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The surrogate constraints method (SC-method) for linear feasibility problems (LFP) is an important
tool in convex optimization, especially in large scale optimization. The classical version of the SC-
method converges to a solution if the LFP is feasible [17]. Unfortunately, in applications the LFP is often
infeasible. Such a situation occurs in computer tomography and in intensity modulated radiation therapy
which can be modelled as LFP [5, 11, 13, 16]. In this case one can apply the simultaneous projection
method (SP-method) [2, 4, 15] which is actually a short step version of a special case of the SC-method
[7]. The SP-method converges to a solution if the LFP is feasible and to an approximate solution in other
case. Because of long steps, the SC-method converges faster than the SP-method if the LFP is feasible.
Unfortunately, the SC-method diverges if the problem is infeasible.

We deal in the paper with the linear split feasibility problems (LSFP) which are more general than
the LFP. We analyze the convergence of various versions of the projected surrogate constraints method
(PSC-method) for the LSFP in dependence on the step size and on the choice of weights. We show also
that the convergence of the SC-method of Yang–Murty [17] and of the CQ-method of Byrne [5] applied
to the LSFP follows from our main result.
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1. Introduction

Let C ⊂ R
n, Q ⊂ R

m be nonempty closed convex subsets, A be an n×m real matrix. The
split feasibility problem (SFP) consists in finding x satisfying A⊤x ∈ Q, x ∈ C, if such a
solution exists. This problem was introduced by Censor and Elfving [10] and was studied
by Byrne [5]. In many applications the subset Q has the form Q = {y ∈ R

m : y ≤ b} for
b ∈ R

m. In this case we call the problem the linear split feasibility problem (LSFP). The
LSFP is to find an element x∗ ∈ C which is a solution of a system of linear inequalities

A⊤x ≤ b. (1)

If, furthermore, C = R
n then the LSFP is called the linear feasibility problem (LFP).

Denote A = [a1, ..., am], where ai ∈ R
n, i ∈ I = {1, ...,m} are columns of A. We assume,

without loss of generality, that ‖ai‖ = 1, i ∈ I. Furthermore, denote M0 = {x ∈ R
n :

A⊤x ≤ b} and M = C ∩M0.

We deal in the paper with methods for the LSFP which generate a sequence (xk) by the
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following iterative scheme

x1 ∈ C – arbitrary

xk+1 = T (xk), (2)

where the operator T : C → C is defined by the equality

T (x) = PC(x− µγ(x)Aw(x)), (3)

PC denotes the metric projection onto C, µ ∈ [0, 2], is called a relaxation parameter,
γ : C → R+ is called a step size function and w : C → R

m
+ is called a weight operator.

Observe that Aw(x) is a linear combination of the columns of A where the coefficients of
this combination (weights) are coordinates of w(x). Further we see that some relationship
between the weight vector w(x) and the residual vector r(x) = A⊤x−b should be supposed
in order to guarantee the convergence of iterative scheme (2). For C = R

n and for a
special choice of the step size γ(x) Yang and Murty [17] have called the method (2) the
surrogate constraints method. Therefore, we call the general form of method (2) the
projected surrogate constraints method (PSC-method). We study in the paper the Fejér
monotonicity and the convergence of the PSC-method in dependence on step size γ and
weights w. Recall that an operator T : C → C is Fejér monotone with respect to D ⊂ C
if

‖T (x)− z‖ ≤ ‖x− z‖
for all z ∈ D, x ∈ C. In this case we say that the sequence (xk) generated by the iterative
scheme (2) and the method described by (2) are Fejér monotone with respect to D.

Consider the LSFP. Let r : C → R
m be the residual operator defined by the equality

r(x) = A⊤x− b. We call the vector r(x) with coordinates ρi(x), i ∈ I, the residual vector
in x.

Definition 1.1. A weight operator w : C → R
m
+ satisfying the condition

w(x) = 0 if r(x)⊤w(x) ≤ 0 (4)

for all x ∈ C is called a weight strategy (for r).

Remark 1.2. It follows from Definition 1.1 that a weight strategy should be seen as an
operator related to LSFP (1) since it depends on the residual operator r.

The condition (4) is satisfied, e.g., if a vector of weights w(x) ∈ R
m
+ is such that ωi(x) = 0

for i /∈ I(x), where
I(x) = {i ∈ I : ρi(x) > 0}

is the subset of violated constraints. Denote

H−
w(x) = {y ∈ R

n : w(x)⊤A⊤y ≤ w(x)⊤b}.

Observe that
M ⊂ M0 ⊂ H−

w(x), (5)

i.e. all elements y ∈ C which satisfy the constraints A⊤y ≤ b also satisfy the constraint
w(x)⊤A⊤y ≤ w(x)⊤b for any weight w(x) ≥ 0. Therefore it is called a surrogate constraint.
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If Aw(x) 6= 0 then H−
w(x) is a half-space. If, furthermore, w is a weight strategy then it

is easily seen that x /∈ H−
w(x) (otherwise r(x)⊤w(x) ≤ 0, consequently, w(x) = 0 which

contradicts the assumption Aw(x) 6= 0) and

PH−

w(x)
(x) = x− r(x)⊤w(x)

‖Aw(x)‖2 Aw(x).

Consequently, if we define

γ(x) =

{

r(x)⊤w(x)
‖Aw(x)‖2

if Aw(x) 6= 0

0 if Aw(x) = 0
(6)

and w is a weight strategy then the operator T given by (3) can be written in the form

T (x) = PC(x+ µ(PH−

w(x)
(x)− x)). (7)

If C = R
n then (7) describes the surrogate constraints method of Yang and Murty [17].

If w(x) = r+(x) for all x ∈ C then the operator T given by (3) has the form

T (x) = PC(x− µγ(x)Ar+(x)). (8)

Observe that −r+(x) = (PQ − I)A⊤x for Q = {u ∈ R
m : u ≤ b}. Therefore, if we set

γ(x) = 1
λ
for all x ∈ C, where λ = λmax(A

⊤A) > 0, then the operator T can be written
in this case in the form

T (x) = PC(x+
µ

λ
A(PQ − I)A⊤x), (9)

i.e. T describes the CQ-method of Byrne [5] applied to LSFP. If w(x) = V r+(x), where
V = diag v for v ∈ ∆m, and γ(x) = 1 for all x ∈ C then T has the form

T (x) = PC(x− µAV r+(x)). (10)

In this case T can be written in the form

T (x) = PC(x+ µ
∑

i∈I

νi(PH−

i

(x)− x)), (11)

where H−
i = {y ∈ R

n : a⊤i y ≤ βi}, since

AV r+(x) =
∑

i∈I

νiρi+(x)ai =
∑

i∈I

νi(PH−

i

(x)− x)

(recall that ‖ai‖ = 1, i ∈ I). Consequently, for C = R
n, the operator T describes the

simultaneous projection method [2, 15, 1, 4]. If L = L(x) ⊂ I is such that rL(x) 6= 0,
AL has full column rank and (A⊤

LAL)
−1rL(x) ≥ 0 then, for w(x) ∈ R

m
+ with wL(x) =

(A⊤
LAL)

−1rL(x), wI�L = 0 and γ(x) = 1 for all x ∈ C, the operator T defined by (3) can
be written in the form

T (x) = PC(x− µAL(A
⊤
LAL)

−1rL(x))
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(see [7] for details). If C = R
n then the operator T describes in this case the residual

selection method [8, 9].

All methods mentioned above belong to a class of projection methods which are often
used for the LFP, the LSFP, the SFP, the convex feasibility problems (CFP) and for the
convex minimization problems (CMP). Relations between the PSC-method and the other
projection methods presented above are studied in details in [7].

We study in the paper the convergence of iterative scheme (2) for T defined by (3), without
assumption M 6= ?. We prove the convergence to an element of FixT under some general
assumptions for weights which are satisfied for a wide class of projection methods. In
Section 2, we formulate some equivalent conditions for z to be an element of FixT . In
Section 3, we introduce two important conditions for weights, the residual orientation
and the compatibility with FixT . As we see later, these conditions are sufficient for the
convergence of the PSC-method. We give also examples of weight operators which satisfy
these conditions. In Section 4, we prove the Fejér monotonicity of operator T determining
the PSC-method, with respect to FixT , for residually directed weight strategy. In Section
5, we prove our main result – the convergence to FixT of the PSC-method for residually
directed weight strategies which are compatible with FixT . The convergence of SC-
method of Yang–Murty [17] and of the CQ-method of Byrne applied to LSFP [5] follows
from this result.

We use in the paper the following notation:

x = (ξ1, ..., ξn)
⊤ denotes an element of Rn as a column vector,

r+ denotes the nonnegative part of a vector r = (ρ1, ..., ρm)
⊤ ∈ R

m, i.e. r+ = (ρ1+, ...,
ρm+)

⊤ where ρi+ = max{0, ρi},
AL denotes the submatrix of A with columns ai, i ∈ L ⊂ I,

rL denotes the subvector of r with coordinates ρi, i ∈ L ⊂ I,

r ≥ s, where r = (ρ1, ..., ρm)
⊤ ∈ R

m, s = (σ1, ..., σm)
⊤ ∈ R

m, denotes that ρi ≥ σi for all
i = 1, ...,m,

R
m
+ = {u ∈ R

m : u ≥ 0},
〈·, ·〉 denotes the usual scalar product in R

n, i.e. 〈x, y〉 = x⊤y,

‖ · ‖ denotes the Euclidean norm in R
n, i.e. ‖x‖ =

√

〈x, x〉,
e = (1, ..., 1)⊤,

∆m = {u ∈ R
m : e⊤u = 1, u ≥ 0} denotes the standard simplex in R

m,

PD(x) = argmin{‖x− z‖ : z ∈ D} denotes the metric projection of x ∈ R
n onto a closed,

convex subset D ⊂ R
n,

ND(x) = {s ∈ R
n : 〈s, z − x〉 ≤ 0 for all z ∈ D} denotes the normal cone to D at x ∈ D,

FD(s) = {y ∈ D : 〈s, y〉 ≥ 〈s, z〉 for all z ∈ D} denotes the face of D exposed by s ∈ R
n,

FixT denotes the subset of fixed points of an operator T : D → D, where D ⊂ R
n,

λmax(A
⊤A) denotes the largest eigenvalue of a matrix A⊤A.
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2. Fixed points of the operator T

Observe that M ⊂ FixT if w is a weight strategy. Now we characterize the subset FixT .
There holds the following Lemma.

Lemma 2.1. Let the operator T be defined by (3) with γ(x) > 0 and µ > 0 and let z ∈ C.

The following conditions are equivalent

(i) z ∈ FixT ,

(ii) −Aw(z) ∈ NC(z),

(iii) z ∈ FC(−Aw(z))

(iv) 〈r(y)− r(z), w(z)〉 ≥ 0 for all y ∈ C,

(v) r(z) ∈ Fr(C)(−w(z)).

If, furthermore, Aw = ∇h for a convex differentiable function h : Rn → R then conditions

(i)-(v) are equivalent with the condition

(vi) z ∈ Argminx∈C h(x).

Proof. (i) ⇔ (ii). z ∈ FixT means that

z = PC(z − µγ(z)Aw(z)).

Now the equivalence follows from the characterization of the normal cone (see, e.g., [14,
Chapter III, Proposition 5.3.3]).

(ii) ⇔ (iii). We have for z ∈ C

−Aw(z) ∈ NC(z) ⇔ 〈−Aw(z), y − z〉 ≤ 0 for all y ∈ C

⇔ 〈−Aw(z), y〉 ≤ 〈−Aw(z), z〉 for all y ∈ C

⇔ z ∈ FC(−Aw(z)).

(ii) ⇔ (iv). We have for z ∈ C

−Aw(z) ∈ NC(z) ⇔ 〈−Aw(z), y − z〉 ≤ 0 for all y ∈ C

⇔ 〈w(z), A⊤y − A⊤z〉 ≥ 0 for all y ∈ C

⇔ 〈w(z), r(y)− r(z)〉 ≥ 0 for all y ∈ C.

(iv) ⇔ (v). We have for z ∈ C

〈r(y)− r(z), w(z)〉 ≥ 0 for all y ∈ C

⇔ 〈u− r(z), w(z)〉 ≥ 0 for all u ∈ r(C)

⇔ 〈r(z),−w(z)〉 ≥ 〈u,−w(z)〉 for all u ∈ r(C)

⇔ r(z) ∈ Fr(C)(−w(z)).

(ii)⇔ (vi). Let h : Rn → R be a convex differentiable function such that Aw(x) = ∇h(x),
x ∈ R

n. The equivalence follows from the characterization of a minimizer of a convex
function (see, e.g., [14, Chapter VII, Theorem 1.1.1]).
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3. Assumptions for weights

The Fejér monotonicity and the convergence properties of iterative scheme (2) depend
strongly on the weight strategy. Strategies which depend on the residuum r(x) = A⊤x−b
and satisfy the condition defined below play an important role here.

Definition 3.1. Let w : C → R
m
+ be a weight strategy in the PSC-method. We say that

the strategy w is residually directed (or residually orientated ) with respect to a subset
D ⊂ C if there exists a number ρ > 0, called the modulus of residual orientation, such
that

ρ〈r(x)− r(z), w(x)− w(z)〉 ≥ ‖w(x)− w(z)‖2 (12)

for all x ∈ C and for all z ∈ D.

Observe that the residual orientation of a strategy w does not depend on the scaling, i.e.
if w is residually directed with modulus ρ then, for any α > 0, the weight strategy αw is
also residually directed with modulus αρ.

Remark 3.2. Let w be a residually directed weight strategy with respect to C. Then
w(x) depends actually on residuum r(x), i.e. if r(x) = r(y) then w(x) = w(y) for x, y ∈ C.
This fact follows directly from (12). Therefore, if D = C, then w = u◦r for some function
u : Rm → R

m
+ and we can write (12) in the form

ρ〈r′ − r′′, u(r′)− u(r′′)〉 ≥ ‖u(r′)− u(r′′)‖2 (13)

for all r′, r′′ ∈ r(C). If ρ = 1 then inequality (13) denotes that u is firmly nonexpansive
on r(C).

Remark 3.3. Let w be a residually directed weight strategy with respect to C. Then
one can easily see that for all x, y ∈ C

‖w(x)− w(y)‖ ≤ ρ
√
λ‖x− y‖

where ρ is the modulus of the residual orientation and λ = λmax(A
⊤A). Now we see that

w is a Lipschitz continuous function.

Remark 3.4. If w is a residually directed weight strategy with respect to D ⊂ C then

Aw(x) = Aw(y) =⇒ w(x) = w(y)

for x ∈ C, y ∈ D. This fact follows easily from the inequalities

ρ〈x− y, Aw(x)− Aw(y)〉 = ρ〈r(x)− r(y), w(x)− w(y)〉
≥ ‖w(x)− w(y)‖2.

Lemma 3.5. Let a weight strategy w be residually directed with respect to FixT . If

x, z ∈ FixT then w(x) = w(z).

Proof. Let x, z ∈ FixT . It follows from the equivalence (i) ⇔ (iv) in Lemma 2.1 that
for all y ∈ C

〈r(y)− r(x), w(x)〉 ≥ 0
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and
〈r(y)− r(z), w(z)〉 ≥ 0.

If we set y = z in the first inequality and y = x in the second one then we obtain, by the
residual orientation of w with respect to FixT ,

0 ≥ 〈r(x)− r(z), w(x)〉+ 〈r(x)− r(z),−w(z)〉
= 〈r(x)− r(z), w(x)− w(z)〉

≥ 1

ρ
‖w(x)− w(z)‖2 ≥ 0,

where ρ > 0 is a modulus of the residual orientation. Consequently, w(x) = w(z).

Corollary 3.6. Let a weight strategy w be residually directed with respect to C. If z ∈
FixT then

FixT ⊂ FC(−Aw(z)).

Proof. Let z, x ∈ FixT . Then we have, by the equivalence (i) ⇔ (iii) in Lemma 2.1,
x ∈ FC(−Aw(x)). Consequently, x ∈ FC(−Aw(z)) by Lemma 3.5.

Definition 3.7. We say that a weight strategy w is compatible with FixT if for any
z ∈ FixT and x ∈ C

w(x) = w(z) ⇒ x ∈ FC(−Aw(z)).

In Examples 3.15 and 3.16 we present some conditions which guarantee the compatibility
of a weight strategy with respect to FixT .

Lemma 3.8. Let a weight strategy w be compatible with FixT . Then for arbitrary z ∈
FixT and x ∈ C

w(x) = w(z) ⇒ x ∈ FixT .

Proof. The Lemma follows directly from the equivalence (i) ⇔ (iii) in Lemma 2.1.

Corollary 3.9. Let a weight strategy w be residually directed with respect to FixT and

compatible with FixT . Then for arbitrary z ∈ FixT and x ∈ C

w(x) = w(z) ⇐⇒ x ∈ FixT .

Proof. The equivalence follows from Lemmas 3.8 and 3.5.

Remark 3.10. If w is residually directed, γ is a continuous function then, by Remark
3.3, T is continuous. If, furthermore, C is compact then if follows from the Brouwer
fixed-point theorem that FixT 6= ?.

Definition 3.11. We say that a weight operator w : C → R
m
+ is weakly compatible with

M if
w(x) = 0 ⇒ x ∈ M

for all x ∈ C.

Lemma 3.12. If a weight strategy w is weakly compatible with M then

r(x)⊤w(x) ≤ 0 ⇒ x ∈ M .
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Proof. The Lemma follows immediately from Definitions 1.1 and 3.11.

Corollary 3.13. Let M 6= ?. If w is a weight strategy which is weakly compatible with

M then M = FixT .

Proof. Inclusion M ⊂ FixT follows directly from Definition 1.1 and from equality 3.
Now we show that FixT ⊂ M . Suppose that x /∈ M for some x ∈ FixT . By inclusion
(5) we have

w(x)⊤r(y) = w(x)⊤A⊤y − w(x)⊤b ≤ 0

for all y ∈ M . On the other hand, by the equivalence (i) ⇔ (iv) in Lemma 2.1, we have

w(x)⊤r(y) ≥ w(x)⊤r(x)

for all y ∈ C. Consequently, w(x)⊤r(x) ≤ 0, and x ∈ M , by Lemma 3.12, a contradiction.

Remark 3.14. Consider a perturbed LSFP: find x ∈ C such that A⊤x ≤ b + d with
d ∈ R

m
+ . Denote by rd(x) the residual vector for the perturbed system, i.e. rd(x) = r(x)−d.

Let w be a weight strategy for the perturbed system. Then we have

rd(x)
⊤w(x) = r(x)⊤w(x)− d⊤w(x) ≤ r(x)⊤w(x).

Consequently, w is a weight strategy for the original system. If, furthermore, w is residu-
ally directed with respect to a subset D ⊂ C for the perturbed system then w is residually
directed with respect to D for the original one since r(x)−r(z) = rd(x)−rd(z). The same
concerns the compatibility of w with FixT since T does not depend on the perturbation
vector d.

Now we give examples of a weight strategy and show their properties.

Example 3.15. Let fi : R+→ R+, i ∈ I, be arbitrary functions with properties

(i) fi(0) = 0, i ∈ I,

(ii) fi is nondecreasing, i ∈ I,

(iii) fi is Lipschitz continuous with Lipschitz constant νi ≥ 0, i ∈ I.

Let ωi : C → R+ be defined by the equality

ωi(x) = fi(ρi+(x)),

i ∈ I, and let w(x) = (ω1(x), ..., ωm(x))
⊤, x ∈ C. If we define f : Rm

+ → R
m
+ as follows

f(t) = (f1(τ1), ..., fm(τm))
⊤, where t = (τ1, ..., τm)

⊤, then we have w(x) = f(r+(x)).

(a) We show that w is a weight strategy. We have, by property (i),

r(x)⊤w(x) =
∑

i∈I

ρi(x)fi(ρi+(x))

=
∑

i∈I

ρi+(x)fi(ρi+(x)).

If r(x)⊤w(x) ≤ 0 then ρi+(x)fi(ρi+(x)) = 0 for all i ∈ I and, by property (i),
fi(ρi+(x)) = 0, i ∈ I, i.e. w(x) = 0.
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(b) We show that w is residually directed with modulus ρ = νmax = maxi∈I νi. By
assumptions (i)-(iii), we have for all x, z ∈ R

n

νmax〈w(x)− w(z), r(x)− r(z)〉
= νmax

∑

i∈I

fi(ρi+(x))ρi(x) + fi(ρi+(z))ρi(z))

−νmax

∑

i∈I

[fi((ρi+(x))ρi(z) + fi(ρi+(z))ρi(x)]

≥ νmax

∑

i∈I

[fi(ρi+(x))ρi+(x) + fi(ρi+(z))ρi+(z)]

−νmax

∑

i∈I

[fi(ρi+(x)ρi+(z) + fi(ρi+(z))ρi+(x)]

= νmax

∑

i∈I

[fi(ρi+(x))− fi(ρi+(z))] · [ρi+(x)− ρi+(z)]

= νmax

∑

i∈I

|fi(ρi+(x))− fi(ρi+(z))| · |ρi+(x)− ρi+(z)|

≥
∑

i∈I

νi |fi(ρi+(x))− fi(ρi+(z))| · |ρi+(x)− ρi+(z)|

≥
∑

i∈I

|fi(ρi+(x))− fi(ρi+(z))|2

= ‖w(x)− w(z)‖2.

(c) We show that w is compatible with FixT if all fi, i ∈ I, are increasing on [0,+∞).
Suppose that z ∈ FixT . Let x ∈ C and w(x) = w(z), i.e. f(r+(x)) = f(r+(z)),
i ∈ I. Consequently, r+(x) = r+(z) since fi are increasing for all i ∈ I. By
assumption (i) and by the equivalence (i) ⇔ (iv) in Lemma 2.1, we have for all
y ∈ C

〈r(y)− r+(z), f(r+(z))〉 = 〈r(y)− r(z), f(r+(z))〉
= 〈r(y)− r(z), w(z)〉 ≥ 0.

and

〈r(y)− r(x), w(x)〉 = 〈r(y)− r(x), f(r+(x))〉
= 〈r(y)− r+(z), f(r+(z))〉

+〈r+(z)− r(x), f(r+(x))〉
≥ 〈r+(z)− r(x), f(r+(x))〉
= 〈r+(z)− r+(x), f(r+(x))〉 = 0,

i.e. x ∈ FixT ⊂ FC(−Aw(z)), by (b) and by Corollary 3.6.

(d) We show that w is weakly compatible with M if all fi, i ∈ I, have the property

τ > 0 ⇒ fi(τ) > 0. (14)

Suppose that x ∈ C and w(x) = f(r+(x)) = 0. Then r(x) ≤ r+(x) = 0, by condition
(14), i.e. x ∈ M .
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(e) We show that r+ is constant on FixT and FixT is a convex subset if all fi, i ∈ I
are increasing on [0,+∞). Suppose that x, z ∈ FixT . Let α ∈ [0, 1] and let
u = (1− α)x+ αz. By (b) and by Lemma 3.5,

f(r+(x)) = w(x) = w(z) = f(r+(z)).

Consequently, r+(x) = r+(z) since all fi, i ∈ I, are increasing. Now, it is easily seen
that r+(u) = r+(z) and that

w(u) = f(r+(u)) = f(r+(z)) = w(z).

Now, by (c) and by Lemma 3.8, we have u ∈ FixT .

Example 3.16. Let v ∈ R
m
+ and let V = diag v. Define

w(x) = V r+(x). (15)

If v = αe for α > 0 then w(x) is a vector of weights proportional to residua of violated
constraints (such a strategy for the SC-method was introduced in [17]). If C = R

n,
γ(x) = 1 for all x ∈ R

n and v ∈ ∆m then the operator T with weights given by (15)
describes the simultaneous projection method (see equalities (10) and (11)). For V = I
and γ = 1/λ, where λ = λmax(A

⊤A), the operator T with weights given by (15) describes
the CQ-method (see equalities (8) and (9)). Let fi(τ) = νiτ , i ∈ I. Then, of course,
w(x) = f(r+(x)). Observe that all fi, i ∈ I, satisfy assumptions (i)-(iii) in Example 3.15.
Therefore, w is a residually directed weight strategy with modulus ρ = νmax = maxi∈I νi
with respect to R

n. Furthermore, if νmin = mini∈I νi > 0 then w is compatible with FixT ,
weakly compatible with M and FixT is convex.

We show that the compatibility of w with FixT holds also without assumption νmin > 0.
Suppose that z ∈ FixT and x ∈ C. Let w(x) = w(z), i.e. V r+(x) = V r+(z). For the

convex function h(x) = 1
2
‖V 1

2 r+(x)‖2 we have

∇h(x) = AV r+(x).

Then

z ∈ Argmin
y∈C

1

2
‖V 1

2 r+(y)‖2,

by the equivalence (i) ⇔ (vi) in Lemma 2.1. Consequently,

x ∈ Argmin
y∈C

1

2
‖V 1

2 r+(y)‖2

since V r+(x) = V r+(z) if and only if V
1
2 r+(x) = V

1
2 r+(z). Now, by the equivalence

(iii) ⇔ (vi) in Lemma 2.1,

x ∈ FC(−Aw(x)) = FC(−Aw(z)),

i.e. w is compatible with FixT .

If V = I then w(x) = r+(x) = PRm
+
(r(x)). In this case, the residual orientation of w

with modulus 1 with respect to R
n follows directly from the firmly nonexpansivity of the

metric projection (see [12, Chapter 12] or [3] for the definition and properties of a firmly
nonexpansive operator).
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Example 3.17. Define

fi(τ) = αi ln(βiτ + 1),

for αi, βi ≥ 0, i ∈ I, and

w(x) = f(r+(x))

for f(t) = (f1(τ1), ..., fm(τm))
⊤, where t = (τ1, ..., τm)

⊤. Observe that all fi, i ∈ I,
satisfy assumptions (i)-(iii) in Example 3.15 for νi = αiβi, i ∈ I. Therefore, w is a
residually directed weight strategy with modulus ρ = νmax = maxi∈I νi with respect to
R

n. Furthermore, if αi, βi > 0, i ∈ I, then all fi, i ∈ I are increasing, consequently, w is
compatible with FixT , weakly compatible with M and FixT is convex.

4. Fejér monotonicity

Lemma 4.1. If w is residually directed with modulus ρ > 0 then the operator F : Rn →
R

n, F = 1
ρλ
Aw, where λ = λmax(A

⊤A) > 0, is firmly nonexpansive, i.e.

〈F (x)− F (y), x− y〉 ≥ ‖F (x)− F (y)‖2.

Proof. We have by the residual orientation of w

〈 1

ρλ
Aw(x)− 1

ρλ
Aw(y), x− y〉 =

1

ρλ
〈w(x)− w(y), A⊤x− A⊤y〉

=
1

ρλ
〈w(x)− w(y), r(x)− r(y)〉

≥ 1

ρ2λ
‖w(x)− w(y)‖2

≥ 1

ρ2λ2
‖Aw(x)− Aw(y)‖2

= ‖ 1

ρλ
Aw(x)− 1

ρλ
Aw(y)‖2.

Theorem 4.2. Let T be defined by equality (3), where γ(x) = 1
ρλ

for all x ∈ R
n, ρ > 0

and λ = λmax(A
⊤A) > 0. Furthermore, let the weight strategy w be residually directed

with modulus ρ with respect to FixT . Then for all z ∈ FixT

‖T (x)− z‖2 ≤ ‖x− z‖2 − µ(2− µ)
1

ρ2λ2
‖Aw(x)− Aw(z)‖2. (16)

Consequently, T is Fejér monotone with respect to FixT for µ ∈ [0, 2].

Proof. Let z ∈ FixT and let x /∈ FixT . Then we have, by the nonexpansivity of the
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metric projection and by the firmly nonexpansivity of the operator F = 1
ρλ
Aw,

‖T (x)− z‖2 = ‖T (x)− T (z)‖2
= ‖PC(x− µF (x))− PC(z − µF (z))‖2
≤ ‖(x− µF (x))− (z − µF (z))‖2
= ‖x− z‖2 + µ2‖F (x)− F (z)‖2 − 2µ〈x− z, F (x)− F (z)〉
≤ ‖x− z‖2 + µ2‖F (x)− F (z)‖2 − 2µ‖F (x)− F (z)‖2
= ‖x− z‖2 − µ(2− µ)‖F (x)− F (z)‖2

= ‖x− z‖2 − µ(2− µ)
1

ρ2λ2
‖Aw(x)− Aw(z)‖2

If M 6= ? then we obtain the Fejér monotonicity of T with respect to M (= FixT ,
under assumptions of Corollary 3.13) without assumption on the residual orientation of
the strategy of weights. The following Theorem is a generalization of [17, Theorem 3.1]
for the SC-method.

Theorem 4.3. Let M 6= ?, w be any weight strategy and let γ(x) be defined by (6). Then
the operator T is Fejér monotone with respect to M for all µ ∈ [0, 2].

Proof. Let x ∈ R
n and let z ∈ M . If Aw(x) = 0 then T (x) = PC(x) and, by the

nonexpansivity of the metric projection,

‖T (x)− z‖ = ‖PC(x)− PC(z)‖ ≤ ‖x− z‖.

Let now Aw(x) 6= 0. Denote t(x) = PH−

w(x)
(x) − x. As we have observed in Section 1

the operator T defined by (3) for a weight strategy w and with the step size γ(x) defined
by (6) can be written in the form (7). Therefore, we have, by the nonexpansivity of the
metric projection,

‖T (x)− z‖2 = ‖T (x)− z‖2

= ‖PC(x− µ
r(x)⊤w(x)

‖Aw(x)‖2 Aw(x))− PC(z)‖2

= ‖PC(x+ µ(PH−

w(x)
(x)− x))− PC(z)‖2

≤ ‖x+ µt(x)− z‖2
= ‖x− z‖2 + µ2‖t(x)‖2 − 2µ〈z − x, t(x)〉.

It follows from the properties of the metric projection that

〈z − x, t(x)〉 ≥ ‖t(x)‖2.

Consequently,

‖T (x)− z‖2 ≤ ‖x− z‖2 − µ(2− µ)‖t(x)‖2 (17)

and T is Fejér monotone with respect to M .



A. Cegielski / Convergence of the Projected Surrogate Constraints Method for ... 181

5. Convergence results

Consider the following iterative procedure which generates a sequence (xk)

x1 ∈ C – arbitrary

xk+1 = PC(xk − µγkAwk) (18)

with µ ∈ (0, 2), γk ≥ 0 and wk ∈ R
m
+ . We can also write xk+1 = T (xk), where T is

defined by (3). Denote rk = r(xk) = A⊤xk − b and wk = w(xk) for a weight strategy w.
The following Theorem generalizes the results of Byrne [5, Proposition 2.1] in the case
Q = {u ∈ R

m : u ≤ b}.
Theorem 5.1. Let (xk) be a sequence generated by iterative procedure (18), where γk =
1
ρλ
, ρ > 0 and λ = λmax(A

⊤A) > 0. Furthermore, let wk = w(xk) for a weight strategy w
which is residually directed with modulus ρ with respect to FixT 6= ? and compatible with

FixT . Then the sequence (xk) converges to an element of FixT .

Proof. Let z ∈ FixT . There holds inequality (16) since all assumptions of Theorem 4.2
are satisfied. We write this inequality in the form

‖xk+1 − z‖2 ≤ ‖xk − z‖2 − µ(2− µ)
1

ρ2λ2
‖Aw(xk)− Aw(z)‖2. (19)

We see that the sequence (xk) is Fejér monotone with respect to FixT , hence (xk) is
bounded and ‖Aw(xk) − Aw(z)‖ → 0. Let x∗ ∈ C be a cluster point of (xk). We have
Aw(x∗) = Aw(z), consequently, w(x∗) = w(z) by Remark 3.4. By Lemma 3.8 we obtain
x∗ ∈ FixT since w is compatible with FixT . If we set z = x∗ in equality (19) we obtain
that the entire sequence converges to x∗.

Remark 5.2. Suppose that Aw = ∇h for a convex differentiable function h : Rn → R.
By the equivalence (i) ⇔ (vi) in Lemma 2.1, h can be seen as a penalty function: finding
a fixed point x is equivalent with the finding a point x ∈ C with minimal penalty.
Furthermore, if all conditions of Theorem 5.1 are satisfied, we obtain the convergence of
the iterative procedure (18) to a minimizer of the penalty function h |C . Such a situation
occurs, e.g. if we set w = V r+, where V = diag v for v ≥ 0 (see Example 3.16). The
penalty function h has in this case the form

h(x) =
1

2
‖V 1

2 r+(x)‖2 =
1

2

∑

i∈I

νi(a
⊤
i x− βi)

2
+.

Denote ‖r‖V := (r⊤+V r)
1
2 for r ∈ R

m. We see, that iterative procedure (18) converges to a
point x ∈ C with minimal norm ‖r+(x)‖V of the nonnegative part of the residual vector
r(x). If M 6= ? then, of course, minx∈C h(x) = 0. The result presented in Theorem 5.1
shows that that the convergence to a point with minimal penalty holds also in the case
M = ?. Such a situation occurs often in practice in large scale linear split feasibility
problems (see, e.g., [5, 11] for problems connected with computed tomography or [13, 16]
for problems connected with the intensity modulated radiation therapy).

Remark 5.3. One can prove that if F is a firmly nonexpansive operator then for µ ∈
(0, 2) the operators I − µF and PC(I − µF ) are averaged (see, e.g. [6, Lemma 2.1 and
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Proposition 2.1]). By Lemma 4.1 the operator F satisfying the conditions of Theorem 5.1
is firmly nonexpansive. Therefore, Theorem 5.1 can be also proved by the application of
Krasnoselskii–Mann Theorem. Similar technique was proposed by Byrne [6].

Remark 5.4. By the equivalence of (8) for γ(x) = 1
λ
and (9), we see that the PSC-

method with w(x) = r+(x) and with γ(x) = 1
λ
for all x ∈ C describes actually the CQ-

method of Byrne. Since w = r+ is residually directed weight strategy which is compatible
with FixT (see Example 3.16) the convergence of the CQ-method follows from Theorem
5.1.

Let now

γk =

{

r⊤
k
wk

‖Awk‖2
if Awk 6= 0

0 if Awk = 0,
(20)

where rk = r(xk) and wk = w(xk) for a weight strategy w. If, furthermore, C = R
n then

(18) describes the SC-method. The following Theorem generalizes the results of Yang and
Murty [17, Theorem 3.2].

Theorem 5.5. Let M 6= ? and let (xk) be a sequence generated by iterative procedure

(18), where γk is defined by (20) and wk is generated by a weight strategy which is weakly

compatible with M . Then the sequence (xk) converges to an element of M .

Proof. Let z ∈ M . We can write inequality (17) in the form

‖xk+1 − z‖2 ≤ ‖xk − z‖2 − µ(2− µ)‖PSk
(xk)− xk‖2,

where Sk = H−
wk

= {y ∈ R
n : w⊤

k A
⊤y ≤ w⊤

k b}. We see that ‖xk − z‖ converges,
consequently (xk) is bounded and ‖PSk

(xk) − xk‖ → 0. Now we obtain for any cluster
point x∗ of (xk)

PH−

w(x∗)
(x∗) = x∗,

i.e. x∗ ∈ H−
w(x∗) or, in other words, r(x∗)⊤w(x) ≤ 0. By Lemma 3.12, we have x∗ ∈ M .

Remark 5.6. Yang and Murty [17, Theorem 3.2] have supposed C = R
n and have

considered weights ωi, i ∈ I with property ωi > α > 0 for all i ∈ I(xk). This assumption
corresponds to the assumption that a vector of weights w has the property

ρi(x) > 0 ⇒ ωi(x) > α > 0.

Observe that w is a weight strategy which is weakly compatible with respect to M if the
above condition is satisfied.
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