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1. Introduction

A still open problem posed by Bezdek and Bezdek in [2] involves the convex hull of the so
called connected system of segments, that is connected sets given by the union of a finite
number of segments: such a problem asks to rearrange, without changing their lengths,
a fixed set of finitely many segments of R? in order to form a connected system whose
convex hull has the greatest d-dimensional volume.

In order to fix the notations and present a precise mathematical formulation of this
problem, we define segment of R? a set of the type

[¢,q+ 5] = {g+As: A €[0,1]}, qeR%seR\{0},

and, fixed n € N, we say that a set £ C R? is a connected system of n segments of R?,
briefly 3 € CSS(d,n), if ¥ is connected and

n

2= U[Qiyqi + 5], ¢ €R%s € RU\{0}. (1)

i=1

Referring to (1) we define the vector of the lengths of the edges of ¥ as L(X) = (|s4],. ..,
s,]) € (Ry)™ and the set of the vertices of ¥ as V(X) = U.{¢:» ¢ + si}. Moreover,
given L = (I3,...,l,) € (Ry)™ we say that ¥ € CSS(d,n; L) if ¥ € CSS(d,n) and
L(E) = (lyq), - - - lpm)) Where ¢ is a suitable permutation of the indexes {1,...,n}, in
symbols ¢ € 5,,.

With these notations we can state the considered problem as follows (here £ denote the
d-dimensional Lebesgue measure and co(X) is the convex hull of the set X).
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Figure 1.1: Connected systems of 4 segments in R?

Problem 1.1. Letn>d > 2, L € (Ry)" and
M(d,n; L) = max {£L%co(X)) : £ € CSS(d,n; L) } . (2)
Find a set Yop, € CSS(d,n; L) such that L(co(Sop)) = M (d, n; L).

Problem 1.1 has been recently solved in the two dimensional case by Siegel [11] which
proved that an optimal set is given by the support of any polygonal curve whose edges
have the fixed lengths and which is inscribed in a semicircle (of course the order of the
edges in this polygonal curve can be arbitrary).

When higher dimensional spaces are considered the situation is instead more difficult and
only few partial results have been proved (see [2, 3]). In particular Bezdek and Bezdek
found, in the case of n = d + 1, the shape of an optimal set among the connected systems
of segments having each segment with a vertex in common with an other segment of the
system (Figure 1.1 shows two connected systems of 4 segments in R?: the first satifies
the conditions required by Bezdek and Bezdek, the second does not). Further to our
notations, we can state this result as follows (see [2] Theorem 2).

Theorem 1.2. Fiz L = (Iy,...,lqs1) € (R and consider the set T(d,d + 1;L) €
CSS(d,d + 1; L) given by

T(d,d+1;L) = Ej[o, sil, s € RE\{0},

i=1
where 0 € int(co({s1,...,5q+1})) and (s;,s; — sg) = 0 for every j,k #i. Then given

d+1
S = Jlg, ¢+ si] € CSS(d,d + 1; L)
i=1
such that, for every rq,ry, € V(X), there exist k € N and {r;}}_, C V(X) satisfying
r=Te, Tk =1y and, for every j = 1,....k — 1, [rj,rin] = [qg), qig) + sip) for a
suitable i(j) € {1,...,d+ 1}, it holds L% (co(X)) < L% (co(T(d,d + 1;L))).

Note that the set T'(d,d + 1; L) considered in Theorem 1.2 is uniquely determined up to
isometries and that the conditions 0 € int(co({s1,...,s4s+1})) and (s;,s; — si) = 0 for



M. Gori / On a Mazimization Problem for the Convex Hull of Connected Systems ... 51
S5

Figure 1.2: The set 7'(3,4; L)

every j,k # i required on T'(d,d + 1; L), say that 0 is the center of the altitudes of the
simplex co(T'(d,d + 1; L)) whose vertices are the points s; (see Figure 1.2).

While about Problem 1.1 only few studies have been carried on, on the contrary the (still
unsolved) classical problem of the maximization of the convex hull among the continuous
and rectifiable curves with fixed length has been considered by several authors (see in
particular [5, 6, 7, 10, 12]; see also Section 7). An important result on this argument is
the proof that, in the smaller class of the so called convex curves, which were introduced
by Shoenberg [10], the equation of an optimal curve can be explicitly written down (as
proved by Nudel'man [7]): indeed the measure of the convex hull of the support of these
curves can be explicitly computed knowing their equations and the maximization problem
can be successful treated. Moreover it is reasonable to conjecture, following Zalgaller [12],
that the optimal curve among the convex ones solves also the problem among all the
continuous and rectifiable curves.

Let us give now precise definitions. A function p : [0,1] — R? is said a curve and
the set p([0,1]) is said the support of p. A curve p € Lip([0,1],R?) is said to be a
polygonal curve if there exists n € N and a partition 0 = t) < t; < ... < t, =1
of [0,1] such that p is linear on every interval of the type [t;_1,%], i = 1,...,n. A
continuous curve p(t) = (py(t),...,pa(t)) : [0,1] — R% is said to be convez if p([0,1])
is not contained in any hyperplane and, for every (o, aq,...,qq) € R¥! the function
ap + S0 aipi(t) ¢ [0,1] — R changes its sign at most d + 1 times (see [7, 10]). As
proved in [6] (see Lemma 8.1 therein, see also [7]) a polygonal curve p with partition
0=ty <ty <...<t,=11is convex if and only if, for every 0 < ip < iy < ... <ig <n,

detas (1 p(to), - (Lp(t,)) 3)

has the same sign and there exists at least a case for which the determinant is not null:
when the determinants are all non negative (non positive) the curve is said to be a
non negative (non positive) convex polygonal curve. The following theorem is due to
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Nudel’'man (see [7] pg. 282).

Theorem 1.3. Given a non negative convex polygonal curve with partition 0 =ty < t; <
... <t, =1, and defined for i =1,...,n the vectors s; :== p(t;) — p(ti—1), it holds

Ed(co(p([(),l]))):% S detalsi, s, (@)

T 1<ii<..<ig<n

In this paper, after having proved in Section 2 that Problem 1.1 is well defined, that is,
there always exists the maximum in (2) (see Theorem 2.4), we propose in Section 3 the
proof of the following formula, very similar to formula (4), which provides an upper bound
of the d-dimensional volume of the convex hull of a connected system of segments.

Theorem 1.4. Givenn >d > 2 and ¥ =J_,[¢;, ¢ + s;) € CSS(d, n) it holds

£d(co(2))§% > |dety(siys .- si,)] (5)

1<i1<...<ig<n

It is worth noting that the right hand side of (5) has an interesting geometrical interpreta-
tion: indeed, as proved by Shephard [9], for every ¢, ..., ¢, € R?and s1,...,s, € R4\{0},

it holds
‘Cd (Z[Qi7Qi+5i]> = Z |detd(5i17'”78id)’7 (6)
i=1 1<ig <..<ig<n
where > [gi, ¢;+5;] is the usual Minkowsky sum of the segments [¢1, ¢1+51], - - -, [¢ns @n+
Sp)-

By means of Theorem 1.4 and some further properties of the convex polygonal curves, we
are able to deduce several facts about Problem 1.1. The first consequence we propose is
the following theorem, proved in Section 4, which establishes sufficient conditions in order
to have an optimal set for Problem 1.1 given by the support of an injective non negative
convex polygonal curve: this theorem allows also to achieve in a simple way Theorem 1.6
below, whose proof can be found in Section 5. We note that the part of Theorem 1.6

concerning the case d = 2 has been already proved, in a slight different way, by Siegel in
[11].

Theorem 1.5. Let n > d > 2 and assume that, for every si,...,s, € R, there exist a

function p: {1,...,n} — {—1,1}, a permutation ¢ € S, and a linear isometry ¥ : RY —

R? such that, if we define, for everyi=1,...,n, v; =W (p(p(2))sp@)), it holds
detd('uil,...,vid) >0, Vi< <...<ig<n.

Then, fized L € (Ry)", there exists an injective non negative conver polygonal curve
p:[0,1] — R? such that

p([0,1]) € CSS(d,n; L) and  L%co(p([0,1]))) = M(d,n; L).

Theorem 1.6. If d =2, n =d orn = d—+ 1, then Problem 1.1 admits an optimal set
which 1s the support of a suitable injective non negative convex polygonal curve.
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Subsequently we prove in Section 6 the two following theorems in which it is described,
in the very special cases n = d and n = d + 1, the shape of an optimal set for Problem
1.1. Note that Theorem 1.8 below generalizes Theorem 1.2.

Theorem 1.7. Fized L = (I1,...,l;) € (Ry)Y, it holds M(d,d; L) = % li...1lg and, letting
e1,...,eq be the standard basis of R?, the set T'(d,d; L) € CSS(d,d; L) given by

T(d,d; L) = [0, Lies],

=1

satisfies L%(co(T(d,d; L)) = M(d,d; L).

Theorem 1.8. Fized L = (I1,...,lgy1) € (R the set T(d,d+1; L) € CSS(d, d+1; L)
gien by
d+1
T(d,d+1;L) = J[0,s1, s; € R"\{0},

i=1

where 0 € int(co({s1,...,84+1})) and (s;,s; —sk) = 0 forevery j, k # 1,
satisfies L(co(T(d,d +1; L)) = M(d,d +1; L).

We note at this point that, thanks to Theorem 1.6, it seems reasonable to think that the
class of the convex polygonal curves assumes a fundamental role also in the problem of
the maximization of the convex hull of connected systems of segments: for this reason we
propose here the following conjecture.

Conjecture 1.9. Problem 1.1 always admits an optimal set which is the support of a
suitable injective non negative convexr polygonal curve.

In Section 7 we will discuss some consequences of the validity of Conjecture 1.9 in rela-
tion with the already quoted problem of the maximization of the convex hull among the
continuous and rectifiable curves and with other related problems.

2. Existence of the maximum for the Problem 1.1

Let E C R? be a non empty compact set, denote by Cg the family of all the closed non
empty subsets of E and let, for every ¥, % € Cg,

dH(El,EQ) = inf{r >0: 21 g 22 + B(O,?") and 22 g 21 -+ B(O,T)}

The function dy is a distance on Cg, called Hausdorff distance, and when {¥; }eny C Cr
converges to X € Cg with respect to the topology induced by dy, that is, dy(3,, %) — 0

as h — 0o, we write X, LS )
In the following we need some results about Hausdorff distance: the proof of Theorem 2.1
below can be found in [1] (see Proposition 4.4.12, Theorem 4.4.15 and Theorem 4.4.17);

Propositions 2.2 and 2.3 are straightforward and their proofs are omitted. H* means the
standard k-dimensional Hausdorff measure.
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Theorem 2.1. The metric space (Cg,dy) is complete and compact. Moreover if {35} nen

C Cg is a sequence such that ¥y is connected and X, LN >, then X is connected and

HY(E) < hgicgml(zh).

Proposition 2.2. Let 3, % € Cp such that S, = 3. Then co(Xp) LN co(X).

Proposition 2.3. Let ¥;,,% € Cg such that ZhlE. Then limsup, .. LX) <
L£YY).

Let us prove now the existence of the maximum for the Problem 1.1.

Theorem 2.4. For everyn >d > 2 and L € (Ry)", the set
{£4co(¥)) : £ € CSS(d,n; L)}, (7)
admits a maximum.

Proof. Fixed L = (l4,...,1,) € (Ry)™, let us consider a maximizing sequence of (7) given
by

n

Eh:U[qzhanh—i_sma q? eRd7 S?GRd\{O}a |Sﬂ :ll
=1

Up to isometries, we can suppose that ¥, C B(0, R), where R > 0 is sufficiently large:
this fact, together with Theorem 2.1, allows to state also that there exists a compact

and connected set X, € B(0, R) such that 3, X, Yopt and that, for every i = 1,....n,
@' — ¢ and s! — s; (where |s;] = ;). A simple computation shows that, for every
i1=1,...,n,

n

H
g7 q + 5] =g, ¢ + 5] and ey = U[%‘, qi + sil.
i=1

This implies that ¥, belongs to CSS(d, n; L) and, by Propositions 2.2 and 2.3, we obtain
that £%(co(Xept)) realizes the maximum for (7). O

3. Proof of Theorem 1.4

In order to achieve the proof of Theorem 1.4 we need some preliminary results: while
Proposition 3.1 below is very simple and its proof can be omitted, Theorem 3.2 requires
a certain effort to be proved.

Proposition 3.1. Letn >d > 2, ¥ = " [¢;, ¢ + si] € CSS(d,n) and s € R*\{0}. If
P, : RY — r, is the projection on m, = {x € R : (x,8) = 0}, then Py(X) is connected,
co(Ps(X)) = Ps(co(X)) and

n

PS(Z) = U[Ps(qi)? PS<C]i) + PS(SZ')]'

=1
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Theorem 3.2. Let C C R? be a convex and compact set, ¢ € R* and s € R*\{0} such
that [q,q+ s|NC # 0. Then

L co(CU[g,q+ s])) < LYC) + éIS\ HTH(P(C)), (8)

where P, : R — w, is the projection on 7wy = {x € R : (z,s) = 0}.
Proof. If ¢q,q + s € C there is nothing to prove.
Step 1. Let us consider now the two cases ¢ € C,q+s ¢ C and q ¢ C,q+ s € C: since

they are completely analogous, only the first case is proved.

For every isometry ¥ : R? — R?, (8) holds if and only if
L co(¥(C) U [¥(q), T(g) +¥(s)])) < LYV(C)) + %ZW(S)! M (P ((0))),

and then denoting with ej, es, ..., ey the canonical basis of R?, we can assume ¢ = 0,
s = |sleq and m;, = {x € R? : 24 = 0}. Defined now E := co(C' U [0, s]) \ C, we achieve the
claim of Step 1 proving

LU(B) < 3| MU (R(C)). ©

In order to simplify the notations, we consider here only the case d > 4: the (simpler)
proofs of the cases d = 2,3 can be obtained following a similar argument and, for this
reason, are left to the reader.

In order to evaluate £%(E) we change the variables passing to the cylindric coordinates.
Let us consider then the function

¢ (0,00) x (0,7)43 x (0,27) x R — R?
defined as
X1 = <Z51(p, Or,... 76d73a9d7272) = pcosty,

To = (/52(07 O1,... 79d—3;0d—2az) = psinf; cos by ,

Ta—o = Ga—2(p,01,...,0q-3,04_2,2) = psinby sinby...sinly_3cosby o ,
Ta1 = Pa1(p,01,...,04-3,042,2) = psinbysinby...sinly 3sinby o ,

\l’d - gbd(p’ 917 s ’ed—370d—27z) =z,

and its Jacobian determinant
J(p,01,...,04_3,04_2) = p*2sin® 30, sin"* 0, ...sinf;_s.

By means of this change of variables, letting 6 = (6,,...,604_3,04_2), we have

ﬁd(E)Z/ XE(x)d:rz/ / </ qul(E)(p,@,Z)dZ) J(p, 0)dpdo,
R (0,m)4=3x(0,27) J (0,00) R
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where xg(z) is the characteristic function of the set E.

Let us consider now F' = co(Ps(C) U [0,s]) = co(Ps(C) U {s}) (since 0 € P;(C)). The
volume of F'is

L) = s (PO,

On the other hand, by means of the cylindric coordinates, we obtain also

1 _
£i(r) = e = [ [ ([ mton.210z) 5. 0)dpa0.
(0,m)4=3x(0,2m) J (0,00) R

so that, defined

H(p.0) = [ Xorr(e(pu6. 20z = £1((z € R 0(0.0.) € ),

and

R(p7 6) = / X¢>’1(F)(p797 Z)dZ = £1({Z eR: ¢(p7972> < F}>7
R
we have proved (9) showing that, for every (p,0), it is
0 < H(p,0) < R(p,0). (10)

In order to prove (10), we work with 6 fixed: this allows to consider a two dimensional
problem. Let us define

w(0) = ¢(1,0,0) and mp = {pu(0) + zeq: p > 0,2z € R},
and consider the function, whose range is included in 7y, defined as
r(a,t) = s+ t(u(f)sina — e4 cos a),
where a € [0, 7], > 0. Note that with the notations introduced
H(p,0) = L'({z: pu(0) + zeq € ENTy})

and
R(p,0) = L'({z : pu(0) + zeq € F N mg}).

Let us define now

agzmax{ae 0,7] : {r(a,t) :tz()}ﬂC’#(Z)}.

This definition is clearly well posed as C'is compact and ay € [0, 7) since, by construction,
{r(m,t) : t >0} NC = 0. Moreover, for every 0 < 3 < ay, {r(5,t):t >0} NC # 0 and
we can consider also

t(6) =min{t > 0:7(5,t) € C}

(that is well defined and strictly positive, since s ¢ C'), and p(0) = r(ag, t(ap)) € C (see
Figure 3.1). Let us prove now that

ENnmy Cco({0,s,p(0)}). (11)



M. Gori / On a Mazimization Problem for the Convex Hull of Connected Systems ... 57

Fixed = € ENmy we can suppose = # s (otherwise there is nothing to prove): we show at
first there exist 5, € [0, ay] and 0 < ¢, < t(8,) such that x = r(f,,t,). Indeed we have

g = {r(a,t): t > 0,0 € [0, 7]}

so that x = r(0,,t,) for some 3, € [0,7] and t, > 0. Moreover z € co(C U [0,s]) =
co(C' U {s}) and then, by the equality

co(CU{s})={ds+(1-Ny:yeC,rxel0,1]}

there exist y € C' and A € (0,1) (since x € C, x # s) with x = As + (1 — A\)y. A simple
computation shows that

y=s-+ 1t_—x)\(u(9) sin 8, — eqcos B,) =7 (@E, 1t_—x/\) € {r(B,t) : t > 0},

that implies C' N {r(B,,t) : t > 0} # 0 that is 8, < ap. Finally we have also t, < ¢(3,)

because t, < lt_””)\ and if it is ¢, > ¢(/3,), then it follows

L2
T e [7“ (ﬁl‘vt(ﬁx)) , T (51:, m)} ccC
that is a contradiction.

Let pass now to prove (11). If £, = 0 this follows simply since = € [0, s] C co({0, s, p(0)}).
If instead 0 < 3, < ap, we can find a unique couple (Ao, %) € (0,1] x (0, 00) solution of
the equation

(B, t) = Ap(0).
Indeed, by the definitions of the involved quantities, the previous equation is equivalent
to the linear system in (A, t) given by

tsin 8, = At(ay) sin ag
|s| — tcos B, = A|s| — At(ay) cos ag,

that has the unique solution (g, tg) given by

5]
|s| + t(ap)(sin ag cot B, — cos ay)

)\0:

and
|s] sin ay

to =t )
0 = t(as) |s| + t(cvg)(sin ag cot 3, — cos ) sin 3,

where Ao € (0,1] and ¢, > 0 since t(ap) > 0,|s| > 0 and, by the assumption 0 < 3, <
ag < 7, sin(,) > 0,sin(ay) > 0 and sin ay cot 3, — cos g > 0. Being

Aop(0) = r(Ba, to) € [0,p(0)] € C,

we achieve z € co({0,s,p()}) proving that x € [s,7(8,,%)]: but this is simple because
r(Bs,to) € C implies tg > t(5,) > t, from which is follows z € [s,7(0,,t0)] (see Figure
3.1). Hence (11) is proved.
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. w(e)

Bt

/ } ou(e)
0 d@HO)

C

Figure 3.1: The set C' N7y

Let us consider now the set Z = {ze,4 : 2 € R} and define
d(0) =max{d(z,Z) : x € CNmy} = max{d(x,Z) : z € P;(C) Nmy} < 00,
where d(z, Z) is the usual distance of x from the set Z; note also that

Py(C) Ny = {pp(0) : 0 < p < d(0)}.

If d(§) = 0 we have, for every p > 0, H(0,p) = R(0,p) = 0 and (10) trivially holds.
If instead d(6) > 0 it follows oy > 0 and we consider the unique solution (zy,to) of the
equation

d(0)(0) + zeq = r(ay, t),

given by
d(6)

sin(ay)

20 =|s| —d(f)cotayg € R and t,= >0

as it can be seen by solving, with respect to z and ¢, the equivalent linear system

{d(@) = tsin ay,

z = |s| — tcos ag.

If we define

w(B) = d(0)u(0) + (|s| — d(0) cot ag)eq = (Oé@, ,d(0> ) , (12)

sin(cvp)
since p(0) € [s,w(0)], we have {0, s,p(6)} C co({0,s,w(f)}) and by (11) it follows

E N C co({0,s,w(6)})
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(see Figure 3.1). By the argument till now developed, we have obtained that, for every
fixed 0, if d(f) = 0 then (10) holds while if d(6) > 0, it is

H(p,0) = L'({z : pp(0) + zeq € ENTy})
< LH({z : pu(0) + zeq € co({0, 5, w(B)})}) == R (0, p),
where w(6) is defined in (12). Moreover, since F' N my = co({0, s, d(8)(0)}), it is also
R(p,8) = £'({z : pu(6) + zea € co({0, 5, dO)(O)D)}).

By construction we have, for every p > d(0), R(0,p) = R'(0,p) = 0 and, if 0 < p < d(0),
it can be easily computed that R(0,p) = R'(0,p) = |s] <1 - d—(%)). This proves (10) and
then Theorem 3.2 follows in the special case of Step 1.

Step 2. Assume that q,q+ s ¢ C and let w € [q,q + s| N C. We apply Step 1 to the
segments [w,w + s1] and [w,w + s3] where s; = ¢ — w and s5 = ¢ — w + s. Clearly
|s1| + |s2] = |s| and since s; || so it is ms, = 7w, and Py, = Ps, = P;. Then

o (co(C’ Ulg,q+ s])>

s (ao(co(c U [w,w + 31]) [w, w + s5])
< £4co(C U fuw,w + 1)) + = [sal H (Pafeo(C U fw, w0+ 1))
< £4C) + s M PAC) + sl M (Puleo(C U fww + s1])
= LHC) + s T (R(O)),
since, as is can be immediately verified,
Pi(co(C' U [w,w + s1])) = Ps(C).

Then (8) is achieved in the full generality. O

Proof of Theorem 1.4. Our purpose is to prove the validity of (5) on CSS(d,n), for
every couple (d,n) with n > d > 2: in order to do this we make use of the mathematical
induction on the dimension d > 2. In the following, fixed ¥ = (J_, [¢:, ¢; +si] € CSS(d, n),

we will call ¥; = Ule[qi, ¢; + s;) with j = 1,...,n. We note that, up to reordering the
indexes, we can always suppose that every X, is connected.

Step 1. We prove at first that (5) holds on CSS(2,n), for every n > 2: now we use the
induction on n > 2 as described in the two further steps.

Step 1.1. Let n = 2, q1, ¢ € R* and 1,5, € R*\{0} such that ¥, = U?;l[%%' + s;] is
connected. By Theorem 3.2 applied with C' = [g1,¢1 + $1], ¢ = ¢2 and s = s5, we have

1 1 . 1
L%(co(%2)) < L3(%1) + §|SQ|H1(P52(21)) = glsellsillsinal = 7 |dets(s1, 52)]
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where « is the angle between s; and s,.

Step 1.2. Assume now that (5) holds on CSS(2,n — 1) and let us prove it holds on
CSS(2,n) too. Consider qi,...,q, € R? and sq,...,s, € R*\{0} such that the sets
¥, = UL l@, ¢ + si] are connected for every j = 1,...,n. By the induction hypothesis
on the number of segments we have

L2(co(Z_1)) < > deta(si, s5)] - (13)

1<i<j<n—1

DN | —

Then, by Theorem 3.2 applied with C' = co(3,,_1), ¢ = ¢, and s = s,,, we have
1
L3(co(3n)) < L3(c0(Zn1)) + Flsal H (Pa, (c0(En)))

1
< L2(c0(Sno1)) + = lsal D> Isill sinayl

2 :
1<i<n—1

1

:LQ(CO(En,l))—Fé Z |deta(s;, $n)|
1<i<n—1
<1 ldetalsis)l 43 S ldetalsis)l =5 3 [deta(si,sy)
=9 Z €l2(Si, Sj 9 : €L2(Si, Sn _2 L €2l Sis S5)|
1<i<j<n—1 1<i<n—1 1<i<j<n

where «; is the angle between s,, and s; and the inequality

H (P, (co(Zno1)) < Y sillsin oyl

1<i<n—1
follows by Proposition 3.1. Then we have proved (5) when d = 2.

Step 2. Let us suppose now that (5) holds on CSS(d —1,n), for every n > d—1 and prove
its validity on CSS(d,n), for every n > d: also in this case we use the induction on n > d.

Step 2.1. Let n = d, q1,...,q4 € R? and s1,...,s4 € R*\{0} such that the sets ¥; =
UJ_,[@:, ¢; + si] are connected for every j = 1,...,d. By Theorem 3.2 applied to C' =
co(X4-1), ¢ = qq and s = s4 we obtain

L(co(3q)) < L(co(q-1)) + é!sd! HH(Pyy(c0(Sa-1)))-

Note that, since ¥;_; is connected, one can easily show that co(¥4_1) C ¢; +span(sy, ...,
s4-1), then L% co(X4_1)) = 0. Moreover, by Proposition 3.1,

Puy(0(Z4) = co (U[P5d<qi>, Puy(a) + Psd<si>]) .

Let us define vg = s4/|sq4| and let vy, ..., vg be an orthonormal basis of R?. With respect
to such basis we write, for every i = 1,...,d,

si = (@i1,...,0id-1,0;4) (in particular sq = (0,...,0,|sq|))
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and then
PSd(si) = (aiJ? ey Aid—1, 0)

By induction hypothesis on the dimension and by the isometry between 7,, and R we
have

1 CL171 . ad_171
d—1 ) ]
H (Psd (CO(Zd—l))) S (d — 1)| detd_l .
a1 d—1 ... QAd—1,d-1
In the end we have
arir - ag—1,1
Ed(CO(Z )) < 1|3 |; det .
V=g @ =y |
ard-1 .- Qd-1d-1
ay1 c. Aq—1,1 0
1 . . : : 1
:_det . . . . :_det 87.__75 .
d! ’ aidg-1 --- 4141 0 d! [deta(s: )
Q1.4 Ce. aq—1,d |Sd|

Step 2.2. Assume now that (5) holds on CSS(d,n — 1) and let us prove it holds on
CSS(d,n) too. Consider qi,...,q, € R? and sq,...,s, € R\{0} such that the sets

X = Ll[qi, ¢; + si| are connected for every j = 1,...,n. By Theorem 3.2 applied to

C =co(X,-1), ¢ =q, and s = s,, it holds
d d 1 d—1
Lco(En)) < LYco(En-1)) + Slsal HT (B, (c0(Bn-1))),

where, by Proposition 3.1, we have

Py, (co(Xn-1)) = co (U [P, (¢:), Pe, (i) + Psn(si)]> :

i=1
As in the previous step, define vy = s,,/|s,| and let vy, ..., v4 be an orthonormal basis of
R? and with respect to such basis we write, for every i = 1,...,n,

$i = (@i1,...,0;4-1,0;q) (in particular s, = (0,...,0,[s,|))
and

Psn(si) = (Gi,l, ey Aid—1, 0)-

By the induction hypothesis on the dimension and the isometry between 7, and R we
get

@iy - @ig_1,1

d-1 1 . . .
H (P, (co(X,-1))) < =1 Z dety_; : . : :

T 1<ii <. . <ig_1<n—1

Qiyd—1 -+ Qiy_y d—1
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and by the induction hypotheses on the number of segments

1 ail’l e aid,l
d
L%co(Xp-1)) < a E dety
T 1<i1<..<ig<n—1 Qiyd - Qigd
Then
1 i1 - Qiy1
L%(co(%,)) < I g dety
" 1< <. <ig<n—1 Uiyd -+ Qiyd
Ay 1 Ce Qiy_q,1
+ 1| 1 ! E det '1 a
I8 €lg—1
d""(d—-1) :
1<i1<...<ig—1<n—1 iy d—1 - - - aid71 d—1
Qi1 - Ayt
< ! E det
— e
= d
1<y <. <ig<n—1 Uiyd - Gigd
Qi1 Ce Qiy_ 1,1 0
1 : - : :
+ a E dety : : : )
T 1<i1<..<ig_1<n—1 iy, d—1 -0 Qig_q,d—1 0
Qi ,d s QAig_1,d |5n|
1 (07 I ¢ S | 1
=5 D fdeta| i ||=g D Ideta(sa,..os,)l
1§Zl<<ld§n ail,d - aid,d 1§11<<’Ld§n
and (5) is finally achieved. O

Theorem 1.4 allows immediately to give an alternative proof of the following theorem due
to Bezdek, Brass and Harborth (see [3] Theorem 1).

Theorem 3.3. Letn >d > 2 and L = (ly,...,1,) € (Ry)" with Y, l; = 1. Consider
¥ € CSS(d,n; L) such that all the segments of ¥ are parallel to the standard coordinate
azes of R?. Then L%(co(X)) < .

Proof. Let ¥ = J_,[¢i, ¢ + s;] € CSS(d,n; L) and suppose that every s; is parallel to
one of the standard coordinate axes of R%. Letting ey, ..., eq be the standard basis of R?,
consider, for every j =1,...,d,
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Then Dy U...U Dy ={1,...,n} and by Theorem 1.4 it is

1
Ld(co(z))ga > deta(siy, .- osi,)]

1<ii<...<ig<n

= E Z |detd(si17 s 7Sid)|

" 41€D,...,igeDy

:% 3 |si1|...|sid|=$<2 |sil|>-~(2 I%l)-

11E€D1,...,ig€Dy 11€D, 1g€Dg

Then we have

1
Ed(CO(Z)) S Eal ..oy,

As sup{ay...aq:a; >0, Z?Zl a; =1} = did, the claimed inequality follows. ]

4. Proof of Theorem 1.5

In order to prove Theorem 1.5 we need the following preliminary propositions about
polygonal curves.

Proposition 4.1. Let sq,...,s, € R*\{0} be such that, for every 1 <i; < ... <iq <n,
it is deta(si,, ..., Si,) > 0 and there exists at least a case for which the determinant is not
null. Then the polygonal curve p : [0,1] — R? defined as

p(0) =0, p(1/n) = s1, p(2/n) = s1+s2,..., p(1) =s1+ ...+ sn,
and extended linearly elsewhere s an open non negative convex polygonal curve.

Proof. Let’s start proving that p is an open polygonal curve. Supposing by contradiction
that > | s; = 0 (that is, p is closed), by hypotheses we know there exist d vectors among

S1,-..,Sp, which are linearly independent: then we can define
il = 17
i, = min{i:s; € span(s;,)},
ig = min{i:s; € span(s;,...,Si, )}
Clearly detq(s;,, ..., si,) > 0 and since s;, = — Z#id s;, it is also
0 < deta(siy,-..,si,) =— Zdetd(sil, ey Sig s Si)- (14)
iiq
However, by definition of s;,,...,s;,, it is
detd(sila RIS Sid717 Si) = 07 VZ S id*h (15)

while, by hypothesis, it is

dety(Siyy .-y 8iy,,5) >0, Vi>ig . (16)
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Since (15) and (16) contradict (14), we conclude that p has to be open.

Using (3), we prove now that p is a non negative convex polygonal curve showing that,
for every 0 < ip < iy < ... <ig <n, we have

detasa ((L,plio/m)), (1, b /), . (1 pliafn))) =0,

and there exists at least a case for which the determinant does not vanish. Indeed, using
the elementary properties of the determinants, it holds

ety (1, plio/m)), (1p(ir/m)), - (1, plia/n))
= detyor ((1,pli/n)). (0,p(ir /m) = plin/n)), - (0. plia/n) — plia/n)))
= deta(p(ir/n) — plio/n), ... p(ia/n) — p(ia-1/n))
= detd<8i0+1 + ...+ Si1s Sii+1 + ...+ Sigy ooy Sig_1+1 + ...+ Sid)
i1 12 iq
= Z Z Z detd(8j1,8j2,...,8jd),
J1=to+1 jo=i1+1 Ja=ta—1+1
and the proof is finally achieved. O

Proposition 4.2. Letn > d > 2, L = (I,...,1,) € (R.)" and p : [0,1] — R? be a
polygonal curve with partition 0 =ty < t; < ... <t, =1 such that, for everyi =1,...,n,
plts) — Pt = by (where @ € So). If LYco(p([0,1]))) = M(d,n; L), then p is
mjective.

Proof. Let us consider p as in the statement (note that, in particular, p([0, 1]) € CSS(d, n;
L)) and assume, by contradiction, that p is not injective: then there exist xq,xs € [0, 1]
such that x1 < x5 and p(x1) = p(z2). Since, for every ¢ = 1,...,n, p has to be injective on
every interval [t;_1,t;] (note that p(t;_1) # p(t;)), then there exist i,7 € {1,...,n} such
that i < j and 1 € [t;i_1, ], z2 € [tj_1, 8]

Step 1. Assume at first ¢ < 7 — 1. Then the set
%= p([0,8;]) Up([tisa, 1])

is compact and connected, because p([0,¢;]) and p([t;1+1,1]) are compact and connected
sets with p(z1) € p([0,t]) N p([ti+1, 1]). Defined

L= (lh B 7l<p(i+1)—17 lcp(i+1)+17 R ln) € (R—i—)n_la
clearly it is ¥ € CSS(d,n — 1; L") and moreover it holds
L%(co(3)) = L(co(p([0,1]))), (17)

since the inequality £%(co(X)) < L%co(p([0,1]))) follows by the hypotheses on p, while
the opposite inequality by the relations

L (co(p([0,1]))) = L%(co({p(to), .-, p(ta)})) and {p(to),....p(t.)} S .
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If now n = d, then £%co(X)) = 0 and (17) implies £%(co(p([0,1]))) = 0 which contradicts
M(d,d; L) > 0. If instead n > d + 1 (and £%(co(X)) > 0, otherwise we argue as above),
let us consider the set

Y =% U[q,q+ 9],
where |s| = l,i41), ¢ € {p(to), ..., p(t,)} is an extremal point of co(X) and g+s & X. Then

> € CSS(d,n; L), L%co(X) > L% co(p([0,1]))) = M(d,n;L) and the contradiction is
found again.

Step 2. Assuming now i = j — 1, it is x1 € [t;_1,t], T2 € [t;,t;11]. Since it cannot be

x1 = t; or x5 = t; (else p is constant on [t;, t;11] or [t;_1,t;] respectively) it is x; € [t;_1,t;),
x9 € (t;,t;+1] and a simple computation shows that one of the following inclusions

p([tistiva]) C p([tioas ti]),  p([ti1s ti]) € p([tis tiva]),

has to hold. Assuming the validity of the first inclusion (resp. the second inclusion), we
consider, if i <n — 1 (resp. ¢ > 1), the set

%= p((0, ) Up([tisr, 1)) (resp. X := p((0, ti1]) U p([t:, 1]))

while, if i =n — 1 (resp. i = 1), the set

Y= p([0,t;]) (vesp. X := p([t;,1])),

and working exactly as in the previous step we find the contradiction. O]

Proof of Theorem 1.5. Let L = (I,...,1,) € (R,)" and define

1
Gl(d,n;L):maX{a Z detd(sil,...,sid) e S, s; ERd7 Sﬁ(i)‘ :ll},
1<i1 <...<ig<n

and
1
Go(d,n; L) :max{a Z |deta(siys- .-y 8i,)| 20 € Spysi GRd,|s§(i)‘ :ll}.
1<i1<...<ig<n

Clearly G1(d,n; L) < Gy(d,n; L): we prove that the assumptions made in the statement
assure also the validity of the opposite inequality. Indeed let sq,...,s, € R? and 9 € S,
such that, for every ¢t =1,...,n, |319(i)| =1[; and
1
v > dety(si, ..., si,)| = Gald,n; L),

T 1<ii<...<ig<n

and consider p, , ¥ and vy,...,v, as in the statement. Then

dety(viy,...,v;,) >0 V1<i <...<ig<n, (18)
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and considering ¥y = 9 o ¢! € S,,, we have that, for every i = 1,...,n, ’Uﬁo(i)‘ =l; and
1 1
Go(d,m; L) = = > [deta(si, - osi,)| = 7 > [dety(vi, - vy,)]
1<i1<...<ig<n 1<i1<...<ig<n
1

- E Z detd(viu cee ’Uid) < Gl(d, n; L),

T 1<i1<...<ig<n
that implies
1
Gi(d,n; L) = Ga(d,n; L) = I Z dety(viy, ..., viy). (19)
1<i1<...<ig<n
Applying now Proposition 4.1 and Theorem 1.3 to the vectors vy, ..., v,, we find an open
non negative convex polygonal curve p : [0,1] — R? such that
p([0,1]) € CSS(d,n; L) and L% co(p([0,1]))) = Go(d,n; L).

Since by Theorem 1.4 it follows M (d, n; L) < Go(d, n; L) and since it is also £%(co(p([0,1])))
< M(d,n; L), it has to be £%(co(p([0,1]))) = M(d,n; L). Finally we end applying Propo-
sition 4.2 to the polygonal curve p in order to obtain injectivity. O

5. Proof of Theorem 1.6

Proof of Theorem 1.6. We will prove this theorem showing that, when d = 2, n = d
or n =d+ 1, the assumptions of Theorem 1.5 are satisfied.

The case d = 2. Given sy,...,s, € R*\{0}, let us write s; = (s;1,8i2) and consider
p:A{Ll,...,n} — {—1,1} such that, for every i = 1,...,n, p(i)s;2 > 0, ¢ € S, such
P(W(i))ﬁ,@(i)
|p((0))54()
Then defining, for every i = 1,...,n, v; = ¥ (p(¢(i))sy()), it holds

deta(v;,v;) >0 V1<i<j<n. (20)

that the finite sequence decreases when 7 increases and ¥ equal to the identity.

The case n = d. The proof is trivial and left to the reader.

The case n = d + 1. Given s,...,5441 € R*\{0}, let us consider the (dzl) =d+1
determinants

Di = detd(sl, ey Si—1ySiH1 - - - ,Sd+1),
where i = 1,...,d+ 1, and let [ = {i : D; < 0} and |I| its cardinality. If I = ) there
is nothing to prove. If I # () let us define p(i) = 1, if i € I, and p(i) = —1, if i € I.
Considering now

D; = detq(p(1)s1,...,p(i — 1)si—1, p(i + 1)Si41 ..., p(d + 1)s441),
it is D) = (=)D, if i & I, and D} = (—=1)1='D;, if i € I: then every D! has the same
sign and the thesis is achieved by choosing, if they are all non negative, ¢ and ¥ as the
identities while, if they are all negative, ¢ as the identity and ¥ as the reflection with
respect to any coordinate axis. O

Remark 5.1. It is worth noting that,ifd =2, n=dorn=d+1, and L = (%, e %) €
(R4 )™, Theorem 1.6 together with Theorems II and IV in [7] allows to achieve the value of
the constant M(d,n; L) and the equations of an injective non negative convex polygonal

curve whose support solves Problem 1.1.
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6. Proof of Theorems 1.7 and 1.8

Proof of Theorem 1.7. Let L = (I1,...,l3) € (R,)? and consider, by means of Theo-
rem 2.4, Yoo = UL, [gi, ¢ + 5] € CSS(d, d; L) such that £ (co(Sept)) = M(d,d; L). By
applying Theorem 1.4 we have

1 1 1
M(d,d; L) = L%(co(Zopt)) < I |dety(s1, ..., 8q4)] < a|31| o sdl = Ell g
Since £%(co(T(d,d; L))) = %1y ...lg, then L% (co(T'(d,d; L))) = M(d,d; L) and we end the
proof. ]

Proof of Theorem 1.8. Let L = (Iy,...,lsy1) € (Ry)%!. By means of Theorem 1.6
we know there exists an injective non negative convex polygonal curve p : [0,1] — R¢
whose support belongs to CSS(d,d + 1; L) and satisfies the equality £%(co(p(]0,1]))) =
M(d,d+1;L). Since p([0,1]) satisfies also the hypotheses of Theorem 1.2 we obtain that
L%co(T(d,d +1;L))) = M(d,d + 1; L). O

7. Some remarks about Conjecture 1.9

Given a curve v we define its variation (or length) as

k
Var(vy) = sup {Z |v(t:) —v(tic1)| cEEN, 0=ty <ty <ty <...<tp= 1} , (21
i=1

and when Var(y) < oo we say that v is rectifiable. Given the sets
RC(d) = {v:[0,1] — R?: 7 is continuous, rectifiable and Var(y) < 1}
and
CC(d) = {£ C R?: ¥ is connected, compact and H'(X) < 1},
we can consider the two following problems:

Problem 7.1. Let d > 2 and Mgc(d) = max {L%(co(7([0,1]))) : v € RC(d)}. Find a
curve Yopr € RC(d) such that L (co(Yopt([0,1]))) = Mrc(d).

Problem 7.2. Let d > 2 and Mcc(d) = max {L%(co(X)) : ¥ € CC(d)}. Find a set
Yopt € CC(d) such that LY (co(Xept)) = Mcc(d).

Note that, as already described in the introduction, Problem 7.1 has been considered by
several authors (see [5, 6, 7, 10, 12]) while, on the contrary, Problem 7.2 seems to appear
here for the first time.

By means of Theorems II” and IV’ in [7], it can be proved that if Conjecture 1.9 is true
then the convex curve Yopt = (71,...,74) € RC(d) defined, when d = 2v + 1, by the
equations

cos(2mjt sin(27mjt 4
'yzj_l(t):¥, 'ij(t):#, =12 ... v
2V + % 2mga /v + %

t

Yovt1(t) = \/ﬁ7
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and, when d = 2v, by the equations

_cos((2j — 1)nt) sin((25 — 1)mt)

i—1(t) = i(t) = =1,2,...
Y25 1() (2]-1)7T\/; ) ’YQJ() (2‘7_1)7_[_\/; ) ) y Uy
satisfies the equality
. — } —r ifd=2v+1,
L(c0 (o ([0, 1)) = Meo(d) = § =™ -
) (20) (2o —1)1 ha=.av.

Since, for every v € RC(d) it is y([0,1]) € CC(d), we can conclude that the validity
of Conjecture 1.9 implies that v, is an optimal curve for Problem 7.1 and its support
Yopt ([0, 1]) is an optimal set for Problem 7.2.
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