition 3.3) and the main result of the
paper, Theorem 3.5, that is the characterization of the absolute minimizers of problem (1)
through the Comparison with Distance Functions. In Section §4, we observe that when
the supremand H satisfies some strict monotonicity in its second variable, it is possible
to somewhat simplify the CDF, and thus to recover the classical notion of comparison
with cones. We then apply the CDF characterization in §5 to the problem of stability
of absolute minimizers with respect to the Γ−convergence of supremal functionals (see
Theorems 5.1 and 5.3). We also show in Section §6 that the Comparison with Distance
Functions is easily adapted to the setting of length spaces and also allows to character-
ize the Absolutely Minimizing Lipschitz functions (see Theorem 6.4). In this paper, the
concept of Finsler metrics plays an important role so we report some basic results in the
Appendix A. The Appendix B is devoted to some technical results concerning the notions
introduced in Section §2.

2. Preliminary results

Throughout this work, we assume the following:

(A) H ≥ 0, H(·, 0) = 0 and H(x, ·) is quasi-convex.

(B) H satisfies the following growth condition: (x, p) 7→ H(x, p) is uniformly (with respect
to x) coercive in p, which means

∀λ ≥ 0 ∃M ≥ 0 ∀(x, p) ∈ Ω× R
N H(x, p) ≤ λ ⇒ |p| ≤ M.

(C) The map (x, p) 7→ H(x, p) is lower semi-continuous on Ω× R
N .

We recall that H(x, ·) quasi-convex means that any sublevel set {H(x, ·) ≤ λ} is convex.
The hypotheses (A), (B) and (C) are rather standard and ensure the existence of absolute
minimizers for problems of the type (1) (see [3, 4, 9]).

We now introduce the quasi-convex conjugate of H:

Definition 2.1. For any x ∈ Ω and λ ≥ 0, we define L(x, ·, λ) on R
N by

L(x, q, λ) := sup
{

p · q : p ∈ R
N , H(x, p) ≤ λ

}

.

Notice that L(x, q, λ) ≥ 0 for any (x, q, λ) ∈ Ω × R
N × R+, that it is positively 1-

homogeneous and convex in q and that L(·, ·, λ) is measurable (by the upper semicontinu-
ity w.r.t. x and the convexity w.r.t. to q, see appendix A). A function with such properties
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(for any fixed λ) is usually called a Finsler metric in Ω. We refer to the appendix for more
about Finsler metrics and the associated distances.

Definition 2.2. For any connected open subset V ⊂ Ω and any x, y ∈ V , we set

pathV (x, y) :=
{

ξ ∈ W 1,∞(]0, 1[, V ) ∩ C([0, 1], V ) : ξ(0) = x, ξ(1) = y
}

.

In the case V = Ω, we simply write pathΩ(x, y) = path(x, y).

We notice that since V is open and connected, pathV (x, y) is nonempty for any x, y ∈ V .
For further use, we recall the definition of the usual geodesic distance in V as given in
[18] (see Definition 1.3 therein).

Definition 2.3. For any connected open subset V ⊂ Ω and any x, y ∈ V , we define the
metric distance dV (x, y) by

dV (x, y) := inf

{
∫ 1

0

| �ξ(t)|dt : ξ ∈ pathV (x, y)

}

.

and for any x, y ∈ V we set

dV (x, y) := inf

{

lim inf
n→+∞

dV (xn, yn) : (xn)n, (yn)n ∈ V N and xn → x, yn → y

}

.

In the case V = Ω, we simply write dΩ(x, y) = d(x, y).

Remark 2.4. In the following, the usual distance between x and y in R
N shall be denoted

by |x − y|, and the induced distance between a point x and a set A will be denoted by
dist(x,A).

By analogy with the definition above, we now introduce a family of pseudo-distances on
the connected open subsets of Ω associated with H.

Definition 2.5. For any connected open subset V ⊂ Ω and any x, y ∈ V and any λ ≥ 0,
we set

dVλ (x, y) := inf

{
∫ 1

0

L(ξ(t), �ξ(t), λ)dt : ξ ∈ pathV (x, y)

}

,

and for any x, y ∈ V and any λ ≥ 0, we set

dVλ (x, y) := inf

{

lim inf
n→+∞

dVλ (xn, yn) : (xn)n, (yn)n ∈ V N and xn → x, yn → y

}

.

In the case V = Ω, we simply write dΩλ (x, y) = dλ(x, y).

Remark 2.6. We point out here that since the boundary of V is not necessarily regular,
one may have dVλ (x̃, y) = +∞ for some x̃ ∈ ∂V and y ∈ V : in this case, dVλ (x̃, y) = +∞
for any y ∈ V due to the connectedness of V .

We notice that λ 7→ dVλ is non-decreasing, that dVλ is not a priori symmetric, but that it
satisfies the triangular inequality

∀x, y ∈ V , ∀z ∈ V dVλ (x, y) ≤ dVλ (x, z) + dVλ (z, y). (3)
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The above inequality may be false for z ∈ ∂V since we made no hypothesis on the
regularity of the boundary of V . The same remarks hold for dV .

We now establish a link between the usual notion of Lipschitz continuity on V ⊂ Ω with
respect to that induced by the pseudo-distance dVλ .

Lemma 2.7. Let V be a connected open subset of Ω. Assume that u : V → R satisfies

∀x, y ∈ V u(y)− u(x) ≤ dVλ (x, y)

for some λ ≥ 0. Then u belongs to W 1,∞(V ) ∩ C(V ).

If moreover u belongs to C(∂V ) and the inequality holds for x, y ∈ V , then u ∈ W 1,∞(V )∩
C(V ).

Proof. It is sufficient to prove this in the case V = Ω. Thanks to (B), there exists M > 0
such that {H(x, .) ≤ λ} is included in the Euclidean ball B(0,M) for any x in Ω, so that
L(x, q, λ) ≤ M |q| for any x ∈ Ω and q ∈ R

N . As a consequence, dλ(x, y) ≤ M |y − x| for
any x, y ∈ Ω such that the segment ]x, y[ is included in Ω. Let W ⊂⊂ Ω, if δ > 0 denotes
the distance from W to ∂Ω, one then has

∀x, y ∈ W with |y − x| ≤ δ u(y)− u(x) ≤ M |x− y|

so that u is continuous on W and ‖Du‖L∞(W ) ≤ M , and since this holds for any W ⊂⊂ Ω
we infer that u belongs to W 1,∞(Ω) ∩ C(Ω).

Now assume that u ∈ C(∂Ω), it remains to prove that u(xn) → u(x) for any sequence
(xn)n of points in Ω converging to some x ∈ ∂Ω. The following argument is borrowed
from the proof of Theorem 1.8 in [18]. Let (xn)n be such a sequence, and denote by yn a
projection of xn on ∂Ω for the usual norm, then

|u(xn)− u(x)| ≤ |u(xn)− u(yn)|+ |u(yn)− u(x)|

≤ max{dλ(xn, yn), dλ(yn, xn)}+ |u(yn)− u(x)|

≤ M |xn − yn|+ |u(yn)− u(x)|.

Since x ∈ ∂Ω, one has |xn − yn| ≤ |xn − x| so that yn → x, and since u ∈ C(∂Ω) we infer
that |u(yn)− u(x)| → 0, which concludes the proof.

Remark 2.8. The triangular inequality (3) yields that

∀x, y ∈ V dVλ (x0, y)− dVλ (x0, x) ≤ dVλ (x, y)

for any connected open subset V ⊂ Ω, any λ ≥ 0 and x0 ∈ V . Thus Lemma 2.7 also yields
that the function x 7→ dVλ (x0, x) is in W 1,∞(V )∩C(V ). This also holds true when x0 ∈ ∂V
if x 7→ dVλ (x0, x) takes finite values in V . Notice that since no regularity hypothesis is
made on ∂Ω, even the distance x 7→ dΩ(x0, x) may be discontinuous on ∂Ω.

We now turn to the link between the essential supremum of H(., Du(.)) on V and the
Lipschitzian character of the function u with respect to the pseudo-distance dVλ .

Proposition 2.9. Let V be a connected open subset of Ω. Assume that u ∈ W 1,∞(V ) ∩
C(V ) is such that H(·, Du(·)) ≤ λ a.e. on V for some λ ≥ 0. Then for any x, y ∈ V one
has u(y)− u(x) ≤ dVλ (x, y).

Moreover, if u ∈ C(V ) then u(y)− u(x) ≤ dVλ (x, y) holds for any x, y ∈ V .
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Proof. The first claim follows directly from Lemma B.3 of the appendix.

When u ∈ C(V ), the final claim follows from the definition of dVλ by taking the liminf in
u(yn)− u(xn) ≤ dVλ (xn, yn) with xn, yn ∈ V for all n and xn → x, yn → y.

The converse holds true:

Proposition 2.10. Let V be a connected open subset of Ω. Assume that u : V → R is
such that for some λ ≥ 0, u(y)−u(x) ≤ dVλ (x, y) for any x, y ∈ V . Then H(·, Du(·)) ≤ λ
a.e. on V .

Proof. It is sufficient to prove this in the case V = Ω. We first infer from Lemma 2.7
that u belongs to W 1,∞(Ω) ∩ C(Ω), so that it is locally Lipschitz continuous on Ω. As a
consequence, u is almost everywhere differentiable on Ω, and it is sufficient to show that
H(·, Du(·)) ≤ λ for any x ∈ Ω at which u is differentiable.

Let thus x ∈ Ω be such that u is differentiable at x, then for any q ∈ R
N one has

∇u(x) · q = lim inf
h→0

u(x)− u(x− hq)

h
≤ lim inf

h→0

dλ(x− hq, x)

h
.

For h > 0 small enough, the function ξ : [0, 1] → R
N given by ξ(t) := x−hq+ thq belongs

to path(x− hq, x), so that

dλ(x− hq, x)

h
≤

∫ 1

0

1

h
L(x+ (1− t)hq, hq, λ)dt =

∫ 1

0

L(x+ (1− t)hq, q, λ)dt.

If for any h > 0 we set fh(t) := sup{L(x+ (1− t)h′q, q, λ) : 0 < h′ ≤ h}, then the family
(fh)h>0 converges to lim suph→0 L(x + (1 − t)hq, q, λ) pointwise. By hypothesis (B) each
fh is dominated by M |q| for some constant M , so that Lebesgue’s dominated convergence
theorem yields

lim inf
h→0

dλ(x− hq, x)

h
≤ lim

h→0

∫ 1

0

fh(t)dt =

∫ 1

0

lim sup
h→0

L(x+ (1− t)hq, q, λ)dt

≤

∫ 1

0

L(x, q, λ)dt = L(x, q, λ)

the last inequality holding thanks to Lemma B.2. Therefore, ∇u(x) · q ≤ L(x, q, λ) for
any q ∈ R

N and thus ∇u(x) belongs to the closed convex set {H(x, ·) ≤ λ}.

We now enlight the fundamental link between the pseudo-distances dλ and the problem
(1), which is a generalization of Lemma 1.6, Theorem 1.8 and the remark following that
Theorem in [18].

Theorem 2.11. Let V be a connected open subset of Ω, and consider the problem

(P ) min

{

F (v, V ) := ess.sup
x∈V

H(x,Dv(x)) : v ∈ W 1,∞(V ) ∩ C(V ), v = g on ∂V

}

,

where g is a function in W 1,∞(V ) ∩ C(V ). Then the minimal value of this problem is

µ := min
{

λ : g(y)− g(x) ≤ dVλ (x, y) for any x, y ∈ ∂V
}

.
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Moreover, the functions S−(g, V ) and S+(g, V ) given on V by

∀x ∈ V S−(g, V )(x) := sup{g(y)− dVµ (x, y) : y ∈ ∂V }

∀x ∈ V S+(g, V )(x) := inf{g(y) + dVµ (y, x) : y ∈ ∂V }

are optimal solutions of (P ) and for any optimal solution u of (P ) one has

∀x ∈ V S−(g, V )(x) ≤ u(x) ≤ S+(g, V )(x) (4)

Notice that the minimal value µ for problem (P ) is finite since g ∈ W 1,∞(V ) ∩ C(V ).

Remark 2.12. In the above statement one may take V = Ω, so that this theorem pro-
vides a lower-bound and an upper-bound for the solutions of problem (1). The functions
S+ and S− are obtained by analogy with the MacShane-Whitney operator (we refer to
the introduction of [1] for more about this operator). We also attract the attention of the
reader on the fact that in the expression of S+ it appears dVµ (y, x) while in S− there is
dVµ (x, y): as d

V
µ is not symmetric, this is an important fact.

Proof. It is sufficient to prove this in the case V = Ω. We first notice that the minimum
µ need not a priori be attained, so that we shall at first set

µ := inf {λ : g(y)− g(x) ≤ dλ(x, y) for any x, y ∈ ∂Ω}

as well as

∀x ∈ Ω S−(x) := sup{g(y)− dλ(x, y) : λ > µ, y ∈ ∂Ω},

∀x ∈ Ω S+(x) := inf{g(y) + dλ(y, x) : λ > µ, y ∈ ∂Ω}.

We first claim that S−(x) = g(x) for any x ∈ ∂Ω. Indeed, taking y = x in the definition
of S− yields S−(x) ≥ g(x), while by definition of µ one has g(y)− dλ(x, y) ≤ g(x) for any
λ > µ and y ∈ ∂Ω, so that S−(x) ≤ g(x), which in turns proves the claim. The same
holds for S+.

We now prove that for any σ > µ and x, y ∈ Ω one has

S−(y)− S−(x) ≤ dσ(x, y).

Indeed, take σ > µ, x ∈ Ω and y ∈ Ω. We notice that since λ 7→ dλ is non decreasing, the
supremum in the definition of S− can be taken for λ ∈ ]µ, σ] instead of λ > µ, so that

S−(y)− S−(x) = sup
z∈∂Ω,σ≥λ>µ

inf
z′∈∂Ω,σ≥λ′>µ

{g(z)− dλ(y, z)− g(z′) + dλ′(x, z′)}

≤ sup
z∈∂Ω,σ≥λ>µ

{g(z)− dλ(y, z)− g(z) + dλ(x, z)}

≤ sup
σ≥λ>µ

{dλ(x, y)} = dσ(x, y)

where we have applied inequality (3) which holds since y ∈ Ω.

When y ∈ ∂Ω, we notice that S−(y) = g(y) and S−(x) ≥ g(y)−dσ(x, y) so that the claim
also holds. The corresponding estimate also holds for S+.
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Since g is continuous on ∂Ω, we infer from the two preceding claims and Lemma 2.7 that
S− and S+ belong to g + W 1,∞(Ω) ∩ C0(Ω). Moreover, it follows from Proposition 2.10
that F (S−,Ω) ≤ σ for any σ > µ, so that F (S−,Ω) ≤ µ. Applying now Proposition 2.9
yields that

S−(y)− S−(x) ≤ dµ(x, y)

for any x, y ∈ Ω, and since S− = g on ∂Ω this implies that the infimum in the definition
of µ is attained.

Now the same arguments as above yield that S−(g,Ω) and S+(g,Ω) are admissible for
problem (P ) and that F (S−(g,Ω),Ω) ≤ µ, so that the minimal value inf(P ) for problem
(P ) is lower than µ. We claim that inf(P ) = µ: by contradiction, assume that an
admissible function u ∈ g +W 1,∞(Ω) ∩ C0(Ω) is such that F (u,Ω) ≤ λ for some λ < µ.
Then Proposition 2.9 yields that u(y)− u(x) ≤ dλ(x, y) for any x, y ∈ Ω, and since u = g
on ∂Ω this contradicts the definition of µ. As a consequence, inf(P ) = µ and S−(g,Ω)
and S+(g,Ω) are optimal solutions of (P ).

Finally, if u is an optimal solution of (P ), one has H(·, Du(·)) ≤ µ a.e. on Ω so that by
Proposition 2.9 one gets u(y) − u(x) ≤ dµ(x, y) for any x, y ∈ Ω. If x ∈ Ω, this yields
g(y)−dµ(x, y) ≤ u(x) for any y ∈ ∂Ω so we infer S−(g,Ω)(x) ≤ u(x). The same argument
yields the estimate u ≤ S+(g,Ω) on Ω, which concludes the proof of (4).

3. The comparison with distance functions

In the following Proposition, we relate the distance functions dVλ (x0, ·)+α associated with
H with the upper and lower solutions given in Theorem 2.11.

Proposition 3.1. Let V be a connected open subset of Ω, and U be a connected open
subset of V such that U ⊂⊂ V and x0 ∈ V \ U . Then for any λ ≥ 0 and α ∈ R, one has

dVλ (x0, ·) + α ≥ S+(dVλ (x0, ·) + α, U) on U,

and
−dVλ (·, x0) + α ≤ S−(−dVλ (·, x0) + α, U) on U.

Proof. It is sufficient to prove the first inequality in the case V = Ω. We notice that by
the connectedness of Ω either dλ(x0, .) is identically +∞ on Ω (see Remark 2.6), or it is
Lipschitz continuous on U (see Remark 2.8). In the first case there is nothing to prove,
so we turn to the second case. We infer from Theorem 2.11 that for all x in U :

S+(dλ(x0, .) + α, U)(x) := inf{α+ dλ(x0, y) + dUµ (y, x) : y ∈ ∂U}

where µ = min
{

σ : dλ(x0, y)− dλ(x0, x) ≤ dUσ (x, y) for any x, y ∈ ∂U
}

. We observe that
µ ≤ λ because by (3) we have that for all x, y ∈ ∂U , dλ(x0, y)− dλ(x0, x) ≤ dλ(x, y), and
since pathU(x, y) ⊂ path(x, y) one has dλ(x, y) ≤ dUλ (x, y). Then

S+(dλ(x0, .) + α, U)(x) ≤ inf{α+ dλ(x0, y) + dUλ (y, x) : y ∈ ∂U} (5)

for any x ∈ U . Now fix x ∈ U and δ > 0, and consider a path ξ ∈ path(x0, x) for which

dλ(x0, x) ≥

∫ 1

0

L(ξ(t), �ξ(t), λ)dt− δ.
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Then there exists t ∈ [0, 1[ such that ξ(t) ∈ ∂U and ξ(s) ∈ U for any s > t, so that

dλ(x0, x) ≥

∫ t

0

+

∫ t+ 1

n

t

+

∫ 1

t+ 1

n

L(ξ(t), �ξ(t), λ)dt− δ

≥ dλ(x0, ξ(t)) + 0 + dUλ (ξ(t+
1

n
), x)− δ

for any n ≥ 1 for which t + 1
n
< 1. Taking the liminf as n go to +∞ yields dλ(x0, x) ≥

dλ(x0, ξ(t)) + dUλ (ξ(t), x)− δ. Taking then y = ξ(t) as a test in (5) yields

S+(dλ(x0, .) + α, U)(x) ≤ α+ dλ(x0, ξ(t)) + dUλ (ξ(t), x) ≤ α+ δ + dλ(x0, x).

Letting δ go to zero yields the result.

Example 3.2. It may happen that the pseudo-distance function x 7→ dλ(x0, x) is not a
solution of the extension problem

(PU) min

{

F (v, U) := ess.sup
x∈U

H(x,Dv(x)) : v ∈ dλ(x0, .) +W 1,∞(U) ∩ C0(U)

}

,

where x0 ∈ Ω \ U and U ⊂⊂ Ω is connected and open: in that case, the inequality

dVλ (x0, ·) ≥ S+(dVλ (x0, ·), U)

is strict at some points of U . As a consequence, dλ(x0, .) is intuitively not a solution of
some eikonal equation related to H. As an example, in R

2 take Ω = B(0, 2), U = B(0, 1)
and

H(x, p) :=

{

1
2
|p| if x ∈ U

|p| otherwise.

Now consider

(PU) min

{

F (v, U) :=
1

2
‖Dv‖L∞(U) : v ∈ d1(x0, ·) +W 1,∞(U) ∩ C0(U)

}

where x0 = (1, 0) belongs to U . Then one has F (d1(x0, ·), U) = 2
2
= 1 and

∀x, y ∈ ∂U |d1(x0, y)− d1(x0, x)| ≤
π

2
|y − x|

as well as
∀x, y ∈ U ∀λ ≥ 0 dUλ (x, y) = 2λ|y − x|.

As a consequence of Theorem 2.11 one then infers that the minimal value inf(PU) of (PU)
satisfies

inf(PU) ≤
π

4
< 1 = F (d1(x0, ·), U)

so that d1(x0, ·) is not a solution of (PU). Notice that the above fact is in contrast to the
case H(x, p) = |p|, for which the geodesic distance x 7→ dλ(x0, x) = λd(x0, x) is an optimal
solution of the extension problem (PU) for any connected open set U ⊂⊂ Ω such that
x0 /∈ U (we of course assume here that d(x0, .) is finite on Ω, see Remark 2.6). Indeed,
it is easy to verify that in that case the function λd(x0, .) is a classical solution of the
eikonal equation |∇v| = λ in Ω \ {x0}, then derive that it is a solution of −∆∞v = 0 in
Ω \ {x0} and apply Theorems 3.1 and 3.2 of [12].
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Definition 3.3. We shall say that a continuous function u : Ω → R satisfies the Com-
parison with Distance Functions (noted CDF) from above in Ω if and only if for any
connected open subset V ⊂⊂ Ω, any x0 ∈ V , any λ ≥ 0 and α ∈ R the inequality

u ≤ dVλ (x0, .) + α on ∂(V \ {x0})

implies
u ≤ dVλ (x0, .) + α on V .

Similarly, a continuous function u : Ω → R satisfies the CDF from below on Ω if and only
if the inequality

u ≥ −dVλ (., x0) + α on ∂(V \ {x0})

implies
u ≥ −dVλ (., x0) + α on V .

Finally, a continuous function u : Ω → R satisfies the Comparison with Distance Functions
on Ω if and only if it satisfies the CDF both from above and from below on Ω.

Remark 3.4. The notion of Comparison with Distance Functions is a generalization of
that of Comparison with Cones appearing in [12]. However, even for the classical case
where H : (x, p) 7→ |p| is the euclidean norm the above notion is different from that
introduced in [12]: indeed that paper deals with the comparison with the usual cones
x 7→ λ|x − x0|, while our notion leads to the comparison with the cones x 7→ λdV (x0, x)
(where dV (·, ·) is the usual geodesic distance in V , see Definition 2.3). This is overcomed
in Section 4, see Remark 4.4.

We now state and prove the main result of the paper.

Theorem 3.5. Let u ∈ W 1,∞(Ω) ∩ C(Ω). Then u is an absolute minimizer of

(P ) min

{

F (v,Ω) := ess.sup
x∈Ω

H(x,Dv(x)) : v ∈ g +W 1,∞(Ω) ∩ C0(Ω)

}

if and only if u = g on ∂Ω and u satisfies the Comparison with Distance Functions on Ω.

Proof. We first prove the only if part, that is if u is an absolute minimizer of (P ) then it
satisfies the CDF from above on Ω (the argument is the same for the CDF from below).
Let thus V be an open, connected subset of Ω relatively compact in Ω, x0 ∈ V , λ ≥ 0
and α ∈ R be such that

u ≤ dVλ (x0, .) + α on ∂(V \ {x0}).

We shall assume that dVλ (x0, .) is not uniformly +∞ on V , so that it is Lipshitz continuous
in V . Let (εk)k be a sequence of positive numbers decreasing to 0. Define αk = α + εk
and observe that (αk)k decreases to α and

u < dVλ (x0, .) + αk on ∂(V \ {x0}). (6)

Let Uk := {x ∈ V : u(x) > dVλ (x0, .) + αk}. If Uk is empty, there is nothing to prove.
Otherwise, we first claim that Uk ⊂⊂ (V \ {x0}). By contradiction, assume that the
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sequence (xn)n in Uk converges to some x ∈ ∂(V \ {x0}), then taking the liminf as n goes
to +∞ in u(xn) > dVλ (x0, xn) + αk yields

u(x) ≥ dVλ (x0, x) + αk,

and since x ∈ ∂(V \ {x0}), this obviously contradicts (6).

Now since Uk ⊂⊂ (V \{x0}) and u and dVλ are continuous on V , we have that Uk is open,
and we may assume that it is connected (otherwise we consider a connected component).
We then claim that

u ≤ S+(dVλ (x0, .) + αk, Uk) on Uk. (7)

Indeed, u = dVλ (x0, .) + αk on ∂Uk, and since u is an absolute minimizer of (P ), it is an
optimal solution of

(PUk
) min

{

F (v, Uk) : v ∈ dVλ (x0, .) + αk +W 1,∞(Uk) ∩ C0(Uk)
}

.

Then (7) follows from Theorem 2.11, and Proposition 3.1 then allows to conclude that

u ≤ dVλ (x0, .) + αk on Uk,

which obviously contradicts the definition of Uk which is then empty for all k. Letting k
go to +∞ we obtain

u ≤ dVλ (x0, .) + α on V

which concludes the proof of the only if part.

We now turn to the if part: assume that u = g on ∂Ω and u satisfies the CDF on Ω. Let
V be an open subset of Ω with V ⊂⊂ Ω, we must prove that u is an optimal solution of

(PV ) min
{

F (v, V ) : v ∈ u+W 1,∞(V ) ∩ C0(V )
}

.

Thanks to Theorem 2.11, this is equivalent to show that

F (u, V ) = min(PV ) = µ := min
{

λ : u(y)− u(x) ≤ dVλ (x, y) for any x, y ∈ ∂V
}

.

Let x ∈ ∂V , then by definition of µ one has

u(y) ≤ u(x) + dVµ (x, y) for any y ∈ ∂(V \ {x})

and since u satisfies the CDF from above this inequality holds for any y ∈ V . Now let
y ∈ V , then we just obtained that

u(x) ≥ u(y)− dVµ (x, y) for any x ∈ ∂(V \ {y})

and since u satisfies the comparison with cones from below this inequality holds for any
x ∈ V . As a consequence, we get

u(y)− u(x) ≤ dVµ (x, y) for any x, y ∈ V .

Proposition 2.10 then yields F (u, V ) ≤ µ, which concludes the proof.

Remark 3.6. The proof of the if part above is somewhat inspired from the argument of
Proposition 2.1 in [1].
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4. Comparison with Global Distance Functions

Dealing with distances which depend on the open set may be technically difficult. In this
section, under some more regularity assumption on the supremand H (which still cover a
very wide variety of possible supremands) we are able to simplify the results of Section 3
by dealing with distances which do not depend anymore on the open set.

Definition 4.1. We shall say that a continuous function u : Ω → R satisfies the Compar-
ison with Global Distance Functions (noted CGDF) from above in Ω if for any connected
open subset V ⊂⊂ Ω, any x0 ∈ V , any λ ≥ 0 and α ∈ R the inequality

u ≤ dΩλ (x0, .) + α on ∂(V \ {x0})

implies
u ≤ dΩλ (x0, .) + α on V .

Similarly, a continuous function u : Ω → R satisfies the CGDF from below on Ω if the
inequality

u ≥ −dΩλ (., x0) + α on ∂(V \ {x0})

implies
u ≥ −dΩλ (., x0) + α on V .

Finally, a continuous function u : Ω → R satisfies the Comparison with Global Distance
Functions on Ω if it satisfies the CGDF both from above and from below on Ω.

In order to make the link between the Comparison with Global Distance Functions and
the absolute minimizers, we assume in the rest of this section that the following regularity
property on H holds:

(D) For all λ > µ ≥ 0 and V ⊂⊂ Ω there exists α > 0 such that

∀x ∈ V { H(x, ·) < µ}+B(0, α) ⊂ { H(x, ·) < λ}

Remark 4.2. It is easily infered from this assumption that for any connected open set
V ⊂⊂ Ω and for any λ > µ ≥ 0 one has

∀x 6= y ∈ V dVµ (x, y) < dVλ (x, y).

We now turn to the main theorem of this section.

Theorem 4.3. Assume that (D) holds, and let u ∈ W 1,∞(Ω) ∩ C(Ω). Then u is an
absolute minimizer of

(P ) min

{

F (v,Ω) := ess.sup
x∈Ω

H(x,Dv(x)) : v ∈ g +W 1,∞(Ω) ∩ C0(Ω)

}

if and only if u = g on ∂Ω and u satisfies the Comparison with Global Distance Functions
on Ω.

Remark 4.4. As the proof of the above theorem shows, the CGDF characterization is
obtained via local arguments: every computation is made in some V ⊂⊂ Ω. One could
even therefore replace the pseudo-distances dΩλ by the pseudo-distances dR

N

λ whenever H
is defined on R

N × R
N , with assumption (D) still holding on Ω. One may in particular

apply this to the case where H does not depend on x: for example, one thus recovers the
usual comparison with cones for the special case H(x, p) = |p|.
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Proof of Theorem 4.3. For the only if part, we just notice that the corresponding
proof of Theorem 3.5 still holds when dVλ is replaced with dΩλ .

Let us turn to the if part: assume that u = g on ∂Ω and u satisfies the CGDF on Ω. Let
V be a connected open subset of Ω with V ⊂⊂ Ω, we must prove that u is an optimal
solution of

(PV ) min
{

F (v, V ) : v ∈ u+W 1,∞(V ) ∩ C0(V )
}

.

By Theorem 2.11, this is equivalent to show that

F (u, V ) = min(PV ) = µ := min
{

λ : u(y)− u(x) ≤ dVλ (x, y) for any x, y ∈ ∂V
}

.

By contradiction, assume that Λ := F (u, V ) > µ. Then there exists x0 ∈ V such that u
is differentiable at x0 and

H(x0,∇u(x0)) = λ0 > µ. (8)

We first claim that for λ = (µ+ λ0)/2 there exists x+∞ ∈ ∂V such that

u(x+∞)− u(x0) ≥ dVλ (x0, x+∞) (9)

where λ = (µ+ λ0)/2. Let M > 1 > α > 0 be such that

B(0, α) ⊂ { H(x, ·) < ν} ⊂ B(0,M)

for all x ∈ V and ν ∈ [µ,Λ].

We define by induction the decreasing sequence (λn)n∈N by λn+1 := (µ + λn)/2 for any
n ≥ 0. Then we infer from (8) that there exists x′

0 such that |x′
0 − x0| ≤

α
2M2 dist(x0, ∂V )

and
u(x′

0) > u(x0) + dVλ1
(x0, x

′
0).

Indeed, one would otherwise have u(x) ≤ u(x0)+dVλ1
(x0, x) for any x ∈ B(x0,

α
2M2 dist(x0,

∂V )), then Proposition 2.10 would imply H(x0,∇u(x0)) ≤ λ1, which contradicts (8).

Let us notice that since |x′
0 − x0| ≤

α
M

dist(x0, ∂V ), Lemma B.4 yields that dVλ1
(x0, x

′
0) =

dΩλ1
(x0, x

′
0). We may now apply Lemma 4.5 below to build by induction starting from x0

a sequence (xn)n∈N in V such that

• for any n ∈ N, one has

α2

2M2
dist(xn, ∂V ) ≤ |xn+1 − xn| ≤

α

2M
dist(xn, ∂V ),

• for any n ∈ N, one has

u(xn+1) ≥ u(xn) + dΩλn+1
(xn, xn+1),

• for any n ∈ N, xn ∈ V and there exists x′
n ∈ V such that

|x′
n − xn| ≤

α2

2M2
dist(xn, ∂V ) and u(x′

n) > u(xn) + dΩλn+1
(xn, x

′
n).
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Applying once again Lemma B.4 yields that in the preceding, dVλn
= dΩλn

, so that the
sequence (xn)n∈N is such that for any n ≥ 0, one has

|xn+1 − xn| ≥
α2

2M2
dist(xn, ∂V ) and u(xn+1) ≥ u(xn) + dVλn+1

(xn, xn+1).

This yields that for any n ∈ N

u(xn+1)− u(xn) ≥ dVλ (xn, xn+1) ≥
α3

2M2
dist(xn, ∂V ).

We now conclude as in the proof of Theorem 3.2 of [12]: for any n ∈ N one has

u(xn+1)− u(x0) ≥
n

∑

i=0

dVλ (xi, xi+1) ≥
α3

2M2

n
∑

i=0

dist(xi, ∂V ) ≥ 0.

Since u is continuous on Ω, it is bounded on V , and thus dist(xn, ∂V ) → 0 as n → +∞.
Let x+∞ be a cluster point of (xn)n, then x+∞ ∈ ∂V and taking the liminf as n goes to
+∞ in

u(xn+1)− u(x0) ≥
n

∑

i=0

dVλ (xi, xi+1) ≥ dVλ (x0, xn+1)

one gets (9), which proves the claim.

A similar argument (which relies on the use of Lemma 4.6) yields the existence of some
x−∞ ∈ ∂V such that

u(x0)− u(x−∞) ≥ dVλ (x−∞, x0). (10)

We finally infer from (9) and (10) that for the points x+∞, x−∞ ∈ ∂V it holds

u(x+∞)− u(x−∞) ≥ dVλ (x0, x+∞) + dVλ (x−∞, x0) ≥ dVλ (x−∞, x+∞).

By Remark 4.2, we then get

u(x+∞)− u(x−∞) ≥ dVλ (x−∞, x+∞) > dVµ (x−∞, x+∞),

which contradicts the definition of µ.

The following Lemma is inspired from Lemmas 2.4 and 3.3 of [12]. Notice that in its proof,
we only use that u satisfies the CGDF from above. For the notations and hypotheses, we
refer to Theorem 4.3.

Lemma 4.5. Assume that x ∈ V is such that there exist ν ∈ ]µ,Λ] and x′ ∈ V such that
|x′ − x| ≤ α2

2M2 dist(x, ∂V ) and

u(x′) > u(x) + dΩν (x, x
′).

Then for any θ ∈ ]µ, ν[ there exist y and y′ in V such that

• α2

2M2 dist(x, ∂V ) ≤ |y − x| ≤ α
2M

dist(x, ∂V ),

• u(y) ≥ u(x) + dΩθ (x, y),

• |y′ − y| ≤ α2

2M2 dist(y, ∂V ) and u(y′) > u(y) + dΩθ (y, y
′).
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Proof. Set R := α2

2M
dist(x, ∂V ), let θ ∈ ]µ, ν[ , θ′ ∈ ]θ, ν[ and define

a := max{u(z)− dΩθ′(x, z) : z such that dΩθ′(x, z) ≤ R}.

By the definition of R, if dΩθ′(x, z) ≤ R then

α|z − x| ≤ dΩθ′(x, z) ≤ R =
α2

2M
dist(x, ∂V )

so that z ∈ V . Moreover, since x′ is such that

dΩθ′(x, x
′) ≤ M |x′ − x| ≤ M

α2

2M2
dist(x, ∂V ) = R,

one has a ≥ u(x′)−dΩθ′(x, x
′) ≥ u(x′)−dΩν (x, x

′) > u(x). Since u satisfies the CGDF from
above on Ω and dΩθ′(x, ·) is continuous on V , one has

a = max{u(z)− dΩθ′(x, z) : z = x or z such that dΩθ′(x, z) = R},

and we infer from dΩθ′(x, x
′) ≤ R that

a = max{u(z)− dΩθ′(x, z) : z such that dΩθ′(x, z) = R} > u(x).

Let now y be such that dΩθ′(x, y) = R and u(y)− dΩθ′(x, y) = a. Then y ∈ V , and one has

M |y − x| ≥ dΩθ′(x, y) = R so that |y − x| ≥
α2

2M2
dist(x, ∂V )

as well as

α|y − x| ≤ dΩθ′(x, y) = R so that |y − x| ≤
α

2M
dist(x, ∂V )

and

u(y) = dΩθ′(x, y) + a > dΩθ′(x, y) + u(x) ≥ dΩθ (x, y) + u(x).

Now, set r = α3

2M2 dist(y, ∂V ). By Lemma B.5, for any ε ∈ ]0, 1[ there exists yε such that

|yε − y| = εmin{ r
M
, |y−x|

2
} and

dΩθ′(x, y) = dΩθ′(x, yε) + dΩθ′(yε, y).

As a consequence, dΩθ′(x, yε) ≤ R so that

u(yε)− dΩθ′(x, yε) ≤ a = u(y)− dΩθ′(x, y)

= u(y)−
(

dΩθ′(x, yε) + dΩθ′(yε, y)
)

.

We thus have

u(yε) ≤ u(y)− dΩθ′(yε, y). (11)

Take θ′′ ∈ ]θ, θ′[ and define

b := max{u(z)− dΩθ′′(yε, z) : z such that, dΩθ′′(yε, z) ≤ r}.
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We notice that dΩθ′′(yε, y) ≤ M |yε − y| ≤ r, and by (11) and Remark 4.2 we have

b ≥ u(y)− dΩθ′′(yε, y) > u(y)− dΩθ′(yε, y) ≥ u(yε).

The same arguments as above thus yield the existence of some yε such that

dΩθ′′(yε, y
ε) = r and u(yε)− dΩθ′′(yε, y

ε) = b > u(yε).

Let y′ be a cluster point of the family (yε)ε>0 as ε → 0, then by passing to the limit in
the above relations, one infers

dΩθ′′(y, y
′) = r and u(y′)− dΩθ′′(y, y

′) ≥ u(y).

Then one has

|y′ − y| ≤
1

α
dΩθ′′(y, y

′) =
r

α
≤

α2

2M2
dist(y, ∂V )

Finally using once again Remark 4.2 we get

u(y′)− dΩθ (y, y
′) > u(y′)− dΩθ′′(y, y

′) ≥ u(y)

which concludes the proof of the Lemma.

An analogue of the above Lemma holds, if we require only that u satisfies the CGDF from
below on Ω.

Lemma 4.6. Assume that x ∈ V is such that there exist ν ∈ ]µ,Λ] and x′ ∈ V such that
|x′ − x| ≤ α2

2M2 dist(x, ∂V ) and

u(x) > u(x′) + dΩν (x
′, x).

Then for any θ ∈ ]µ, ν[ there exist y and y′ in V such that

• α2

2M2 dist(x, ∂V ) ≤ |y − x| ≤ α
2M

dist(x, ∂V ),

• u(x) ≥ u(y) + dΩθ (y, x),

• |y′ − y| ≤ α2

2M2 dist(y, ∂V ) and u(y) > u(y′) + dΩθ (y
′, y).

5. Stability of absolute minimizers with respect to Γ-convergence

In this part, we show that the notion of absolute minimizer is stable with respect to
Γ-convergence (see Theorem 5.1 below) and then apply this result to the case of the
homogenization in L∞ of supremal functionals. We recall that when X is a metric space,
a sequence of functionals Fn : X → R is said to Γ-converge to F in X if

∀x ∈ X F (x) = Γ− lim infFn(x) = Γ− lim supFn(x),

where
Γ− lim infFn(x) = inf

{

lim infFn(xn) : xn → x in X
}

Γ− lim supFn(x) = inf
{

lim supFn(xn) : xn → x in X
}

.

We refer to [13] for an introduction to the theory of Γ-convergence. We now state the
stability of absolute minimizers with respect to this notion of convergence.
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Theorem 5.1. Assume that for any n ∈ N, the function un ∈ W 1,∞(Ω) ∩ C(Ω) is an
absolute minimizer of the problem

(Pn) min

{

ess.sup
x∈Ω

Hn(x,Dv(x)) : v ∈ un +W 1,∞(Ω) ∩ C0(Ω)

}

,

and that the sequence (un)n∈N converges uniformly on Ω to some function u∞ ∈ W 1,∞(Ω)∩
C(Ω). For any n ∈ N ∪ {+∞} and relatively compact open subset U ⊂ Ω with boundary
of class C2, we define the supremal functional Fn(., U) on C(U) by

Fn(v, U) :=







ess.sup
x∈U

Hn(x,Dv(x)) if v ∈ W 1,∞(U) ∩ C(U),

+∞ otherwise,

where the supremand Hn satisfies conditions (A) and (C) for any n ∈ N∪{+∞}, and the
family {Hn}n∈N∪{+∞} is uniformly equicoercive on Ω× R

N , i.e.

∀λ ≥ 0 ∃M > 0 ∀n ∈ N ∪ {+∞} ∀(x, p) Hn(x, p) ≤ λ ⇒ |p| ≤ M. (12)

Suppose that for any such open subset U the sequence (Fn(., U))n Γ-converges in C(U) to
the supremal functional F∞(., U). Then the function u∞ is an absolute minimizer of

(P∞) min

{

ess.sup
x∈Ω

H∞(x,Dv(x)) : v ∈ u∞ +W 1,∞(Ω) ∩ C0(Ω)

}

.

We first prove the following Lemma, which in our opinion has an interest by itself. For
a connected open subset V ⊂ Ω, λ ≥ 0 and n ∈ N ∪ {+∞}, we shall denote by dVλ,n the
pseudo-distance in V associated with the supremand Hn.

Lemma 5.2. Under the assumptions of Theorem 5.1, for any U ⊂⊂ Ω with boundary of
class C2, any µ ≥ 0 and x ∈ U , there exists a sequence of non-negative real numbers (µn)n
such that

dUµn,n
(x, .) → dUµ,∞(x, .) in C(U). (13)

Proof. We infer from Lemma B.3 that for any y ∈ U one has

dUµ,∞(x, y) = sup{v(y)− v(x) : v ∈ W 1,∞(U) ∩ C(U), H∞(., Dv) ≤ µ a.e. on V }

= sup{v(y)− v(x) : F∞(v, U) ≤ µ}.

Since (Fn(., U))n Γ-converges in C(U) to F∞(., U), there exists a sequence of functions
vn ∈ W 1,∞(U) ∩ C(U) converging uniformly in U to dUµ,∞(x, .) and such that

Fn(vn, U) → F∞(dUµ,∞(x, .), U) ≤ µ

where the last inequality follows from Proposition 2.10. For any n we set Fn(vn, U) = µn

and we prove (13) for the sequence (µn)n. It follows again from Lemma B.3 that for any
n and y ∈ U one has

dUµn,n
(x, y) = sup{v(y)− v(x) : Fn(v, U) ≤ µn}

≥ vn(y)− vn(x),
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thus letting n go to +∞ yields

∀y ∈ U lim inf
n→+∞

dUµn,n
(x, y) ≥ dUµ,∞(x, y).

We also notice that by the uniform equicoercivity assumption (12), the regularity of ∂U
and the fact that dUµn,n

(x, x) = 0 for any n, the family (dUµn,n
(x, .))n is uniformly bounded

and equicontinuous on U and thus we may assume without loss of generality that it
converges in C(U) to some function w. We infer from the Γ-convergence of Fn(., U) that

F∞(w,U) ≤ lim inf
n→+∞

Fn(d
U
µn,n

(x, .), U) ≤ lim inf
n→+∞

µn ≤ µ.

Then for any y in U we have

lim sup
n→+∞

dUµn,n
(x, y) = w(y) = w(y)− w(x)

≤ sup{v(y)− v(x) : F∞(v, U) ≤ µ} = dUµ,∞(x, y)

where the last inequality follows by Proposition 2.10 and this concludes the proof.

Proof of Theorem 5.1. Thanks to Theorem 3.5, it is sufficient to prove that u∞ satisfies
the CDF associated with H∞. We only prove that u∞ satisfies the CDF from above, the
argument being similar for the comparison from below. Let then x0 ∈ V , λ ≥ 0 and
α ∈ R be such that

u∞ ≤ dVλ,∞(x0, .) + α on ∂(V \ {x0}).

Let ε > 0 and set W = {x ∈ V : u∞ > dVλ,∞(x0, .) + α + ε}. If W is empty, there is
nothing to prove, otherwise the same arguments as in the proof of Theorem 3.5 yield that
W is open and W ⊂⊂ V \ {x0}. We may also assume without loss of generality that W
is connected. Thus there exists U ⊂⊂ V \ {x0} open, connected, with C2 boundary and
containing W . Then the function dVλ,∞(x0, .) is continuous on U , and we have

u∞(y) ≤ α+ ε+ dVλ,∞(x0, y) = α+ ε+ S+(dVλ,∞(x0, .), U)(y)

for any y ∈ ∂U . We now infer from the definition of S+(dVλ,∞(x0, .), U) that

u∞(y) ≤ α+ ε+ dVλ,∞(x0, x) + dUµ,∞(x, y) (14)

for any x, y ∈ ∂U and with

µ = min
{

σ : dVλ,∞(x0, y)− dVλ,∞(x0, x) ≤ dUσ,∞(x, y) for any x, y ∈ ∂U
}

.

Let us now fix x ∈ ∂U in (14), we aim to show that this inequality holds for any y in U .
We infer from Lemma 5.2 that there exists a sequence (µn)n such that

dUµn,n
(x, .) → dUµ,∞(x, .) in C(U).

Let δ > 0, we get from (14) that for n large enough

∀y ∈ ∂U un(y) ≤ α+ ε+ δ + dVλ,∞(x0, x) + dUµn,n
(x, y) (15)
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Since for all n the function un satisfies the CDF property, the inequality (15) holds for
any y ∈ U . Letting n go to ∞ in (15), we get that

∀y ∈ U u∞(x) ≤ α+ ε+ δ + dVλ,∞(x0, x) + dUµ,∞(x, y).

We let δ go to 0 and take the infimum on x ∈ ∂U to get that for any y ∈ U one has

u∞(y) ≤ α+ ε+ inf{dVλ,∞(x0, x) + dUµ,∞(x, y) : x ∈ ∂U}

= α+ ε+ S+(dVλ,∞(x0, .), U)(y).

Applying Proposition 3.1 yields

∀y ∈ U u∞(y) ≤ α+ ε+ dVλ,∞(x0, y),

which contradicts the definitions of U and W .

We now turn to the application of the above result to an homogenization problem. For
any positive ε and V open subset of Ω, let the supremal functional Fε(., V ) be defined on
C(V ) by

Fε(v, V ) :=







ess.sup
x∈Ω

H(
x

ε
,Dv(x)) if v ∈ W 1,∞(V ) ∩ C(V ),

+∞ otherwise,

and let Fhom(., V ) be given by

Fhom(v, V ) :=







ess.sup
x∈Ω

Hhom(Dv(x)) if v ∈ W 1,∞(V ) ∩ C(V ),

+∞ otherwise,

where for any p ∈ R
N one has

Hhom(p) := inf

{

ess.sup
x∈(0,1)N

H(x, p+Dw(x)) : w ∈ W 1,∞
# ((0, 1)N) ∩ C((0, 1)N)

}

.

The following classical assumptions are made on the supremand H:

(A’) H : RN×R
N → [0,+∞] is lower semi-continuous, (0, 1)N -periodic in the first variable

and level-convex in the second, and H(., 0) = 0.

(B’) H satisfies the growth condition: α(|p|) ≤ H(x, p) ≤ β(|p|) for any (x, p) ∈ R
N×R

N ,
where α, β : R+ → R+ are increasing functions, α(t) → +∞ as t → +∞ and β is
locally bounded.

(E) H satisfies the continuity condition: for any M > 0 there exists a function ω : R+ →
R+ with ω(t) → 0 as t → 0+ and

∀x ∈ (0, 1)N ∀p, η ∈ B(0,M) |H(x, p)−H(x, η)| ≤ ω(|p− η|).

Then the following holds.
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Theorem 5.3. Assume that for any ε > 0, the function uε ∈ W 1,∞(Ω) ∩ C(Ω) is an
absolute minimizer of the problem

(Pε) min
{

Fε(v,Ω) : v ∈ uε +W 1,∞(Ω) ∩ C0(Ω)
}

and that u0 ∈ W 1,∞(Ω)∩C(Ω) is a cluster point (as ε → 0) in C(Ω) of the family (uε)ε>0.
Then u0 is an absolute minimizer of the homogenized problem

(Phom) min
{

Fhom(v,Ω) : v ∈ u0 +W 1,∞(Ω) ∩ C0(Ω)
}

.

Proof. We first notice that thanks to hypotheses (A’) and (B’), the family of supremands
(H( ·

ε
, .))ε>0 obviously satisfies conditions (A), (C) and (12). To apply Theorem 5.1, it

thus remains to prove that for any open subset V ⊂⊂ Ω with C2 boundary the family
(Fε(., V )) Γ-converges to Fhom(., V ) on C(V ) as ε → 0: this follows from Theorem 5.2 of
[6].

6. Absolutely minimizing Lipschitz extensions in length spaces

In this section we show that the principle of Comparison with Distance Functions also
characterizes the absolutely minimizing Lipschitz extensions in a length space (X, d). A
metric space (X, d) is said a length space if it is arcwise-connected and the distance of
any two points coincide with the infimum of the length of continuous arcs joining them.
More precisely, if x, y ∈ X and if we denote by pathX(x, y) the set of continuous maps
γ : [0, 1] → X with γ(0) = x and γ(1) = y, then the length l(γ) of γ is given by

l(γ) := sup

{

k
∑

i=0

d(γ(ti), γ(ti+1)) : 0 = t0 ≤ . . . ≤ tk = 1, k ≥ 1

}

and (X, d) is a length space if for any x, y ∈ X one has

d(x, y) = inf {l(γ) : γ ∈ pathX(x, y)}

The category of length spaces includes Riemannian manifolds, Carnot-Caratheodory spa-
ces, as well as more general spaces (see [1] for more on this notion).

We first recall the definition of an Absolutely minimizing Lipschitz extension in a length
space as given in §9 of [1].

Definition 6.1. Let (X, d) be a length space, A ⊂ X and u : A → R, then we set

Lip(u,A) := inf {k : u(y)− u(x) ≤ kd(x, y) for all x, y ∈ A} .

Let V be a proper open subset of X, then a Lipschitz continuous function u : V → R is
said to be an Absolutely Minimizing Lipschitz function (noted AML) on V if for all open
subset U of V one has

Lip(u, U) = Lip(u, ∂U).

In the above definition, proper means that V /∈ {∅, X}, and since X is connected this
implies that ∂V 6= ∅. We now extend the notion of Comparison with Distance Functions
to this setting.
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Definition 6.2. Let (X, d) be a length space and V a proper open subset of X. A
function u : V → R satisfies the Comparison with Distance Functions from above on V if
for any open subset U of V , any x0 ∈ X, any a ≥ 0 and b ∈ R, the inequality

u ≤ ad(x0, .) + b on ∂(U \ {x0})

implies
u ≤ ad(x0, .) + b on U.

Similarly, a continuous function u : Ω → R satisfies the CDF from below on Ω if and only
if the inequality

u ≥ −ad(x0, .) + b on ∂(U \ {x0})

implies
u ≥ −ad(x0, .) + b on U.

Finally, u satisfies the CDF on V if and only if it satisfies the CDF both from above and
from below on V .

Remark 6.3. We point out that in the above definition the parameter a is non-negative,
whereas in the classical definition (for example see Definition 2.2 in [1]) a may take neg-
ative values. This is inspired from Definition 3.3 where the parameter λ is necessarily
non-negative. This difference allows to show that with the above definition, the compari-
son with cones is still a characterization for the AML property in this general length space
setting, and rules out the problem arising in Example 9.2 of [1]. Indeed, in that example
the authors consider the case where X is the unit sphere of R3 equipped with the geodesic
distance, x0 is the north pole and V the southern hemisphere. Then the constant function
π
2
is of course an AML in X, and is equal to the cone d1(x0, .) on ∂V . One doesn’t have

π
2
≥ d1(x0, .) in V , while π

2
≤ d1(x0, .) holds in V . The classical definition for the compar-

ison with cones would ask the two inequalities to hold (and thus fails to characterize the
AML property), whereas Definition 6.2 only asks for the second inequality to hold.

We now state the main theorem of this part.

Theorem 6.4. Let V be a proper open subset of X, then u : V → R is an AML in V if
and only if u enjoys the Comparison with Distance Functions property.

Proof. The only if part. We only prove that u satisfies the CDF from above on V . Let
U ⊂ V be open, x0 ∈ X, a ≥ 0 and b ∈ R and assume that

u ≤ ad(x0, .) + b on ∂(U \ {x0}).

Assume, by contradiction, that the set A := {x ∈ U : u(x) > ad(x0, x) + b} is not empty.
Then A is open and on ∂A we have u(x) = ad(x0, x) + b. The triangular inequality
implies that Lip(ad(x0, .) + b, ∂A) = α ≤ a, and the maximal Lipschitz extension u+ of
this distance function inside A is

u+ : x 7→ inf
y∈∂A

{ad(x0, y) + b+ αd(y, x)}.

Since u is an AML on V , one has u ≤ u+ on A. Proceeding as in the proof of Proposition
3.1, we get that u+ ≤ ad(x0, .) + b on A. Indeed, for any x ∈ A one has

u+(x) ≤ inf
y∈∂A

{ad(x0, y) + b+ ad(y, x)}. (16)
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Let δ > 0, there exists γ ∈ pathX(x0, x) such that d(x0, x) ≥ l(γ) − δ, then taking
tδ ∈ [0, 1] such that x̃ = γ(tδ) ∈ ∂A, one gets d(x0, x) ≥ d(x0, x̃) + d(x̃, x) − δ. Since
a ≥ 0, we infer by taking y = x̃ in (16) that u+(x) ≤ ad(x0, x) + b + aδ. Letting δ go to
0, we finally get the contradiction.

The if part follows line by line the proof of Proposition 2.1 in [1].

Remark 6.5. We point out that in the preceding proof, the geometric idea of the first
implication is again the idea of Proposition 3.1, and that this idea is easily adapted to
this length space setting.

Remark 6.6. The previous theorem shows that even in an ambient space in which cones
do not satisfy comparison with cones (for example a sphere or any other manifold with non
trivial cut-locus) the CDF property still characterizes the absolutely minimizing Lipschitz
extension. Then the CDF property provides, in some sense, a structure-free criterium for
absolute minimality.

A. Finsler metrics and related questions

A Finsler metric on a connected open subset Ω of Rn is a Borel-measurable function
ϕ : Ω× R

n → R+ such that ϕ(x, ·) is positively 1-homogeneous for all x ∈ Ω and convex
for Ln a.e. x ∈ Ω. We refer to [2] for an advanced introduction. We also refer to the papers
[14] for more complete versions of Propositions A.1 and A.2 (respectively Theorems 3.3
and 3.7 therein).

Given a positive constant β we set

Mβ = {ϕ Finsler metric in Ω s.t. ϕ(x, q) ≤ β|q| in Ω× R
n}.

Then to each ϕ ∈ Mβ one can associate (as we did in Section 2) a pseudo distance
dϕ : Ω× Ω → R+ through the formula

dϕ(x, y) = inf

{
∫ 1

0

ϕ(γ(t), �γ(t))dt : γ ∈ path(x, y)

}

.

There is in the literature another way to associate a distance to a Finsler metric ϕ ∈ Ω
and it consists of a sup− inf operation. We denote by N the set of subsets N of Ω with
Lebesgue measure Ln(N) = 0. A Lipschitz curve γ : [0, 1] → Ω is said transversal to N if
H1(γ([0, 1]) ∩N) = 0. Then we define

dϕ(x, y) = sup
N∈N

inf

{
∫ 1

0

ϕ(γ(t), �γ(t))dt : γ ∈ path(x, y) and γ transversal to N

}

.

We now introduce the polar of ϕ, ϕ0 : Ω×R
n → R+ ∪ {+∞} which is defined as follows:

ϕ0(x, p) := sup{p · q : ϕ(x, q) ≤ 1}.

We then have the following:

Proposition A.1. The following inequality holds for any x, y ∈ Ω

sup{u(y)− u(x) : u ∈ Lip(Ω), ϕ0(., Du) ≤ 1 a.e.} ≤ dϕ(x, y)
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Proof. Let u ∈ Lip(Ω) satisfying ϕ0(., Du) ≤ 1 a.e., and let Nu be the union of set of
non differentiability of u and the set where ϕ0(., Du) > 1. For each γ ∈ path(x, y) and γ
transversal to Nu we have

u(y)− u(x) =

∫ 1

0

(u ◦ γ)′(t)dt =

∫ 1

0

∇u(γ(t)) · �γ(t)dt.

We notice that for almost every t ∈ ]0, 1[ for which ϕ(γ(t), �γ(t)) = 0 one has ∇u(γ(t)) ·
�γ(t) = 0, otherwise ϕ0(γ(t), Du(γ(t))) = +∞ by the 1-homogeneity of ϕ. Moreover, for
almost every t ∈ ]0, 1[ for which ϕ(γ(t), �γ(t)) > 0 one has

∇u(γ(t)) · �γ(t) ≤ ϕ(γ(t), �γ(t))

because of the 1-homogeneity of ϕ and ϕ0(., Du(.)) ≤ 1.

We thus obtain

u(y)− u(x) ≤

∫ 1

0

ϕ(γ(t), �γ(t))dt

and then

u(y)− u(x) ≤ inf

{
∫ 1

0

ϕ(γ(t), �γ(t))dt : γ ∈ path(x, y) and γ transversal to Nu

}

.

The conclusion now follows using the definition of dϕ(x, y).

We finally prove that when the Finsler metric ϕ is regular, the two definitions above
coincide.

Proposition A.2. If ϕ ∈ Mβ and x 7→ ϕ(x, q) is upper semicontinuous on Ω for all q,
then dϕ = dϕ.

Proof. The inequality dϕ ≥ dϕ is obvious, we just check the reverse inequality. To this
end, we have to prove that for any x, y ∈ Ω and N ∈ N one has

dϕ(x, y) = inf

{
∫ 1

0

ϕ(γ(t), �γ(t))dt : γ ∈ path(x, y) and γ transversal to N

}

. (17)

Let γ ∈ path(x, y), if γ is transversal to N then there is nothing to do. Otherwise, γ
can be approximated strongly in W 1,∞(]0, 1[,Ω) by a sequence (γk)k in path(x, y) with
γk transversal to N for all k (for example, see Lemma 3.2 in [5]). Then by the upper
semicontinuity of x 7→ ϕ(x, q) we infer that

lim sup
k→+∞

∫ 1

0

ϕ(γk(t), �γk(t))dt ≤

∫ 1

0

ϕ(γ(t), �γ(t))dt

so that

∫ 1

0

ϕ(γ(t), �γ(t))dt ≥ inf

{
∫ 1

0

ϕ(γ(t), �γ(t))dt : γ ∈ path(x, y) and γ transversal to N

}

.

and (17) holds, which concludes the proof.
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B. Properties of absolute minimizers, L and dλ.

We first show that an absolute minimizer of (1) is indeed an optimal solution of (1).

Lemma B.1. If the function u ∈ W 1,∞(Ω) ∩ C(Ω) is an absolute minimizer of (1) then
it is a minimizer of (1).

Proof. Let v ∈ g +W 1,∞(Ω) ∩ C0(Ω), we aim to show that

ess.sup
x∈Ω

H(x,Du(x)) ≤ ess.sup
x∈Ω

H(x,Dv(x)). (18)

We first show that

ess.sup
x∈{u6=v}

H(x,Du(x)) ≤ ess.sup
x∈{u6=v}

H(x,Dv(x)). (19)

To this end, we set V +
δ := {x : u > v + δ} and V −

δ := {x : u < v − δ} for any positive δ.
Then V +

δ ⊂⊂ Ω and v + δ = u on ∂V +
δ , and since u is an absolute minimizer of (1) we

obtain
ess.sup
x∈V +

δ

H(x,Du(x)) ≤ ess.sup
x∈V +

δ

H(x,Dv(x)).

Passing to the limit as δ tends to zero yields

ess.sup
x∈{u>v}

H(x,Du(x)) ≤ ess.sup
x∈{u>v}

H(x,Dv(x))

and (19) follows by applying the same argument with V −
δ .

We now conclude by noticing that H(x,Du(x)) = H(x,Dv(x)) for almost every x in
{u = v} ∩ Ω. This and (19) conclude the proof of (18).

We now turn to the study of L. We first notice that by definition and thanks to assumption
(B), for any λ ≥ 0 there exists β ≥ 0 such that L(., ., λ) belongs to Mβ. In order to be in
position to apply Proposition A.2, we prove the following regularity result on L.

Lemma B.2. The function (x, λ) 7→ L(x, q, λ) is upper-semicontinuous on Ω × R+ for
any q ∈ R

N .

Proof. Let (xn, λn)n converge to (x, λ) ∈ Ω× R+, we must check that

lim sup
n→+∞

L(xn, q, λn) ≤ L(x, q, λ).

We may assume without loss of generality that the limsup is in fact a limit. For any
n ∈ N, we take pn ∈ {H(xn, .) ≤ λn} such that L(xn, q, λn) = pn · q. Thanks to (B), the
sequence (pn)n is bounded and we may extract a subsequence (pnk

)nk
converging to some

p ∈ R
N . Since H is l.s.c., we get H(x, p) ≤ λ, so that

lim
n→+∞

L(xn, q, λn) = lim
k→+∞

pnk
· qnk

= p · q ≤ L(x, q, λ)

which concludes the proof.



T. Champion, L. De Pascale / Comparison with Distance Functions for Absolute ... 539

As a corollary of Propositions A.1 and A.2 and the above Lemma, we get the following.

Lemma B.3. Let V be a connected open subset of Ω, then for any λ ≥ 0 and x, y ∈ V
one has

dVλ (x, y) = sup{u(y)− u(x) : u ∈ W 1,∞(V ) ∩ C(V ), H(., Du) ≤ λ a.e. on V }. (20)

Moreover, if V has Lipschitz boundary, then for any λ ≥ 0 and x, y ∈ V one has

dVλ (x, y) = sup{u(y)− u(x) : u ∈ W 1,∞(V ) ∩ C(V ), H(., Du) ≤ λ a.e. on V }. (21)

Proof. For (20), we first claim that

dVλ (x, y) ≥ sup{u(y)− u(x) : u ∈ W 1,∞(V ) ∩ C(V ), H(., Du) ≤ λ a.e. on V }.

We remark that by assumpions (A) and (C), the set {(L(z, ·, λ))0 ≤ 1} coincides with the
set {H(z, ·) ≤ λ} for any z ∈ Ω. We infer from Lemma B.2 that x 7→ L(x, q, λ) is upper
semicontinuous for any q ∈ R

n, so that the claim follows by applying Propositions A.1
and A.2. The equality follows by taking z 7→ dVλ (x, z) as a test function in the sup (we
recall that this function is admissible as a consequence of Remark 2.8 and Proposition
2.10).

When ∂V is Lipschitz regular, any function u ∈ W 1,∞(V ) ∩ C(V ) may be extended as a
continuous function on V , so that

dVλ (x, y) = sup{u(y)− u(x) : u ∈ W 1,∞(V ) ∩ C(V ), H(., Du) ≤ λ a.e. on V }

for any x, y ∈ V . We notice that the right hand side of this equality is continuous on
V ×V as a function of (x, y). Finally, since ∂V is Lipschitz regular then (x, y) 7→ dVλ (x, y)
is also continuous on V , so that (21) holds for (x, y) ∈ V × V .

In the course of Section 4, we also need the two following technical results.

As a first consequence of assumption (D), we get that in a connected open set V ⊂⊂ Ω,
the pseudo-distances dVλ and dΩλ locally coincide:

Lemma B.4. Let V ⊂⊂ Ω be a connected open set, λ+ > λ− > 0, and assume that there
exist and M > α > 0 such that

B(0, α) ⊂ { H(x, ·) < λ} ⊂ B(0,M)

for all x ∈ V and λ ∈ [λ−, λ+]. Then for any x, y ∈ V such that |y − x| < α
M
dist(x, ∂V )

one has
∀λ ∈ [λ−, λ+] α|y − x| ≤ dVλ (x, y) = dΩλ (x, y) ≤ M |y − x|.

Proof. Let λ ∈ [λ−, λ+]. We first prove that

α|y − x| ≤ dVλ (x, y) ≤ M |y − x|. (22)

For the right left hand side inequality, we simply notice that for any x ∈ V and q ∈ R
N

L(x, q, λ) = sup
{

p · q : p ∈ R
N , H(x, p) ≤ λ

}

≥ sup {p · q : p ∈ B(0, α)} ≥ α|q|,
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so that for any ξ ∈ pathV (x, y) one has

∫ 1

0

L(ξ(t), �ξ(t), λ)dt ≥ α

∫ 1

0

| �ξ(t)|dt ≥ α|y − x|

which concludes the proof. The proof of the right hand side inequality is analogue.

We now turn to the equality dVλ (x, y) = dΩλ (x, y). It is clear that d
V
λ (x, y) ≥ dΩλ (x, y), and

we infer from (22) that

dΩλ (x, y) ≤ M |y − x| < α dist(x, ∂V ). (23)

Let now ξ ∈ pathΩ(x, y), we notice that if for some s ∈ ]0, 1[ one has |ξ(s) − x| ≥
dist(x, ∂V ) then

∫ 1

0

L(ξ(t), �ξ(t), λ)dt ≥

∫ s

0

L(ξ(t), �ξ(t), λ)dt

≥ α

∫ s

0

| �ξ(t)|dt ≥ α|ξ(s)− x| ≥ α dist(x, ∂V ).

It then follows from (23) that such a path is not optimal for dΩλ , so that d
V
λ (x, y) = dΩλ (x, y).

This concludes the proof.

Lemma B.5. Let V ⊂⊂ Ω be a connected open set, λ ≥ 0, x, y ∈ V and r > 0 such that
r < min{|y − x|, dist(x, ∂V ), dist(y, ∂V )}. Then there exists z ∈ V such that |z − y| = r
and

dVλ (x, y) = dVλ (x, z) + dVλ (z, y).

Proof. Let ε > 0 and ξ ∈ pathV (x, y) be such that

dVλ (x, y) ≥

∫ 1

0

L(ξ(t), �ξ(t), λ)dt− ε.

By definition of r and continuity of ξ there exists some s ∈ ]0, 1[ such that |ξ(s)− y| = r.
Then zε := ξ(s) belongs to V and

dVλ (x, y) ≥

∫ s

0

L(ξ(t), �ξ(t), λ)dt+

∫ 1

s

L(ξ(t), �ξ(t), λ)dt− ε

≥ dVλ (x, zε) + dVλ (zε, y)− ε.

The family (zε)ε>0 is clearly bounded, let z be one of its cluster points as ε → 0. Then
|z − y| = r, so that z ∈ V , and taking the liminf in the above inequality yields

dVλ (x, y) ≥ dVλ (x, z) + dVλ (z, y).

We conclude by applying the triangular inequality, which holds here since z ∈ V .
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