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1. Introduction

A still open problem posed by Bezdek and Bezdek in [2] involves the convex hull of the so
called connected system of segments, that is connected sets given by the union of a finite
number of segments: such a problem asks to rearrange, without changing their lengths,
a fixed set of finitely many segments of Rd in order to form a connected system whose
convex hull has the greatest d-dimensional volume.

In order to fix the notations and present a precise mathematical formulation of this
problem, we define segment of Rd a set of the type

[q, q + s] := {q + λs : λ ∈ [0, 1]}, q ∈ Rd, s ∈ Rd \{0},

and, fixed n ∈ N, we say that a set Σ ⊆ Rd is a connected system of n segments of Rd,
briefly Σ ∈ CSS(d, n), if Σ is connected and

Σ =
n⋃

i=1

[qi, qi + si], qi ∈ Rd, si ∈ Rd \{0}. (1)

Referring to (1) we define the vector of the lengths of the edges of Σ as L(Σ) = (|s1|, . . . ,
|sn|) ∈ (R+)n and the set of the vertices of Σ as V (Σ) =

⋃n
i=1{qi, qi + si}. Moreover,

given L = (l1, . . . , ln) ∈ (R+)n we say that Σ ∈ CSS(d, n; L) if Σ ∈ CSS(d, n) and
L(Σ) = (lϕ(1), . . . , lϕ(n)) where ϕ is a suitable permutation of the indexes {1, . . . , n}, in
symbols ϕ ∈ Sn.

With these notations we can state the considered problem as follows (here Ld denote the
d-dimensional Lebesgue measure and co(Σ) is the convex hull of the set Σ).

ISSN 0944-6532 / $ 2.50 c© Heldermann Verlag



50 M. Gori / On a Maximization Problem for the Convex Hull of Connected Systems ...

Figure 1.1: Connected systems of 4 segments in R2

Problem 1.1. Let n ≥ d ≥ 2, L ∈ (R+)n and

M(d, n; L) = max
{Ld(co(Σ)) : Σ ∈ CSS(d, n; L)

}
. (2)

Find a set Σopt ∈ CSS(d, n; L) such that Ld(co(Σopt)) = M(d, n; L).

Problem 1.1 has been recently solved in the two dimensional case by Siegel [11] which
proved that an optimal set is given by the support of any polygonal curve whose edges
have the fixed lengths and which is inscribed in a semicircle (of course the order of the
edges in this polygonal curve can be arbitrary).

When higher dimensional spaces are considered the situation is instead more difficult and
only few partial results have been proved (see [2, 3]). In particular Bezdek and Bezdek
found, in the case of n = d+1, the shape of an optimal set among the connected systems
of segments having each segment with a vertex in common with an other segment of the
system (Figure 1.1 shows two connected systems of 4 segments in R2: the first satifies
the conditions required by Bezdek and Bezdek, the second does not). Further to our
notations, we can state this result as follows (see [2] Theorem 2).

Theorem 1.2. Fix L = (l1, . . . , ld+1) ∈ (R+)d+1 and consider the set T (d, d + 1; L) ∈
CSS(d, d + 1; L) given by

T (d, d + 1; L) =
d+1⋃
i=1

[0, si], si ∈ Rd \{0},

where 0 ∈ int(co({s1, . . . , sd+1})) and 〈si, sj − sk〉 = 0 for every j, k 6= i. Then given

Σ =
d+1⋃
i=1

[qi, qi + si] ∈ CSS(d, d + 1; L)

such that, for every ra, rb ∈ V (Σ), there exist k ∈ N and {rj}k
j=1 ⊆ V (Σ) satisfying

r1 = ra, rk = rb and, for every j = 1, . . . , k − 1, [rj, rj+1] =
[
qi(j), qi(j) + si(j)

]
for a

suitable i(j) ∈ {1, . . . , d + 1}, it holds Ld(co(Σ)) ≤ Ld(co(T (d, d + 1; L))).

Note that the set T (d, d + 1; L) considered in Theorem 1.2 is uniquely determined up to
isometries and that the conditions 0 ∈ int(co({s1, . . . , sd+1})) and 〈si, sj − sk〉 = 0 for
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Figure 1.2: The set T (3, 4; L)

every j, k 6= i required on T (d, d + 1; L), say that 0 is the center of the altitudes of the
simplex co(T (d, d + 1; L)) whose vertices are the points si (see Figure 1.2).

While about Problem 1.1 only few studies have been carried on, on the contrary the (still
unsolved) classical problem of the maximization of the convex hull among the continuous
and rectifiable curves with fixed length has been considered by several authors (see in
particular [5, 6, 7, 10, 12]; see also Section 7). An important result on this argument is
the proof that, in the smaller class of the so called convex curves, which were introduced
by Shoenberg [10], the equation of an optimal curve can be explicitly written down (as
proved by Nudel’man [7]): indeed the measure of the convex hull of the support of these
curves can be explicitly computed knowing their equations and the maximization problem
can be successful treated. Moreover it is reasonable to conjecture, following Zalgaller [12],
that the optimal curve among the convex ones solves also the problem among all the
continuous and rectifiable curves.

Let us give now precise definitions. A function p : [0, 1] → Rd is said a curve and
the set p([0, 1]) is said the support of p. A curve p ∈ Lip([0, 1],Rd) is said to be a
polygonal curve if there exists n ∈ N and a partition 0 = t0 < t1 < . . . < tn = 1
of [0, 1] such that p is linear on every interval of the type [ti−1, ti], i = 1, . . . , n. A
continuous curve p(t) = (p1(t), . . . , pd(t)) : [0, 1] → Rd is said to be convex if p([0, 1])
is not contained in any hyperplane and, for every (α0, α1, . . . , αd) ∈ Rd+1, the function
α0 +

∑d
i=1 αipi(t) : [0, 1] → R changes its sign at most d + 1 times (see [7, 10]). As

proved in [6] (see Lemma 8.1 therein, see also [7]) a polygonal curve p with partition
0 = t0 < t1 < . . . < tn = 1 is convex if and only if, for every 0 ≤ i0 < i1 < . . . < id ≤ n,

detd+1

(
(1, p(ti0)), . . . , (1, p(tid))

)
(3)

has the same sign and there exists at least a case for which the determinant is not null:
when the determinants are all non negative (non positive) the curve is said to be a
non negative (non positive) convex polygonal curve. The following theorem is due to
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Nudel’man (see [7] pg. 282).

Theorem 1.3. Given a non negative convex polygonal curve with partition 0 = t0 < t1 <
. . . < tn = 1, and defined for i = 1, . . . , n the vectors si := p(ti)− p(ti−1), it holds

Ld(co(p([0, 1]))) =
1

d!

∑
1≤i1<...<id≤n

detd(si1 , . . . , sid). (4)

In this paper, after having proved in Section 2 that Problem 1.1 is well defined, that is,
there always exists the maximum in (2) (see Theorem 2.4), we propose in Section 3 the
proof of the following formula, very similar to formula (4), which provides an upper bound
of the d-dimensional volume of the convex hull of a connected system of segments.

Theorem 1.4. Given n ≥ d ≥ 2 and Σ =
⋃n

i=1[qi, qi + si] ∈ CSS(d, n) it holds

Ld(co(Σ)) ≤ 1

d!

∑
1≤i1<...<id≤n

|detd(si1 , . . . , sid)| . (5)

It is worth noting that the right hand side of (5) has an interesting geometrical interpreta-
tion: indeed, as proved by Shephard [9], for every q1, . . . , qn ∈ Rd and s1, . . . , sn ∈ Rd \{0},
it holds

Ld

(
n∑

i=1

[qi, qi + si]

)
=

∑
1≤i1<...<id≤n

|detd(si1 , . . . , sid)| , (6)

where
∑n

i=1[qi, qi+si] is the usual Minkowsky sum of the segments [q1, q1+s1], . . . , [qn, qn+
sn].

By means of Theorem 1.4 and some further properties of the convex polygonal curves, we
are able to deduce several facts about Problem 1.1. The first consequence we propose is
the following theorem, proved in Section 4, which establishes sufficient conditions in order
to have an optimal set for Problem 1.1 given by the support of an injective non negative
convex polygonal curve: this theorem allows also to achieve in a simple way Theorem 1.6
below, whose proof can be found in Section 5. We note that the part of Theorem 1.6
concerning the case d = 2 has been already proved, in a slight different way, by Siegel in
[11].

Theorem 1.5. Let n ≥ d ≥ 2 and assume that, for every s1, . . . , sn ∈ Rd, there exist a
function ρ : {1, . . . , n} → {−1, 1}, a permutation ϕ ∈ Sn and a linear isometry Ψ : Rd →
Rd such that, if we define, for every i = 1, . . . , n, vi = Ψ

(
ρ(ϕ(i))sϕ(i)

)
, it holds

detd

(
vi1 , . . . , vid

) ≥ 0, ∀1 ≤ i1 < . . . < id ≤ n.

Then, fixed L ∈ (R+)n, there exists an injective non negative convex polygonal curve
p : [0, 1] → Rd such that

p([0, 1]) ∈ CSS(d, n; L) and Ld(co(p([0, 1]))) = M(d, n; L).

Theorem 1.6. If d = 2, n = d or n = d + 1, then Problem 1.1 admits an optimal set
which is the support of a suitable injective non negative convex polygonal curve.
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Subsequently we prove in Section 6 the two following theorems in which it is described,
in the very special cases n = d and n = d + 1, the shape of an optimal set for Problem
1.1. Note that Theorem 1.8 below generalizes Theorem 1.2.

Theorem 1.7. Fixed L = (l1, . . . , ld) ∈ (R+)d, it holds M(d, d; L) = 1
d!

l1 . . . ld and, letting

e1, . . . , ed be the standard basis of Rd, the set T (d, d; L) ∈ CSS(d, d; L) given by

T (d, d; L) =
d⋃

i=1

[0, liei],

satisfies Ld(co(T (d, d; L))) = M(d, d; L).

Theorem 1.8. Fixed L = (l1, . . . , ld+1) ∈ (R+)d+1, the set T (d, d+1; L) ∈ CSS(d, d+1; L)
given by

T (d, d + 1; L) =
d+1⋃
i=1

[0, si], si ∈ Rd \{0},

where 0 ∈ int( co( { s1, . . . , sd+1 } ) ) and 〈 si, sj − sk 〉 = 0 for every j, k 6= i,
satisfies Ld(co(T (d, d + 1; L))) = M(d, d + 1; L).

We note at this point that, thanks to Theorem 1.6, it seems reasonable to think that the
class of the convex polygonal curves assumes a fundamental role also in the problem of
the maximization of the convex hull of connected systems of segments: for this reason we
propose here the following conjecture.

Conjecture 1.9. Problem 1.1 always admits an optimal set which is the support of a
suitable injective non negative convex polygonal curve.

In Section 7 we will discuss some consequences of the validity of Conjecture 1.9 in rela-
tion with the already quoted problem of the maximization of the convex hull among the
continuous and rectifiable curves and with other related problems.

2. Existence of the maximum for the Problem 1.1

Let E ⊆ Rd be a non empty compact set, denote by CE the family of all the closed non
empty subsets of E and let, for every Σ1, Σ2 ∈ CE,

dH(Σ1, Σ2) := inf {r > 0 : Σ1 ⊆ Σ2 + B(0, r) and Σ2 ⊆ Σ1 + B(0, r)} .

The function dH is a distance on CE, called Hausdorff distance, and when {Σh}h∈N ⊆ CE

converges to Σ ∈ CE with respect to the topology induced by dH, that is, dH(Σh, Σ) → 0

as h →∞, we write Σh
H−→Σ.

In the following we need some results about Hausdorff distance: the proof of Theorem 2.1
below can be found in [1] (see Proposition 4.4.12, Theorem 4.4.15 and Theorem 4.4.17);
Propositions 2.2 and 2.3 are straightforward and their proofs are omitted. Hk means the
standard k-dimensional Hausdorff measure.
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Theorem 2.1. The metric space (CE, dH) is complete and compact. Moreover if {Σh}h∈N
⊆ CE is a sequence such that Σh is connected and Σh

H−→Σ, then Σ is connected and

H1(Σ) ≤ lim inf
h→∞

H1(Σh).

Proposition 2.2. Let Σh, Σ ∈ CE such that Σh
H−→Σ. Then co(Σh)

H−→ co(Σ).

Proposition 2.3. Let Σh, Σ ∈ CE such that Σh
H−→Σ. Then lim suph→∞ Ld(Σh) ≤

Ld(Σ).

Let us prove now the existence of the maximum for the Problem 1.1.

Theorem 2.4. For every n ≥ d ≥ 2 and L ∈ (R+)n, the set

{Ld(co(Σ)) : Σ ∈ CSS(d, n; L)
}

, (7)

admits a maximum.

Proof. Fixed L = (l1, . . . , ln) ∈ (R+)n, let us consider a maximizing sequence of (7) given
by

Σh =
n⋃

i=1

[qh
i , qh

i + sh
i ], qh

i ∈ Rd, sh
i ∈ Rd \{0}, |sh

i | = li.

Up to isometries, we can suppose that Σh ⊆ B(0, R), where R > 0 is sufficiently large:
this fact, together with Theorem 2.1, allows to state also that there exists a compact

and connected set Σopt ⊆ B(0, R) such that Σh
H−→Σopt and that, for every i = 1, . . . , n,

qh
i → qi and sh

i → si (where |si| = li). A simple computation shows that, for every
i = 1, . . . , n,

[qh
i , qh

i + sh
i ]

H−→[qi, qi + si] and Σopt =
n⋃

i=1

[qi, qi + si].

This implies that Σopt belongs to CSS(d, n; L) and, by Propositions 2.2 and 2.3, we obtain
that Ld(co(Σopt)) realizes the maximum for (7).

3. Proof of Theorem 1.4

In order to achieve the proof of Theorem 1.4 we need some preliminary results: while
Proposition 3.1 below is very simple and its proof can be omitted, Theorem 3.2 requires
a certain effort to be proved.

Proposition 3.1. Let n ≥ d ≥ 2, Σ =
⋃n

i=1[qi, qi + si] ∈ CSS(d, n) and s ∈ Rd \{0}. If
Ps : Rd → πs is the projection on πs = {x ∈ Rd : 〈x, s〉 = 0}, then Ps(Σ) is connected,
co(Ps(Σ)) = Ps(co(Σ)) and

Ps(Σ) =
n⋃

i=1

[Ps(qi), Ps(qi) + Ps(si)].



M. Gori / On a Maximization Problem for the Convex Hull of Connected Systems ... 55

Theorem 3.2. Let C ⊆ Rd be a convex and compact set, q ∈ Rd and s ∈ Rd \{0} such
that [q, q + s] ∩ C 6= ∅. Then

Ld(co(C ∪ [q, q + s])) ≤ Ld(C) +
1

d
|s|Hd−1(Ps(C)), (8)

where Ps : Rd → πs is the projection on πs = {x ∈ Rd : 〈x, s〉 = 0}.

Proof. If q, q + s ∈ C there is nothing to prove.

Step 1. Let us consider now the two cases q ∈ C, q + s 6∈ C and q 6∈ C, q + s ∈ C: since
they are completely analogous, only the first case is proved.

For every isometry Ψ : Rd → Rd, (8) holds if and only if

Ld(co(Ψ(C) ∪ [Ψ(q), Ψ(q) + Ψ(s)])) ≤ Ld(Ψ(C)) +
1

d
|Ψ(s)|Hd−1(PΨ(s)(Ψ(C))),

and then denoting with e1, e2, . . . , ed the canonical basis of Rd, we can assume q = 0,
s = |s|ed and πs = {x ∈ Rd : xd = 0}. Defined now E := co(C ∪ [0, s]) \C, we achieve the
claim of Step 1 proving

Ld(E) ≤ 1

d
|s|Hd−1(Ps(C)). (9)

In order to simplify the notations, we consider here only the case d ≥ 4: the (simpler)
proofs of the cases d = 2, 3 can be obtained following a similar argument and, for this
reason, are left to the reader.

In order to evaluate Ld(E) we change the variables passing to the cylindric coordinates.
Let us consider then the function

φ : (0,∞)× (0, π)d−3 × (0, 2π)× R→ Rd

defined as




x1 = φ1(ρ, θ1, . . . , θd−3, θd−2, z) = ρ cos θ1 ,

x2 = φ2(ρ, θ1, . . . , θd−3, θd−2, z) = ρ sin θ1 cos θ2 ,
...

xd−2 = φd−2(ρ, θ1, . . . , θd−3, θd−2, z) = ρ sin θ1 sin θ2 . . . sin θd−3 cos θd−2 ,

xd−1 = φd−1(ρ, θ1, . . . , θd−3, θd−2, z) = ρ sin θ1 sin θ2 . . . sin θd−3 sin θd−2 ,

xd = φd(ρ, θ1, . . . , θd−3, θd−2, z) = z ,

and its Jacobian determinant

J(ρ, θ1, . . . , θd−3, θd−2) = ρd−2 sind−3 θ1 sind−4 θ2 . . . sin θd−3.

By means of this change of variables, letting θ = (θ1, . . . , θd−3, θd−2), we have

Ld(E) =

∫

Rd

χE(x)dx =

∫

(0,π)d−3×(0,2π)

∫

(0,∞)

(∫

R
χφ−1(E)(ρ, θ, z)dz

)
J(ρ, θ)dρdθ,
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where χE(x) is the characteristic function of the set E.

Let us consider now F = co(Ps(C) ∪ [0, s]) = co(Ps(C) ∪ {s}) (since 0 ∈ Ps(C)). The
volume of F is

Ld(F ) =
1

d
|s|Hd−1(Ps(C)).

On the other hand, by means of the cylindric coordinates, we obtain also

Ld(F ) =
1

d
|s|Hd−1(Ps(C)) =

∫

(0,π)d−3×(0,2π)

∫

(0,∞)

(∫

R
χφ−1(F )(ρ, θ, z)dz

)
J(ρ, θ)dρdθ,

so that, defined

H(ρ, θ) :=

∫

R
χφ−1(E)(ρ, θ, z)dz = L1({z ∈ R : φ(ρ, θ, z) ∈ E}),

and

R(ρ, θ) :=

∫

R
χφ−1(F )(ρ, θ, z)dz = L1({z ∈ R : φ(ρ, θ, z) ∈ F}),

we have proved (9) showing that, for every (ρ, θ), it is

0 ≤ H(ρ, θ) ≤ R(ρ, θ). (10)

In order to prove (10), we work with θ fixed: this allows to consider a two dimensional
problem. Let us define

µ(θ) = φ(1, θ, 0) and πθ = {ρµ(θ) + zed : ρ ≥ 0, z ∈ R},

and consider the function, whose range is included in πθ, defined as

r(α, t) = s + t(µ(θ) sin α− ed cos α),

where α ∈ [0, π], t ≥ 0. Note that with the notations introduced

H(ρ, θ) = L1({z : ρµ(θ) + zed ∈ E ∩ πθ})

and
R(ρ, θ) = L1({z : ρµ(θ) + zed ∈ F ∩ πθ}).

Let us define now

αθ = max
{

α ∈ [0, π] : {r(α, t) : t ≥ 0} ∩ C 6= ∅
}

.

This definition is clearly well posed as C is compact and αθ ∈ [0, π) since, by construction,
{r(π, t) : t ≥ 0} ∩ C = ∅. Moreover, for every 0 ≤ β ≤ αθ, {r(β, t) : t ≥ 0} ∩ C 6= ∅ and
we can consider also

t(β) = min{t ≥ 0 : r(β, t) ∈ C}
(that is well defined and strictly positive, since s 6∈ C), and p(θ) = r(αθ, t(αθ)) ∈ C (see
Figure 3.1). Let us prove now that

E ∩ πθ ⊆ co({0, s, p(θ)}). (11)
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Fixed x ∈ E ∩ πθ we can suppose x 6= s (otherwise there is nothing to prove): we show at
first there exist βx ∈ [0, αθ] and 0 ≤ tx ≤ t(βx) such that x = r(βx, tx). Indeed we have

πθ = {r(α, t) : t ≥ 0, α ∈ [0, π]}

so that x = r(βx, tx) for some βx ∈ [0, π] and tx ≥ 0. Moreover x ∈ co(C ∪ [0, s]) =
co(C ∪ {s}) and then, by the equality

co(C ∪ {s}) = {λs + (1− λ)y : y ∈ C, λ ∈ [0, 1]}

there exist y ∈ C and λ ∈ (0, 1) (since x 6∈ C, x 6= s) with x = λs + (1 − λ)y. A simple
computation shows that

y = s +
tx

1− λ
(µ(θ) sin βx − ed cos βx) = r

(
βx,

tx
1− λ

)
∈ {r(βx, t) : t ≥ 0},

that implies C ∩ {r(βx, t) : t ≥ 0} 6= ∅ that is βx ≤ αθ. Finally we have also tx ≤ t(βx)
because tx < tx

1−λ
and if it is tx > t(βx), then it follows

x ∈
[
r (βx, t(βx)) , r

(
βx,

tx
1− λ

)]
⊆ C

that is a contradiction.

Let pass now to prove (11). If βx = 0 this follows simply since x ∈ [0, s] ⊆ co({0, s, p(θ)}).
If instead 0 < βx ≤ αθ, we can find a unique couple (λ0, t0) ∈ (0, 1] × (0,∞) solution of
the equation

r(βx, t) = λp(θ).

Indeed, by the definitions of the involved quantities, the previous equation is equivalent
to the linear system in (λ, t) given by

{
t sin βx = λt(αθ) sin αθ

|s| − t cos βx = λ|s| − λt(αθ) cos αθ,

that has the unique solution (λ0, t0) given by

λ0 =
|s|

|s|+ t(αθ)(sin αθ cot βx − cos αθ)

and

t0 = t(αθ)
|s|

|s|+ t(αθ)(sin αθ cot βx − cos αθ)

sin αθ

sin βx

,

where λ0 ∈ (0, 1] and t0 > 0 since t(αθ) > 0, |s| > 0 and, by the assumption 0 < βx ≤
αθ < π, sin(βx) > 0, sin(αθ) > 0 and sin αθ cot βx − cos αθ ≥ 0. Being

λ0p(θ) = r(βx, t0) ∈ [0, p(θ)] ⊆ C,

we achieve x ∈ co({0, s, p(θ)}) proving that x ∈ [s, r(βx, t0)]: but this is simple because
r(βx, t0) ∈ C implies t0 ≥ t(βx) ≥ tx from which is follows x ∈ [s, r(βx, t0)] (see Figure
3.1). Hence (11) is proved.
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Figure 3.1: The set C ∩ πθ

Let us consider now the set Z = {zed : z ∈ R} and define

d(θ) = max{d(x, Z) : x ∈ C ∩ πθ} = max{d(x, Z) : x ∈ Ps(C) ∩ πθ} < ∞,

where d(x, Z) is the usual distance of x from the set Z; note also that

Ps(C) ∩ πθ = {ρµ(θ) : 0 ≤ ρ ≤ d(θ)}.

If d(θ) = 0 we have, for every ρ > 0, H(θ, ρ) = R(θ, ρ) = 0 and (10) trivially holds.
If instead d(θ) > 0 it follows αθ > 0 and we consider the unique solution (z0, t0) of the
equation

d(θ)µ(θ) + zed = r(αθ, t),

given by

z0 = |s| − d(θ) cot αθ ∈ R and t0 =
d(θ)

sin(αθ)
> 0

as it can be seen by solving, with respect to z and t, the equivalent linear system

{
d(θ) = t sin αθ,

z = |s| − t cos αθ.

If we define

w(θ) = d(θ)µ(θ) + (|s| − d(θ) cot αθ)ed = r

(
αθ,

d(θ)

sin(αθ)

)
, (12)

since p(θ) ∈ [s, w(θ)], we have {0, s, p(θ)} ⊆ co({0, s, w(θ)}) and by (11) it follows

E ∩ πθ ⊆ co({0, s, w(θ)})
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(see Figure 3.1). By the argument till now developed, we have obtained that, for every
fixed θ, if d(θ) = 0 then (10) holds while if d(θ) > 0, it is

H(ρ, θ) = L1({z : ρµ(θ) + zed ∈ E ∩ πθ})
≤ L1({z : ρµ(θ) + zed ∈ co({0, s, w(θ)})}) := R′(θ, ρ),

where w(θ) is defined in (12). Moreover, since F ∩ πθ = co({0, s, d(θ)µ(θ)}), it is also

R(ρ, θ) = L1({z : ρµ(θ) + zed ∈ co({0, s, d(θ)µ(θ)})}).

By construction we have, for every ρ > d(θ), R(θ, ρ) = R′(θ, ρ) = 0 and, if 0 < ρ ≤ d(θ),

it can be easily computed that R(θ, ρ) = R′(θ, ρ) = |s|
(
1− ρ

d(θ)

)
. This proves (10) and

then Theorem 3.2 follows in the special case of Step 1.

Step 2. Assume that q, q + s 6∈ C and let w ∈ [q, q + s] ∩ C. We apply Step 1 to the
segments [w, w + s1] and [w,w + s2] where s1 = q − w and s2 = q − w + s. Clearly
|s1|+ |s2| = |s| and since s1 ‖ s2 it is πs1 = πs2 and Ps1 = Ps2 = Ps. Then

Ld
(

co(C ∪ [q, q + s])
)

= Ld
(

co(co(C ∪ [w,w + s1]) ∪ [w,w + s2])
)

≤ Ld(co(C ∪ [w,w + s1])) +
1

d
|s2|Hd−1

(
Ps(co(C ∪ [w, w + s1]))

)

≤ Ld(C) +
1

d
|s1|Hd−1(Ps(C)) +

1

d
|s2|Hd−1

(
Ps(co(C ∪ [w, w + s1]))

)

= Ld(C) +
1

d
|s|Hd−1(Ps(C)),

since, as is can be immediately verified,

Ps(co(C ∪ [w, w + s1])) = Ps(C).

Then (8) is achieved in the full generality.

Proof of Theorem 1.4. Our purpose is to prove the validity of (5) on CSS(d, n), for
every couple (d, n) with n ≥ d ≥ 2: in order to do this we make use of the mathematical
induction on the dimension d ≥ 2. In the following, fixed Σ =

⋃n
i=1[qi, qi+si] ∈ CSS(d, n),

we will call Σj =
⋃j

i=1[qi, qi + si] with j = 1, . . . , n. We note that, up to reordering the
indexes, we can always suppose that every Σj is connected.

Step 1. We prove at first that (5) holds on CSS(2, n), for every n ≥ 2: now we use the
induction on n ≥ 2 as described in the two further steps.

Step 1.1. Let n = 2, q1, q2 ∈ R2 and s1, s2 ∈ R2 \{0} such that Σ2 =
⋃2

i=1[qi, qi + si] is
connected. By Theorem 3.2 applied with C = [q1, q1 + s1], q = q2 and s = s2, we have

L2(co(Σ2)) ≤ L2(Σ1) +
1

2
|s2|H1(Ps2(Σ1)) =

1

2
|s2||s1|| sin α| = 1

2
|det2(s1, s2)| ,
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where α is the angle between s1 and s2.

Step 1.2. Assume now that (5) holds on CSS(2, n − 1) and let us prove it holds on
CSS(2, n) too. Consider q1, . . . , qn ∈ R2 and s1, . . . , sn ∈ R2 \{0} such that the sets
Σj =

⋃j
i=1[qi, qi + si] are connected for every j = 1, . . . , n. By the induction hypothesis

on the number of segments we have

L2(co(Σn−1)) ≤ 1

2

∑
1≤i<j≤n−1

|det2(si, sj)| . (13)

Then, by Theorem 3.2 applied with C = co(Σn−1), q = qn and s = sn, we have

L2(co(Σn)) ≤ L2(co(Σn−1)) +
1

2
|sn|H1(Psn(co(Σn−1)))

≤ L2(co(Σn−1)) +
1

2
|sn|

∑
1≤i≤n−1

|si|| sin αi|

= L2(co(Σn−1)) +
1

2

∑
1≤i≤n−1

|det2(si, sn)|

≤ 1

2

∑
1≤i<j≤n−1

|det2(si, sj)|+ 1

2

∑
1≤i≤n−1

|det2(si, sn)| = 1

2

∑
1≤i<j≤n

|det2(si, sj)| ,

where αi is the angle between sn and si and the inequality

H1(Psn(co(Σn−1))) ≤
∑

1≤i≤n−1

|si|| sin αi|

follows by Proposition 3.1. Then we have proved (5) when d = 2.

Step 2. Let us suppose now that (5) holds on CSS(d−1, n), for every n ≥ d−1 and prove
its validity on CSS(d, n), for every n ≥ d: also in this case we use the induction on n ≥ d.

Step 2.1. Let n = d, q1, . . . , qd ∈ Rd and s1, . . . , sd ∈ Rd \{0} such that the sets Σj =⋃j
i=1[qi, qi + si] are connected for every j = 1, . . . , d. By Theorem 3.2 applied to C =

co(Σd−1), q = qd and s = sd we obtain

Ld(co(Σd)) ≤ Ld(co(Σd−1)) +
1

d
|sd|Hd−1(Psd

(co(Σd−1))).

Note that, since Σd−1 is connected, one can easily show that co(Σd−1) ⊆ q1 +span〈s1, . . . ,
sd−1〉, then Ld(co(Σd−1)) = 0. Moreover, by Proposition 3.1,

Psd
(co(Σd−1)) = co

(
d−1⋃
i=1

[Psd
(qi), Psd

(qi) + Psd
(si)]

)
.

Let us define vd = sd/|sd| and let v1, . . . , vd be an orthonormal basis of Rd. With respect
to such basis we write, for every i = 1, . . . , d,

si = (ai,1, . . . , ai,d−1, ai,d) (in particular sd = (0, . . . , 0, |sd|))
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and then

Psd
(si) = (ai,1, . . . , ai,d−1, 0).

By induction hypothesis on the dimension and by the isometry between πsd
and Rd−1 we

have

Hd−1(Psd
(co(Σd−1))) ≤ 1

(d− 1)!

∣∣∣∣∣∣∣
detd−1




a1,1 . . . ad−1,1
...

. . .
...

a1,d−1 . . . ad−1,d−1




∣∣∣∣∣∣∣
.

In the end we have

Ld(co(Σd)) ≤ 1

d
|sd| 1

(d− 1)!

∣∣∣∣∣∣∣
detd−1




a1,1 . . . ad−1,1
...

. . .
...

a1,d−1 . . . ad−1,d−1




∣∣∣∣∣∣∣

=
1

d!

∣∣∣∣∣∣∣∣∣
detd




a1,1 . . . ad−1,1 0
...

. . .
...

...
a1,d−1 . . . ad−1,d−1 0
a1,d . . . ad−1,d |sd|




∣∣∣∣∣∣∣∣∣
=

1

d!
|detd(s1, . . . , sd)| .

Step 2.2. Assume now that (5) holds on CSS(d, n − 1) and let us prove it holds on
CSS(d, n) too. Consider q1, . . . , qn ∈ Rd and s1, . . . , sn ∈ Rd \{0} such that the sets
Σj =

⋃j
i=1[qi, qi + si] are connected for every j = 1, . . . , n. By Theorem 3.2 applied to

C = co(Σn−1), q = qn and s = sn, it holds

Ld(co(Σn)) ≤ Ld(co(Σn−1)) +
1

d
|sn|Hd−1(Psn(co(Σn−1))),

where, by Proposition 3.1, we have

Psn(co(Σn−1)) = co

(
n−1⋃
i=1

[Psn(qi), Psn(qi) + Psn(si)]

)
.

As in the previous step, define vd = sn/|sn| and let v1, . . . , vd be an orthonormal basis of
Rd and with respect to such basis we write, for every i = 1, . . . , n,

si = (ai,1, . . . , ai,d−1, ai,d) (in particular sn = (0, . . . , 0, |sn|))

and

Psn(si) = (ai,1, . . . , ai,d−1, 0).

By the induction hypothesis on the dimension and the isometry between πsn and Rd−1 we
get

Hd−1(Psn(co(Σn−1))) ≤ 1

(d− 1)!

∑
1≤i1<...<id−1≤n−1

∣∣∣∣∣∣∣
detd−1




ai1,1 . . . aid−1,1
...

. . .
...

ai1,d−1 . . . aid−1,d−1




∣∣∣∣∣∣∣
,
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and by the induction hypotheses on the number of segments

Ld(co(Σn−1)) ≤ 1

d!

∑
1≤i1<...<id≤n−1

∣∣∣∣∣∣∣
detd




ai1,1 . . . aid,1
...

. . .
...

ai1,d . . . aid,d




∣∣∣∣∣∣∣
.

Then

Ld(co(Σn)) ≤ 1

d!

∑
1≤i1<...<id≤n−1

∣∣∣∣∣∣∣
detd




ai1,1 . . . aid,1
...

. . .
...

ai1,d . . . aid,d




∣∣∣∣∣∣∣

+
1

d
|sn| 1

(d− 1)!

∑
1≤i1<...<id−1≤n−1

∣∣∣∣∣∣∣
detd−1




ai1,1 . . . aid−1,1
...

. . .
...

ai1,d−1 . . . aid−1,d−1




∣∣∣∣∣∣∣

≤ 1

d!

∑
1≤i1<...<id≤n−1

∣∣∣∣∣∣∣
detd




ai1,1 . . . aid,1
...

. . .
...

ai1,d . . . aid,d




∣∣∣∣∣∣∣

+
1

d!

∑
1≤i1<...<id−1≤n−1

∣∣∣∣∣∣∣∣∣
detd




ai1,1 . . . aid−1,1 0
...

. . .
...

...
ai1,d−1 . . . aid−1,d−1 0
ai1,d . . . aid−1,d |sn|




∣∣∣∣∣∣∣∣∣

=
1

d!

∑
1≤i1<...<id≤n

∣∣∣∣∣∣∣
detd




ai1,1 . . . aid,1
...

. . .
...

ai1,d . . . aid,d




∣∣∣∣∣∣∣
=

1

d!

∑
1≤i1<...<id≤n

|detd(si1 , . . . , sid)|

and (5) is finally achieved.

Theorem 1.4 allows immediately to give an alternative proof of the following theorem due
to Bezdek, Brass and Harborth (see [3] Theorem 1).

Theorem 3.3. Let n ≥ d ≥ 2 and L = (l1, . . . , ln) ∈ (R+)n with
∑n

i=1 li = 1. Consider
Σ ∈ CSS(d, n; L) such that all the segments of Σ are parallel to the standard coordinate
axes of Rd. Then Ld(co(Σ)) ≤ 1

ddd!
.

Proof. Let Σ =
⋃n

i=1[qi, qi + si] ∈ CSS(d, n; L) and suppose that every si is parallel to
one of the standard coordinate axes of Rd. Letting e1, . . . , ed be the standard basis of Rd,
consider, for every j = 1, . . . , d,

Dj = {i : si = λiej with λi 6= 0}.
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Then D1 ∪ . . . ∪Dd = {1, . . . , n} and by Theorem 1.4 it is

Ld(co(Σ)) ≤ 1

d!

∑
1≤i1<...<id≤n

|detd(si1 , . . . , sid)|

=
1

d!

∑
i1∈D1,...,id∈Dd

|detd(si1 , . . . , sid)|

=
1

d!

∑
i1∈D1,...,id∈Dd

|si1| . . . |sid | =
1

d!

( ∑
i1∈D1

|si1|
)

. . .

( ∑
id∈Dd

|sid |
)

.

Then we have

Ld(co(Σ)) ≤ 1

d!
a1 . . . ad.

As sup{a1 . . . ad : ai ≥ 0,
∑d

i=1 ai = 1} = 1
dd , the claimed inequality follows.

4. Proof of Theorem 1.5

In order to prove Theorem 1.5 we need the following preliminary propositions about
polygonal curves.

Proposition 4.1. Let s1, . . . , sn ∈ Rd \{0} be such that, for every 1 ≤ i1 < . . . < id ≤ n,
it is detd(si1 , . . . , sid) ≥ 0 and there exists at least a case for which the determinant is not
null. Then the polygonal curve p : [0, 1] → Rd defined as

p(0) = 0, p(1/n) = s1, p(2/n) = s1 + s2, . . . , p(1) = s1 + . . . + sn,

and extended linearly elsewhere is an open non negative convex polygonal curve.

Proof. Let’s start proving that p is an open polygonal curve. Supposing by contradiction
that

∑n
i=1 si = 0 (that is, p is closed), by hypotheses we know there exist d vectors among

s1, . . . , sn, which are linearly independent: then we can define

i1 = 1,

i2 = min{i : si 6∈ span(si1)},
...

...
...

id = min{i : si 6∈ span(si1 , . . . , sid−1
)}.

Clearly detd(si1 , . . . , sid) > 0 and since sid = −∑
i6=id

si, it is also

0 < detd(si1 , . . . , sid) = −
∑

i 6=id

detd(si1 , . . . , sid−1
, si). (14)

However, by definition of si1 , . . . , sid , it is

detd(si1 , . . . , sid−1
, si) = 0, ∀i ≤ id−1, (15)

while, by hypothesis, it is

detd(si1 , . . . , sid−1
, si) ≥ 0, ∀i > id−1. (16)
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Since (15) and (16) contradict (14), we conclude that p has to be open.

Using (3), we prove now that p is a non negative convex polygonal curve showing that,
for every 0 ≤ i0 < i1 < . . . < id ≤ n, we have

detd+1

(
(1, p(i0/n)), (1, p(i1/n)), . . . , (1, p(id/n))

)
≥ 0,

and there exists at least a case for which the determinant does not vanish. Indeed, using
the elementary properties of the determinants, it holds

detd+1

(
(1, p(i0/n)), (1, p(i1/n)), . . . , (1, p(id/n))

)

= detd+1

(
(1, p(i0/n)), (0, p(i1/n)− p(i0/n)), . . . , (0, p(id/n)− p(id−1/n))

)

= detd(p(i1/n)− p(i0/n), . . . , p(id/n)− p(id−1/n))

= detd(si0+1 + . . . + si1 , si1+1 + . . . + si2 , . . . , sid−1+1 + . . . + sid)

=

i1∑
j1=i0+1

i2∑
j2=i1+1

. . .

id∑
jd=id−1+1

detd(sj1 , sj2 , . . . , sjd
),

and the proof is finally achieved.

Proposition 4.2. Let n ≥ d ≥ 2, L = (l1, . . . , ln) ∈ (R+)n and p : [0, 1] → Rd be a
polygonal curve with partition 0 = t0 < t1 < . . . < tn = 1 such that, for every i = 1, . . . , n,
|p(ti) − p(ti−1)| = lϕ(i) (where ϕ ∈ Sn). If Ld(co(p([0, 1]))) = M(d, n; L), then p is
injective.

Proof. Let us consider p as in the statement (note that, in particular, p([0, 1]) ∈ CSS(d, n;
L)) and assume, by contradiction, that p is not injective: then there exist x1, x2 ∈ [0, 1]
such that x1 < x2 and p(x1) = p(x2). Since, for every i = 1, . . . , n, p has to be injective on
every interval [ti−1, ti] (note that p(ti−1) 6= p(ti)), then there exist i, j ∈ {1, . . . , n} such
that i < j and x1 ∈ [ti−1, ti], x2 ∈ [tj−1, tj].

Step 1. Assume at first i < j − 1. Then the set

Σ := p([0, ti]) ∪ p([ti+1, 1])

is compact and connected, because p([0, ti]) and p([ti+1, 1]) are compact and connected
sets with p(x1) ∈ p([0, ti]) ∩ p([ti+1, 1]). Defined

L′ = (l1, . . . , lϕ(i+1)−1, lϕ(i+1)+1, . . . , ln) ∈ (R+)n−1,

clearly it is Σ ∈ CSS(d, n− 1; L′) and moreover it holds

Ld(co(Σ)) = Ld(co(p([0, 1]))), (17)

since the inequality Ld(co(Σ)) ≤ Ld(co(p([0, 1]))) follows by the hypotheses on p, while
the opposite inequality by the relations

Ld(co(p([0, 1]))) = Ld(co({p(t0), . . . , p(tn)})) and {p(t0), . . . , p(tn)} ⊆ Σ.
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If now n = d, then Ld(co(Σ)) = 0 and (17) implies Ld(co(p([0, 1]))) = 0 which contradicts
M(d, d; L) > 0. If instead n ≥ d + 1 (and Ld(co(Σ)) > 0, otherwise we argue as above),
let us consider the set

Σ′ := Σ ∪ [q, q + s],

where |s| = lϕ(i+1), q ∈ {p(t0), . . . , p(tn)} is an extremal point of co(Σ) and q+s 6∈ Σ. Then
Σ′ ∈ CSS(d, n; L), Ld(co(Σ′)) > Ld(co(p([0, 1]))) = M(d, n; L) and the contradiction is
found again.

Step 2. Assuming now i = j − 1, it is x1 ∈ [ti−1, ti], x2 ∈ [ti, ti+1]. Since it cannot be
x1 = ti or x2 = ti (else p is constant on [ti, ti+1] or [ti−1, ti] respectively) it is x1 ∈ [ti−1, ti),
x2 ∈ (ti, ti+1] and a simple computation shows that one of the following inclusions

p([ti, ti+1]) ⊆ p([ti−1, ti]), p([ti−1, ti]) ⊆ p([ti, ti+1]),

has to hold. Assuming the validity of the first inclusion (resp. the second inclusion), we
consider, if i < n− 1 (resp. i > 1), the set

Σ := p([0, ti]) ∪ p([ti+1, 1]) (resp. Σ := p([0, ti−1]) ∪ p([ti, 1])) ,

while, if i = n− 1 (resp. i = 1), the set

Σ := p([0, ti]) (resp. Σ := p([ti, 1])) ,

and working exactly as in the previous step we find the contradiction.

Proof of Theorem 1.5. Let L = (l1, . . . , ln) ∈ (R+)n and define

G1(d, n; L) = max

{
1

d!

∑
1≤i1<...<id≤n

detd(si1 , . . . , sid) : ϑ ∈ Sn, si ∈ Rd,
∣∣sϑ(i)

∣∣ = li

}
,

and

G2(d, n; L) = max

{
1

d!

∑
1≤i1<...<id≤n

|detd(si1 , . . . , sid)| : ϑ ∈ Sn, si ∈ Rd,
∣∣sϑ(i)

∣∣ = li

}
.

Clearly G1(d, n; L) ≤ G2(d, n; L): we prove that the assumptions made in the statement
assure also the validity of the opposite inequality. Indeed let s1, . . . , sn ∈ Rd and ϑ ∈ Sn

such that, for every i = 1, . . . , n,
∣∣sϑ(i)

∣∣ = li and

1

d!

∑
1≤i1<...<id≤n

|detd(si1 , . . . , sid)| = G2(d, n; L),

and consider ρ, ϕ, Ψ and v1, . . . , vn as in the statement. Then

detd(vi1 , . . . , vid) ≥ 0 ∀ 1 ≤ i1 < . . . < id ≤ n, (18)
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and considering ϑ0 = ϑ ◦ ϕ−1 ∈ Sn, we have that, for every i = 1, . . . , n,
∣∣vϑ0(i)

∣∣ = li and

G2(d, n; L) =
1

d!

∑
1≤i1<...<id≤n

|detd(si1 , . . . , sid)| =
1

d!

∑
1≤i1<...<id≤n

|detd(vi1 , . . . , vid)|

=
1

d!

∑
1≤i1<...<id≤n

detd(vi1 , . . . , vid) ≤ G1(d, n; L),

that implies

G1(d, n; L) = G2(d, n; L) =
1

d!

∑
1≤i1<...<id≤n

detd(vi1 , . . . , vid). (19)

Applying now Proposition 4.1 and Theorem 1.3 to the vectors v1, . . . , vn, we find an open
non negative convex polygonal curve p : [0, 1] → Rd such that

p([0, 1]) ∈ CSS(d, n; L) and Ld(co(p([0, 1]))) = G2(d, n; L).

Since by Theorem 1.4 it follows M(d, n; L)≤G2(d, n; L) and since it is also Ld(co(p([0, 1])))
≤ M(d, n; L), it has to be Ld(co(p([0, 1]))) = M(d, n; L). Finally we end applying Propo-
sition 4.2 to the polygonal curve p in order to obtain injectivity.

5. Proof of Theorem 1.6

Proof of Theorem 1.6. We will prove this theorem showing that, when d = 2, n = d
or n = d + 1, the assumptions of Theorem 1.5 are satisfied.

The case d = 2. Given s1, . . . , sn ∈ R2 \{0}, let us write si = (si,1, si,2) and consider
ρ : {1, . . . , n} → {−1, 1} such that, for every i = 1, . . . , n, ρ(i)si,2 ≥ 0, ϕ ∈ Sn such

that the finite sequence
ρ(ϕ(i))s1,ϕ(i)

|ρ(ϕ(i))sϕ(i)| decreases when i increases and Ψ equal to the identity.

Then defining, for every i = 1, . . . , n, vi = Ψ
(
ρ(ϕ(i))sϕ(i)

)
, it holds

det2(vi, vj) ≥ 0 ∀ 1 ≤ i < j ≤ n. (20)

The case n = d. The proof is trivial and left to the reader.

The case n = d + 1. Given s1, . . . , sd+1 ∈ Rd \{0}, let us consider the
(

d+1
d

)
= d + 1

determinants
Di = detd(s1, . . . , si−1, si+1 . . . , sd+1),

where i = 1, . . . , d + 1, and let I = {i : Di < 0} and |I| its cardinality. If I = ∅ there
is nothing to prove. If I 6= ∅ let us define ρ(i) = 1, if i 6∈ I, and ρ(i) = −1, if i ∈ I.
Considering now

D′
i = detd(ρ(1)s1, . . . , ρ(i− 1)si−1, ρ(i + 1)si+1 . . . , ρ(d + 1)sd+1),

it is D′
i = (−1)|I|Di, if i 6∈ I, and D′

i = (−1)|I|−1Di, if i ∈ I: then every D′
i has the same

sign and the thesis is achieved by choosing, if they are all non negative, ϕ and Ψ as the
identities while, if they are all negative, ϕ as the identity and Ψ as the reflection with
respect to any coordinate axis.

Remark 5.1. It is worth noting that, if d = 2, n = d or n = d+1, and L =
(

1
n
, . . . , 1

n

) ∈
(R+)n, Theorem 1.6 together with Theorems II and IV in [7] allows to achieve the value of
the constant M(d, n; L) and the equations of an injective non negative convex polygonal
curve whose support solves Problem 1.1.
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6. Proof of Theorems 1.7 and 1.8

Proof of Theorem 1.7. Let L = (l1, . . . , ld) ∈ (R+)d and consider, by means of Theo-
rem 2.4, Σopt =

⋃d
i=1[qi, qi + si] ∈ CSS(d, d; L) such that Ld(co(Σopt)) = M(d, d; L). By

applying Theorem 1.4 we have

M(d, d; L) = Ld(co(Σopt)) ≤ 1

d!
|detd(s1, . . . , sd)| ≤ 1

d!
|s1| . . . |sd| = 1

d!
l1 . . . ld.

Since Ld(co(T (d, d; L))) = 1
d!
l1 . . . ld, then Ld(co(T (d, d; L))) = M(d, d; L) and we end the

proof.

Proof of Theorem 1.8. Let L = (l1, . . . , ld+1) ∈ (R+)d+1. By means of Theorem 1.6
we know there exists an injective non negative convex polygonal curve p : [0, 1] → Rd

whose support belongs to CSS(d, d + 1; L) and satisfies the equality Ld(co(p([0, 1]))) =
M(d, d + 1; L). Since p([0, 1]) satisfies also the hypotheses of Theorem 1.2 we obtain that
Ld(co(T (d, d + 1; L))) = M(d, d + 1; L).

7. Some remarks about Conjecture 1.9

Given a curve γ we define its variation (or length) as

Var(γ) = sup

{
k∑

i=1

|γ(ti)− γ(ti−1)| : k ∈ N, 0 = t0 < t1 < t2 < . . . < tk = 1

}
, (21)

and when Var(γ) < ∞ we say that γ is rectifiable. Given the sets

RC(d) =
{
γ : [0, 1] → Rd : γ is continuous, rectifiable and Var(γ) ≤ 1

}

and
CC(d) = {Σ ⊆ Rd : Σ is connected, compact and H1(Σ) ≤ 1},

we can consider the two following problems:

Problem 7.1. Let d ≥ 2 and MRC(d) = max
{Ld(co(γ([0, 1]))) : γ ∈ RC(d)

}
. Find a

curve γopt ∈ RC(d) such that Ld(co(γopt([0, 1]))) = MRC(d).

Problem 7.2. Let d ≥ 2 and MCC(d) = max
{Ld(co(Σ)) : Σ ∈ CC(d)

}
. Find a set

Σopt ∈ CC(d) such that Ld(co(Σopt)) = MCC(d).

Note that, as already described in the introduction, Problem 7.1 has been considered by
several authors (see [5, 6, 7, 10, 12]) while, on the contrary, Problem 7.2 seems to appear
here for the first time.

By means of Theorems II’ and IV’ in [7], it can be proved that if Conjecture 1.9 is true
then the convex curve γopt = (γ1, . . . , γd) ∈ RC(d) defined, when d = 2ν + 1, by the
equations

γ2j−1(t) =
cos(2πjt)

2πj
√

ν + 1
2

, γ2j(t) =
sin(2πjt)

2πj
√

ν + 1
2

, j = 1, 2, . . . , ν

γ2ν+1(t) =
t√

2ν + 1
,
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and, when d = 2ν, by the equations

γ2j−1(t) =
cos((2j − 1)πt)

(2j − 1)π
√

ν
, γ2j(t) =

sin((2j − 1)πt)

(2j − 1)π
√

ν
, j = 1, 2, . . . , ν,

satisfies the equality

Ld(co(γopt([0, 1]))) = MCC(d) =

{
1

πνν!(2ν+1)!(2ν+1)ν+1
2

if d = 2ν + 1,

1
(πν)ν(2ν)!(2ν−1)!!

if d = 2ν.

Since, for every γ ∈ RC(d) it is γ([0, 1]) ∈ CC(d), we can conclude that the validity
of Conjecture 1.9 implies that γopt is an optimal curve for Problem 7.1 and its support
γopt([0, 1]) is an optimal set for Problem 7.2.
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