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We prove a new representation result for the L
1-lower semicontinuous envelope of the elastica functional

in terms of a minimum problem over a suitable class of varifolds. We also show a representation result
in a suitable class of Sobolev-type submanifolds.

1. Introduction

Let us consider the functional

F(E) :=

∫

∂E

[1 + |κ|p] dH1, (1)

where E ⊂ R
2 is a bounded open subset of class C2, p > 1 is a real number, κ = κ∂E is

the curvature of ∂E and H1 is the one-dimensional Hausdorff measure in R
2. Extend the

functional F with the value +∞ to the class M of all measurable subsets of R2. Let us
denote by F : M → [0,+∞] the L1(R2)-lower semicontinuous envelope of F , i.e.,

F(E) = inf{lim inf
h→∞

F(Eh) : Eh → E in L1(R2) as h→ ∞}, E ∈ M. (2)

The study of F and F is of interest in variational models for the image segmentation and
image inpainting [2], [3]. It is also related to the problem of reconstructing the occluded
boundaries and the ordering of the objects in a digital image; indeed (see [17]) it has
been observed that curvature energies can be used to recover those parts of the objects
occluded by other objects closer to the observer. Connections of F with Γ-convergence,
phase transitions and geometric evolutions were pointed out in [9]. From the mathematical
point of view, the study of F was initiated in [4] and further developed in [5]. In particular
in [4, Theorem 7.3] it is proved that F can not be represented in integral form. Then in
[5, Proposition 6.1] it is proved that

F(E) = min {F(Γ) : Γ ∈ Ao(E)} , (3)

where elements ofAo(E) areH2,p-immersions of a finite number of copies of the unit circle,
having E as “interior� (see Section 2 for the details). Both in [4] and [5] these immersions
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describe the limit behavior of sequences of smooth boundaries ∂Eh with equibounded
energy and keep some information that would be lost when looking only at the L1-limit
of the sets Eh.

In this paper we prove a new representation formula for the functional F . Precisely, our
result (Theorem 4.3) reads as follows: F can be represented as

F(E) = min {F(f) : f ∈ HVtg(∂E)} , E ∈ M. (4)

Here HVtg(∂E) is the class of Hutchinson’s curvature varifolds without boundary, having
a unique tangent line at every point and such that the associated weight measure has odd
density exactly on the essential boundary ∂∗E of E. This result is much in the spirit of
[11, Corollary 5.4], where a related partial result was established in any space dimension
using the so-called generalized Gauss graphs.

The key point to obtain (4) relies on the following property (see Proposition 4.7 and
Corollary 4.10): given f ∈ HVtg(∂E) there exists Γ ∈ Ao(E) such that F(f) = F(Γ). To
prove this result we need to adapt some of the techniques developed in [5], once we know
that the elements of HVtg(∂E) belong to the more regular space Sp(R2) of Sobolev-type
submanifolds. Inspired by [7] and [8], Sobolev-type submanifolds were introduced in [1]
(see Definition 3.7 below) and consist in one-dimensional sets which can be locally covered
by finite unions of graphs of functions of class H2,p. As a consequence, we obtain also a
representation of F in terms of Sp(R2), namely

F(E) = min
{
F(f) : f ∈ Sp(R2), f ≡ 0 (mod 2) out of ∂∗E, f ≡ 1 (mod 2) on ∂∗E

}
.

There are various reasons to develop new representation results for F , in particular us-
ing the varifolds approach. Firstly varifolds describe in a rather natural way the limits
of sequences of smooth boundaries with equibounded energy. In fact given one of these
sequences {Eh} converging to a set E in L1(R2), there exists a unique varifold associ-
ated with the limit of the sequence {∂Eh}. On the contrary there are infinitely many
different H2,p-systems of curves that parametrize the limit of the sequence {∂Eh}. An-
other reason is that varifolds seem to play a role when trying to approach a conjecture
in [9] concerning the Γ-approximation of the Willmore functional (see [6] and [16] for
partial results in this direction). Finally a representation formula based on varifolds or
on Sobolev-type submanifolds could be the first step for a representation formula in arbi-
trary space dimension; in such a (considerably more difficult) case the parametrizations
approach probably cannot be easily pursued. Concerning the arbitrary dimension n, we
point out that, in a recent paper [18], Schätzle proved that the functional in (1) (where
κ stands for the mean curvature of ∂E and p = 2) is L1(Rn)-lower semicontinuous on
smooth sets. Observe that there is another generalization of F in higher space dimension,
where the curvature term is replaced by the Lp-norm of the second fundamental form. In
both cases varifolds can be used to study the properties of the corresponding L1-relaxed
energies (see [2], [16], [11]). At least in the second case and under the assumption p > n,
one could expect that varifolds that are limits of sequences of smooth boundaries with
equibounded energy should be locally representable as finite unions of H2,p-graphs (see
[12]). This property characterizes Sobolev-type submanifolds, but it is not fulfilled by
2-dimensional Hutchinson’s curvature varifolds in R

3 for any p > 2 (see [1, Example 5.9]).

The paper is organized as follows. In Section 2 we give some definitions and fix some nota-
tion. Recalling some results from [1], in Section 3 we introduce the class HV p(R2) of cur-
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vature varifolds in the sense of Hutchinson [13], [14], the class Sp(R2) of one-dimensional
Sobolev-type submanifolds and its subclass Sptg(R

2) consisting of elements of Sp(R2) hav-
ing only tangential intersections. In Section 4 we prove Theorem 4.3, which is the main
result of the paper. Firstly in Definition 4.1 we define the class HVtg(∂E) in (4) and
through some examples we show that the result of Theorem 4.3 is in some sense optimal.
In Lemma 4.6 we show that if f ∈ HV p(R2) has unique tangent line at every point then
it can be locally represented as a finite union of graphs of class H2,p (and not only of
class C1,1−1/p). The proof of Theorem 4.3 is a consequence of Lemma 4.6, Proposition 4.7,
Corollary 4.10 and Theorem 2.9.

2. Notation and preliminaries

Throughout the paper p > 1 is a real number. For any z0 ∈ R
2, ρ > 0, Bρ(z0) := {z ∈

R
2 : |z − z0| < ρ} is the ball centered at z0 with radius ρ. The letter U indicates an open

subset of R2. In the sequel we adopt the convention on repeated indices.

We denote by G(1, 2) the set of unoriented 1-dimensional subspaces of R2, and use the
same notation P for an element of G(1, 2), for the orthogonal projection P : R2 → R

2

which maps R2 onto P , and for the associated matrix, whose entries are denoted by Pjk.
The distance ‖P − Q‖ between P,Q ∈ G(1, 2) is the one induced on G(1, 2) as a subset
of R4.

For every set E ⊆ R
2 we denote by χE the characteristic function of E, that is χE(z) = 1

if z ∈ E, χE(z) = 0 if z /∈ E. We define E∗ := {z ∈ R
2 : ∃ r > 0 : |Br(z) \ E| = 0}, | · |

the Lebesgue measure; int(E), E and ∂E are respectively the interior, the closure and the
topological boundary of E. All sets we consider are assumed to belong to M, the class
of all measurable subsets of R2.

If E ∈ M is a finite perimeter subset of R2 by ∂∗E we denote the essential boundary of
E.

We say that E ⊂ R
2 is of class H2,p (resp. Ck, k ≥ 1) if E is open and can be locally

represented as the subgraph of a function of class H2,p (resp. Ck).

If E ⊂ R
2 is of class H2,p we denote by κ∂E ∈ Lp(∂E,H1) the curvature of ∂E; we often

write κ in place of κ∂E when no confusion is possible.

Let S ⊂ R
2. We say that S is countably 1-rectifiable if there exists a sequence {Mi} of

1-dimensional submanifolds of class C1 such that H1(S \ ∪i∈NMi) = 0.

We recall some definitions from [4] and [5].

Definition 2.1. Let S ⊂ R
2 be a countably 1-rectifiable set. Let z0 ∈ S be a point where

S admits tangent line. Let τ(z0) be a unit tangent vector to S at z0, and τ
⊥(z0) be the

rotation of τ(z0) of π/2 around the origin in counterclockwise order. We say that R(z0)
is a nice rectangle for S at z0 if

R(z0) = {z ∈ R
2 : z = z0 + lτ(z0) + dτ⊥(z0), |l| ≤ a, |d| ≤ b},

where a > 0 and b > 0 are selected in such a way that S ∩ R(z0) is the union of the
cartesian graphs, with respect to the tangent line Tz0S to S at z0, of a finite number of
functions {g1, . . . , gr} such that gl is of class C

1 and graph(gl) does not intersect the two
sides of R(z0) which are parallel to Tz0S for every l ∈ {1, . . . , r}.
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Let z0 ∈ S; when we write a nice rectangle R(z0) for S at z0 in the form R(z0) =
[−a, a]× [−b, b], we implicitely assume that z0 is the origin of the coordinates, that Tz0S
is the x-axis, and that τ⊥(z0) agrees with the vector e2 = (0, 1). In this case we also set
R+(z0) := [0, a]× [−b, b] and R−(z0) := [−a, 0]× [−b, b].

Definition 2.2. Let M ⊂ R
2 be an immersed C1-curve and let z0 ∈ M . We say that z0

is a regular point forM , and we write z0 ∈ RegM , if there exists a neighborhood Uz0 ⊂ R
2

of z0 such that M ∩ Uz0 is the graph of a function of class C1 with respect to Tz0M . We
say that z0 ∈M is a singular point of M , and we write z0 ∈ SingM , if z0 is not a regular
point of M .

By an arc of regular points of M we mean a relative connected component of RegM .

If z0 ∈ M is a point where the tangent line to M is uniquely defined, by B+
ρ (z0) (resp.

B−
ρ (z0)) we mean {z ∈ Bρ(z0) : (z−z0)·τ(z0) ≥ 0} (resp. {z ∈ Bρ(z) : (z−z0)·τ(z0) ≤ 0}),

where τ(z0) ∈ Tz0M is a unit vector.

Definition 2.3. We say that z0 ∈ SingM is a node ofM , and we write z0 ∈ NodM , if there
exists Nz0 ∈ N, Nz0 > 1, such that for any ρ > 0 sufficiently small either B+

ρ (z0)∩M \{z0}
or B−

ρ (z0) ∩M \ {z0} consists of the union of Nz0 arcs of regular points of M which do
not intersect each other.

Proposition 2.4. LetM ⊂ R
2 be such that 0 ∈M and T0M = e1⊗e1. Suppose that there

exists a nice rectangle R = [−a, a]× [−b, b] for M at 0 such that M ∩R = ∪rl=1graph(gl)
and gl ∈ C1([−a, a]). Then

NodM∩R = SingM∩R, RegM∩R =M ∩R. (5)

Moreover there exists δ ∈ [0, a[ such that Rδ := [−a + δ, a− δ]× [−b + δ, b− δ] is a nice

rectangle for M at 0 and

M ∩ ∂Rδ ⊂ RegM∩R (6)

Proof. It is enough to repeat the proof of [5, Proposition 3.1 and Corollary 3.4]

2.1. Curves and systems of curves

A curve γ : [0, 1] → R
2 of class C1 is said to be regular if dγ(t)

dt
6= 0 for every t ∈ [0, 1]. By

(γ) = {γ(t) : t ∈ [0, 1]} we denote the trace of γ and by l(γ) its length; if z ∈ R
2 \ (γ),

I(γ, z) is the index of γ with respect to z. If γ is a curve of class H2,p we set

F(γ) := l(γ) + ‖κ(γ)‖pLp ,

where κ(γ) is the curvature of γ.

Definition 2.5. A system of curves is a finite family Γ = {γ1, . . . , γm} of closed regular
curves of class C1 such that |dγi

dt
| is constant on [0, 1] for any i = 1, . . . ,m. We say that Γ

is of class H2,p if each γi is of class H
2,p.

Denoting by S the disjoint union of m oriented circles S1
1 , . . . , S

1
m of unitary length, we

identify Γ with the map Γ : S 7→ R
2 defined by Γ|S1

i
:= γi for i = 1, . . . ,m. The trace (Γ)

of Γ is defined as (Γ) := ∪mi=1(γi). When Γ is of class H2,p we write Γ ∈ H2,p(S).
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Definition 2.6. We say that a system of curves Γ = {γ1, . . . , γm} is without crossings

if dγi(t1)
dt

and
dγj(t2)

dt
are parallel, whenever γi(t1) = γj(t2) for some i, j ∈ {1, . . . ,m} and

t1, t2 ∈ [0, 1].

If Γ = {γ1, . . . , γm} is a system of curves of class H2,p we define

F(Γ) :=
m∑

i=1

F(γi). (7)

We set
AoΓ := {z ∈ R

2 \ (Γ) : I(Γ, z) ≡ 1 (mod 2)}, (8)

where I(Γ, z) :=
∑m

i=1 I(γi, z) is the index of z ∈ R
2 \ (Γ) with respect to Γ.

We define the density function θΓ of Γ as

θΓ : (Γ) → N, θΓ(z) := ♯{Γ−1(z)},

♯ the counting measure. As noted in [5, Lemma 2.16], if Γ ∈ H2,p(S) we have ‖θΓ‖L∞ <
+∞. We denote by fΓ : R2 → N the function defined as

fΓ := θΓ χ(Γ). (9)

Definition 2.7. Let E ⊂ R
2. We denote by Ao(E) the collection of all systems of curves

Γ of class H2,p without crossings satisfying

(Γ) ⊇ ∂E∗, E∗ = int (AoΓ ∪ (Γ)) . (10)

Remark 2.8. In [4] it is proved that

(i) for every E ⊂ R
2 such that F(E) < +∞ we have |E∆E∗| = 0. In the following we

always identify E with E∗.

(ii) if Γ ∈ Ao(E) then θΓ is odd on Reg∂E and even on R
2 \ ∂E. In addition, from [4, p.

269] it follows that θΓ is odd on ∂∗E and even on R
2 \ ∂∗E.

The following results [5, Theorem 5.1, Corollary 5.2 and Proposition 6.1] will be used in
the sequel.

Theorem 2.9. Given E ⊂ R
2 we have F(E) < +∞ if and only if Ao(E) 6= ∅. In this

case (3) holds.

3. Varifolds with curvature and Sobolev-type submanifolds

N denotes the set of all nonnegative integer numbers. Given f : U → N we set Sf := {z ∈
U : f(z) 6= 0}.

Definition 3.1. Let f : U → N. We say that f is H1-rectifiable if f−1(i) is countably
H1-rectifiable for every i ≥ 1 and

∫
U
fdH1 < +∞.

If f : U → N is H1-rectifiable, then for H1-almost every z0 ∈ Sf there is a unique

P f (z0) = (P f
jk(z0)) ∈ G(1, 2), called the approximate tangent line to f at z0, such that

lim
ρ→0+

1

ρ

∫

Sf

ϕ

(
z − z0
ρ

)
f(z) dH1 = f(z0)

∫

P f (z0)

ϕ dH1, ∀ϕ ∈ C1
c (R

2). (11)
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If S (or equivalently f) has approximate tangent line at z0 and ϕ is a C1 function defined

in a neighborhood of z0, we define the tangential gradient δfϕ(z0) =
(
δf1ϕ(z0), δ

f
2ϕ(z0)

)

of ϕ to Sf at the point z0 as the orthogonal projection of ∇ϕ(z0) on P
f (z0).

With every H1-rectifiable function f : U → N we associate the Radon measure Vf :=
v(Sf , f) on U ×G(1, 2) defined by

∫

U×G(1,2)

φ(z, P ) dVf :=

∫

U×G(1,2)

φ(z, P ) d[fH1 Sf ⊗ δP f ]

=

∫

U

φ(z, P f )f dH1, ∀φ ∈ C0
c (U ×G(1, 2)),

that is the one-rectifiable integer varifold associated with the pair (Sf , f), see [19].

We denote by π : R2 × G(1, 2) → R
2 the projection map, π♯Vf = fH1 Sf the image

measure of Vf on R
2 through π,

θ1∗(f, z) = lim sup
ρ→0+

π♯Vf (Bρ(z))

2ρ
, θ1∗(f, z) = lim inf

ρ→0+

π♯Vf (Bρ(z))

2ρ
,

and if θ1∗(f, z) = θ1∗(f, z) < +∞ we set θ1(f, z) := θ1∗(f, z).

For any z ∈ R
2 we define

Tanz(f) := {P ∈ G(1, 2) : (z, P ) ∈ spt(Vf )} .

If f is H1-rectifiable then for H1-a.e. z ∈ Sf we have Tanz(f) = {P f (z)} and for any
z /∈ Sf we have Tanz(f) = ∅.

Let f : U → N be H1-rectifiable, let z0 ∈ Sf and suppose that R(z0) = [−a, a]×[−b, b]+z0
is a nice rectangle for Sf at z0. We say that f verifies the train track property in R(z0) if
the function

t 7→
∑

z∈{z0+({t}×[−b,b])}

f(z)

is constant for every t ∈ [−a, a].

Let ψ : Sf → R be an fH1 Sf -measurable function. We say that ψ is approximately
differentiable at z0 ∈ Sf with approximate gradient ∇Sfψ(z0) = v if Tanz0(f) = {P f (z0)},

v ∈ P f (z0), and for every ε > 0 the set Lεψ :=
{
z ∈ Sf \ {z0} : |ψ(z)−ψ(z0)−v·(z−z0)|

|z−z0|
> ε

}

satisfies

lim
ρ→0+

1

ρ

∫

Lεψ∩Bρ(z0)

fdH1 = 0. (12)

3.1. The class HV p(U)

Definition 3.2. Let f : U → N be a H1-rectifiable function. We say that f is a Hutchin-
son’s varifold with second fundamental form in Lp, and we write f ∈ HV p(U), if for any
i, j, k ∈ {1, 2} there are Borel functions Afijk : U → R such that

‖Af‖pp,U :=

∫

U

2∑

l,m,n=1

|Aflmn|
p f dH1 < +∞, (13)
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E

(a) (c)(b)

1 2Σ Σ

Figure 3.1: Example 3.3

and ∫

U

(
δfi φ(z, P

f ) +
∂φ(z, P f )

∂Pmn
Afimn

)
f dH1 = −

∫

U

φ(z, P f )Afmim f dH1, (14)

for any φ ∈ C1(U ×G(1, 2)) with compact support in U .

To illustrate the meaning of Definition 3.2 let us consider the following example.

Example 3.3. Let us consider the set E in in grey in Figure 3.1(a). Let Σ1 (resp. Σ2) be
the 1-dimensional immersed curve in (b) (resp. in (c)). Then f1 := 2χΣ1 − χ∂E is not an
element of HV p(R2), as Vf1 has generalized boundary (in the sense of varifolds, see [19])
concentrated in the lower cusp point. On the contrary f2 := 2χΣ2 − χ∂E ∈ HV p(R2).

Remark 3.4. In [15, Theorem 5.4] it is proved that if f ∈ HV p(U) then the functions
P f
jk are approximately differentiable fH1 Sf -almost everywhere for every j, k ∈ {1, 2},

with approximate gradient

δfi P
f
jk = δfi δ

f
j xk = Afijk, i, j, k ∈ {1, 2}, (15)

where z = (x1, x2).

Given f ∈ HV p(U) we set

F(f, U) :=

∫

U

fdH1 + ‖Af‖pp,U . (16)

In case U = R
2 we set F(·) := F(·,R2). With a small abuse of notation, with the same

symbol F in (1), (7) and (16) we denote a functional defined on M, on H2,p-systems of
curves, and on HV p(R2).

Remark 3.5. By varifolds theory (see [19, Remark 17.9]) if f ∈ HV p(U) then θ1∗(f, z) =
θ1∗(f, z) ∈ N \ {0} for every z ∈ Sf . If we set f ∗(z) = θ1(f, z) then f ∗ = f H1-almost
everywhere on Sf and Vf∗ = Vf as Radon measures. Moreover by Remark 3.4 we have
F(f ∗) = F(f).

In the sequel when f ∈ HV p(U) we always identify f with f ∗. In particular Sf is a closed
set.

Let fk, f ∈ HV p(U). We write fk ⇀ f if the sequence {Vfk} converges to Vf in the sense
of Radon measures on R

2 ×G(1, 2).
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Combining the results contained in [14] and [10] we have the following

Theorem 3.6. Let f ∈ HV p(U) be such that

♯Tanz(f) = 1 ∀z ∈ Sf . (17)

Suppose that 0 ∈ Sf and Tan0(f) = e1 ⊗ e1. Then there exist a, b > 0 such that setting

R := [−a, a]× [−b, b], we have R ⊂ U and

(A) the map t ∈ [−a, a] →
∑

z∈{t}×[−b,b] f(z) is a positive constant L ∈ N on [−a, a];

(B) there exist a positive natural number r ≤ L, distinct functions g1, . . . , gr of class

C1,1−1/p([−a, a]) and natural numbers µ1, . . . , µr such that

f =
r∑

l=1

µlχgraph(gl) in R; (18)

z = (t, gl(t)) =⇒ P f (z) =
v

|v|
⊗

v

|v|
, v = (1, g′l(t)), t ∈ ]− a, a[, (19)

−b < g1(t) ≤ g2(t) ≤ · · · ≤ gr(t) < b, t ∈ [−a, a]; (20)

(C) f is constant on every relative connected component of RegSf ∩R. If z0 = (t0, gl(t0))
∈ SingSf ∩R then

lim sup
t→t0

f(t, gl(t)) ≤ f(z0). (21)

Proof. In [14, Theorem 3.7] it is proved that (A) holds. Moreover it is also proved that
Sf ∩ (] − a, a[×R) is given by the graph of an L-valued function of class C1,1−1/p in the
sense of Almgren. Using (17) we can apply [10, Theorem 4.2 and Corollary 3.13] and find
a positive natural number r′ ≤ L and (not necessarily distinct) functions g̃1, . . . , g̃r′ of
class C1,1−1/p([−a, a]) such that

f =
r′∑

l=1

χgraph(g̃l) in R;

z = (t, gl(t)) =⇒ P f (z) =
ṽ

|ṽ|
⊗

ṽ

|ṽ|
, ṽ = (1, g̃′l(t)), t ∈ ]− a, a[.

(22)

As a consequence for every z ∈ Sf ∩ R there exists a nice rectangle R(z) for Sf at z
and f verifies the train tracks property in R(z). Hence we can repeat the proof of [5,
Proposition 3.7] and obtain (C).

In order to prove (B) we proceed as follows. Let

E := {g ∈ C0([−a, a]) : graph(g) ⊂ Sf},

and define g1(t) := inf {g(t) : g ∈ E}. By (22) and (17) we have that g1 ∈ C1,1−1/p([−a, a])
and g1 verifies (19). In addition µ1 := min{f(z) : z ∈ graph(g1)} ∈ N \ {0}. From (21)
and (5), it follows that we can find z1 ∈ RegSf ∩ graph(g1) such that f(z1) = µ1. From
(C) it follows that f ≡ µ1 on the connected component C1 of RegSf ∩ R containing z1.
Then consider the function

f1 : R → N, f1 :=

{
f − µ1 on graph(g1),

f otherwise in R.
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Observe that Sf1 is a finite union of graphs of elements of C1,1−1/p([−a, a]), that the map
t ∈ [−a, a] →

∑
z∈{t}×[−b,b] f1(z) ≡ L − µ1, f1 verifies (C) and that Singf ⊇ Singf1 . Re-

peating the argument above replacing f with f1 and g1 with g2(t) := inf{g ∈ C0([−a, a]) :
graph(g) ⊂ Sf1}, we obtain µ2 := min{f1(z) : z ∈ graph(g2)} ∈ N \ {0} and a connected
component C2 of RegSf ∩ graph(g2). Repeating this construction, after r ≤ L steps we
obtain that fr+1 ≡ 0. In this way we construct a family Y := {(g1, µ1), . . . , (gr, µr)} such
that

gl 6= gj for every l 6= j, since if l < j then graph(gj) ∩ Cl = ∅ and Cl ⊂ graph(gl),

and satisfying (18), (19) and (20).

3.2. The classes Sp(R2) andSptg(R
2)

Definition 3.7. Let f : R2 → N. We say that f is a Sobolev-type submanifold, and
we write f ∈ Sp(R2), if Sf is closed and for any z0 ∈ Sf there exist a neighborhood
Uz0 ⊂ R

2 of z0, a positive integer q and M1, . . . ,Mq one-dimensional (not necessarily
distinct) embedded H2,p-manifolds without boundary in Uz0 such that

f =

q∑

i=1

χMi
in Uz0 . (23)

As noted in [1, Remark 2.3], if f ∈ Sp(R2) then f is H1-rectifiable in R
2 and

∫
K
fdH1 <

+∞ for any compact set K ⊂ R
2.

Definition 3.8. We define

Sptg(R
2) :=

{
f ∈ Sp(R2) : ♯Tanz(f) = 1 for any z ∈ Sf and

∫

R2

fdH1 < +∞

}
.

The next observations show in which sense the above classes generalize the notion of a
manifold with curvature without boundary.

Remark 3.9.

(i) If f ∈ Sp(R2) then f ∈ HV p(R2), see [1, Remark 2.10]. In addition Tanz(f)
coincides with the (finite) union of the tangent lines to the branches of Sf at z, see
[14].

(ii) If f ∈ HV p(R2) then by Theorem 3.6 we have that f is a C1,1−1/p(R2)-type subman-
ifold (that is, f satisfies Definition 3.7 with H2,p replaced by C1,1−1/p).

(iii) If Γ is an H2,p-system of curves, then fΓ ∈ Sp(R2) (see [5]). In addition, from [15,
Proposition 2.3] and (i) we have

F(Γ) = F(fΓ). (24)

Remark 3.10. By Theorem 3.6 and Remark 3.9 it follows that for every f ∈ Sptg(R
2)

and every z ∈ Sf there exists a nice rectangle R(z) for Sf at z (see also [1, Theorems
3.4, 5.4]) and f verifies the train tracks property in R(z). Hence by Proposition 2.4 and
repeating the proof of [5, Lemma 3.11] we obtain that
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(i) NodSf is at most countable, SingSf has empty interior, and

SingSf = NodSf , RegSf = Sf . (25)

(ii) We can choose R(z) in such a way that

Sf ∩ ∂R(z) ⊂ RegSf . (26)

(iii) If f, f̂ ∈ Sptg(R
2), RegSf = RegS

f̂
and f = f̂ in RegSf , then f = f̂ .

4. Representation formulas

In order to state our main result (Theorem 4.3) we need the following

Definition 4.1. Let E ⊂ R
2. We define HVtg(∂E) as the class of all f ∈ HV p(R2) such

that
♯Tanz(f) = 1 ∀z ∈ Sf , (27)

f(z) ≡ 0 (mod 2) ∀z /∈ ∂∗E, (28)

f(z) ≡ 1 (mod 2) ∀z ∈ ∂∗E. (29)

Remark 4.2. Clearly we have Reg∂E ⊆ ∂∗E. Therefore from (29) it follows that Sf ⊇
Reg∂E for every f ∈ HVtg(∂E).

Theorem 4.3. Let E ⊂ R
2 be a bounded open set. Then

F(E) < +∞ ⇐⇒ HVtg(∂E) 6= ∅. (30)

In this case

F(E) = min{F(f) : f ∈ HVtg(∂E)}. (31)

Before proving Theorem 4.3, we show with two examples that if we drop one of the
conditions (27), (28), (29) in the definition of HVtg(∂E), then Theorem 4.3 is false.

Example 4.4. Let p = 2 and E ⊂ R
2 be the set in grey in Figure 4.1 having four cusps

p1 = (−1, 0) = −p2, q1 = (0, 1) = −q2.

Let f := χReg∂E + 2χ{0}×[−1,1] + 2χ[−1,1]×{0}. Then f ∈ HV 2(R2) satisfies (28) and (29),
but not (27) since 0 ∈ Sf and ♯Tan0(f) = 2.

We claim that

F(E) >

∫

Reg∂E

[1 + κ2] dH1 + 8 = F(f), (32)

where Reg∂E = ∂E \ {p1, p2, q1, q2} are the regular points of ∂E. To prove (32) we recall
that in view of [5, Theorem 8.6] we have

F(E) =

∫

Reg∂E

[1 + κ2] dH1 + 2 min
(σ1,σ2)∈Σ(E)

[F(σ1) + F(σ2)], (33)

where Σ(E) consists of those pairs of constant speed curves (σ1, σ2) ∈ (H2,2(]0, 1[,R2))2

with σ1(0) = p1 and {p2, q1, q2} = {σ1(1), σ2(0), σ2(1)}, such that:



G. Bellettini, L. Mugnai / A Varifolds Representation of the Relaxed Elastica ... 553
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Figure 4.1: Example 4.4

if σi(t1) = σj(t2) for some t1, t2 ∈ [0, 1] then dσi(t1)/dt and dσj(t2)/dt are parallel; more-
over if σi(t) ∈ ∂E for some t ∈ [0, 1], then dσi(t)/dt is parallel to the tangent line Tσi(t)(∂E)
to ∂E at σi(t);

dσi
dt
(0) (resp. dσi

dt
(1)) points in the direction of R−(σi(0)) (resp. of R+(σi(1))), where

R−(pi) ∩ E = R−(qi) ∩ E = ∅ (resp. R+(pi) ∩ E 6= ∅, R+(qi) ∩ E 6= ∅) with i = 1, 2.

We have two cases.

Case 1. There exists (σ1, σ2) ∈ Σ(E) solution of the minimum problem (33) such that
σ1(1) 6= p2.

In this case due to the geometry of the set E and the definition of Σ(E) it is always
possible to find a constant speed curve λ ∈ H2,2(S1) such that F(λ) = 2[F(σ1) +F(σ2)].
For example if σ1(1) = q1, σ2(0) = p2 and σi(t) := (σi,1(t), σi,2(t)), then

(λ) := {(σ1,1(t) + 1, σ1,2(t)− 1) : t ∈ ]0, 1[} ∪ {(σ1,1(t) + 1, 1− σ1,2(t)) : t ∈ ]0, 1[}

∪ {(σ2,1(t)− 1, σ2,1(t) + 1) : t ∈ ]0, 1[} ∪ {(σ2,1(t)− 1,−(1 + σ2,2(t))) : t ∈ ]0, 1[} .

Moreover setting

σ̃1(t) :=
(
cos(

π

2
(t− 1) + 2π)− 1, sin(

π

2
(t− 1) + 2π) + 1

)
,

σ̃2(t) :=
(
cos(

π

2
(t− 1) + π) + 1, sin(

π

2
(t− 1) + π)− 1

)
,

we have (σ̃1, σ̃2) ∈ Σ(E) and

2[F(σ̃1) + F(σ̃2)] = 4π = 2

∫

S1

|κ(λ)| ds ≤ F(λ),

where we used the Young’s inequality. Hence

F(E) =

∫

Reg∂E

[1 + κ2] dH1 + F(λ) ≥

∫

Reg∂E

[1 + κ2] dH1 + 4π

>

∫

Reg∂E

[1 + κ2] dH1 + 8 = F(f),
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p q

p q

E E

(a)

(b)

Σ Σ

L

Figure 4.2: In grey the set E of Example 4.5 (fig. (a)). The dotted line appears when
considering the limit of the boundaries of a minimizing sequence. In fig. (b) the set Σ

that is (32) holds.

Case 2. For every (σ1, σ2) ∈ Σ(E) solution of the minimum problem (33) we have σ1(1) =
p2.

In this case we have (σ1) ∩ (σ2) = ∅. In fact if (σ1) ∩ (σ2) 6= ∅ by the tangential crossing
property of the elements of Σ(E) and a reparametrization argument we would obtain
(σ̂1, σ̂2) ∈ Σ(E) solution of (33) and such that σ̂1(1) 6= p2, a contradiction.

As (σ1) ∩ (σ2) = ∅ we have

F(E) =

∫

Reg∂E

[1 + κ2] dH1 + 2[F(σ1) + F(σ2)]

≥

∫

Reg∂E

[1 + κ2] dH1 + 2[l(σ1) + l(σ2)]

>

∫

Reg∂E

[1 + κ2] dH1 + 2[|p1 − p2|+ |q1 − q2|]

=

∫

Reg∂E

[1 + κ2] dH1 + 8 = F(f),

which is again (32).

Example 4.5. Let p = 2, E be the grey set in Figure 4.2(a) and let Σ be the 1-
dimensional immersed nonconnected curve of R2 depicted in Figure 4.2(b). Obviously
∂E ⊂ Σ. We choose

L := |p− q| >
3

2

∫

Reg∂E

[1 + κ2] dH1, (34)

and define
f1, f2 : R

2 → N, f1 := χΣ, f2 := 2χΣ.

Then f1, f2 ∈ Sptg(R
2). Hence f1, f2 ∈ HV p(R2) by Remark 3.9(i), f1, f2 verify (27) and

Sfi ⊃ ∂E. Moreover f1 fulfills (28) but not (29), while f2 fulfills (29) but not (28). By [4,
Theorem 7.2] (see also [5, Theorem 8.6]) we know that

F(E) =

∫

Reg∂E

[1 + κ2] dH1 + 2L.
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From (34) we deduce

2F(f1) = F(f2) = 4

∫

Reg∂E

[1 + κ2] dH1 < F(E)

and (31) does not hold.

The proof of Theorem 4.3 is based on the combination of Proposition 4.7, Corollary
4.10 and Theorem 2.9. More precisely from Proposition 4.7 it follows that HVtg(∂E) ⊂
Sptg(R

2). Hence every f ∈ HVtg(∂E) can be locally represented using a finite number of
H2,p-functions. This observation allows to gain enough regularity to adapt some of the
localization techniques developed in [5] and prove Proposition 4.8 and Lemma 4.9. As a
consequence we obtain Corollary 4.10, which establishes that for every f ∈ HVtg(∂E) we
can find Γ ∈ Ao(E) such that F(Γ) = F(f). Hence Theorem 4.3 follows by Theorem 2.9
and (9).

The following lemma is a crucial step toward the proof of Proposition 4.7.

Lemma 4.6. Let f ∈ HV p(U), R = [−a, a]× [−b, b], g1, . . . , gr be as in Theorem 3.6 and

suppose that

max
1≤l≤r

‖g′l‖L∞(]−a,a[) ≤
1

2
. (35)

Then gl ∈ H2,p(]− a, a[) for every l ∈ {1, . . . , r}.

Proof. Let

T1(ξ) :=
1√

1 + ξ2
, T2(ξ) := ξT1(ξ), ξ ∈ R.

Given l ∈ {1, . . . , r} we will prove that

(Ti(g
′
l))

′ = Afmim(·, gl)(1 + (g′l)
2)1/2p ∈ Lp(]− a, a[), i = 1, 2, (36)

where Afmim(·, gl) denotes the restriction to the graph of gl of the generalized second
fundamental form of f . For every z ∈ graph(gl), recalling (19) we have that the i-th row
(P f

i1(z), P
f
i2(z)) of the matrix P f can be written as

(
P f
i1(z), P

f
i2(z)

)
= Ti(g

′
l(t))

(1, g′l(t))√
1 + (g′l(t))

2
, z := (t, gl(t)), i = 1, 2. (37)

The idea is to rewrite the integration by parts formula (14) defining the curvature of a
varifold (and which considers all branches of the varifold at once) on the basis interval
[−a, a], and try to obtain regularity informations on each branch separately. This is not
immediate in presence of more than two graphs with a possibly complicated (tangential)
intersection. We proceed by induction on r.

If r = 1 then, setting g = g1, we have Sf ∩R = graph(g) ⊂ RegSf and f ≡ L on graph(g).

Let us show that Ti(g) ∈ H1,p(]− a, a[).

Let ψ ∈ C1
c (]− a, a[). Since Sf ∩R = graph(g) we can find ε > 0 such that setting

Kε :=
{
z ∈ R : dist(z, graph(g|spt(ψ))) < ε

}
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we haveKε ⊂⊂ R and graph(g|spt(ψ)) ⊂⊂ Kε∩Sf ⊂⊂ graph(g). Since g ∈ C1,1−1/p([−a, a])
we can find a function ϕ ∈ C1

c (R
2) such that

spt(ϕ) ⊂⊂ Kε, ϕ(t, g(t)) = ψ(t) ∀t ∈ [−a, a].

Hence, using also (37), we have for i = 1, 2

L

∫

]−a,a[

Ti(g
′)ψ′ dt = L

∫

]−a,a[

Ti(g
′)

[
∇ϕ(t, g)

(1, g′)√
1 + (g′)2

]
√
1 + (g′)2 dt

= L

∫

]−a,a[

(
P f
i1(t, g), P

f
i2(t, g)

)
∇ϕ(t, g)

√
1 + (g′)2 dt =

∫

graph(g)

δfi ϕf dH
1

= −

∫

graph(g)

Afmimϕf dH
1,

(38)

where in the last equality we use (14) (applied with ϕ = φ independent of P f ). By (38)
and (35) we have

∣∣
∫

]−a,a[

Ti(g
′)ψ′ dt

∣∣ ≤ L−1

(∫

graph(g)

|Afmim|
pf dH1

)1/p(∫

graph(g)

|ϕ|p
′

f dH1

)1/p′

≤ C

(∫

]−a,a[

|Afmim|
p
√

1 + (g′)2 dt

)1/p

‖ψ‖Lp′ (]−a,a[) ≤ C ′‖ψ‖Lp′ (]−a,a[),

where 1/p+ 1/p′ = 1 and C,C ′ are positive constants. Hence Ti(g
′) ∈ H1,p(]− a, a[) and

(36) holds. Since T2 is a bi-Lipschitz, smooth function on every open subset compactly
contained in ] − a, a[ and (35) holds we conclude that g ∈ H2,p(] − a, a[) from g′ =
T−1
2 (T2(g

′)) ∈ H1,p(]− a, a[).

Let us show how the proof works in case r = 2. We first prove that g2 ∈ H2,p(] − a, a[);

the idea is to construct a sequence {fh} ⊂ HV p(U) such that fh ⇀ f̂ in HV p(U) where

f̂ is concentrated on graph(g2) (hence Sf̂ ∩R = graph(g2)) and f̂ has a constant density.

By the previous case r = 1 we deduce g2 ∈ H2,p(] − a, a[). The proof is concluded by
showing that also g1 ∈ H2,p(]− a, a[).

By Proposition 2.4

{
t ∈ ]− a, a[: (t, g1(t)) ∈ RegSf∩R

}
= {t ∈ ]− a, a[: g1(t) < g2(t)} =

⋃

h∈N

Ih,

⋃

h∈N

Ih = [−a, a],
(39)

where Ih = ]t−h , t
+
h [ are pairwise disjoint intervals and Hh := {(t, g1(t)) : t ∈ Ih} is a

relative connected component of RegSf∩R for every h ∈ N.

In order to construct the sequence {fh} we use a recursive algorithm. Let f0 := f and
suppose that fh−1 ∈ HV p(U) has been defined. Then fh is obtained modifying fh−1 only
on Ih × [−b, b], in particular fh = f on U \ ∪hj=1(Ij × [−b, b]), in such a way that
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Figure 4.3: The construction leading to fh starting from fh−1 in case r = 2 of Lemma 4.6

(i) Sfh ∩ (Ih × [−b, b]) = graph(g2);

(ii) F(fh) ≤ L F(f).

Note that as Sfh ⊂ Sfh−1
⊂ Sf we have ♯Tanzfh = 1 for every h ∈ N and every z ∈ Sfh .

Let us construct fh. For every δ > 0 sufficiently small (depending on h) let

Iδh := ]t−h + δ, t+h − δ[, U δ
h :=

{
(t, y) ∈ R : t ∈ Iδh, g1(t) + δ < y < b

}
.

We have f|Uδh ∈ HV p(Iδh×]−b, b[) and Sf
|Uδ
h

= graph(g2)∩ (Iδh×]−b, b[). Using the C1,1−1/p

regularity of g2 we can subdivide Iδh in J
δ
h,1, . . . , J

δ
h,k disjoint intervals, with k := k(h, δ) ∈ N

and |g′2(t) − g′2(s)| <
1
2
for any t, s ∈ Jδh,i, so that by case r = 1 we have g2 ∈ H2,p(Jδh,i)

and (36) holds in Jδh,i.

Since

‖(Ti(g
′
2))

′‖Lp(Iδh) ≤ LF(f), i = 1, 2,

and ♯Tanz(fh−1) = 1 for any z ∈ Sf , letting δ → 0+ we conclude that g2 ∈ H2,p(Ih)
(see [5, Lemma 4.1]) and that (36) holds in Ih. With a similar argument we have that
g1 ∈ H2,p(Ih) and g1 fulfills (36) in Ih.

Let us define fh as follows:

fh :=

{
(µ1 + µ2)χgraph(g2) in Ih × [−b, b],

fh−1 otherwise,
(40)

where we recall that µ1, µ2 are given in Theorem 3.6(B). We remark that by ♯Tanz(fh−1) =
1 for any z ∈ Sfh−1

, (39), (20) and Theorem 3.6(C), for σ = ± we have

g1(t
σ
h) = g2(t

σ
h), g′1(t

σ
h) = g′2(t

σ
h), fh−1(z

σ
h) = fσh (zh), (41)

where zσh := (tσh, g1(t
σ
h)).

Next we prove that

fh ∈ HV p(U), Afhijk = A
fh−1

ijk|Sfh
. (42)
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For every φ ∈ C1(U × G(1, 2)) with compact support in U , since g1, g2 ∈ H2,p(Ih) and
f(t, gl(t)) = µl for any t ∈ Ih and l = 1, 2, we have

∫

graph(gl|Ih
)

(
δfi φ(z, P

f ) +
∂φ(z, P f )

∂Pmn
Afimn

)
dH1

= −

∫

graph(gl|Ih
)

φ(z, P f )Afmim dH1

+ Ti(g
′
l(t

+
h ))φ(z

+
h , P

f (z+h ))− Ti(g
′
l(t

−
h ))φ(z

−
h , P

f (z−h )).

(43)

Since by definition (40) we have fh ≡ fh−1 on U \ (Ih × [−b, b]) it follows that
∫

U

(
δfhi φ(z, P

fh) +
∂φ(z, P fh)

∂Pmn
Afhimn

)
fh dH

1

=

∫

U\(Ih×[−b,b])

(
δ
fh−1

i φ(z, P fh−1) +
∂φ(z, P fh−1)

∂Pmn
A
fh−1

imn

)
fh−1 dH

1

+

∫

Ih×[−b,b]

(
δfhi φ(z, P

fh) +
∂φ(z, P fh)

∂Pmn
Afhimn

)
fh dH

1 =: I1 + I2.

Observe that in U \ (Ih× [−b, b]) we are not yet allowed to integrate by parts, because we
still do not have enough regularity. On the other hand in U we can use (14). We have

I1 =

∫

U

(
δ
fh−1

i φ(z, P fh−1) +
∂φ(z, P fh−1)

∂Pmn
A
fh−1

imn

)
fh−1 dH

1

−

∫

Ih×[−b,b]

(
δ
fh−1

i φ(z, P fh−1) +
∂φ(z, P fh−1)

∂Pmn
A
fh−1

imn

)
fh−1 dH

1 =: I(1)
1 + I(2)

1

=

∫

U

φ(z, P fh−1)A
fh−1

mimfh−1 dH
1 + I(2)

1

= −

∫

U\(Ih×[−b,b])

φ(z, P fh−1)A
fh−1

mim fh−1 dH
1

−

∫

Ih×[−b,b]

φ(z, P fh−1)A
fh−1

mim fh−1 dH
1 + I(2)

1 .

By (40), (14), (41) and (43) we have

I2 =− (µ1 + µ2)

∫

graph(g2|Ih
)

φ(z, P f )Afmim dH1

+
2∑

l=1

µl
[
Ti(g

′
l(t

+
h ))φ(z

+
h , P

f (z+h ))− Ti(g
′
l(t

−
h ))φ(z

−
h , P

f (z−h ))
]
,

so that, integrating by parts,

I1 + I2 =−

∫

U\(Ih×[−b,b])

φ(z, P fh−1)A
fh−1

mim fh−1 dH
1

− (µ1 + µ2)

∫

graph(g2|Ih
)

φ(z, P f )Afmim dH1,



G. Bellettini, L. Mugnai / A Varifolds Representation of the Relaxed Elastica ... 559

that is (42) holds. Moreover (i) and (ii) hold by construction.

As suphF(fh) < +∞ we can apply [13, Theorem 4.4.2] and find a subsequence weakly

converging in the sense of varifolds to a certain f̂ ∈ HV p(U). Since (RegSf ∩graph(g1))∩
Sf̂ = ∅, we can conclude that Sf̂ ∩ R = graph(g2). Hence, applying the result proved

in case r = 1 to f̂ , we get g2 ∈ H2,p(] − a, a[) and (36). Repeating the same argument
with g2 replaced by g1 we obtain that g1 ∈ H2,p(]− a, a[) and that g1 satisfies (36). This
concludes the proof in case r = 2.

We suppose by induction that the thesis holds if Sf ∩R = ∪r
′

l=1graph(gl) with r
′ ≤ (r−1),

and we prove the assertion when Sf ∩R = ∪rl=1graph(gl).

Again we construct recursively a sequence {fh} ⊂ HV p(U) such that fh ⇀ f̂ in HV p(U),
with Sf̂ ∩ R = ∪rl=2graph(gl), so that we can apply the induction hypothesis and get

gl ∈ H2,p(] − a, a[) for l = 2, . . . , r and (36) holds. Then by a symmetric argument we
prove that gl ∈ H2,p(]− a, a[) for l = 1, . . . , r − 1 and this concludes the proof.

By Proposition 2.4 it follows
{
t ∈ ]− a, a[: (t, g1(t)) ∈ RegSf∩R

}
= ∪h∈NIh, with ∪h∈NIh

= [−a, a], where Ih = ]t−h , t
+
h [ are pairwise disjoint intervals, Hh := {(t, g1(t)) : t ∈ Ih}

are relative connected components of RegSf∩R and f ≡ Lh ≤ L on Hh for every h ∈ N.

Let f0 := f and suppose that fh−1 ∈ HV p(U) has been defined. Then fh is obtained
modifying fh−1 only on Ih × [−b, b] in such a way that (i) holds with graph(g2) replaced
by ∪rl=2graph(gl), and (ii) holds. Let jh := min {l : 2 ≤ l ≤ r, gl 6= g1 on Ih}, and

fh :=





(µjh + Lh)χgraph(gjh )
+

r∑

l=jh+1

µlχgraph(gl) in Ih × [−b, b],

fh−1 otherwise.

(44)

We remark that, since (tσh, g1(t
σ
h)) ∈ SingSf ∩ R with σ = ±, by (20) and the hypothesis

Tanz(f) ≡ 1 for any z ∈ Sf we have

g1(t
σ
h) = gjh(t

σ
h), g′1(t

σ
h) = g′jh(t

σ
h), σ = ±. (45)

Moreover by construction and using Theorem 3.6(C) we have, for σ = ±,

Sfh−1
∩ ({tσh} × [−b, b]) = Sfh ∩ ({tσh} × [−b, b]),

fh−1(z) = fh(z), for z ∈ {tσh} × [−b, b].
(46)

With the same arguments used in case r = 2 and by the induction hypothesis we obtain
that g1, . . . , gr ∈ H2,p(Ih) and (36) holds on Ih; moreover by (46) and the analog of (43),
we have fh ∈ HV p(U). Again (i) and (ii) hold by construction. The conclusion of the
proof is then the same as the one in case r = 2.

Proposition 4.7. We have

Sptg(R
2) =

{
f ∈ HV p(R2) : ♯Tanz(f) = 1 for any z ∈ Sf

}
. (47)
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Proof. In view of Remark 3.9(i), we only need to prove that the right hand side on (47)
is contained in the left hand side. Let f ∈ HV p(R2) be such that ♯Tanz(f) = 1 for
any z ∈ Sf . By Remark 3.5 we can suppose that Sf is closed. Fix z̃ ∈ Sf . Without
loss of generality we can suppose that z̃ = 0 and Tan0(f) = e1 ⊗ e1. Let a, b ∈ R

+,
R := [−a, a] × [−b, b] and g1, . . . , gr be as in Theorem 3.6(B). Possibly restricting R we
can suppose that (35) holds. Hence the thesis directly follows from Lemma 4.6.

The following proposition shows that the local property (23) defining the elements of
Sptg(R

2) can be converted into a global property (i.e., a global parametrization of a system
Γ with the same density) at least assuming the finiteness of the singular set SingSf .
Removing this assumption will be the aim of Corollary 4.10.

Proposition 4.8. Let f ∈ Sptg(R
2) be such that ♯SingSf < +∞. Then there exists a

system of curves Γ ∈ H2,p(S) without crossings such that

f = θΓ χ(Γ).

Proof. The proof is based on the construction in [5, Theorem 8.6] with minor modifica-
tions. Let SingSf = {z1, . . . , zq}. For every ζ ∈ SingSf , we denote by R(ζ) a nice rectangle
for Sf at ζ such that

R(ζ) ∩ SingSf = {ζ}, (48)

and we make an arbitrary choice of the normal unit vector to Sf at ζ so that R+(ζ) and
R−(ζ) are defined. From now on with the symbol δj we denote +1 or −1. Accordingly
we write Rδj(ζ) in place of R±(ζ) when δj = ±1. Let us construct the first curve γ1 of
the system Γ.

Construction of γ1. Fix z1 ∈ SingSf . Set (f0, (ζ0, δ0)) := (f, (z1,+1)). The construction
of (f1, (ζ1, δ1)) is the same as in [5, Theorem 8.6], and is such that (f1, (ζ1, δ1)) satisfies
properties (a)-(e) listed below, with i = 1. Suppose we have defined (fi, (ζi, δi)) for some
i ≥ 1, with:

(a)

fi : R
2 → N, fi :=

{
fi−1 − 1 on Hi,

fi−1 on R
2 \Hi,

(49)

where Hi ⊂ Sfi−1
is a connected component of RegSfi−1

such that: fi−1 ≥ 1 is

constant on Hi; ζi ∈ SingSf is a point of the relative boundary of Hi (which is
composed either by ζi−1 itself, and in this case we understand that ζi−1 = ζi, or
by two points {ζi−1, ζi} ⊂ SingSf ); Hi crosses R

−δi−1(ζi−1) and reaches ζi crossing

Rδi(ζi);

(b) fi verifies the train tracks property in R(ζ) for every ζ ∈ Sfi ∩ (SingSf \ {z1, ζi});

(c) if ζi 6= z1 we have
∑

z∈∂R+(z1)
fi(z) =

∑
z∈∂R−(z1)

fi(z)+1; moreover δi = ±1 implies∑
z∈∂R+(ζi)

fi(z) =
∑

z∈∂R−(ζi)
fi(z)∓ 1;

(d) if ζi = z1 and δi = −1 then
∑

z∈∂R+(z1)
fi(z) =

∑
z∈∂R−(z1)

fi(z) + 2;

(e) if ζi = z1 and δi = +1 then
∑

z∈∂R+(z1)
fi(z) =

∑
z∈∂R−(z1)

fi(z).
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The construction of (fi+1, (ζi+1, δi+1)) when (fi, (ζi, δi)) is given is the same as the one
in [5, Theorem 8.6]. The only difference is that in our case the algorithm stops when
{z ∈ ∂R−δi(ζi) : fi(z) ≥ 1} = ∅. By (c) and (d) this can happen only if we are in case (e).

We now define (γ1) := H1 ∪ · · · ∪ Hn. Since Hi and Hi+1 have ζi as a boundary point
and belong to opposite half planes with respect to the normal line to Sfi at ζi, using [5,
Lemma 4.1] we can find γ1 ∈ H2,p(S1

1) parametrized with constant speed. Note that by
construction we have θγ1χ(γ1) ≤ f .

Construction of γi+1 (i ≥ 1). Suppose we have defined Γi = (γ1, . . . , γi) ∈ H2,p(Si), where
Si := S1

1 × · · · × S1
i , verifying fΓi := θΓiχ(Γi) ≤ f . If f − fΓi is not identically zero, Γi+1 ∈

H2,p(Si×S1) is constructed as in the previous step starting from fi := f − fΓi ∈ Sptg(R
2).

Since ♯SingSf < +∞ the algorithm stops in a finite number n of steps n ≥ 1. Hence

f − fΓn ≡ 0 on R
2 which is the thesis.

Lemma 4.9. Let f ∈ Sptg(R
2). There exists a sequence {fk} ⊂ Sptg(R

2) such that

Sfk ⊆ Sf , ♯SingSfk
< +∞, F(fk) ≤ F(f) ∀k ∈ N, (50)

and

fk ⇀ f in HV p(R2), lim
k→∞

F(fk) = F(f). (51)

Proof. This lemma can be proved almost along the same lines as in [5, Theorem 5.1].
We sketch the main ideas of the proof for the reader’s convenience.

Step 1. Fix k ∈ N. For any z ∈ SingSf let R(z) be a nice rectangle for f centered at

z, with diameter strictly smaller than 2−k. Since SingSf is compact (see (25)), there are

z1, ..., zm(k) points of SingSf such that SingSf ⊂

m(k)⋃

i=1

R(zi), and Sf ∩ ∂R(zi) ⊂ RegSf for

any i ∈ {1, . . . ,m(k)} (see (26)). In order to construct fk ∈ Sptg(R
2) we use a recursive

algorithm consisting of m(k) steps. Let fk0 := f , let 1 ≤ i ≤ m(k), and suppose that
fki−1 has been defined. Then fki is obtained by modifying fki−1 only on int(R(zi)) as

follows. Let us suppose for simplicity that zi = 0, that P fki−1(zi) = e1 ⊗ e1 and that
R(zi) = [−a, a] × [−b, b]. Moreover let F(·, R(zi)) be the localization of F on R(zi).
Repeating the proof of [5, Lemmata 4.3, 4.5, 4.11] it is possible to show the existence
of functions g1, . . . , gr ∈ H2,p(] − a, a[) and integer numbers λ1, . . . , λr (see Step 1 in the
proof of [5, Theorem 5.1] for further details) such that

• for any function ϕ ∈ C1(]− a, a[) such that graph(ϕ) ⊂ Sfki−1
∩ R(zi) and ϕ(±a) =

gl(±a) we have
F(χgraph(gl), R(zi)) ≤ F(χgraph(ϕ), R(zi)),

• the set Sing∪rl=1graph(gl)
is finite and

r∑

l=1

λlF((χgraph(gl), R(zi)) ≤ F(fki−1, R(zi));

• defining fki : R
2 → N as fki := fki−1χR2\R(zi) + χR(zi)

∑r
l=1 λlχgraph(gl), we have

fki ∈ Sptg(R
2).
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Once fki are defined it results that

Sfki ⊆ Sfki−1
, ♯(SingS

fk
i

∩ int(R(zi))) < +∞, F(fki ) ≤ F(fki−1). (52)

We now define fk := fkm(k). From (52) we have F(fk) = F(fkm(k)) ≤ F(fkm(k)−1) ≤ · · · ≤

F(f). By construction we have that Sfki is closed for every i ∈ {0, . . . ,m(k)} and

Sfk = Sfk
m(k)

⊆ Sfk
m(k)−1

⊆ · · · ⊆ Sfk0 = Sf .

Furthermore, since ♯(SingSfk
∩∪m(k)

i=1 R(zi)) < +∞, with ∪m(k)
i=1 R(zi) ⊇ SingSf and Sfk ⊆ Sf ,

we have that SingSfk
is a finite set. So we defined {fk} ⊂ Sptg(R

2) satisfying (50) and this

concludes the proof of Step 1.

Step 2. We prove that for {fk} defined in Step 1 (51) holds.

Since
sup
k∈N

F(fk) ≤ F(f), (53)

we can find a subsequence (still denoted by {fk}) which converges inHV p(R2) as k → +∞

to a certain f̂ ∈ Sptg(R
2) (see [13]) such that Sf̂ ⊆ Sf by construction.

We want to prove that f̂ = f . To this aim we use Remark 3.10(iii). We start by
proving that Sf̂ = Sf . Let p ∈ RegSf . Since SingSf = Sf \ RegSf is compact, we have

dist(p, SingSf ) > 0. So, for every k with 1/2k < dist(p, SingSf ), the point p is outside the
region where we made our modifications and therefore there is a whole neighborhood of
p where fk = f . Therefore p ∈ RegS

f̂
and RegSf ⊆ RegS

f̂
. Hence, recalling (25) and the

inclusion Sf̂ ⊆ Sf , we get Sf = RegSf ⊆ Sf̂ . So Sf = Sf̂ and therefore RegSf = RegS
f̂
.

By construction we have f = f̂ on RegSf = RegS
f̂
. Hence f = f̂ by Remark 3.10(iii).

Finally, using (53) and the lower semicontinuity of F on Sp(R2), we have

F(f) ≤ lim inf
k→∞

F(fk) ≤ lim sup
k→∞

F(fk) ≤ F(f)

Using Proposition 4.8 and Lemma 4.9 we obtain the following strenghtened version of
Proposition 4.8.

Corollary 4.10. Let f ∈ Sptg(R
2). Then there exists a system of curves Γ ∈ H2,p(S)

without crossings such that

f = θΓχ(Γ).

Proof. Let {fk} ⊂ Sptg(R
2) be the sequence built in the proof of Lemma 4.9. By Propo-

sition 4.8, for every k ∈ N we can find a system of curves Γk ∈ H2,p(Sk) such that
fk = θΓkχ(Γk). From (50) it follows that

F(Γk) = F(fk) ≤ F(f) < +∞.
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Since (Γk) = Sfk ⊆ Sf and Sf is compact, we can apply [4, Theorem 3.1], hence we can
find a subsequence of systems of curves {Γkj} all defined on same parameter space S and
such that {Γkj} converges in the H2,p-weak topology to a system of curves Γ ∈ H2,p(S).
Since by construction we have (Γ) = Sf and θΓ = f on RegSf , we deduce f = θΓχ(Γ).

Remark 4.11. Lemma 4.8 defines a bijective map between Sptg(R
2) and the quotient of

the set of all H2,p-systems of curves without crossings with respect to the equivalence
relation defined in [5, Definition 2.30].

We are now in the position to conclude the proof.

Proof of Theorem 4.3. . As a consequence of Theorem 2.9 and Proposition 4.7 and
Corollary 4.10 we obtain (30).

Let us prove (31). Let Γ ∈ Ao(E); as noted in Remark 3.9(iii) and using also (30),
fΓ := θΓχ(Γ) ∈ Sptg(R

2) and F(Γ) = F(f). Moreover from Definition 2.7 we have Sf ⊇ ∂E,
and (28), (29) are a consequence of Remark 2.8(ii). From Theorem 2.9 we have

F(E) = min {F(Γ) : Γ ∈ Ao(E)} ≥ inf {F(f) : f ∈ HVtg(∂E)} . (54)

Let us prove

F(E) ≤ inf {F(f) : f ∈ HVtg(∂E)} . (55)

Let f ∈ HVtg(∂E). Thanks to Corollary 4.10 there exists a system of curves Γf of class
H2,p without crossings such that

f = θΓfχ(Γf ), F(Γf ) = F(f).

By (28), (29) applying [5, Proposition 3.13] we deduce that Γf ∈ Ao(E). Hence (55)
follows again from Theorem 2.9.

To conclude we have to prove that the infimum of F is achieved on HVtg(∂E), but this
is a consequence of (24) with Γ a minimizer of F on Ao(E).
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