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The underlying principles in optimization are simple.

Hestenes, Optimization Theory (1975)

1. Introduction

In this paper we study possible definitions of conjugate points for certain optimal control
problems involving equality and inequality constraints in the control. The theory of
conjugacy in optimal control is rather controversial, even for problems without constraints,
but we intend to show the reader that the underlying principles are simpler than what
they (apparently) seem to be.

We shall concentrate on three approaches to conjugacy which are available in the litera-
ture and are widely quoted. The main contribution of this paper corresponds to a clear
and unified review of the second order conditions obtained in each case, as well as an im-
provement of the three definitions, introduced in those papers, of “generalized conjugate
points� in the sense that, either the range of applicability is enlarged, or the conditions
defining membership of the different sets of points are simplified.

Let us begin by stating the optimal control problem we shall be concerned with. Suppose
we are given an interval T := [t0, t1] in R, a point ξ0 ∈ Rn, open sets O ⊂ Rn and
V ⊂ Rm, and functions

(g, h) : O → R×Rk (k ≤ n), (L, f) : T ×O × V → R×Rn, ϕ : V → Rq (q ≤ m).

Denote by X(T,O) the space of piecewise C1 functions mapping T to O, by U(T, V ) the
space of piecewise continuous functions mapping T to V , and set Z := X(T,O)×U(T, V ).
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The sets of constraints will be expressed in terms of C := {x ∈ O | h(x) = 0} and

U := {u ∈ V | ϕi(u) ≤ 0 (i ∈ R), ϕj(u) = 0 (j ∈ Q)}

where R = {1, . . . , r} and Q = {r + 1, . . . , q}. Let A := T ×O × U , define

D := {(x, u) ∈ Z | �x(t) = f(t, x(t), u(t)) (t ∈ T )},

Ze := {(x, u) ∈ D | (t, x(t), u(t)) ∈ A (t ∈ T ), x(t0) = ξ0, x(t1) ∈ C}

and let I : Z → R be given by

I(x, u) := g(x(t1)) +

∫ t1

t0

L(t, x(t), u(t))dt ((x, u) ∈ Z).

The problem we shall be concerned with, which we label (P), is that of minimizing I over
Ze.

A common and concise way of formulating this problem is as follows:

Minimize I(x, u) = g(x(t1)) +
∫ t1

t0
L(t, x(t), u(t))dt subject to

(a) (x, u) ∈ X(T,O)× U(T, V );

(b) �x(t) = f(t, x(t), u(t)) (t ∈ T );

(c) x(t0) = ξ0, h(x(t1)) = 0;

(d) ϕi(u(t)) ≤ 0 (i ∈ R), ϕj(u(t)) = 0 (j ∈ Q) (t ∈ T ).

For problem (P) the theory of conjugacy presents two fundamental aspects. One deals
with the derivation of second order conditions, while the other treats the question of how
to characterize them. Now, even for simpler problems such as the basic fixed-endpoint
problem in the calculus of variations, where the former aspect is easily and successfully
solved, the latter is rather controversial. In [26] the reader can find several references of
different (not equivalent) ways of stating and proving “the� necessary condition of Jacobi
where the assumptions on the sets and functions of the problem, and the definition itself
of conjugate points, may vary considerably.

Several attempts to generalize the notion of conjugate points to optimal control have been
made. In particular, special attention deserve those of Bernhard [4], Breakwell and Ho [5],
Caroff and Frankowska [6], Dmitruk [9, 10], Hestenes [12, 13, 15–18], Loewen and Zheng
[19], Popescu [23], Stefani and Zezza [28, 29], Zeidan [31, 32], Zeidan and Zezza [33–36].
It might be extremely complicated to compare these, or more, approaches to conjugacy
and, in this paper, we shall concentrate on one line of research which has been widely
quoted.

It corresponds to the one initiated in 1988 by Zeidan and Zezza [33] where, for problem
(P), a second order necessary condition is derived and a set G0 of “generalized (classical)
conjugate points� is proposed. This approach generalizes the classical theory (represented
by, for example, Hestenes [14]) in the sense that, when reduced to a calculus of variations
context, both theories coincide. Its main result, stating that if a process satisfies the sec-
ond order condition then the set G0 is empty in (t0, t1) (the underlying open time interval),
is strongly based on the so-called “accessory problem� and it requires nonsingularity and
two-sided normality assumptions.
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In 1994, Loewen and Zheng [19] questioned not only these two assumptions but also the
second order necessary condition, which states that the second variation with respect to
the process under consideration is nonnegative along certain convex cone. For certain
cases (in particular, assuming convexity of the control set U), the convex cone of [33] is
enlarged in [19]. Moreover, they introduce a new set G1 of “generalized conjugate points�
and, without making use of the accessory problem and independently of nonsingularity
or sided normality assumptions, prove that if a process satisfies a second order condition
(in terms of a certain convex cone) then G1 (depending on that convex cone) is empty in
(t0, t1). For the basic problem in the calculus of variations, this set contains (but in general
does not coincide with) that of classical conjugate points in (t0, t1) under nonsingularity
assumptions. Thus, their approach generalizes not only the classical theory to optimal
control, but also to singular trajectories in calculus of variations.

In 1996, Zeidan [32] considered a problem where both endpoints vary and obtained second
order conditions without convexity assumptions on the control set. Essentially, it is shown
that the convex cone proposed in [19] holds for the general case. Also in [32] a new set G2

of “generalized coupled points� is introduced. It contains that of [19] and, for the normal
case, it is proved, again through the accessory problem, that a necessary condition for
optimality is the nonexistence of such points in (t0, t1).

Now, the sets of conjugate points defined in [33], [19] and [32] do solve certain fundamental
questions of conjugacy, but they present several undesirable features. For the set G0,
the nonsingularity and the sided normality assumptions reduce its range of applicability.
Though this aspect is no longer present in G1 and G2, the nonemptiness of these two sets
in the open interval (t0, t1) has been established merely as a sufficient condition for the
existence of negative second variations. In other words, it is not clear if there are problems
with negative second variations for which these sets are empty. Also, the main idea of
characterizing a condition is, in general, to obtain a simpler way of verifying it. However,
even in the calculus of variations, simple examples show that to solve the question of
nonemptiness of these sets may be much more difficult than verifying directly if that
condition holds.

The purpose of this paper is twofold. First, to give a clear and unified summary of
the different second order necessary conditions for problem (P) obtained in each of these
three papers. Second, to introduce a new approach to conjugacy for which the undesirable
features inherent in the sets previously defined do not occur. We shall study the sets G0, G1

and G2 and improve them in several respects. To begin with, we modify the assumptions
on the functions of the problem which are simply “recalled� in [33], [19] and [32]. This
modification enlarges the range of problems to which the first and second order conditions
of those references can be applied. We then introduce three sets of points S0, S1 and S2

with the following properties. The first contains, under nonsingularity and normality
assumptions, the set G0 ∩ (t0, t1), while the other two contain G1 and G2 respectively.
Moreover, the corresponding second order conditions are shown to be equivalent to the
emptiness of S1 in general, and that of S0 ∪ S2 for the normal case. Finally, we provide
some examples which illustrate the fact that verifying membership of S0, S1 or S2 may be
trivial while that of G0, G1 or G2 may be extremely difficult, in some cases perhaps even
a hopeless task.
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2. First and second order necessary conditions

The purpose of this section is to state, in a clear and unified way, the first and second
order necessary conditions for optimality for problem (P) as stated (in the former case)
and obtained (in the latter case) in [33], [19] and [32]. These papers differ not only on the
assumptions imposed on the functions and sets delimiting the problem, but also on the
convex cones on which the second order conditions are based. For comparison reasons, and
to avoid any confusion, we shall quote all the assumptions and the necessary conditions
exactly as they are written in each reference (except for the unifying notation we shall
use, and silently correcting the misprints, which are plentiful, that appear specially in
[32]).

We begin by defining several sets and functions which allow us to write the necessary
conditions in a succinct way. We have chosen this notation also to avoid any misleading
interpretations which easily occur by assigning well-known names or phrases used with
completely different meanings in different texts, sometimes even by the same author. For
example, words such as normal, regular or extremal, which are constantly used in [33], [19]
and [32], have a different meaning in each of these references. Only a few concepts will
receive a certain name when we find convenient to do so and no confusion should arise.

Elements of Z will be called processes, and a process (x, u) solves (P) if (x, u) ∈ Ze and
I(x, u) ≤ I(y, v) for all (y, v) ∈ Ze. Without loss of generality, the theory to follow will
be applied to global solutions of the problem instead of, as in [33] and [32], to weak local
minima. The reason is simply that the first and second order necessary conditions we state
hold for any open sets O ⊂ Rn and V ⊂ Rm. Thus, shrinking these sets if necessary, the
same conditions remain valid for local minima.

Notation and a general result

• For any S ⊂ T and r ∈ N, let X(S,Rr) (resp. U(S,Rr)) be the space of piecewise
C1 (resp. piecewise continuous) functions mapping S to Rr. For simplicity, set X :=
X(T,Rn), U := U(T,Rm). Given (x, u) ∈ Z we shall use the notation (x̃(t)) to represent
(t, x(t), u(t)), and the symbol ‘∗’ will denote transpose.

• For any x ∈ O let

N (x) := {p ∈ Rn | p = h′(x)∗γ for some γ ∈ Rk}.

It should be noted (see [19] for details) that, assuming the matrix h′(x) has full row rank,
the set N (x) corresponds to the normal cone associated to the (adjacent) tangent cone
to C at x.

• For all (t, x, u, p, µ) in T ×O × V ×Rn ×Rq let

H(t, x, u, p, µ) = 〈p, f(t, x, u)〉 − L(t, x, u)− 〈µ, ϕ(u)〉

and, for all (x, u) ∈ Z, let M(x, u) be the set of all (p, µ) ∈ X × U(T,Rq) satisfying

(i) �p(t) +H∗

x(x̃(t), p(t), µ(t)) = 0 (t ∈ T );

(ii) Hu(x̃(t), p(t), µ(t)) = 0 (t ∈ T );

(iii) µi(t) ≥ 0 (i ∈ R) with µi(t) = 0 whenever ϕi(u(t)) < 0;

(iv) −[p(t1) + g′(x(t1))
∗] ∈ N (x(t1)).
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The letter “M� stands for “multipliers� and, as we shall see presently, this set includes
first order conditions which are satisfied, under certain assumptions, by any solution to
the problem. In particular, condition (iv), known as the transversality condition, is stated
in a succinct way above in terms of the normal cone to C at x(t1). The way this condition
is expressed in [19] is as follows. For any (x, γ) ∈ O×Rk, let κγ(x) := g(x) + γ∗h(x) and
note that, if

K(x, p) := {γ ∈ Rk | p∗ = −κ′γ(x)} ((x, p) ∈ O ×Rn),

then (iv) is equivalent to K(x(t1), p(t1)) 6= ∅.

• For any V ⊂ U and (x, u) ∈ Z let A(t) := fx(x̃(t)), B(t) := fu(x̃(t)) (t ∈ T ),

D(V ;x, u) := {(y, v) ∈ X × V | �y(t) = A(t)y(t) +B(t)v(t) (t ∈ T )},

and define the set of V-admissible variations along (x, u) by

Y (V ;x, u) := {(y, v) ∈ D(V ;x, u) | y(t0) = 0, h′(x(t1))y(t1) = 0}.

• Let X := Z ×X × U(T,Rq) and consider the sets

E := {(x, u, p, µ) ∈ X | (x, u) ∈ D and (p, µ) ∈M(x, u)},

H(V) := {(x, u, p, µ, γ) ∈ X ×Rk | J((x, u); (y, v)) ≥ 0 for all (y, v) ∈ Y (V ;x, u)}

where

J((x, u); (y, v)) = 〈y(t1),Λγy(t1)〉+

∫ t1

t0

2Ω(t, y(t), v(t))dt ((y, v) ∈ X × U),

Λγ := κ′′γ(x(t1)) and, for all (t, y, v) ∈ T ×Rn ×Rm,

2Ω(t, y, v) := −
[

〈y,Hxx(t)y〉+ 2〈y,Hxu(t)v〉+ 〈v,Huu(t)v〉
]

where H(t) denotes H(x̃(t), p(t), µ(t)).

The following result gives first and second order necessary conditions for problem (P).
They hold under two assumptions which we label (H1) and (H2). As we shall see, de-
pending on the different assumptions imposed, the corresponding conditions given in [33],
[19] and [32] can be restated in this way.

Theorem 2.1. Suppose (x, u) solves (P) and (H1) holds. Then there exists (p, µ, γ) ∈
X × U(T,Rq)×Rk with (x, u, p, µ) ∈ E and γ ∈ K(x(t1), p(t1)). If also (H2) holds, then
(x, u, p, µ, γ) ∈ H(V).

For clarity of exposition, let us “unfold� this result in terms of the sets and functions
involved in the statement. This theorem states that, if (x, u) is a solution to the problem
and hypothesis (H1) holds, then there exist p : T → Rn piecewise C1, µ : T → Rq piecewise
continuous, and γ ∈ Rk such that

(i) − �p(t) = f ∗

x(t, x(t), u(t))p(t)− L∗(t, x(t), u(t)) (t ∈ T );

(ii) p∗(t)fu(t, x(t), u(t))− Lu(t, x(t), u(t))− µ∗(t)ϕ′(u(t)) = 0 (t ∈ T );

(iii) µi(t) ≥ 0 (i = 1, . . . , r) with µi(t)ϕi(u(t)) = 0 (t ∈ T );
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(iv) −p(t1) = g′(x(t1))
∗ + h′(x(t1))

∗γ.

If also hypothesis (H2) holds then

J((x, u); (y, v)) = 〈y(t1), κ
′′

γ(x(t1))y(t1)〉+

∫ t1

t0

2Ω(t, y(t), v(t))dt ≥ 0

for all (y, v) ∈ X × U satisfying

(v) v ∈ V;

(vi) �y(t) = fx(t, x(t), u(t))y(t) + fu(t, x(t), u(t))v(t) (t ∈ T );

(vii)y(t0) = 0, h′(x(t1))y(t1) = 0.

The first statement in this theorem, assuming (H1), is a consequence of some version of
the maximum principle. A few remarks on this fact will be discussed in the following
section. The second statement, under assumption (H2), corresponds to a second order
condition depending on the set of V-admissible variations. The set V , in each of the three
references, is a convex cone (containing, implicitly, the zero function) of piecewise contin-
uous functions. Let us write explicitly the different convex cones we shall be concerned
with.

• For any u ∈ U let I(u) := {i ∈ R | ϕi(u) = 0} denote the set of active inequality indices

and set
T0(u) := {v ∈ Rm | ϕ′

i(u)v = 0 (i ∈ I(u) ∪Q)}.

• If (x, u, p, µ) ∈ E , let Γµ(t) := {i ∈ R | µi(t) > 0} and

T1(u(t)) := {v ∈ Rm | ϕ′

i(u(t))v ≤ 0 (i ∈ I(u(t))−Γµ(t)), ϕ
′

j(u(t))v = 0 (j ∈ Γµ(t)∪Q)}.

• For any u ∈ U , let

T2(u) := {v ∈ Rm | ϕ′

i(u)v ≤ 0 (i ∈ I(u)), ϕ′

j(u)v = 0 (j ∈ Q)}.

• For any u ∈ U let Wi(u) := {v ∈ U | v(t) ∈ Ti(u(t)) (t ∈ T )} (i = 0, 1, 2).

Note that, if (x, u, p, µ) ∈ E with (x, u) ∈ Ze, then T0(u(t)) ⊂ T1((u(t)) ⊂ T2((u(t))
(t ∈ T ) and, therefore, W0(u) ⊂ W1(u) ⊂ W2(u). Clearly, each Ti (resp. Wi) is a convex
cone in Rm (resp. U).

Let us turn now to assumptions (H1) and (H2) as stated in [33], [19] and [32]. Let
F := (L, f).

Zeidan & Zezza

The problem considered in [33] deals with equality constraints in the control, that is,
r = 0. However, in the “important� Remark 6.4, it is said that the case involving also
inequality constraints is within the scope of the paper. The reason given is that, by
considering only active inequality constraints, and assuming the active index function to
be piecewise constant on T , all the results of the paper apply. Based on this remark, let
us state the assumptions imposed in [33] for problem (P) which yield first and second
order necessary conditions. In A1(b), A1(c) and A2(a) below it is assumed implicitly that
we are given a process (x, u) ∈ Ze.
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Assumption A1

(a) F (t, ·, ·) is C1 for all t ∈ T and g, h, ϕ are C1; F (·, x, u), Fx(·, x, u) and Fu(·, x, u)
are piecewise continuous for all (x, u) ∈ O × V ; there exists an integrable function
α : T → R such that, at any point (t, x, u) ∈ T ×O × V ,

|F (t, x, u)|+ |Fx(t, x, u)|+ |Fu(t, x, u)| ≤ α(t).

(b) h′(x(t1)) is of full rank; (ϕ
′

i(u(t))) (i ∈ I(u(t)) ∪Q) is of full rank for all t ∈ T .

(c) There is no nonnull solution p of the system
(i) �p(t) + A∗(t)p(t) = 0 (t ∈ T );
(ii) 〈B∗(t)p(t), ζ〉 = 0 (ζ ∈ T0(u(t)), t ∈ T );
(iii) −p(t1) ∈ N (x(t1)).

Assumption A2

(a) I(u(·)) is piecewise constant on T .

(b) F (t, ·, ·) is C2 for all t ∈ T and g, h, ϕ are C2; F and its partial derivatives of second
order in (x, u) are piecewise continuous in t for all (x, u) ∈ O × V ; there exists an
integrable function β : T → R such that, at any point (t, x, u) ∈ T ×O × V ,

|Fxx(t, x, u)|+ |Fxu(t, x, u)|+ |Fuu(t, x, u)| ≤ β(t).

Let us briefly mention the names assigned in [33] to some of these assumptions. A process
(x, u) ∈ Ze is called regular if the second part of A1(b) holds, strongly normal on T if
A1(c) and the first part of A1(b) hold, and a regular extremal if M(x, u) 6= ∅ for some
cost multiplier λ0 ≥ 0 in the definition of I(x, u) with λ0 + |γ| 6= 0 where −p∗(t1) =
λ0g

′(x(t1)) + γ∗h′(x(t1)). Theorem 5.1 of this paper corresponds to the following result.

Theorem 2.2. Theorem 2.1 holds replacing (H) with (A) and V = W0(u).

Loewen & Zheng

The optimal control problem studied in [19] is precisely (P). The main point of the paper,
according to the authors in Remark 5.8, is to give a rigorous treatment of second order
necessary conditions for control sets involving inequality constraints along with equalities.
In the same remark one reads: “Although Zeidan and Zezza claim that the inequality
constrained case can be studied by their methods, their justification is neither clear nor
convincing. The problem arises because control sets defined by a mixed constraint system
may have corners, whereas the methods of [33] are valid exclusively for smooth control
sets.�

An important contribution of this paper is to show that, for certain cases, the set V =
W0(u) on which the second order condition of Theorem 2.2 is based can be replaced with a
larger one. This new convex cone satisfies certain properties summarized in the following
definition.

• Given (x, u, p, µ) ∈ E with (x, u) ∈ Ze, V is an “admissible direction set� if V ⊂ U is
a convex cone such that, for any v ∈ V, there exist constants ρ, τ > 0 and a function
w : [t0, t1]× [−τ, τ ] → Rm satisfying:

(i) w(·, θ) is piecewise continuous and w(t, ·) is C2;
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(ii) w(t, 0) = u(t) and wθ(t, 0) = v(t);

(iii) ϕi(w(t, θ)) = 0 for all i ∈ Γµ(t) ∪Q;

(iv) ϕi(w(t, θ)) ≤ 0 for all i ∈ R− Γµ(t), if 0 < θ < τ ;

(v) ‖w(t, ·)‖∞, ‖wθ(t, ·)‖∞, ‖wθθ(t, ·)‖∞ ≤ ρ.

The assumptions imposed in [19] are as follows. In B1(b) and B1(c) below it is assumed
implicitly that we are given (x, u) ∈ Ze and, in B2(a), (x, u, p, µ) ∈ E .

Assumption B1

(a) V = Rm, t0 = 0; F, g, h, ϕ are C2; there exists an integrable function β such that, at
any point (t, x, u) ∈ T ×O×U , the first and second order derivatives of F (t, ·, ·) are
bounded by β(t); the set F (t, x, U) is closed for every (t, x) ∈ T ×O.

(b) h′(x(t1)) has full row rank; {ϕ′

i(u(t)) | i ∈ I(u(t)) ∪ Q} is linearly independent for
a.a. t ∈ T .

(c) There is no nonnull solution p of the system
(i) �p(t) + A∗(t)p(t) = 0 (t ∈ T );
(ii) 〈B∗(t)p(t), ζ〉 ≤ 0 (ζ ∈ T2(u(t)), t ∈ T );
(iii) −p(t1) ∈ N (x(t1)).

Assumption B2

(a) B1(c) holds with T2(u(t)) replaced with T1(u(t));

(b) U is convex.

According to [19], a process (x, u) ∈ Ze is called and extremal if M(x, u) 6= ∅, normal

if B1(c) holds, and regular if B2(a) holds. Combining the first order necessary condi-
tions, Theorem 3.3, and the remark following Definition 4.5 of that paper, we obtain the
following result.

Theorem 2.3. Theorem 2.1 holds replacing (H) with (B) and V an admissible direction

set.

The question of how to produce an admissible direction set V for problem (P) is a fun-
damental feature in the theory developed in [19]. Assuming that (x, u, p, µ) ∈ E with
(x, u) ∈ Ze, and I(u(t)) is piecewise constant (t ∈ T ), it is proved that

VK := {kv | k ≥ 0, v ∈ U , v(t) ∈ VK(t) (t ∈ T )}

is an admissible direction set, where K : T → R is a certain function with I(u(t)) ⊂ K(t)
and

VK(t) = {v ∈ Rm | ϕi(u(t)) + ϕ′

i(u(t))v ≤ 0 (i ∈ K(t)− Γµ(t)),

ϕ′

j(u(t))v = 0 (j ∈ Γµ(t) ∪Q)}.

The function K introduced in [19] depends on the set Iǫ(u) = {i ∈ R | −ǫ ≤ ϕi(u) ≤ 0}
of “ǫ-active indices at u,� together with a partition s0 = t0 < s1 < · · · < sN = t1 such
that, on each interval (si, si+1), the control u is continuous and the index function I(u(t))
is constant. Clearly, if K(t) = I(u(t)), then VK(t) = T1(u(t)) and so VK = W1(u). In
particular, it is shown in [19] that VK with K(t) = I(u(t)) is an admissible direction set in
any of the following three cases: if u is piecewise constant on T , if the control set involves
only equality constraints, or in the free-endpoint case.
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Zeidan

The question of whether, for the general case, we can choose V = W1(u) in Theorem
2.1, is left open in [19]. It is answered in [32] not only for a problem more general than
(P) (both state endpoints are allowed to vary so that, in the statement of the problem,
g(x(t1)) is replaced with g(x(t0), x(t1)) and condition (c) with h(x(t0), x(t1)) = 0) but
removing the convexity assumption on the control set U . When reduced to the problem
we are considering, the assumptions are as follows. In C1(b) and C1(c) below we assume
(x, u) ∈ Ze given and, in C2, (x, u, p, µ) ∈ E .

Assumption C1

(a) F (t, ·, ·) is C2 for all t ∈ T and g, h, ϕ are C2; F (·, x, u) and its derivatives in (x, u)
are piecewise continuous; there exists an integrable function β : T → R such that

|F (t, x, u)|+ |∇(x,u)F (t, x, u)|+ |∇2
(x,u)F (t, x, u)| ≤ β(t).

(b) h′(x(t1)) is of full rank; there exists k > 0 such that |
∑

i∈γ(t) λiϕ
′

i(u(t))| ≥ k|λ| for

all λ and t ∈ T , where γ(t) = I(u(t)) ∪Q.

(c) There is no nonnull solution p of the system
(i) �p(t) + A∗(t)p(t) = 0 (t ∈ T );
(ii) 〈B∗(t)p(t), w(t)〉 ≤ 0 (w ∈ W2(u), t ∈ T );
(iii) −p(t1) ∈ N (x(t1)).

Assumption C2

(a) C1(c) holds with W2(u) replaced with W1(u);

(b) I(u(·)) and Γµ are piecewise constant on T .

According to [32], a process (x, u) ∈ Ze is an extremal if it is a regular extremal in
the sense of [33], weakly normal if it is an extremal in the sense of [19], and normal if
M(x, u) = ∅ for a zero cost multiplier in the definition of I(x, u) with |p| + |µ| + |γ| 6= 0
and −p∗(t1) = γ∗h′(x(t1)). Lemma 2.2 of [32] states that, if the second part of C1(b)
holds, then (x, u) is normal if and only if the system �y(t) = A(t)y(t) + B(t)v(t) (t ∈ T )
is h′(x(t1))-controllable over W2(u) which, by Lemma 2.1 of that paper, is equivalent to
assumption C1(c). Theorems 2.1 and 4.1 of [32] yield the following result.

Theorem 2.4. Theorem 2.1 holds replacing (H) with (C) and V = W1(u).

3. Auxiliary results

A change on the assumptions

In [33], the “regularity� assumptions A1(a) and A2(b) are simply “recalled� and Pontrya-
gin’s minimum principle is stated under assumption A1(a). No reference is mentioned at
all except for [20] which does not deal with that principle. In [32], on the other hand,
the paper starts making the “customary� assumptions C1(a) and C1(b) and Pontryagin’s
minimum principle is said to be taken from [7], [8] or [14]. However, the assumptions used
in those three references differ considerably from C1. Finally, in [19], where Pontryagin’s
maximum principle is quoted under normality assumptions, the “standing hypotheses�
are similar (but stronger) to those of [33] and [32].
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Apparently (from the list of references in [33] and [32]) the assumptions and the principle
are taken from [11] where first and second order conditions are obtained (for certain
Mayer optimal control problem) by using some techniques of [21]. However, in [21], first
order necessary conditions are derived (in one of several cases) replacing the last part of
assumption A1 with

For each compact subset Oc of O and each compact subset Vc of V , there exists an integrable

function α : T → R such that, for all (t, x, u) in T ×Oc × Vc,

|F (t, x, u)|+ |Fx(t, x, u)|+ |Fu(t, x, u)| ≤ α(t).

It is worth mentioning that (see [21, p. 283]), for the problem we are dealing with, if F
is continuous and continuously differentiable with respect to (x, u), then the function α
above may even be taken to be constant. This is certainly not the case with respect to
A1(a), B1(a) or C1(a). More importantly, when dealing with accessory problems, these
assumptions with respect to the integrand Ω may not hold in general, implying that the
first order conditions of [11], [32] or [33] may not be applied.

In the remaining of this paper we replace A1(a) (and in the obvious way also A2(b), B1(a)
and C1(a)) as above. With this change in the assumptions, as one can verify from the
proofs, Theorems 2.2, 2.3 and 2.4 (based on [11], [19], [21], [32] and [33]) still hold.

The first accessory problem

The approach to conjugacy given in [33] is strongly based on the so-called accessory

problem (with respect to H(W0(u))). Given (x, u, p, µ, γ) ∈ X ×Rk, this problem, which
we label (P̃0), corresponds to that of minimizing J((x, u); ·)/2 over Y (W0(u);x, u), that
is,

minimize K(y, v) := 1
2
〈y(t1),Λγy(t1)〉+

∫ t1

t0
Ω(t, y(t), v(t))dt subject to

(a) (y, v) ∈ X ×W0(u);

(b) �y(t) = A(t)y(t) +B(t)v(t) (t ∈ T );

(c) y(t0) = 0, h′(x(t1))y(t1) = 0.

Clearly, necessary conditions for this problem may not follow from Theorem 2.2. To begin
with, though no constraints of the form ϕi(v(t)) ≤ 0 and ϕj(v(t)) = 0 are present, as in
problem (P), a process (y, v) for (P̃0) is admissible only if v belongs to W0(u) = {v ∈ U |
v(t) ∈ T0(u(t)) (t ∈ T )}. Note that (P̃0) can be reformulated by setting

(a) (y, v) ∈ X × U ;

leaving (b) and (c) as above, and adding the constraint

(d) ψi(t, v(t)) = 0 (i ∈ I(u(t)) ∪Q, t ∈ T ), where ψi(t, v) = ϕ′

i(u(t))v.

For such (equivalent) problems, we could try to apply the results of [11] but, as men-
tioned above, the assumption A1(a) with respect to Ω may not hold. Under the modified
assumptions, let us now define the corresponding sets and functions for (P̃0) which yield
the first order necessary conditions obtained from [21].

• Given (x, u, p, µ) ∈ X , for all (t, y, v, q) ∈ T ×Rn ×Rm ×Rn let

H̃(t, y, v, q) := 〈q, A(t)y +B(t)v〉 − Ω(t, y, v).
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• Given (x, u, p, µ, γ) ∈ X ×Rk, let M̃0(y, v) be the set of all q ∈ X satisfying

(i) �q(t) + H̃∗

y (ỹ(t), q(t)) = 0 (t ∈ T );

(ii) 〈H̃∗

v (ỹ(t), q(t)), ζ〉 = 0 (ζ ∈ T0(u(t)), t ∈ T );

(iii) −[q(t1) + Λγy(t1)] ∈ N (x(t1)),

and define the set (depending on (x, u, p, µ, γ))

Ẽ0 := {(y, v, q) ∈ X × U ×X | (y, v) ∈ D(W0(u);x, u) and q ∈ M̃0(y, v)}.

Note that (y, v, q) ∈ X × U ×X belongs to Ẽ0 if and only if

(i) �y(t) = A(t)y(t) +B(t)v(t), v(t) ∈ T0(u(t)) (t ∈ T );

(ii) �q(t) + A∗(t)q(t) = −Hxx(t)y(t)−Hxu(t)v(t) (t ∈ T );

(iii) 〈B∗(t)q(t) +Hux(t)y(t) +Huu(t)v(t), ζ〉 = 0 (ζ ∈ T0(u(t)), t ∈ T );

(iv) q∗(t1) = −y∗(t1)Λγ − l∗h′(x(t1)) for some l ∈ Rk.

The following result gives first order conditions for a solution of the accessory problem.
It can be easily derived from the necessary conditions given in [21] by transforming the
problem into a Mayer one.

Lemma 3.1. Let (x, u, p, µ, γ) ∈ X × Rk and suppose A1 and A2 hold. If (y, v) solves

(P̃0) then there exists q ∈ X such that (y, v, q) ∈ Ẽ0.

As we did before, let us write explicitly this set of first order necessary conditions. The
result states that, if (y, v) is a solution to the accessory problem (P̃0) then there exists
q : T → Rn piecewise C1 such that

(i) ϕ′

i(u(t))v(t) = 0 for all i = 1, . . . , r with ϕi(u(t)) = 0 and i = r + 1, . . . , q (t ∈ T );

(ii) �y(t) = fx(t, x(t), u(t))y(t) + fu(t, x(t), u(t))v(t) (t ∈ T );

(iii) �q(t) + f ∗

x(t, x(t), u(t))q(t) = −Hxx(t)y(t)−Hxu(t)v(t) (t ∈ T );

(iv) 〈f ∗

u(t, x(t), u(t))q(t) +Hux(t)y(t) +Huu(t)v(t), ζ〉 = 0 (ζ ∈ T0(u(t)), t ∈ T );

(v) q∗(t1) = −y∗(t1)κ
′′

γ(x(t1))− l∗h′(x(t1)) for some l ∈ Rk.

It should be mentioned that an application of the maximum principle yields the inequality

〈f ∗

u(t, x(t), u(t))q(t) +Hux(t)y(t) +Huu(t)v(t), ζ − v(t)〉 ≤ 0 for all ζ ∈ T0(u(t)), t ∈ T

but the equality in (iv) follows since T0(u(t)) is a subspace.

The second accessory problem

Let us turn now to the approach to conjugacy given in [32], based not on the acces-
sory problem with respect to H(W0(u)) but H(W1(u)). Given (x, u, p, µ, γ) ∈ X × Rk,
this problem, which we label (P̃1), corresponds to that of minimizing J((x, u); ·)/2 over
Y (W1(u);x, u), that is,

Minimize K(y, v) := 1
2
〈y(t1),Λγy(t1)〉+

∫ t1

t0
Ω(t, y(t), v(t))dt subject to

(a) (y, v) ∈ X ×W1(u);

(b) �y(t) = A(t)y(t) +B(t)v(t) (t ∈ T );

(c) y(t0) = 0, h′(x(t1))y(t1) = 0.
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• Given (x, u, p, µ, γ) ∈ X ×Rk, let M̃1(y, v) be the set of all q ∈ X satisfying

(i) �q(t) + H̃∗

y (ỹ(t), q(t)) = 0 (t ∈ T );

(ii) 〈H̃∗

v (ỹ(t), q(t)), w(t)〉 ≤ 0 (w ∈ W1(u), t ∈ T );

(iii) 〈H̃∗

v (ỹ(t), q(t)), v(t)〉 = 0 for all t ∈ T ;

(iv) −[q(t1) + Λγy(t1)] ∈ N (x(t1)),

and define the set (depending on (x, u, p, µ, γ))

Ẽ1 := {(y, v, q) ∈ X × U ×X | (y, v) ∈ D(W1(u);x, u) and q ∈ M̃1(y, v)}.

As before, note that (y, v, q) ∈ X × U ×X belongs to Ẽ1 if and only if

(i) �y(t) = A(t)y(t) +B(t)v(t), v ∈ W1(u) (t ∈ T );

(ii) �q(t) + A∗(t)q(t) = −Hxx(t)y(t)−Hxu(t)v(t) (t ∈ T );

(iii) 〈B∗(t)q(t) +Hux(t)y(t) +Huu(t)v(t), w(t)〉 ≤ 0 (w ∈ W1(u), t ∈ T );

(iv) 〈B∗(t)q(t) +Hux(t)y(t) +Huu(t)v(t), v(t)〉 = 0 (t ∈ T );

(v) q∗(t1) = −y∗(t1)Λγ − l∗h′(x(t1)) for some l ∈ Rk.

From [21], by transforming the problem into a Mayer one and using the special structure
of T1(u(t)), we obtain the following result. The “unfolding� of this lemma is analogous to
that of Lemma 3.1.

Lemma 3.2. Let (x, u, p, µ, γ) ∈ X × Rk and suppose C1 and C2 hold. If (y, v) solves

(P̃1) then there exists q ∈ X such that (y, v, q) ∈ Ẽ1.

Notation

In the following sections we shall make use of several sets and functions satisfying certain
properties in subintervals of T = [t0, t1]. To simplify their constant reference, we shall
find convenient to introduce the following notation.

• For any s ∈ [t0, t1) let Ts := [s, t1], Xs := X(Ts,R
n), Us := U(Ts,R

m), and set
Zs := Xs × Us.

• Given (x, u, p, µ, γ) ∈ X ×Rk, let Ẽi(s) denote the set of all (y, v, q) ∈ Zs×Xs satisfying
the same properties as Ẽi (i = 0, 1) but replacing the interval T with Ts. For any s < t0
we set Ẽ0(s) := Ẽ0.

• Given S ⊂ T and ∅ 6= V ⊂ U , define V(S) as the set of all v ∈ U(S,Rm) such that, for
some v0 ∈ V, v̄ ∈ V where v̄(t) = v(t) for t ∈ S and v̄(t) = v0(t) otherwise. For simplicity
we set Vs := V(Ts). Given (x, u) ∈ Z, let as before A(t) := fx(x̃(t)), B(t) := fu(x̃(t))
(t ∈ T ) and define

Ds(V ;x, u) := {(y, v) ∈ Xs × Vs | �y(t) = A(t)y(t) +B(t)v(t) (t ∈ Ts)},

Ys(V ;x, u) := {(y, v) ∈ Ds(V ;x, u) | y(s) = 0, h′(x(t1))y(t1) = 0}.

• Whenever we are given (x, u, p, µ) ∈ Z×X ×U(T,Rq) and (y, v) ∈ Ys(V ;x, u), we shall
consider the functions σ : Ts → Rn and ρ : Ts → Rm defined by

σ(t) := −Hxx(t)y(t)−Hxu(t)v(t), ρ(t) := −Hux(t)y(t)−Huu(t)v(t)

where H(t) denotes H(x̃(t), p(t), µ(t)).
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• Given s ∈ [t0, t1) and (x, u, p, µ, γ) ∈ X ×Rk, define the bilinear form Fs : Zs×Zs → R

by

Fs((z, w), (y, v)) := 〈z(t1),Λγy(t1)〉+

∫ t1

s

{〈z(t), σ(t)〉+ 〈w(t), ρ(t)〉}dt.

4. Zeidan & Zezza

This section is devoted to an explanation and improvement in several directions of the
approach to conjugacy given in [33]. This approach is, in some sense, a “natural� gener-
alization of that concept in the context of calculus of variations, where a point s ∈ [t0, t1)
is conjugate to t1 if there exists a nontrivial secondary extremal (that is, an extremal for
the accessory problem) vanishing at s and t1.

We assume throughout this section that A1(a), A1(b) and A2 (modified) hold. The
assumption A1(c) which, in the terminology of [33], means that (x, u) is (strongly) normal
on T , will play a fundamental role in the theory to follow and we shall find convenient to
write it explicitly every time it is assumed. Let us remove in the definition the interval T
and the adjective “strong� but add explicitly its dependence on T0 (to distinguish it from
the notion given in Section 6) and say that (x, u) is T0-normal if A1(c) holds.

Let us begin with the definition of conjugacy given in [33]. There, the elements of
G0(x, u, p, µ, γ) below, assuming that (x, u, p, µ) ∈ E , γ ∈ K(x(t1), p(t1)) and (x, u) is
T0-normal, are called points conjugate to t1.

Definition 4.1. For any (x, u, p, µ, γ) ∈ X ×Rk let G0(x, u, p, µ, γ) be the set of points
s ∈ [t0, t1) for which there exists (y, v, q) ∈ Ẽ0 with y(s) = 0, h′(x(t1))y(t1) = 0 and
(y, v, q) 6≡ (0, 0, 0).

As it is well-known, the necessary condition of Jacobi for optimality in the classical cal-
culus of variations (in terms of the final point, “there are no conjugate points to t1 in
the open interval (t0, t1)�) holds if the trajectory under consideration satisfies Legendre’s
strengthened condition (and therefore, in the terminology of Hestenes [14], it is nonsin-
gular). This condition can be generalized by defining

L′ := {(x, u, p, µ) ∈ X | G∗(t)Huu(x̃(t), p(t), µ(t))G(t) < 0 for all t ∈ T}

where G is piecewise continuous on T and G(t) is a matrix whose columns form an
orthonormal basis for T0(u(t)) (t ∈ T ). However, as trivial examples show (see [35]),
even if (x, u, p, µ) belongs to L′ and (x, u) is T0-normal, the emptiness of G0 ∩ (t0, t1) may
not be necessary for optimality. The approach given in [33] requires also the notion of
T0-normality on subintervals of T .

Definition 4.2. For any [a, b] ⊂ T we say that (x, u) ∈ Z is T0-normal on [a, b] if the
system

(a) �p(t) + A∗(t)p(t) = 0 (t ∈ [a, b]);

(b) 〈B∗(t)p(t), ζ〉 = 0 (ζ ∈ T0(u(t)), t ∈ [a, b]);

(c) −p(t1) ∈ N (x(t1)) (in case b = t1)

has no nonnull solution p on [a, b]. The set of all (x, u) ∈ Z which are T0-normal on [a, b]
will be denoted by N [a, b].
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The necessary condition for optimality given in [33, Theorem 6.1] in terms of the set G0

of points conjugate to t1 corresponds to the following result.

Theorem 4.3. Suppose (x, u) solves (P) with (x, u) ∈ N [a, t1] ∩ N [t0, b] for all (a, b) ∈
[t0, t1) × (t0, t1). If (x, u, p, µ) ∈ E ∩ L′ and γ ∈ K(x(t1), p(t1)), then G0(x, u, p, µ, γ) ∩
(t0, t1) = ∅.

To understand what lies behind this condition, let us first characterize Ẽ0, for the non-
singular case, in terms of a linear system. The following result is obtained by a direct
substitution.

Proposition 4.4. Let (x, u, p, µ, γ) ∈ L′×Rk and (y, q) ∈ X×X with −[q(t1)+Λγy(t1)] ∈
N (x(t1)). Then the following are equivalent:

(a) There exists v ∈ U such that (y, v, q) ∈ Ẽ0.

(b) (y, q) satisfies the linear system

�y(t) = a(t)y(t) + b(t)q(t), �q(t) = c(t)y(t)− a∗(t)q(t) (t ∈ T )

which we label (J), where

a(t) = A(t)−B(t)Ψ(t)Hux(t)

b(t) = −B(t)Ψ(t)B∗(t)

c(t) = Hxu(t)Ψ(t)Hux(t)−Hxx(t),

Ψ(t) = G(t)[G∗(t)Huu(t)G(t)]
−1G∗(t) (t ∈ T ), and H(t) denotes H(x̃(t), p(t), µ(t)).

Let us now prove an auxiliary result which gives sufficient conditions, in terms of one or
two-sided normality conditions, for the vanishing of processes (y, v) on different subinter-
vals of T where, for some q ∈ X, (y, v, q) belongs to Ẽ0.

Lemma 4.5. Suppose s ∈ (t0, t1) and (x, u, p, µ, γ) and (y, v, q) are such that

(i) (x, u, p, µ) ∈ L′, (x, u, p, µ, γ) ∈ H(W0(u)), and (x, u) is T0-normal.

(ii) (y, v, q) ∈ Ẽ0 with y(s) = 0 and h′(x(t1))y(t1) = 0.

Then the following holds:

(a) If (x, u) ∈ N [t0, s] then (y(t), v(t)) = (0, 0) for all t ∈ [s, t1].

(b) If (x, u) ∈ N [s, t1] then (y(t), v(t)) = (0, 0) for all t ∈ [t0, s].

(c) If (x, u) ∈ N [t0, s] ∩N [s, t1], then (y, v, q) ≡ (0, 0, 0) on T .

Proof. Let (z(t), w(t)) := (0, 0) if t ∈ [t0, s] and (z(t), w(t)) := (y(t), v(t)) if t ∈ [s, t1].
We have

J((x, u); (z, w)) = 〈y(t1),Λγy(t1)〉+

∫ t1

s

2Ω(t, y(t), v(t))dt = 0

and so (z, w) solves (P̃0). By Lemma 3.1, there exists r ∈ X such that (z, w, r) ∈ Ẽ0. In
particular, this implies that

�r(t) + A∗(t)r(t) = 0, 〈B∗(t)r(t), ζ〉 = 0 (ζ ∈ T0(u(t)), t ∈ [t0, s]) (1)

[ �q(t)− �r(t)]+A∗(t)[q(t)−r(t)] = 0, 〈B∗(t)[q(t)−r(t)], ζ〉 = 0 (ζ ∈ T0(u(t)), t ∈ [s, t1]).
(2)
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(a): Suppose (x, u) ∈ N [t0, s]. By (1), r(t) = 0 for all t ∈ [t0, s]. Hence (z, r) satisfies (J)
with, in particular, (z(t0), r(t0)) = (0, 0), and so (z, r) ≡ (0, 0) on T . Thus y(t) = 0 for
all t ∈ [s, t1]. Now, let v1(t) be such that v(t) = G(t)v1(t) (t ∈ T ), so that

v1(t) = −[G∗(t)Huu(t)G(t)]
−1G∗(t)B∗(t)q(t).

We have 0 = B(t)v(t) (t ∈ [s, t1]) and, therefore,

0 = 〈v1(t), G
∗(t)B∗(t)q(t)〉 = 〈v1(t), [G

∗(t)Huu(t)G(t)]v1(t)〉 (t ∈ [s, t1]).

Since (x, u, p, µ) ∈ L′ it follows that v1(t) = 0 on [s, t1]. Hence also v(t) = 0 on [s, t1].

(b): Suppose (x, u) ∈ N [s, t1]. By (2), q(t) = r(t) for all t ∈ [s, t1], and so we have two
solutions (y, q) and (z, r) of (J) satisfying, in particular, (y(t1), q(t1)) = (z(t1), r(t1)). This
implies that (y, q) ≡ (z, r) on T , and so y(t) = 0 for all t ∈ [t0, s]. Proceeding as above
replacing [s, t1] with [t0, s], we conclude that v(t) = 0 on [t0, s].

(c): Suppose (x, u) ∈ N [t0, s] ∩ N [s, t1]. By (a) and (b), (y, v) ≡ (0, 0) on T , and the
T0-normality of (x, u) on T implies that also q ≡ 0.

Note that Theorem 4.3 follows straightforwardly from Lemma 4.5(c). Now, Theorem 2.2
(including a second order necessary condition in terms ofW0(u)), Lemma 3.1 (a first order
necessary condition for the accessory problem (P̃0)), Definition 4.1 (the set of “generalized
conjugate points�) and Theorem 4.3 (a necessary condition in terms of the nonexistence
of generalized conjugate points in the open time interval) correspond to the main elements
in the theory of conjugacy introduced in [33]. This theory is successful in several aspects
but, as we shall show next, it can be improved in various directions. In the remaining of
this section we shall concentrate on the approach itself to conjugacy (Definition 4.1 and
Theorem 4.3) leaving unchanged the other aspects of the theory.

To begin with let us mention that, according to Remark 6.3 of [33], “a one-sided strong
normality in the theorem is not enough for the result to hold true. In other words, the
strong normality assumption on either side is indispensable and cannot be weakened.� The
reason, as explained in the introduction of [19], is simply that their definition of conjugate
points forces them to impose this condition. This clearly follows from Lemma 4.5. Note
that, in the definition given in [33], the corresponding (y, v, q) ∈ Ẽ0 with y(s) = 0 and
h′(x(t1))y(t1) = 0 should satisfy (y, v, q) 6≡ (0, 0, 0) on T . But, by 4.5(a), we can impose
y 6≡ 0 on [s, t1], and the nonexistence of such points in the open interval will follow, as
in Theorem 4.3, if (x, u) ∈ N [t0, b] for all b ∈ (t0, t1]. The same occurs, by 4.5(b), if one
imposes the condition y 6≡ 0 on [t0, s] and (x, u) ∈ N [a, t1] for all a ∈ [t0, t1). These facts
are formalized in the next result.

Definition 4.6. For any (x, u, p, µ, γ) ∈ X ×Rk let C0(x, u, p, µ, γ) be the set of points
s ∈ [t0, t1) for which there exists (y, v, q) ∈ Ẽ0 with y(s) = 0, h′(x(t1))y(t1) = 0 and y 6≡ 0
on [t0, s]. Let C1 be as C0 but replacing the interval [t0, s] with [s, t1].

Clearly, under the assumptions of Theorem 4.3, G0 ⊂ C0 ∪C1 (all depending on (x, u, p, µ,
γ)). Hence, this theorem is a corollary of the following result.

Theorem 4.7. Suppose (x, u) solves (P), (x, u, p, µ) ∈ E ∩ L′ and γ ∈ K(x(t1), p(t1)).
Then
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(a) (x, u) ∈ N [a, t1] for all a ∈ [t0, t1) ⇒ C0(x, u, p, µ, γ) ∩ (t0, t1) = ∅.

(b) (x, u) ∈ N [t0, b] for all b ∈ (t0, t1] ⇒ C1(x, u, p, µ, γ) ∩ (t0, t1) = ∅.

The sets of points C0 and C1 improve the set G0 of conjugate points provided in [33]
because there are problems for which the assumptions of Theorem 4.7(a) or 4.7(b) hold
but not both. For such problems, the results of [33] give no information while Theorem
4.7 may be useful to detect nonoptimality. The following simple example illustrates this
fact.

Example 4.8. Consider the problem of minimizing

I(x, u) =
1

2

∫ π

−π

{u2(t)− x2(t)}dt

subject to �x(t) = λ(t)u(t) (t ∈ [−π, π]) and x(−π) = x(π) = 0, where λ(t) = 0 if
t ∈ [−π,−1] and λ(t) = 1 if t ∈ [−1, π].

Here, T = [−π, π], ξ0 = 0, h(x) = x, L(t, x, u) = (u2 − x2)/2 and f(t, x, u) = λ(t)u.

Let (x, u) ∈ Z. Note first that (x, u) is T0-normal on [a, b] if the equations �p(t) = 0,
λ(t)p(t) = 0 have no nonnull solution p on [a, b]. Thus (x, u) ∈ N [a, π] for all a ∈
[−π, π). Also, Huu ≡ −1 and so, given any (x, u, p, µ) ∈ E and γ ∈ K(x(t1), p(t1)), we
have (x, u, p, µ) ∈ L′ and the assumptions of Theorem 4.7(a) hold. On the other hand,
(x, u) 6∈ N [−π, b] if b ∈ (−π,−1] and, therefore, we cannot apply Theorem 4.7(b) (nor, in
consequence, Theorem 4.3, the main result of [33]). Now, as one readily verifies, Ẽ0 is given
by those (y, v, q) ∈ X × U × X satisfying �y(t) = λ(t)v(t), �q(t) = −y(t), λ(t)q(t) = v(t)
(t ∈ T ). Setting

(y(t), v(t), q(t)) :=

{

(a, 0, b− a(t+ 1)) if t ∈ [−π,−1]

(sin t, cos t, cos t) if t ∈ [−1, π]

where a = sin(−1) and b = cos(−1), we have (y, v, q) ∈ Ẽ0, y(0) = y(π) = 0 and y 6≡ 0
on [−π, 0]. Hence s = 0 belongs to C0(x, u, p, µ, γ) ∩ (−π, π) and, by Theorem 4.7(a), the
problem has no solution.

Before proceeding, let us make a few comments on subsequent papers of Zeidan and Zezza.

• In [34], the optimal control problem considered is slightly different to that of [33]. The
problem is as before, except that X corresponds to the space of absolutely continuous
functions mapping T to O, U is the space of measurable functions mapping T to V , and
A = T × O × U with U ⊂ V convex. Second order conditions, according to [34], are
derived from [11] or [30] upon writing the problem in Mayer form, and the approach to
conjugacy is similar to that of [33]. As with G0, an example is given “which illustrates the
indispensability of the normality assumption on either side.� The remark we made just
before Definition 4.6 also applies to this case.

• In [36], they consider the problem of [34] with a general boundary condition and U
open. Second order conditions are again, according to [36], derived from [11] or [30]. In
this paper, they make one of the modifications of G0 explained above. Their definition of
“points coupled with t1� is based explicitly on the linear system (J), the modification of
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their previous definition of conjugacy corresponds to C0, and their main result (applied
to our problem) is precisely Theorem 4.7(a).

• The problem considered in [31] is that of [34] with U = L∞(T,Rm), O = Rn, V = Rm,
and

A = {(t, x, u) ∈ T ×Rn ×Rm | ϕi(t, x(t), u(t)) ≤ 0 (i ∈ {1, . . . , q}, t ∈ T )}.

Second order conditions are quoted from [21], and conjugacy is defined as in Definition
4.6 in terms of C0. There, a point belonging to G0 is called “classically conjugate to t1.�
Again, the main theorem (applied to our problem) corresponds to Theorem 4.7(a).

Now, as one easily deduces from the proof of Lemma 4.5, the properties required for an
element (y, v, q) ∈ Ẽ0 have actually only a local character. In particular, there is no need
to have these functions defined on the whole interval T , and the properties of normality,
nonsingularity, and the nonvanishing of y may be imposed only on certain subintervals of
T . With this in mind we introduce the following definition.

Definition 4.9. Given (x, u, p, µ, γ) ∈ X ×Rk let P(x, u, p, µ, γ) be the set of points s ∈
[t0, t1) for which there exists ǫ > 0 such that G∗(t)Huu(t)G(t) < 0 for all t ∈ [s−ǫ, s+ǫ]∩T ,
and either (a) or (b) holds:

(a) (x, u) ∈ N([s, s + ǫ] ∩ T ) and there exists (y, v, q) ∈ Ẽ0(s − ǫ) with y(s) = 0,
h′(x(t1))y(t1) = 0 and y 6≡ 0 on [s− ǫ, s] ∩ T .

(b) (x, u) ∈ N([s−ǫ, s]∩T ) and there exists (y, v, q) ∈ Ẽ0(s) with y(s) = 0, h′(x(t1))y(t1)
= 0 and y 6≡ 0 on [s, s+ ǫ] ∩ T .

Note that, under the assumptions of Theorem 4.7(a), C0 ⊂ P and, under the assumptions
of Theorem 4.7(b), C1 ⊂ P. Given s ∈ C0 ∪ C1, the result follows simply by choosing
ǫ = max{s− t0, t1 − s}.

Theorem 4.10. If (x, u, p, µ, γ) ∈ H(W0(u)) and (x, u) is T0-normal, then P(x, u, p, µ, γ)
∩(t0, t1) = ∅.

Proof. We proceed basically as in Lemma 4.5. Suppose there exists s ∈ P(x, u, p, µ, γ)∩
(t0, t1). Let ǫ > 0 be as in 4.9 and suppose that 4.9(a) holds. Since s ∈ (t0, t1) we can
assume, without loss of generality, that ǫ < min{s − t0, t1 − s}. Let (y, v, q) ∈ Ẽ0(s − ǫ)
with y(s) = 0, h′(x(t1))y(t1) = 0 and y 6≡ 0 on [s − ǫ, s]. Let (z(t), w(t)) := (0, 0) if
t ∈ [t0, s] and (z(t), w(t)) := (y(t), v(t)) if t ∈ [s, t1]. Since (z, w) solves (P̃0), by Lemma
3.1 there exists r ∈ X such that (z, w, r) ∈ Ẽ0. In particular, this implies that

[ �q(t)− �r(t)]+A∗(t)[q(t)−r(t)] = 0, 〈B∗(t)[q(t)−r(t)], ζ〉 = 0 (ζ ∈ T0(u(t)), t ∈ [s, t1]).

Since (x, u) ∈ N [s, s+ǫ], q(t) = r(t) for all t ∈ [s, s+ǫ] and so we have two solutions (y, q)
and (z, r) of (J) on [s− ǫ, s + ǫ] satisfying (y(t), q(t)) = (z(t), r(t)) for any t ∈ (s, s + ǫ).
This implies that (y, q) ≡ (z, r) on [s − ǫ, s + ǫ], and so y(t) = 0 for all t ∈ [s − ǫ, s],
contradicting (a).

Similarly, if 4.9(b) holds and (y, v, q) ∈ Ẽ0(s) is such that y(s) = 0, h′(x(t1))y(t1) = 0 and
y 6≡ 0 on [s, s + ǫ], there exists r ∈ X such that (z, w, r) ∈ Ẽ0 where (z, w) is defined as
above. Thus

�r(t) + A∗(t)r(t) = 0, 〈B∗(t)r(t), ζ〉 = 0 (ζ ∈ T0(u(t)), t ∈ [t0, s]).
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Since (x, u) ∈ N [s−ǫ, s], r(t) = 0 for all t ∈ [s−ǫ, s]. Hence (z, r) satisfies (J) on [s−ǫ, s+ǫ]
with, in particular, (z(t), r(t)) = (0, 0) for any t ∈ (s − ǫ, s), and so (z, r) ≡ (0, 0) on
[s− ǫ, s+ ǫ]. Thus y(t) = 0 for all t ∈ [s, s+ ǫ], contradicting (b).

In Example 4.8 we provided a simple problem for which the nonemptiness of C0 implies
nonoptimality, but the sets C1 and G0 cannot be applied. A slight modification of this
example shows some of the difficulties that may occur in trying to use the set C0. They
are, however, trivially solved by using P.

Example 4.11. Consider the problem of Example 4.8 except for λ given now by

λ(t) =











0 if t ∈ [−π,−1]

ψ(t) if t ∈ [−1, 0]

1 if t ∈ [0, π]

and ψ : [−1, 0] → R is any positive, continuous function.

Given (x, u) ∈ Z, the same arguments used before imply that the assumptions of Theorem
4.7(a) hold but not those of Theorem 4.7(b) or Theorem 4.3. As before, Ẽ0 is given by
those (y, v, q) ∈ X×U×X satisfying �y(t) = λ(t)v(t), �q(t) = −y(t), λ(t)q(t) = v(t) (t ∈ T ).
If we try to apply Theorem 4.7(a), we need to find s ∈ (−π, π) and (y, v, q) ∈ Ẽ0 with
y(s) = y(π) = 0 and y 6≡ 0 on [−π, s]. Note that, in particular, we require (y, q) ∈ X ×X
to satisfy

�q(t) = −y(t) (t ∈ [−π, π]) and �y(t) =











0 if t ∈ [−π,−1]

ψ2(t)q(t) if t ∈ [−1, 0]

q(t) if t ∈ [0, π].

Thus we face the problem of finding (y, q) ∈ X × X satisfying this differential equa-
tion in the entire interval [−π, π] with ψ an arbitrary positive, continuous function.
That this is no longer required follows by an application of Theorem 4.10. Indeed, let
(y(t), v(t), q(t)) := (sin t, cos t, cos t) for all t ∈ [0, π]. Clearly (y, v, q) ∈ Ẽ0(s) for s = 0.
Let 0 < ǫ ≤ π. Since (x, u) ∈ N [−ǫ, 0], y 6≡ 0 on [0, ǫ] and Huu(x̃(t), p(t), 1) = −1 for all
t ∈ [−ǫ, ǫ], the point s = 0 satisfies the conditions of 4.9(b) and so 0 ∈ P(x, u, p, µ, γ). By
Theorem 4.10, the problem has no solution.

The set P certainly may give more information than the sets of points previously defined.
This is obviously the case when the nonsingularity assumption of Theorems 4.3 or 4.7
fails and, as the previous example illustrates, this may occur even in the nonsingular case.
However, as the following trivial example shows, one may face problems for which the
theory related to P cannot be applied.

Example 4.12. Consider the problem of minimizing

I(x, u) =
1

2

∫ π

−π

λ(t){u2(t)− x2(t)}dt

subject to �x(t) = u(t) (t ∈ [−π, π]) and x(−π) = x(π) = 0, where λ(t) = 0 (t ∈ [−π, 0)),
λ(t) = 1 (t ∈ [0, π]).
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Clearly we cannot apply Theorems 4.3 or 4.7 since Huu(t) = −λ(t) (t ∈ [−π, π]) and
so L′ = ∅ (that is, any (x, u, p, µ) is singular). Now, if (y, v, q) belongs to Ẽ0(s) then
q(t) = λ(t) �y(t) and �q(t) = −λ(t)y(t) on [s, π]. Thus, if s ∈ P(x, u, p, µ, γ), the condition
y(π) = 0 implies that, for some α ∈ R, (y(t), q(t)) = (α sin t, α cos t) (t ∈ [0, π]), and the
condition y(s) = 0 implies that s ≤ 0. However, there is no ǫ > 0 for which Huu(t) < 0
for all t ∈ [s− ǫ, s+ ǫ].

Let us introduce now a set of points which may be used in situations like the above. For
this set, its emptiness in the open time interval is necessary for normal minimizers without
even one-sided normality assumptions.

Definition 4.13. Given (x, u, p, µ, γ) ∈ X × Rk let Q(x, u, p, µ, γ) be the set of points
s ∈ [t0, t1) for which there exists (y, v, q) ∈ Ẽ0(s) with y(s) = 0, h′(x(t1))y(t1) = 0,
〈Huu(s+)v(s), ζ〉 6= 0 for some ζ ∈ T0(u(s)), and B is continuous at s.

Theorem 4.14. If (x, u, p, µ, γ) ∈ H(W0(u)) and (x, u) is T0-normal, then Q(x, u, p, µ, γ)
∩(t0, t1) = ∅.

Proof. Suppose there exists s ∈ Q(x, u, p, µ, γ) ∩ (t0, t1). Let (y, v, q) ∈ Ẽ0(s) and ζ ∈
T0(u(s)) be as in 4.13. Define (z(t), w(t)) := (0, 0) if t ∈ [t0, s] and (z(t), w(t)) :=
(y(t), v(t)) if t ∈ (s, t1]. Since (z, w) solves (P̃0), by Lemma 3.1 there exists r ∈ X
such that (z, w, r) ∈ Ẽ0. In particular, this implies that

〈B∗(t)r(t) +Hux(t)z(t) +Huu(t)w(t), η〉 = 0 (η ∈ T0(u(t)), t ∈ T ).

Therefore 〈B∗(s−)r(s−), ζ〉 = 0 and 〈B∗(s+)r(s+) + Huu(s+)v(s), ζ〉 = 0. Since t 7→
B∗(t)r(t) is continuous at s, we have 〈Huu(s+)v(s), ζ〉 = 0 and we reach a contradiction.

Returning to Example 4.12, set (y(t), v(t), q(t)) := (sin t, cos t, cos t) (t ∈ [0, π]). Then
(y, v, q) ∈ Ẽ0(s) for s = 0, Huu(0+)v(0) = −λ(0) 6= 0 and B ≡ 1 is continuous at s = 0.
Therefore 0 ∈ Q(x, u, p, µ, γ) and, by Theorem 4.14, this problem has no solution.

The sets P and Q were first introduced in [27] for the case when only equality constraints
are present. For completeness and clarity of exposition we have included the proofs of the
necessary conditions they provide.

Let us now give a brief summary of the underlying ideas in their definitions. Suppose
that (x, u, p, µ, γ) belongs to H(W0(u)), (x, u) is T0-normal, and there exists a nontrivial
“secondary extremal� (y, v, q) (satisfying the conditions of Ẽ0 in [s, t1]) with y(s) = 0 and
h′(x(t1))y(t1) = 0. Then, by extending (y, v) to zero outside [s, t1], one obtains a solution
(z, w) of the accessory problem (P̃0), and an application of the maximum principle yields
the existence of a piecewise C1 function r such that (z, w, r) ∈ Ẽ0. The definition of P
relies on the uniqueness of solutions of the linear system (J) which is satisfied (at least
locally) by (z, w, r). The set Q depends basically on the continuity of r.

We end this section by making use of the bilinear form introduced in Section 3. The
set of points we now propose can enlarge and even simplify the applicability of the sets
defined so far. It is based on the following simple observation. Let (x, u, p, µ, γ) ∈ X ×Rk,
suppose (x, u) is T0-normal and, for some s ∈ [t0, t1) and (y, v) ∈ Ys(W0(u);x, u), we have
Fs((y, v), (y, v)) = 0. Then, if there does not exist q ∈ Xs such that (y, v, q) ∈ Ẽ0(s),
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Lemma 3.1 implies that (x, u, p, µ, γ) 6∈ H(W0(u)). Thus, for certain problems, it suffices
to find (y, v) as above to conclude nonoptimality of the process under consideration. This
idea can incorporate the sets P and Q as follows.

Definition 4.15. For any (x, u, p, µ, γ) ∈ X ×Rk let S0(x, u, p, µ, γ) be the set of points
s ∈ [t0, t1) for which there exists (y, v) ∈ Ys(W0(u);x, u) such that

(i) Fs((y, v), (y, v)) ≤ 0.

(ii) If there exists q ∈ Xs such that (y, v, q) ∈ Ẽ0(s), then s > t0 and s ∈ P(x, u, p, µ, γ)∪
Q(x, u, p, µ, γ).

Theorem 4.16. If (x, u, p, µ, γ) ∈ X ×Rk and (x, u) is T0-normal, then (x, u, p, µ, γ) ∈
H(W0(u)) ⇔ S0(x, u, p, µ, γ) = ∅.

Proof. “⇒�: Suppose there exists s ∈ S0(x, u, p, µ, γ). Let (y, v) ∈ Ys(W0(u);x, u) be as
in 4.15 and define (ζ(t), η(t)) := (0, 0) if t ∈ [t0, s], (ζ(t), η(t)) := (y(t), v(t)) if t ∈ [s, t1].
Note that, by 4.15(i),

J((x, u); (ζ, η)) = Fs((y, v), (y, v)) ≤ 0.

Strict inequality contradicts the assumption (x, u, p, µ, γ) ∈ H(W0(u)) and, therefore,
(ζ, η) solves (P̃0). By Lemma 3.1, there exists q1 ∈ X such that (ζ, η, q1) ∈ Ẽ0. Let
q be the restriction of q1 to [s, t1], so that (y, v, q) ∈ Ẽ0(s). By 4.15(ii), s > t0 and
s ∈ P(x, u, p, µ, γ) ∪Q(x, u, p, µ, γ). This contradicts Theorems 4.10 or 4.14.

“⇐�: Suppose (x, u, p, µ, γ) 6∈ H(W0(u)). Let (y, v) ∈ Y (W0(u);x, u) be such that
J((x, u); (y, v)) < 0. Clearly, 4.15(ii) does not apply since, otherwise, J((x, u); (y, v)),
which coincides with Ft0((y, v), (y, v)), would vanish. Thus t0 ∈ S0(x, u, p, µ, γ).

Remark 4.17. The second order condition on which the theory of this section has been
based is expressed in terms of the set W0(u) defined in Section 2. Theorem 2.2 gives
conditions under which, if (x, u) solves (P), then (x, u, p, µ, γ) ∈ H(W0(u)) for certain
(p, µ, γ). Combining this result with Theorem 4.16, we obtain a necessary condition for
optimality in terms of the set S0(x, u, p, µ, γ). Let us just point out that this theory could
be modified in terms of the second order conditions given in Theorems 2.3 and 2.4, and
we would then deal with either admissible direction sets or W1(u).

5. Loewen & Zheng

Throughout [19] the authors compare their results with those of [33] (and occasionally
with [34]). In particular, they state that “Some examples will show how our generalized
conjugate point gives much more information than that of [33],� and “Our generalized
conjugate point is sharper and more general than that of [34].� Basically, there are
two main differences between the theories developed in those papers: the second order
conditions obtained (as explained in Section 2, the convex cone on which those of [33]
are based is, for certain cases, enlarged in [19]) and the approaches to conjugacy. In
this section we shall concentrate on this second aspect, assuming that B1(a) (modified),
B1(b) and B2(b) hold. No reference to B1(c) or B2(a) (that is, in the terminology of [19],
normality or regularity respectively) will be made since, in the approach to conjugacy
given here, there is no use at all of accessory problems, and those assumptions play a role
only in the derivation of the second order condition.
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From the previous section one concludes, as mentioned in [19], that “when the strength-
ened Legendre condition and the strong normality conditions of [33] fail to hold, the
results of [33] and [34] give little information.� Clearly, one of the contributions of the
approach we introduced above, in terms of the set S0, is that those assumptions can be
weakened and, in some cases, even removed. This is also the case with respect to the set
of conjugate points defined in [19], whose nonemptiness implies the existence of a negative
second variation along certain admissible variation. This set is defined as follows (recall
the notation given at the end of Section 3).

Definition 5.1. Let V ⊂ U . For any (x, u, p, µ, γ) ∈ X ×Rk let G1(V ;x, u, p, µ, γ) be the
set of points s ∈ [t0, t1) for which there exist (y, v) ∈ Ys(V ;x, u) and q ∈ Xs such that, if
λ(t) := B∗(t)q(t)− ρ(t) (t ∈ Ts), then

(i) �q(t) + A∗(t)q(t) = σ(t) (t ∈ Ts).

(ii) q(s) 6= 0, −[q(t1) + Λγy(t1)] ∈ N (x(t1)).

(iii) 〈v(t), λ(t)〉 ≥ 0 (t ∈ Ts).

and either (a) or (b) holds:

(a) 〈v(t), λ(t)〉 > 0 on a set of positive measure.

(b) There exists (z, w) ∈ Y (V ;x, u) such that 〈z(s), q(s)〉 > 0 and 〈w(t), λ(t)〉 ≥ 0
(t ∈ Ts).

The main result in [19, Theorem 4.3] relating this set to the second order condition
“(x, u, p, µ, γ) ∈ H(V)� is the following.

Theorem 5.2. If V is an admissible direction set and (x, u, p, µ, γ) ∈ H(V), then G1(V ;x,
u, p, µ, γ) ∩ (t0, t1) = ∅.

Let us briefly explain the main difference between G1 and any of the sets of conjugate
points previously defined. Let us consider first the case V = W0(u). In this event, observe
that it is required the existence of (y, v, q) in Zs×Xs with y(s) = 0 and h′(x(t1))y(t1) = 0,
satisfying the same conditions defining membership of Ẽ0(s) except for 〈λ(t), ζ〉 = 0
(ζ ∈ T0(u(t)), t ∈ Ts). Instead, it is required that 〈λ(t), v(t)〉 ≥ 0 (t ∈ Ts). Of course,
if the first relation holds, in which case (y, v, q) is a secondary extremal with respect
to (P̃0), then the second is satisfied, but the converse may not occur. In this sense
this approach is more general than the previous ones. Now, if (ζ(t), η(t)) := (0, 0) if
t ∈ [t0, s] and (ζ(t), η(t)) := (y(t), v(t)) if t ∈ [s, t1], then J((x, u); (ζ, η)) ≤ 0. If 5.1(a)
holds then (x, u, p, µ, γ) 6∈ H(W0(u)). Otherwise, 5.1(b) holds and, setting (yα, vα) :=
(z+αζ, w+αη) it follows that, for some appropriate α, J((x, u); (yα, vα)) < 0 and so, once
again, (x, u, p, µ, γ) 6∈ H(W0(u)). The generality of this approach is also a consequence of
the fact that, ifW0(u) is a proper subset of V , Definition 5.1 includes admissible variations
which are not considered in any of the previous definitions of conjugacy.

Though this approach seems to be successful for certain optimal control problems (note
that the emptiness of G1 in (t0, t1) results necessary for optimality even if the process
under consideration is singular, and no (strong) normality assumptions are required), let
us point out two undesirable features mentioned in the introduction. First, its nonempti-
ness is established in [19] merely as a sufficient condition for the existence of negative
second variations. Second, one can easily find examples for which to solve the question
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of nonemptiness of this set may be much more difficult than verifying directly if that
condition holds (see, for example, [1–3, 24–27]).

These two features can be solved by defining a new set S1 which generalizes one first
introduced in [1], where it is applicable to the fixed-endpoint problem in the calculus of
variations, and generalized for optimal control problems with equality constraints in [27].
We refer the reader to [3] for a wide range of problems for which verifying membership
of S1 (in the calculus of variations context) is trivial but that of G1 may be extremely
difficult or perhaps even a hopeless task.

Definition 5.3. Let V ⊂ U . For any (x, u, p, µ, γ) ∈ X ×Rk let S1(V ;x, u, p, µ, γ) be the
set of points s ∈ [t0, t1) for which there exists (y, v) ∈ Ys(V ;x, u) such that

(i) Fs((y, v), (y, v)) ≤ 0.

(ii) There exists (z, w) ∈ Y (V ;x, u) such that Fs((z, w), (y, v)) < 0.

Theorem 5.4. Let V ⊂ U and (x, u, p, µ, γ) ∈ X ×Rk. Then the following holds:

(a) G1(V ;x, u, p, µ, γ) ⊂ S1(V ;x, u, p, µ, γ).

(b) If V is a convex cone, then (x, u, p, µ, γ) ∈ H(V) ⇔ S1(V ;x, u, p, µ, γ) = ∅.

Proof. (a): Let s ∈ G1(V ;x, u, p, µ, γ) and let (y, v) ∈ Ys(V ;x, u) and q ∈ Xs be as in
5.1. Condition 5.3(i) follows since

Fs((y, v), (y, v))

= 〈y(t1),Λγy(t1)〉+

∫ t1

s

{〈y(t), �q(t) + A∗(t)q(t)〉+ 〈v(t), B∗(t)q(t)− λ(t)〉}dt

= 〈y(t1),Λγy(t1) + q(t1)〉 −

∫ t1

s

〈v(t), λ(t)〉dt ≤ 0.

If 5.1(a) holds, then the inequality in 5.3(i) is strict and, therefore, 5.3(ii) holds by setting
(z(t), w(t)) := (0, 0) if t ∈ [t0, s] and (z(t), w(t)) := (y(t), v(t)) if t ∈ [s, t1]. If 5.1(b) holds,
let (z, w) ∈ Y (V ;x, u) be such that 〈z(s), q(s)〉 > 0 and 〈w(t), λ(t)〉 ≥ 0 (t ∈ Ts). Then

Fs((z, w), (y, v)) ≤ 〈z(t1),Λγy(t1) + q(t1)〉 − 〈z(s), q(s)〉 −

∫ t1

s

〈w(t), λ(t)〉dt < 0.

(b) “⇒�: Suppose there exists s ∈ S1(V ;x, u, p, µ, γ). Let (y, v) and (z, w) be as in 5.3,
and define (ζ(t), η(t)) := (0, 0) if t ∈ [t0, s], (ζ(t), η(t)) := (y(t), v(t)) if t ∈ [s, t1]. By
5.3(i),

J((x, u); (ζ, η)) = 〈ζ(t1),Λγζ(t1)〉+

∫ t1

t0

2Ω(t, ζ(t), η(t))dt = Fs((y, v), (y, v)) ≤ 0.

Set k := J((x, u); (z, w)), β := Fs((z, w), (y, v)), and α := −(β + k/2β). Note that α > 0
since k ≥ 0 and β < 0. Therefore (yα, vα) := (z + αζ, w + αη) belongs to Y (V ;x, u) and

J((x, u); (yα, vα)) = 〈yα(t1),Λγyα(t1)〉+

∫ t1

t0

2Ω(t, yα(t), vα(t))dt

= k + α2J((x, u); (ζ, η)) + 2αFs((z, w), (y, v))

≤ k + 2αβ = −2β2 < 0.
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(b) “⇐�: Suppose (x, u, p, µ, γ) 6∈ H(V). Let (y, v) ∈ Y (V ;x, u) be such that J((x, u);
(y, v)) < 0 and let (z, w) ≡ (y, v). Then t0 ∈ S1(V ;x, u, p, µ, γ).

Remark 5.5. In view of this result, note first that Theorem 5.2 holds assuming that
V ⊂ U is any convex cone and not necessarily an admissible direction set. Also in Theorem
5.2, if (x, u, p, µ, γ) ∈ H(V) then G1(V ;x, u, p, µ, γ) is empty not only in (t0, t1) but in the
half-open interval [t0, t1). Apart from this, observe that in the proof of Theorem 5.4(a)
the condition “q(s) 6= 0� is never used so that, in Definition 5.1, it can be removed. The
reason is that, if 5.1(a) holds, then it is unnecessary and, if 5.1(b) holds, it is redundant.
Finally, it is clear that a necessary condition for optimality follows by Theorems 2.3 and
5.4 but, in view of Theorem 2.4, we can replace V with W1(u) in Theorem 5.4 assuming
C1 and C2 hold. In this event, in particular, the convexity assumption B2(b) on U is no
longer required.

6. Zeidan

The second order necessary condition obtained by Zeidan in [32] states that, assuming
C1 and C2, V can be replaced with W1(u) in Theorem 2.1. This contribution enlarges
the applicability of the conditions given both in [33] and [19]. But this paper deals also
with an approach to conjugacy different from the previous ones. Throughout this section
we assume that C1(a) (modified), C1(b) and C2(b) hold. As in Section 4, we shall say
that (x, u) is T1-normal if it satisfies C2(a). When reduced to problem (P), the set of
“generalized coupled points� given in [32] is defined as follows.

Definition 6.1. Given (x, u, p, µ, γ) ∈ X × Rk set V := W1(u) and let G2(x, u, p, µ, γ)
be the set of points s ∈ [t0, t1) for which there exist (y, v) ∈ Ys(V ;x, u) and q ∈ Xs such
that, if λ(t) := B∗(t)q(t)− ρ(t) (t ∈ Ts), then

(i) �q(t) + A∗(t)q(t) = σ(t) (t ∈ Ts).

(ii) −[q(t1) + Λγy(t1)] ∈ N (x(t1)).

(iii) 〈v(t), λ(t)〉 ≥ 0 (t ∈ Ts)

(iv) If the inequality in (iii) is equality for all t ∈ Ts then, for any α ∈ Rk satisfying

〈B∗(t)Φ∗(t)h′(x(t1))
∗α− λ(t), ζ(t)〉 ≥ 0 (ζ ∈ Vs, t ∈ Ts),

there exists w ∈ V([t0, s]) such that 〈z(s),Φ∗(s)h′(x(t1))
∗α − q(s)〉 < 0, where

Φ: T → Rn×n satisfies �Φ(t) = −Φ(t)A(t) (t ∈ T ), Φ(t1) = In, and z is the solution
of �z(t) = A(t)z(t) +B(t)w(t), z(t0) = 0.

The main result in [32, Theorem 5.1], relating this set to the second order condition, is
the following.

Theorem 6.2. Let (x, u, p, µ) ∈ E, γ ∈ K(x(t1), p(t1)), and suppose that (x, u) is T1-

normal. Then (x, u, p, µ, γ) ∈ H(W1(u)) ⇒ G2(x, u, p, µ, γ) ∩ (t0, t1) = ∅.

As one readily verifies, this new set contains that of Loewen and Zheng with respect to
W1(u). It is illustrative to give a simple proof of this fact.

Theorem 6.3. (x, u, p, µ, γ) ∈ X ×Rk ⇒ G1(W1(u);x, u, p, µ, γ) ⊂ G2(x, u, p, µ, γ).
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Proof. Set V := W1(u) and let s ∈ G1(V ;x, u, p, µ, γ). Let (y, v) ∈ Ys(V ;x, u) and q ∈ Xs

satisfy 5.1. If 5.1(a) holds then s ∈ G2(x, u, p, µ, γ). If 5.1(a) does not hold then there
exists (z, w) ∈ Y (V ;x, u) satisfying 5.1(b). Let M(t) := B∗(t)Φ∗(t)h′(x(t1))

∗ (t ∈ T )
and let α ∈ Rk satisfy 〈M(t)α − λ(t), ζ(t)〉 ≥ 0 (ζ ∈ Vs, t ∈ Ts). Using the facts that
〈z(t1), h

′(x(t1))
∗α〉 = 0, 〈M(t)α,w(t)〉 ≥ 0 (t ∈ Ts), and

z(t) =

∫ t

t0

Φ(t)−1Φ(τ)B(τ)w(τ)dτ (t ∈ T ),

we have

〈z(s),Φ∗(s)h′(x(t1))
∗α〉 =

∫ s

t0

〈M(t)α,w(t)〉dt = −

∫ t1

s

〈M(t)α,w(t)〉dt ≤ 0

and so 〈z(s),Φ∗(s)h′(x(t1))
∗α− q(s)〉 < 0.

The two undesirable features of G1 explained above remain present with respect to G2.
Its nonemptiness, in the normal case, implies the existence of a negative second variation,
but the converse remains open. Also, verifying membership of this set may be much more
difficult than checking if x 6∈ H(W1(u)). As before, these two features can be solved by
introducing a new set containing G2.

Definition 6.4. Given (x, u, p, µ, γ) ∈ X ×Rk set V := W1(u) and let S2(x, u, p, µ, γ) be
the set of points s ∈ [t0, t1) for which there exists (y, v) ∈ Ys(V ;x, u) such that

(i) Fs((y, v), (y, v)) ≤ 0.

(ii) If there exists q ∈ Xs such that (y, v, q) ∈ Ẽ1(s), then there exists w ∈ V([t0, s]) with
〈z(s), q(s)〉 > 0 where z is the solution of �z(t) = A(t)z(t) +B(t)w(t), z(t0) = 0.

Theorem 6.5. Let (x, u, p, µ, γ) ∈ X ×Rk. Then the following holds:

(a) S1(x, u, p, µ, γ) ∪ G2(x, u, p, µ, γ) ⊂ S2(x, u, p, µ, γ).

(b) If (x, u) is T1-normal then (x, u, p, µ, γ) ∈ H(W1(u)) ⇔ S2(x, u, p, µ, γ) = ∅.

Proof. (a): Let s ∈ S1(x, u, p, µ, γ) and let (y, v) and (z, w) be as in 5.3. Suppose there
exists q ∈ Xs satisfying 6.4(ii) (if it does not exist then s ∈ S2(x, u, p, µ, γ)). Therefore

0 > Fs((z, w), (y, v))

≥ 〈z(t1),Λγy(t1)〉+

∫ t1

s

{〈z(t), �q(t) + A∗(t)q(t)〉+ 〈w(t), B∗(t)q(t)〉}dt

= 〈z(t1),Λγy(t1) + q(t1)〉 − 〈z(s), q(s)〉 = −〈z(s), q(s)〉

and this proves the first contention.

Now, let s ∈ G2(x, u, p, µ, γ), set V := W1(u), and let (y, v) ∈ Ys(V ;x, u) and q ∈ Xs be as
in 6.1. As in the proof of 5.4(a), clearly Fs((y, v), (y, v)) ≤ 0. Now, suppose there exists
q1 ∈ Xs such that (y, v, q1) ∈ Ẽ1(s). Note first that

Fs((y, v), (y, v))

= 〈y(t1),Λγy(t1)〉+

∫ t1

s

{〈y(t), �q1(t) + A∗(t)q1(t)〉+ 〈v(t), B∗(t)q1(t)〉}dt = 0
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and also

Fs((y, v), (y, v))

= 〈y(t1),Λγy(t1)〉+

∫ t1

s

{〈y(t), �q(t) + A∗(t)q(t)〉+ 〈v(t), B∗(t)q(t)− λ(t)〉}dt

= −

∫ t1

s

〈v(t), λ(t)〉dt ≤ 0.

Therefore the inequality in 6.1(iii) is equality for all t ∈ Ts. Now, let l, l1 ∈ Rk be such
that

q∗(t1) = −y∗(t1)Λγ − l∗h′(x(t1)) and q∗1(t1) = −y∗(t1)Λγ − l∗1h
′(x(t1)),

and define r(t) := q(t)− q1(t) (t ∈ Ts) and α := l1 − l. Since �r(t) +A∗(t)r(t) = 0 we have

r(t) = Φ∗(t)r(t1) = Φ∗(t)h′(x(t1))
∗α (t ∈ Ts).

Hence, for all ζ ∈ Vs and t ∈ Ts,

〈B∗(t)Φ∗(t)h′(x(t1))
∗α, ζ(t)〉 = 〈λ(t), ζ(t)〉 − 〈B∗(t)q1(t)− ρ(t), ζ(t)〉 ≥ 〈λ(t), ζ(t)〉.

By 6.1(iv), there exists w ∈ V([t0, s]) such that, if z is the solution of �z(t) = A(t)z(t) +
B(t)w(t) (t ∈ [t0, s]), z(t0) = 0, then

〈z(s),Φ∗(s)h′(x(t1))
∗α− q(s)〉 = 〈z(s), r(s)− q(s)〉 = −〈z(s), q1(s)〉 < 0.

This shows that s ∈ S2(x, u, p, µ, γ).

(b) “⇒�: Suppose there exists s ∈ S2(x, u, p, µ, γ). Let (y, v) ∈ Ys(W1(u);x, u) be as in
6.4 and define (ζ(t), η(t)) := (0, 0) if t ∈ [t0, s], (ζ(t), η(t)) := (y(t), v(t)) if t ∈ [s, t1]. Note
that, by 6.4(i),

J((x, u); (ζ, η)) = Fs((y, v), (y, v)) ≤ 0.

Strict inequality contradicts the assumption (x, u, p, µ, γ) ∈ H(W1(u)) and, therefore,
(ζ, η) solves (P̃1). By Lemma 3.2, there exists q1 ∈ X such that (ζ, η, q1) ∈ Ẽ1. In
particular, this implies that

�q1(t) + A∗(t)q1(t) = −Hxx(t)ζ(t)−Hxu(t)η(t) (t ∈ T ),

〈B∗(t)q1(t) +Hux(t)ζ(t) +Huu(t)η(t), z(t)〉 ≤ 0 (z ∈ W1(u), t ∈ T ),

and −[q(t1) + Λγy(t1)] ∈ N (x(t1)). Let q be the restriction of q1 to [s, t1]. By 6.4(ii),
there exists w ∈ W1(u)([t0, s]) with 〈z(s), q(s)〉 > 0 where z is the solution of �z(t) =
A(t)z(t) + B(t)w(t) (t ∈ [t0, s]), z(t0) = 0. Note that, in particular, s > t0. Now, since
�q1(t) + A∗(t)q1(t) = 0 (t ∈ [t0, s]), we have q1(s) = Φ∗(s)Φ∗−1(t)q1(t) (t ∈ [t0, s]), and so

0 < 〈z(s), q(s)〉 =

∫ s

t0

〈Φ−1(s)Φ(t)B(t)w(t), q1(s)〉dt =

∫ s

t0

〈w(t), B∗(t)q1(t)〉dt.

But 〈w(t), B∗(t)q1(t)〉 ≤ 0 for all t ∈ [t0, s] and we reach a contradiction.

(b) “⇐�: Suppose (x, u, p, µ, γ) 6∈ H(V). Let (y, v) ∈ Y (V ;x, u) with J((x, u); (y, v)) < 0.
Clearly 6.4(ii) does not apply since, otherwise, J((x, u); (y, v)) = Ft0((y, v), (y, v)) = 0.
Thus t0 ∈ S2(x, u, p, µ, γ).
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Remark 6.6. A simple consequence of this theorem is that, if (x, u) is T1-normal and
(x, u, p, µ, γ) ∈ H(W1(u)), then G2(x, u, p, µ, γ) = ∅. Thus, a necessary condition for
optimality is, under normality assumptions, the emptiness of G2(x, u, p, µ, γ) in the half-
open interval [t0, t1). This remark was already made with respect to G1. We mention it
because in [32], as well as in [19], it is emphasized that this necessary condition holds for
points in the interior of the time interval. This assertion may be rather misleading since,
as it is well-known, Jacobi’s necessary condition (in the classical context) only applies
for points in the interior of the time interval. On the other hand, Jacobi’s strengthened
condition states that there are no conjugate points in the half-open interval, and this
condition leads to sufficiency. With the assertions of [32] and [19] one is thus tempted to
think that a similar result might hold for the sets G1 or G2.

7. Examples

In [19] one finds four examples which, according to the authors, illustrate how their
generalized conjugate point “gives much more information and is sharper than that of
[33].� On the other hand, [32] provides two examples for which the results of [19] cannot
be applied because they lie outside its scope. One involves a nonconvex control set and,
in the other, both endpoints vary. The conclusion in [32] is then that the new results are
“much sharper.� Let us make a few remarks on these conclusions. We begin by briefly
studying two of the examples (7.1 and 7.3) provided in [19].

Example 7.1. Let a > π/2 and consider the free-endpoint problem of minimizing

I(x, u) =

∫ a

0

{u2(t)− x2(t)}dt

subject to x(0) = 0 and �x(t) = u(t), u(t) ≥ 0 (t ∈ [0, a]).

In this case H(t, x, u, p, µ) = (p+µ)u−u2+x2 and M(x, u) consists of all (p, µ) ∈ X ×U
satisfying

�p(t) = −2x(t), p(t) + µ(t) = 2u(t), p(a) = 0

with µ(t) ≥ 0 and µ(t)u(t) = 0 (t ∈ [0, a]). Thus (x0, u0, p, µ) := (0, 0, 0, 0) ∈ E . Now,
T0(u0(t)) = {0} since I(u0(t)) = {1} and so Y (W0(u0);x0, u0) = {(0, 0)}. Thus Theorem
2.2 gives no information with respect to (x0, u0). On the other hand, since Γµ(t) = ∅, we
have T1(u0(t)) = R+ and so

Y (W1(u0);x0, u0) = {(y, v) ∈ X × U | v(t) ≥ 0, �y(t) = v(t) (t ∈ [0, a]) and y(0) = 0}.

Let (y(t), v(t)) := (sin t, cos t) (t ∈ [0, π/2]), (y(t), v(t)) := (1, 0) (t ∈ [π/2, a]). Then (y, v)
is a W1(u0)-admissible variation for which

J((x0, u0); (y, v)) = 2

∫ a

0

{v2(t)− y2(t)}dt = −2(a− π/2) < 0

and therefore, by Theorem 2.4, (x0, u0) is not optimal.

Note that this conclusion has been reached without any reference to conjugate points. It
follows simply because (y, v) belongs to Y (W1(u0); (x0, u0)) where W1(u0) = {v ∈ U |
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v(t) ≥ 0}, and the second variation with respect to (x0, u0) along (y, v) is negative. On
the other hand, Y (W0(u0);x0, u0) = {(0, 0)} since W0(u0) = {0}, and so the second order
condition of [33] gives no information at all. As mentioned before, we could actually adapt
the approach to conjugacy given in [19] to that of [33] by replacing W0(u0) with W1(u0)
in the definition of G0 (and making the necessary changes) but, in view of the conclusion
reached, it looks rather unnecessary to prove nonemptiness of G0 or G1 (in terms of W1).
In other words, this example shows that the two second order conditions may differ, but
it does not illustrate why one approach to conjugacy is sharper than the other.

Let us also mention that the proof given in [19] to show that G1(W1(u0)) ∩ (0, a) 6= ∅
is much more cumbersome than the simple proof given above to show nonoptimality of
(x0, u0).

Example 7.2. Consider the fixed-endpoint calculus of variations problem of minimizing

I(x, u) =

∫ a

0

{u22(t)− x21(t)}dt

subject to x(0) = x(a) = 0, �x(t) = u(t) and u(t) ∈ R2 (t ∈ [0, a]).

In this case, H(t, x, u, p, µ) = p1u1 + p2u2 − u22 + x21. Thus, if we set (y1(t), v1(t)) := (t, 1)
(t ∈ [0, a/2]), (y1(t), v1(t)) := (a − t,−1) (t ∈ [a/2, a]), and y2 ≡ v2 ≡ 0 then, for any
(x, u) ∈ Z,

J((x, u); (y, v)) = 2

∫ a

0

{v22(t)− y21(t)}dt = −a3/6 < 0.

Since for any u ∈ U , T0(u(t)) = T1(u(t)) = R2, implying that W0(u) = W1(u) = U , we
conclude that the problem has no solution.

Note that, as in the previous example, the conclusion follows without making use of
any notion of conjugacy. As before, it is trivial to show that there exists an admissible
variation with a negative second variation. To show, on the other hand, that G1(U) 6= ∅
(which is certainly the case), requires a much more elaborate study. That this example
shows that the approach to conjugacy introduced in [19] is indeed sharper than that of
[33] follows since any (x, u) ∈ Z is singular and, therefore, we cannot apply Theorem 4.3.
The example, however, yields little enlightenment to the theory of conjugate points since
there is no need to invoke it at all.

The study of the other two examples (7.2 and 7.4) given in [19] is similar to that of
Example 7.1. In the first case, T0(u0(t)) = {0}×R and T1(u0(t)) = R+×R. In the other,
T0(u0(t)) = {(0, 0)} and T1(u0(t)) = R− × R+. As in Example 7.1, the process under
consideration is nonsingular, so that the theory of [33] in terms of W1 can be applied but,
once more, one can trivially verify (without any notion of conjugacy) the existence of an
admissible variation yielding a negative second variation.

Let us turn now to the conclusion given by [32]. First of all, note from Theorem 6.2 that
the theory of [32] yields a necessary condition for optimality assuming the process under
consideration is T1-normal (compare with Theorems 5.2 and 5.4 where normality is not
required). In particular, for the linear fixed-endpoint problem (where the dynamics are
of the form �x(t) = A(t)x(t) + B(t)u(t) and second order conditions are easily obtained
without normality assumptions), the sets G1 and S1 can be applied in the abnormal case
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but not G2. In other words, there are problems which lie beyond the scope of [32] but not
of [19] or the set S1 introduced in this paper. A full discussion of this fact can be found
in [25]. On the other hand, it is not clear if, even under normality assumptions, G2 is
sharper than G1 when both sets are applied to the same problem. This question remains
open not only for the problem we are considering but also that of [32] since the definition
of G1 can certainly be extended to that case.

Now, the first example given in [32] deals with a nonconvex control set and so, according
to the author, the results of [19] do not apply. However, the example corresponds to a
free-endpoint problem and in [19] one reads: “In the free-endpoint case, by the special
structure of the problem, we can drop the convexity hypothesis on U and choose an
admissible direction set W1(u).� This contradicts the claim of Zeidan. In any case, as
explained before, the second order condition derived in [32] allows us to replace V with
W1(u) in Theorem 2.3 for the general case (and not only the three cases mentioned in [19]).
About the example it is shown that, for certain (x0, u0, p, µ) ∈ E and γ ∈ K(x0(t1), p(t1)),
(x0, u0) is T1-normal and any s ∈ (0, 1) satisfies the conditions given in Definition 6.1 with
a strict inequality in 6.1(iii). This shows that any s ∈ (0, 1) belongs to G2 (and also to
G1(W1(u0))) and also, straightforwardly, that the second variation with respect to (x0, u0)
is negative along certainW1(u0)-admissible variation. Once more, we come to the question
of how useful are these notions of conjugate points since, at least in all these examples,
one can trivially contradict the second order condition “(x, u, p, µ, γ) ∈ H(V),� while it
becomes much more complicated to prove nonemptiness of any of the sets introduced in
those references.

One can find other examples (see [3]) for which also the failure of the second order condi-
tion is trivially verified but it becomes not only more complicated but even uncertain how
to check the existence of points in G1 and G2. In those examples, an admissible variation
(y, v) yielding a negative second variation may not be used in the definition of those sets.
This, of course, cannot occur with the sets Si (i = 0, 1, 2) since the existence of such (y, v)
automatically implies that the point t0 belongs to them.

Let us now provide two simple calculus of variations problems which illustrate both the
usefulness of the sets introduced in this paper and the difficulties that arise in trying to
apply those of [33], [19] and [32]. For these examples, one can find in a straightforward way
an admissible variation (y, v) for which J((x, u); (y, v)) vanishes and (y, v) does not satisfy
Jacobi’s equation, implying that the point t0 belongs to S0 and S2. It can also be verified
that it belongs to S1. We have chosen this property for simplicity of exposition, but an
application of the other properties enjoyed by these sets (in particular when inequality
control constraints are present, or in the event that (y, v) satisfies Jacobi’s equation),
which simplify those of G0 and G1, can also be illustrated (see, for example, [3]).

Example 7.3. Let a 6= 0, b ∈ R, set t0 := −b/a, t1 := π − b/a, T = [t0, t1], and consider
the problem of minimizing

I(x, u) =
1

2
x2(t1) +

1

2

∫ t1

t0

(at+ b){u2(t)− x2(t)}dt

subject to �x(t) = u(t) (t ∈ T ), x(0) = 0, x2(t1) + x(t1) = 0.

Suppose (x, u, p, µ) ∈ E with (x, u) ∈ Ze and γ ∈ K(x(t1), p(t1)). Clearly W0(u) =
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W1(u) = U ,

J((x, u); (y, v)) =

∫ t1

t0

(at+ b){v2(t)− y2(t)}dt ((y, v) ∈ Z),

and the set of U -admissible variations is given by

Y (U ;x, u) = {(y, v) ∈ X × U | �y(t) = v(t) (t ∈ T ), y(t0) = y(t1) = 0}.

At first sight it is not clear if there exists (y, v) ∈ Y (U ;x, u) yielding a negative second
variation with respect to (x, u). However, we can show its existence by a simple application
of Theorems 4.16 or 6.5. To prove it, let y(t) := sin(t+ b/a), v(t) := cos(t+ b/a) (t ∈ T ).
Then, as one readily verifies,

Ft0((y, v), (y, v)) = J((x, u); (y, v)) =

∫ t1

t0

(at+ b){cos 2(t+ b/a)}dt = 0.

Thus conditions 4.15(i) or 6.4(i) hold with s = t0. Now, the set Ẽ0 (which in this case
coincides with Ẽ1) is given by those (y, v, q) ∈ X × U ×X satisfying

�y(t) = v(t), �q(t) = −(at+ b)y(t), q(t) = (at+ b)v(t) (t ∈ T ).

These relations are equivalent, if y ∈ C2, to the second order differential equation

(at+ b)ÿ(t) + a �y(t) + (at+ b)y(t) = 0 (t ∈ T ) (3)

which is certainly not satisfied by our choice of (y, v). We conclude that s = t0 belongs to
S0(x, u, p, µ, γ) and S2(x, u, p, µ, γ) and so, by Theorems 4.16 or 6.5, (x, u, p, µ, γ) 6∈ H(U),
proving the claim. It implies, in particular, that the problem has no solution.

Note that, in this example, both S0 and S2 have the advantage over S1 that we do not have
to check the existence of (z, w) ∈ Y (U ;x, u) satisfying Ft0((z, w), (y, v)) < 0. However, it
is a simple fact to prove that also this condition holds. Indeed, for any (z, w) ∈ Y (U ;x, u)
we have

Ft0((z, w), (y, v)) =

∫ t1

t0

(at+ b){ �z(t) cos(t+ b/a)− z(t) sin(t+ b/a)}dt

= −a

∫ t1

t0

z(t) cos(t+ b/a)dt

and thus the required inequality clearly occurs if, for example, z(t) = a sin(t+b/a) cos(t+
b/a), w(t) = �z(t) (t ∈ T ). Hence t0 ∈ S1(U ;x, u, p, µ, γ). Observe, on the other hand, that
once the two conditions defining membership of S1 are satisfied, the proof of Theorem
5.4(b) gives us a methodology for finding an admissible variation which yields a negative
second variation.

So far we have shown in a trivial way, by making use of the sets introduced in this paper,
that the problem has no solution. Let us point out that, for a wide range of problems
(like this example), one can establish simple criteria for finding (y, v) ∈ Ys(W1(u);x, u) for
which Fs((y, v), (y, v)) vanishes, but the corresponding second condition in the definition
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of the sets S0 or S2 is immaterial (see [3]) in which case, therefore, the point s belongs to
them.

Let us now try to apply the necessary conditions obtained in terms of the different sets
of “generalized conjugate points� previously defined. To begin with, the main result of
[33] (in terms of G0) cannot be applied because any (x, u) ∈ Z is singular since Huu(t) =
−(at + b) vanishes at t = t0. For the sets of [19] (in terms of G1) and [32] (in terms of
G2), if a point s ∈ [t0, t1) belongs to any of them then, necessarily, there exists a nonzero
(y, v, q) ∈ Zs ×Xs with y(s) = y(t1) = 0 such that

�y(t) = v(t), �q(t) = −(at+ b)y(t), v(t)[q(t)− (at+ b)v(t)] ≥ 0 (t ∈ [s, t1]).

At this stage we pose the question of how such functions can be found. One could of course
try by testing simple functions like the one defined above, or functions with a piecewise
(nonzero) constant derivative. They yield, however, a contradiction in the definitions of
the two sets. For example, if y(t) = sin(t + b/a), v(t) = cos(t + b/a) (t ∈ T ) as before,
and s = t0, it is required the existence of a constant c ∈ R such that

�y(t)

[

c−

∫ t

t0

(aτ+b)y(τ)dτ−(at+b) �y(t)

]

= cos(t+b/a)[c−sin(t+b/a)] ≥ 0 for all t ∈ [t0, t1].

Clearly such a constant does not exist and so the U -admissible variation (y, v), which was
used to prove nonemptiness of Si (i = 0, 1, 2), must be ruled out.

As mentioned before, the approach to conjugacy in terms of G1 and G2 seems to be more
general than approaches (such as those of G0, P or Q of Section 4) where one is interested
in finding a nonzero solution of Jacobi’s system, that is, a nonzero (y, v, q) ∈ Ẽ0. In
particular, for the example we are dealing with, for certain nonzero (y, q) ∈ Zs satisfying
y(s) = y(t1) = 0 and �q(t) = −(at+ b)y(t) (t ∈ [s, t1]), the former requires the inequality

�y(t)[q(t)− (at+ b) �y(t)] ≥ 0 (t ∈ [s, t1])

while, for the latter, the equality q(t) = (at + b) �y(t) (t ∈ [s, t1]) must hold. However,
there seems to be no other general criterion for proving nonemptiness of G1 or G2 than
finding precisely a nonzero solution of Jacobi’s system. For this example, in particular,
it corresponds to finding a nonnull solution y of (3) with y(s) = y(t1) = 0 but, even for
such a simple problem, the general solution to (3) is rather complicated. To give some
idea, referring to [22, Equation 2.1.2.103], it is given by

y(t) = eitJ (1/2, 1;−2i(at+ b)/a)

where J (α, β; t) is an arbitrary solution of the degenerate hypergeometric equation

tÿ(t) + (β − t) �y(t)− αy(t) = 0

(see [22, Equation 2.1.2.65] for its solution with α = 1/2 and β = 1).

Example 7.4. Let T = [0, 1], n ≥ 3 an integer, and consider the problem of minimizing

I(x, u) =
1

2

∫ 1

0

(sin t){α(t)u2(t)− β(t)x2(t)}dt
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subject to �x(t) = u(t) (t ∈ T ) and x(0) = x(1) = 0, where β(t) = tn−2 (t ∈ T ) and

α(t) =

{

tn if t ∈ [0, 1/2)

tn−2(1− t)2 if t ∈ [1/2, 1].

Note that, in this example, Luu(t, x, u) = α(t) sin t is continuous on the whole interval
[0, 1], but its derivative is discontinuous at t = 1/2. Also, any process is singular since
Huu(t) = −α(t) sin t vanishes at 0 and 1, so that the theory of conjugacy in terms of G0

cannot be applied. For the sets G1 and G2 we have that, if s ∈ [0, 1) belongs to any of
them then, necessarily, there exists a nonzero (y, v, q) ∈ Zs × Xs with y(s) = y(1) = 0
such that

�y(t) = v(t), �q(t) = −β(t)y(t) sin t, v(t)[q(t)− α(t)v(t) sin t] ≥ 0 (t ∈ [s, 1]).

We arrive again to the question of how such functions can be found, and try by solving
Jacobi’s equation which, in this case, corresponds on the interval [0, 1/2) to

[tn sin t]ÿ(t) + [tn cos t+ ntn−1 sin t] �y(t) + [tn−2 sin t]y(t) = 0.

We omit the equation on [1/2, 1] and proceed no further with the task of trying to
prove the (uncertain) nonemptiness of these sets. Instead, simply observe that, if we
set (y(t), v(t)) := (t, 1) (t ∈ [0, 1/2]), (y(t), v(t)) := (1− t,−1) (t ∈ [1/2, 1]) then, clearly,

J((x, u); (y, v)) =

∫ 1

0

(sin t){α(t)v2(t)− β(t)y2(t)}dt = 0.

Since (y, v) does not satisfy Jacobi’s equation, we conclude that t0 = 0 belongs to S0 and
S2. As in the previous example, one readily verifies that the use of this function yields a
contradiction in the definition of the sets G1 and G2.
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