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Universidad Complutense de Madrid, 28040 Madrid, Spain

jaramil@mat.ucm.es

S. L. Troyanski†

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences,
Acad. G. Bonchev str. block 8, 1113 Sofia, Bulgaria
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In this paper we study the connections between moduli of asymptotic convexity and smoothness of a
Banach space, and the existence of high order differentiable bump functions or equivalent norms on the
space. The existence of a high order uniformly differentiable bump function is related to an asymptotically
uniformly smooth renorming of power type. On the other hand, the asymptotic uniform convexity of
power type is related to the existence of high order rough norms. Finally, we also obtain some applications
to the best order smoothness of Nakano sequence spaces.

1. Introduction

We are concerned in this paper with smoothness of Banach spaces, in the sense of the ex-
istence of smooth bump functions, that is, real functions with bounded nonempty support
and with a given degree of differentiability. The existence of such smooth bump functions
on a Banach space has a deep impact on the geometry and structure of the space, and
we refer to [6] for an extensive account about this topic. Here we are mainly interested
in the connections between high order smoothness and the asymptotic structure of the
space, more precisely the relations with moduli of asymptotic convexity and smoothness.

Along the paper we will use two concepts of high order smoothness, which are defined
in terms of Taylor expansions. Let X be a Banach space and consider ϕ : X → R. For
1 ≤ p < ∞, the function ϕ is said to be T p-smooth on a subset S of X if for each x ∈ S
there is a polynomial P of degree ≤ p, with P (0) = 0, verifying that

|ϕ(x+ h)− ϕ(x)− P (h)| = o(‖h‖p).
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In the case of a norm we always understand T p-smoothness on the set X \ { 0}.

On the other hand, for 1 < p <∞, the function ϕ is said to be Up-smooth on a subset S
of X if for each x ∈ S there is a polynomial P of degree < p, with P (0) = 0, verifying
that

|ϕ(x+ h)− ϕ(x)− P (h)| = O(‖h‖p),

uniformly on x ∈ S. In the case of a norm we always understand Up-smoothness on the
unit sphere SX of X.

As usual, we say that the space X is T p-smooth (respectively, Up-smooth) if there is a
bump function on X which is T p-smooth (resp. Up-smooth) on X.

Using Taylor’s theorem, it is easily seen that if ϕ is m-times differentiable on S, then ϕ is
Tm-smooth on S. On the other hand, let 1 < p < ∞ and consider k the greatest integer
strictly less than p. If ϕ is Ck-smooth and its kth-derivative is uniformly (p − k)-Hölder
continuous on S, it is said that ϕ is UHp-smooth on S (see [29]). Then, as an application
of Taylor’s formula with integral remainder, we obtain that if ϕ is UHp-smooth on S then
it is Up-smooth on S.

It is well known (see [9] or [6]) that for 1 < p ≤ 2 the existence of an UHp-smooth bump
function is equivalent to the existence of an equivalent norm with modulus of smoothness
of power type p. Of course, this result cannot be directly extended to p > 2 since the
modulus of smoothness of a norm is at most of power type 2. In this direction, in [18] it is
proved that, for spaces with symmetric basis which are not isomorphic to ℓ2k (for k ∈ N),
the existence of a UHp-smooth bump function implies that the space admits an upper
p-estimate. This result cannot be generalized to spaces with unconditional basis, as the
example (

⊕∞
n=1 ℓ

n
4 )ℓ6 shows. Indeed, such space is UH6-smooth (see [7]) and it does not

admit an upper 6-estimate. To extend this kind of results we consider here the moduli
of asymptotic uniform convexity and smoothness of the space. These moduli were first
introduced by Milman [30] under different notations and names. We refer to [23] for a
survey about the most relevant known results concerning these moduli.

The contents of the paper are as follows. In Section 2 we recall the definitions of the
the moduli of asymptotic uniform convexity and smoothness, and we give some technical
basic results about them.

Section 3 is devoted to study the connections between the modulus of asymptotic smooth-
ness and the existence of smooth norms or bump functions. In [24] it is proved that if the
norm of X is Fréchet differentiable then X is asymptotically smooth. We generalize this
result to high order smoothness, using power type estimates of modulus of smoothness.
On the other hand, the main result in Section 3 is that, assuming weak sequential continu-
ity of polynomials up to degree p, Up-smoothness of the space implies the existence of an
equivalent norm with modulus of asymptotic smoothness of power type p. The converse
of this result is not true in general, even for superreflexive spaces, as we also see.

While modulus of asymptotic smoothness of a certain power type is related to high or-
der smoothness up to certain degree, we show in Section 4 that for not very smooth
spaces (that is, spaces without separating polynomials), modulus of asymptotic convexity
of power type is strongly related to some kind of high order non-smoothness. In this
direction, high order roughness for norms was introduced in [13] generalizing the well
known notion of rough norms (see e.g. [6]). We extend this notion by introducing rough
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functions of order p. Such functions, in particular, are not T p-smooth at any point, even
in an uniform way. Especial interest has the case p = 2 of second order roughness of
convex functions, since it provides examples where Alexandrov theorem [1] strongly fails.
Namely, this gives examples of norms which are twice Fréchet differentiable at no point.
We prove that if a not very smooth space has modulus of asymptotic convexity of power
type p, then its norm is rough of order p. We apply these results to study the smoothness
of the space in the same lines as [13]. In this way we prove that the existence of a con-
tinuous function which is rough of order p implies the non existence of T p-smooth bump
functions in spaces with Radon-Nikodym property. To finish the Section we obtain that,
for a large class of spaces, having modulus of asymptotic convexity of power type p is in
fact equivalent to a certain kind of sequential roughness.

Finally, Section 5 is devoted to the study of the best order smoothness of a certain kind
of modular spaces, namely Nakano sequence spaces ℓ(pn). In [26] the smoothness of these
spaces is studied. In particular it is proved there that if limn→∞ pn = 2k and pn ≥ 2k,
for every , n ∈ N, then there exits a C2k-smooth bump function if and only if ℓ(pn) is
isomorphic to ℓ2k. In the case of pn ≤ 2k for every n ∈ N, the same result is obtained
where k = 1, 2. As an application of the preceding sections, we are able to extend this
last result for every k ∈ N.

2. Moduli of asymptotic uniform convexity and smoothness.

As we mentioned before, in [23] the authors survey most of known results concerning these
moduli. Along the paper we will use the same notation and terminology as in [23].

For a Banach space (X, ‖ · ‖), the modulus of asymptotic pointwise convexity is defined
for ‖x‖ = 1 and 0 < t ≤ 1 by:

δ(t;x) = sup
dim(X/Y )<∞

inf
y∈Y, ‖y‖≥t

‖x+ y‖ − 1,

and the modulus of asymptotic uniform convexity is defined for 0 < t ≤ 1 by:

δ(t) = inf
‖x‖=1

δ(t;x).

The modulus of asymptotic pointwise smoothness is defined for ‖x‖ = 1 and 0 < t ≤ 1 by:

ρ(t;x) = inf
dim(X/Y )<∞

sup
y∈Y, ‖y‖≤t

‖x+ y‖ − 1,

and the modulus of asymptotic uniform smoothness is defined for 0 < t ≤ 1 by:

ρ(t) = sup
‖x‖=1

ρ(t;x).

The space X is said to be asymptotically uniformly convex if δ(t) > 0 for every 0 < t ≤ 1,
and asymptotically uniformly smooth if ρ(t)/t→ 0 as t→ 0. Along the paper, we will use
power type estimates of moduli. More precisely, for 1 ≤ p <∞ we say that the space has
modulus of asymptotic convexity of power type p if there exists C > 0 such that δ(t) ≥ Ctp,
for all 0 < t ≤ 1. In the same way, the space has modulus of asymptotic smoothness of
power type p if there exists C > 0 so that ρ(t) ≤ Ctp, for all 0 < t ≤ 1. For example, in
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the case of space ℓp with 1 ≤ p < ∞, we have that ρ(t) = δ(t) = (1 + tp)1/p − 1; and for
the space c0 we have ρ(t) = δ(t) = 0. As a consequence, ℓp has modulus of asymptotic
convexity and smoothness of power type p for every 1 ≤ p < ∞. Note in particular that
ℓ1 is uniformly asymptotically convex and c0 is asymptotically uniformly smooth.

In order to obtain estimates for the moduli of asymptotic uniform convexity and smooth-
ness, we give the following simple Lemma:

Lemma 2.1. Let X be a Banach space, and let D be a dense subset of the unit sphere
SX . Then, for each x ∈ SX :

δ(t, x) = sup
dim(X/Y )<∞

inf
y∈Y, ‖y‖=t

‖x+ y‖ − 1; δ(t) = inf
x∈D

δ(t, x).

ρ(t, x) = inf
dim(X/Y )<∞

sup
y∈Y, ‖y‖=t

‖x+ y‖ − 1; ρ(t) = sup
x∈D

ρ(t, x);

Proof. Let x ∈ SX and consider a norming functional x∗ ∈ X∗ with x∗(x) = 1 and
‖x∗‖ = 1. First note that, if Y is a finite codimensional subspace of X and y ∈ H =
Y ∩ kerx∗, the function φ(t) = ‖x + ty‖ is convex and non-decreasing on t ∈ [0,∞) and
consequently,

sup
y∈H,‖y‖=t

‖x+ y‖ − 1 = sup
y∈Y,‖y‖≤t

‖x+ y‖ − 1

and
inf

y∈H,‖y‖=t
‖x+ y‖ − 1 = inf

y∈H,‖y‖≥t
‖x+ y‖ − 1.

On the other hand, if x ∈ SX and ε > 0 are given, it is possible to find z ∈ D ∩ B(x, ε),
and then for all y ∈ X

‖x+ y‖ − 1− ε ≤ ‖z + y‖ − 1 ≤ ‖x+ y‖ − 1 + ε

Remark 2.2. If X is Banach space with a finite dimensional decomposition (En), we

consider the subspaces Hn =
⊕n

i=1Ei and H
n =

⊕∞
i=n+1Ei the closure of

⊕∞
i=n+1Ei and

the dense subset of the unit sphere D = ∪∞
n=1Hn∩SX . Using the above Lemma, it is easy

to see that:

ρ(t) ≤ sup{‖x+ y‖ − 1 : x ∈ Hn; ‖x‖ = 1; y ∈ Hn; ‖y‖ = t;n ∈ N}

δ(t) ≥ inf{‖x+ y‖ − 1 : x ∈ Hn; ‖x‖ = 1; y ∈ Hn; ‖y‖ = t;n ∈ N}.

As a consequence we have that if (En) is a sequence of finite-dimensional spaces, for 1 ≤
p < ∞ the usual norm of the space (

⊕∞
n=1En)ℓp has modulus of asymptotic smoothness

and convexity of power type p.

Let X be a Banach space with a finite dimensional decomposition (En). A function
Φ : X → R is said to be orthogonally additive with respect to (En) if for every x, y ∈ X
with x ∈ En, y ∈ Em and n 6= m, we have:

Φ(x+ y) = Φ(x) + Φ(y).
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Lemma 2.3. Let 1 ≤ p <∞, and let X be a Banach space with a finite dimensional de-
composition (En). Suppose that Φ : X → R is a continuous convex function, orthogonally
additive with respect to (En), such that Φ(0) = 0 and

‖x‖ = inf
{

λ > 0 : Φ(
x

λ
) ≤ 1

}

.

If there exists C > 0 such that Φ(h) ≤ C‖h‖p whenever ‖h‖ ≤ 1, then ‖ · ‖ has modulus
of asymptotic smoothness of power type p.

Proof. Consider again Hn =
⊕n

i=1Ei and H
n =

⊕∞
i=n+1Ei. Let x ∈ Hn with ‖x‖ = 1,

and consider a norming functional x∗ ∈ X∗ with x∗(x) = 1 and ‖x∗‖ = 1. If h ∈ kerx∗,
then ‖x+ h‖ ≥ 1. Consequently, if h ∈ Hn ∩ kerx∗ and ‖h‖ = t ≤ 1, using the convexity
of Φ we have that

‖x+ h‖ − 1 ≤ Φ(x+ h)− Φ(x) = Φ(h) ≤ Ctp.

Then, from Lemma 2.1 we obtain that the norm has modulus of asymptotic smoothness
of power type p.

We can apply these results to give estimates of the modulus of asymptotic smoothness
of modular spaces. Recall that if {Mn}

∞
n=1 is a sequence of Orlicz functions, the modular

sequence space h{Mn} (see e.g. [25]) is defined as the space of all real sequences x = (xn)
∞
n=1

such that for every ρ > 0,
∞
∑

n=1

Mn(
|xn|

ρ
) <∞.

It is equipped with the Luxemburg norm:

‖x‖ = inf

{

ρ > 0 :
∞
∑

n=1

Mn

(

|xn|

ρ

)

≤ 1

}

.

In what follows we will consider the function Φ defined on h{Mn} by:

Φ ((xn)
∞
n=1) =

∞
∑

n=1

Mn(|xn|).

Note that Φ is a continuous convex function, orthogonally additive with respect to the
usual basis of h{Mn}, and the Minkowsky functional of the set G = {x ∈ h{Mn} : Φ(x) ≤ 1}
is precisely the Luxemburg norm.

Theorem 2.4. Let 1 ≤ p < ∞ and let h{Mn} be a modular space endowed with the
Luxemburg norm. If

sup
n∈N

sup
0≤u,v≤1

Mn(uv)

upMn(v)
<∞,

then h{Mn} has modulus of asymptotic smoothness of power type p.
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Proof. Let C > 0 be such that Mn(uv) ≤ CMn(u)v
p for all n ∈ N and 0 ≤ u, v ≤ 1. Let

x = (xn) ∈ h{Mn} with ‖x‖ ≤ 1. Since |xn| ≤ ‖x‖ we have that

Φ(x) =
∞
∑

n=1

Mn(|xn|) =
∞
∑

n=1

Mn

(

|xn|

‖x‖
‖x‖

)

≤ C‖x‖p
∞
∑

n=1

Mn

(

|xn|

‖x‖

)

= C‖x‖p.

The result now follows from Lemma 2.3.

As a consequence we have that an Orlicz space hM has modulus of asymptotic uniform
smoothness of power type p for every 1 ≤ p < αM , where the index αM is defined by (see
e.g. [25]):

αM = sup

{

p ≥ 1; sup
0<u,v≤1

M(uv)

upM(v)
<∞

}

.

3. Smooth norms and modulus of asymptotic uniform smoothness.

Let X be a Banach space, and consider a function ϕ : X → R. We say that ϕ is weakly
sequentially continuous (in short, w.s.c.) if it takes weakly convergent sequences in X
into convergent sequences in R. We say that ϕ is weakly continuous on bounded sets if,
for each bounded subset B of X, the restriction of ϕ to B is continuous with respect to
the topology induced on B by the weak topology of X, that is for every x ∈ B and every
ε > 0 there exist x∗1, . . . , x

∗
n ∈ X∗ and δ > 0 such that if y ∈ B satisfies |x∗i (x − y)| < δ

for every i = 1, . . . , n, then |ϕ(x)− ϕ(y)| < ε. If Y is an infinite dimensional subspace of
X, we denote by:

‖ϕ‖Y = sup{|ϕ(y)| : ‖y‖ = 1, y ∈ Y }.

Lemma 3.1. Let 1 ≤ p < ∞ and let X be a Banach space which contains no subspace
isomorphic to ℓ1. Let ϕ : X → R be a w.s.c. function with ϕ(0) = 0. Then for every
ε > 0 there exists a finite codimensional subspace H of X such that ‖ϕ‖H < ε.

Proof. Since X contains no copy of ℓ1 and ϕ is weakly sequentially continuous, by [10]
we have that ϕ is weakly continuous in on bounded sets. Then, given ε > 0 there are
x∗1, . . . , x

∗
n ∈ X∗ and δ > 0 such that if x ∈ BX and |x∗i (x)| < δ for i = 1, . . . , n, we have

|ϕ(x)| < ε. Now if we consider the finite codimensional subspace H = ∩n
i=1kerx

∗
i we have

that ‖ϕ‖H < ε.

Following [24] X is said to be asymptotically smooth if ρ(t;x)/t → 0 as t → 0, for every
x ∈ SX . In [24] it is proved that if the norm of a space is Fréchet differentiable then the
space is asymptotically smooth. Here we extend this result:

Proposition 3.2. Let 1 ≤ p <∞ and let X be a Banach space such that all polynomials
of degree ≤ p are w.s.c. If X has T p-smooth norm then for every x ∈ SX

lim
t→0

ρ(t;x)

tp
= 0.

Proof. Since the space is T p-smooth for some p ≥ 1 it contains no subspace isomorphic
to ℓ1. Let ε > 0 and x ∈ SX be fixed. Since the norm is T p-smooth on x there is a



R. Gonzalo, J. A. Jaramillo, S. L. Troyanski / High Order Smoothness and ... 255

polynomial of degree k with k ≤ p and 0 < δ ≤ 1 such that if 0 < t ≤ δ and ‖h‖ = t then

‖x+ h‖ − 1− P (h)

tp
< ε.

Let P = P1+ · · ·+Pk, where each Pj is j-homogeneous, for 1 ≤ j ≤ k. Let t be fixed with
0 < t ≤ δ. Since the space is T p-smooth for some p ≥ 1 it contains no subspace isomorphic
to ℓ1. By applying Lemma 3.1 we obtain a finite codimensional subspace H = H(t,x) such
that max{‖P1‖H , . . . , ‖Pk‖H} < k−1εtp. If h ∈ H and ‖h‖ = t we have:

|P (h)| ≤ |P1(h)|+ · · ·+ |Pk(h)| ≤ |tP1

(

h

‖h‖

)

|+ · · ·+ |tkPk

(

h

‖h‖

)

|

≤ t‖P1‖H + · · ·+ tk‖Pk‖H ≤ ε
t.tp

k
+ · · ·+ ε

tktp

k
≤ εtp.

Therefore ρ(t;x) ≤ 2εtp if 0 < t ≤ δ.

Using the same techniques we obtain the following uniform version:

Proposition 3.3. Let 1 < p <∞ and let X be a Banach space such that all polynomials
of degree < p are w.s.c. If the norm of X is Up-smooth then X has modulus of asymptotic
smoothness of power type p.

Remark 3.4. Note that in the case of 1 ≤ p < 2, every polynomial of degree ≤ p is

w.s.c., and therefore if the norm is T p-smooth then limt→0
ρ(t;x)

tp
= 0 on the unit sphere.

Concerning the case p = 2, it would be interesting to know whether the norm in the

2-convexified Tsirelson space T(2) from [11] verifies limt→0
ρ(t;x)

t2
= 0 on the unit sphere.

Indeed, it is not known if there is a C2-smooth bump function on T(2) (see [6], p. 228).
This space has modulus of smoothness of power type 2 and consequently it admits a bump
function with Lipschitz continuous derivative. Since T(2) contains no isomorphic copy of
ℓ2 it follows that all polynomials of degree ≤ 2 are weakly sequentially continuous (see

[16]). Thus, if the space T(2) had a T 2-smooth norm then limt→0
ρ(t, x)

t2
= 0. We do not

know whether this is true.

It is proved in [9] that, for 1 < p ≤ 2, every Up-smooth space admits an equivalent norm
with modulus of smoothness of power type p. Next, using a convexification procedure as
in [9], we obtain the main result in this section:

Theorem 3.5. Let 1 < p < ∞ and let X be a Banach space such that all polynomials
of degree < p are w.s.c. If X is Up-smooth, there exists an equivalent norm on X with
modulus of asymptotic uniform smoothness of power type p.

Proof. Since X is Up-smooth, we can find a bump function b : X → R which is Up-
smooth, and such that in addition −1 ≤ b ≤ 0; b(0) = −1; Supp(b) ⊂ B(0; 1

2
) and b is

symmetric, that is, b(x) = b(−x) for every x ∈ X. We first prove the following fact:

Fact: There exist K > 0 and 0 < δ ≤ 1 such that for each 0 < t ≤ δ and each x ∈ X
there is a finite codimensional subspace H(t,x) of X, such that if h ∈ H(t,x) and ‖h‖ ≤ t
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then

|b(x+ h)− b(x)| ≤ Ktp.

Indeed, since b is Up-smooth, there exist C > 0 and 0 < δ ≤ 1 such that for every x ∈ X
there is a polynomial P of degree k with k < p, such that P (0) = 0, and if ‖h‖ ≤ δ then

|b(x+ h)− b(x)− P (h)| ≤ C‖h‖p.

Let P = P1 + · · ·+Pk, where each Pj is j-homogeneous, for 1 ≤ j ≤ k. Note that since is
X is Up-smooth, it contains no subspace isomorphic to ℓ1. Then by Lemma 3.1, for each
0 < t ≤ δ and each x ∈ X, there exists a finite codimensional subspace H = H(t,x) of X
such that max{‖P1‖H , . . . , ‖Pk‖H} < k−1tp−1. Then, if h ∈ H with ‖h‖ ≤ t proceeding
as in Proposition 3.2 we have:

|P (h)| ≤ |P1(h)|+ · · ·+ |Pk(h)| ≤
t.tp−1

k
+ . . .

tktp−1

k
≤ tp

and consequently, |b(x+ h)− b(x)| ≤ Ctp + tp. This shows the fact.

Now we consider the function Φ defined on the unit ball BX by:

Φ(x) = inf

{

n
∑

i=1

λib(xi) : λi ≥ 0,
n
∑

i=1

λi = 1,
n
∑

i=1

λixi = x, xi ∈ BX , n ∈ N

}

.

Let G = {x ∈ BX : Φ(x) < −1/2} and δ′ = min{δ/2, 1/4}. We claim that there exists
K ′ > 0 such that for each x ∈ G and each 0 < t ≤ δ′ there exists a finite codimensional
subspace Y(t,x) such that if h ∈ Y(t,x) with ‖h‖ ≤ t then

Φ(x+ h)− Φ(x) ≤ K ′ · tp.

Indeed, let x ∈ G and 0 < t ≤ δ′ be given. Consider 0 < ε < 1 such that Φ(x) + ε <
−1/2 and choose xi ∈ BX and λi ≥ 0 (for i = 1, · · · , n) such that

∑n
i=1 λi = 1 and

∑n
i=1 λib(xi) < Φ(x) + εtp. Assume that b(xi) < 0 if i = 1, · · · ,m and b(xm+1) = · · · =

b(xn) = 0. Then,

−1/2 ≥ Φ(x) + εtp ≥
m
∑

i=1

λib(xi) ≥ −
m
∑

i=1

λi.

Thus 1 ≥ λ =
∑m

i=1 λi ≥ 1/2. Note that if ‖h‖ ≤ t we have then that ‖ 1
λ
h‖ ≤ 2t ≤

min{δ, 1/2} and, as a consequence:

‖xi +
1

λ
h‖ ≤ ‖xi‖+ ‖

1

λ
h‖ ≤ 1 for i = 1, . . . ,m.

By the above Fact, for each 0 < t ≤ δ′ and each i = 1, . . . ,m, there exists a finite
codimensional subspace H(t,xi) such that if h ∈ H(t,xi) and ‖h‖ ≤ t, then:

b(xi +
1

λ
h)− b(xi) ≤ K(2t)p.
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Consider the finite codimensional subspace Y(t,x) = ∩m
i=1H(t,xi). If h ∈ Y and ‖h‖ ≤ t we

have:

Φ(x+ h)− Φ(x) ≤
m
∑

i=1

λib(xi +
1

λ
h)−

m
∑

i=1

λib(xi) + εtp ≤ (K · 2p + 1)tp.

This establishes the claim.

Define now the function Ψ = 4(Φ + 1). It is not difficult to see that Ψ is a convex
continuous function on BX with Ψ(0) = 0. Consider the convex set Q = {x ∈ BX :
Φ(x) ≤ −3/4} = {x ∈ BX : Ψ(x) ≤ 1}, and we have that the Minkowski functional
associated to this set is an equivalent norm ||| · ||| on X. We are going to prove that ||| · |||
has modulus of smoothness of power type p. Indeed, consider 0 < t ≤ δ′ and x ∈ X with
|||x||| = 1. Then Ψ(x) = 1 and x ∈ G. By the claim, there exists a finite codimensional
subspace Y(t,x) such that if h ∈ Y with ‖h‖ ≤ t then

Φ(x+ h)− Φ(x) ≤ K ′ · tp.

Let x∗ ∈ X∗ be a ||| · |||-norming functional of x, that is |||x∗||| = 1 and x∗(x) = 1. Then
for every h ∈ Y(t,x) ∩ kerx∗ with |||h||| = t we have that ‖h‖ ≤ |||h||| ≤ t and:

0 ≤ |||x+ h||| − 1 ≤ Ψ(x+ h)−Ψ(x) ≤ 4(Φ(x+ h)− Φ(x)) ≤ 4K ′ · tp.

Consequently the norm ||| · ||| has modulus of asymptotic smoothness ρ(t) ≤ 4K ′tp for
0 < t ≤ δ′. Since ρ(t) is a non-decreasing function for δ′ ≤ t ≤ 1 (see e.g. [23]), the
conclusion follows.

Remark 3.6. It is interesting to recall here that there are Banach spaces which admit a
C∞-smooth bump functions but without Gateaux-smooth equivalent renorming. Namely,
on one hand it is proved in [21] that for any tree Υ, the space C0(Υ) admits a C∞-smooth
bump function, and on the other hand in [20] it is given an example of a tree Υ such that
the space C0(Υ) admits no equivalent Gateaux-smooth renorming.

Remark 3.7. We note that having a norm with modulus of asymptotic smoothness of
power type, in general does not imply high order smoothness of the space. Indeed, the
space (

⊕∞
n=1 ℓ

n
1 )ℓ6 has modulus of asymptotic smoothness of power type 6 and it is not

even superreflexive. In the superreflexive case, the space (
⊕∞

n=1 ℓ
n
3 )ℓ6 has modulus of

asymptotic smoothness of power type 6 and nevertheless by [7] it does not admit an
Up-smooth bump function for p > 3.

We have seen in the above Remark that the condition about weak sequential continuity of
polynomials cannot be avoided in Theorem 3.5. To finish this Section, we obtain sufficient
condition of geometrical nature. We say that a sequence {xn} in a Banach space X is
Pk-null if, for every m-homogeneous polynomial P with 1 ≤ m ≤ k we have P (xn) → 0.
By using the results of [19] and [16] we have:

Proposition 3.8. Let 1 < p <∞ and let X be a Up-smooth Banach space. Suppose that
X contains no subspace isomorphic to ℓk with k even integer and k < p. Then, every
polynomial on X of degree strictly less than p is weakly sequentially continuous.
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Proof. Assume the contrary. Then, we can find a weakly null sequence (xn) and k < p
such that (xn) is Pk−1-null but not Pk-null. Without loss of generality we can suppose
that there is a k-homogeneous polynomial P such that P (xn) ≥ α > 0 for all n ∈ N.
Using the same arguments as in Lemma 1.6 in [16] we obtain a subsequence of (xn),
which we denote in the same way, and a constant c > 0 such that for every n ∈ N and
every a1, . . . , an ∈ R with ai ≥ 0 for i = 1, . . . , n,

c

(

n
∑

i=1

aki

)1/k

≤ ‖
n
∑

i=1

aixi‖.

On the other hand by Proposition 1.1 in [16] there is a subsequence of (xn), that we still
denote in the same way, with an upper k-estimate. Then, there exists C > 0 such that
for every n ∈ N and every a1, . . . , an ∈ R with ai ≥ 0 for i = 1, . . . , n:

c

(

n
∑

i=1

aki

)1/k

≤ ‖
n
∑

i=1

aixi‖ ≤ C

(

n
∑

i=1

aki

)1/k

.

By using the results in [19] it follows that ℓk ⊂ X. Since the space is Up-smooth, k must
be an even integer, and this is not possible.

Using the above result we have:

Corollary 3.9. Let 1 < p <∞ and let X be a Banach space which contains no subspace
isomorphic to ℓk where k is an even integer and k < p. If X is Up-smooth then there is
an equivalent norm on X with modulus of asymptotic smoothness of power type p.

4. Roughness of norms and modulus of asymptotic convexity

Let 1 ≤ p <∞ and consider a Banach space X. According to [13], we say that a function
ϕ : X → R is rough of order p on a subset S of X if there exists ε > 0 such that, for every
x ∈ S and every polynomial P of degree ≤ p with P (0) = 0:

lim
‖h‖→0

ϕ(x+ h)− ϕ(x)− P (h)

‖h‖p
≥ ε.

In the same way, we say that ϕ is pointwise rough of order p on S if for every x ∈ S there
is ε(x) > 0 such that for every polynomial P of degree ≤ p with P (0) = 0 we have:

lim
‖h‖→0

ϕ(x+ h)− ϕ(x)− P (h)

‖h‖p
≥ ε(x).

In the case of a norm we always understand roughness on the unit sphere SX of X. In
fact, it is easy to see that a norm is rough on SX if, and only if, it is rough on every
annulus S(r,R) = {x ∈ X : r < ‖x‖ < R}. In the case p = 1 a norm is rough of order 1
if, and only if, it rough in the usual sense (see e.g. [6]). More generally, as we see in the
next proposition, in the case 1 ≤ p < 2 the notion of roughness of order p of a continuous
convex function coincides with the notion of rough functions introduced in [22]. Recall
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that if ϕ is a convex function on an open convex set U and x ∈ U the subdifferential of
ϕ at x is the set:

∂ϕ(x) = {x∗ ∈ X∗ : x∗(y − x) ≤ ϕ(y)− ϕ(x) for every y ∈ U}.

It is well-known that, for a continuous convex function ϕ defined on an open set U , the
subdifferential ∂ϕ(x) is non empty for every x ∈ U (see e.g. [6]).

Proposition 4.1. Let X be a Banach space and 1 ≤ p < 2. Consider a continuous
convex function ϕ : X → R and a subset S of X. The following are equivalent:

(1) There exists ε > 0 such that for every x ∈ S,

lim
‖h‖→0

ϕ(x+ h) + ϕ(x− h)− 2ϕ(x)

‖h‖p
≥ ε.

(2) There exists ε > 0 such that, for every x ∈ S and every x∗ ∈ X∗,

lim
‖h‖→0

ϕ(x+ h)− ϕ(x)− x∗(h)

‖h‖p
≥ ε.

Proof. To prove (1) ⇒ (2), consider x ∈ S and x∗ ∈ X∗. Since:

ε ≤ lim
‖h‖→0

ϕ(x+ h) + ϕ(x− h)− 2ϕ(x)

‖h‖p

≤ lim
‖h‖→0

ϕ(x+ h)− ϕ(x)− x∗(h)

‖h‖p
+ lim

‖h‖→0

ϕ(x− h)− ϕ(x)− x∗(−h)

‖ − h‖p
,

we obtain that

lim
‖h‖→0

ϕ(x+ h)− ϕ(x)− x∗(h)

‖h‖p
≥
ε

2

To prove (2) ⇒ (1), for each x ∈ S, consider x∗ ∈ ∂ϕ(x). Then for every h ∈ X,

ϕ(x+ h)− ϕ(x)− x∗(h) ≥ 0.

Thus,

ϕ(x+ h) + ϕ(x− h)− 2ϕ(x)

‖h‖p

=
ϕ(x+ h)− ϕ(x)− x∗(h)

‖h‖p
+
ϕ(x− h)− ϕ(x)− x∗(−h)

‖h‖p

≥
ϕ(x+ h)− ϕ(x)− x∗(h)

‖h‖p
.

Consequently,

lim
‖h‖→0

ϕ(x+ h) + ϕ(x− h)− 2ϕ(x)

‖h‖p
≥ ε.
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Next we give a useful sufficient condition for high order roughness. First recall that a
polynomial P on a Banach spaceX is said to be separating if P (0) = 0 and inf‖x‖=1 P (x) >
0. See e.g. [17] for further information about separating polynomials. Using the same ideas
as in [13] we obtain the following:

Lemma 4.2. Let 1 ≤ p <∞, let X be a Banach space which does not admit a separating
polynomial of degree ≤ p, and let S be a subset of X. Consider a function ϕ : X → R,
and suppose that there exist ε > 0 and δ > 0, such that for each 0 < t ≤ δ and each
x ∈ S there exists a finite codimensional subspace H(t,x) of X such that if h ∈ H(t,x) with
‖h‖ = t we have

ϕ(x+ h)− ϕ(x) ≥ εtp. (1)

Then the function ϕ is rough of order p on S.

Proof. Let x ∈ S and 0 < t ≤ δ be given, and consider a finite codimensional subspace
H = H(t,x) of X verifying (1). Note that, since H has finite codimension, then H does
not admit a separating polynomial of degree ≤ p (see e.g. [8]). Thus we have that
inf{P (h) : h ∈ H; ‖h‖ = t} < ε

2
tp. Then there exists h ∈ H(t,x) with ‖h‖ = t such that

P (h) < ε
2
tp. Therefore

ϕ(x+ h)− ϕ(x)− P (h) ≥ εtp −
ε

2
tp =

ε

2
‖h‖p.

As a consequence, ϕ is rough of order p on S.

We say that a Banach space has modulus of asymptotic pointwise convexity of power type
p if, for each x ∈ SX , there is a constant Cx > 0 such that δ(t;x) ≥ Cxt

p, for every
0 < t ≤ 1. From Lemma 4.2 it follows at once:

Theorem 4.3. Let 1 ≤ p < ∞, and let X be a Banach space which does not admit a
separating polynomial of degree ≤ p. If X has modulus of asymptotic convexity of power
type p (resp. modulus of asymptotic pointwise convexity), then the norm of X is rough of
order p (resp. pointwise rough).

Remark 4.4. In the case p = 1 we have that if a Banach space has modulus of asymptotic
smoothness of power type 1, then it has a rough norm. In the case of spaces not isomorphic
to Hilbert spaces, if the space has modulus of asymptotic convexity of power type 2, then
norm is rough of second order.

Remark 4.5. The above theorem generalizes Theorem 1.3 in [13] where it is proved that
if the space (

⊕∞
n=1En)ℓp , where En is finite dimensional for all n ∈ N, does not admit a

separating polynomial, then its norm is rough of order p. This is the case for example of
the space X = (

⊕∞
n=1 ℓ

n
4 )ℓ2 whose usual norm is differentiable with Lipschitz continuous

derivative, but it is rough of second order. In particular, the norm has no point of second
order Fréchet differentiability, so this is an example where Alexandrov theorem strongly
fails (compare with [4]). Moreover we will see in Lemma 4.6 that, in fact, in this case the
derivative of the norm has no point of ε-Fréchet differentiability on the unit sphere.

Recall that, according to [23], a mapping f from an open subset U of a Banach space X
into a Banach space Y is said to be ε-Fréchet differentiable at x ∈ U for some ε > 0 if
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there exist a bounded linear operator T : X → Y and δ > 0 such that:

‖f(x+ h)− f(x)− T (h)‖ < ε‖h‖ whenever 0 < ‖h‖ < δ.

Lemma 4.6. Let U be an open subset of a Banach space X, let ε > 0 and suppose that
ϕ : U → R is Fréchet differentiable on U and ε-rough of second order on U . Then the
derivative ϕ′ : U → X∗ has no point of ε-Fréchet differentiability on U .

Proof. Suppose that x ∈ U is a point of ε-Fréchet differentiability of ϕ′. Then there
exist a bounded linear operator T : X → X∗ and δ > 0 such that for 0 < ‖h‖ < δ:

‖ϕ′(x+ h)− ϕ′(x)− T (h)‖ < ε‖h‖.

Consider now the polynomial P of degree 2 on X defined by:

P (h) = ϕ′(x)(h) +
1

2
T (h)(h).

We are going to see that

lim
‖h‖→0

ϕ(x+ h)− ϕ(x)− P (h)

‖h‖2
≤
ε

2
.

Indeed, let u ∈ X be fixed with ‖u‖ = 1. For every 0 ≤ t < δ consider

φ(t) = ϕ(x+ tu)− ϕ(x)− ϕ′(x)(tu)−
t2

2
T (u)(u).

Then φ(0) = 0 and, using the Cauchy Mean Value Theorem, for each 0 < t < δ we can
find 0 < s < t such that

φ(t)

t2
=
φ′(s)

2s
.

Then if 0 < t < δ, we have:

|ϕ(x+ tu)− ϕ(x)− P (tu)|

‖tu‖2
=

|φ(t)|

t2
=

|φ′(s)|

2s

=
|ϕ′(x+ su)(u)− ϕ′(x)(u)− T (su)(u)|

2s

≤
‖ϕ′(x+ su)− ϕ′(x)− T (su)‖

2‖su‖
<
ε

2
.

Remark 4.7. Even in the case of a norm ‖ · ‖, we do not know if the non-existence
of points of ε-Fréchet differentiability of ‖ · ‖′ implies that the norm is rough of second
order. Related to this, it would be interesting to know if the norm of the 2-convexified
Tsirelson space T(2) from [11] is rough of second order, since if this was true this space
would be a counterexample to the following question asked in [23]: suppose that X∗ and
Y are separable spaces, Y with Radon-Nikodym property and such that every linear map
from X into Y is compact. Does then every Lipschitz map from X to Y have points of
ε-Fréchet differentiability for every ε > 0? At the view of Remark 3.4, all linear maps
from the 2-convexified Tsirelson space T(2) into its dual are compact, and the derivative
of the norm is Lipschitz continuous on the unit sphere.
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In what follows, we give some applications of the above results to obtain a certain kind
of high order subdifferentiability and superdifferentiability of continuous functions. Our
next Theorem is inspired by [7] and extends some results of [13].

Theorem 4.8. Let 1 ≤ p <∞ and let X be a T p-smooth Banach space with the Radon-
Nikodym property. Then for every open subset U of X and every continuous function
ϕ : U → R, there exists x ∈ U and a polynomial P of degree ≤ p with P (0) = 0 such that

ϕ(x+ h)− ϕ(x)− P (h) ≤ o(‖h‖p).

Proof. We may assume that ϕ is bounded on U . Let b be a T p-smooth bump function on
X with Supp(b) ⊂ U . Let ψ : X → R∪{+∞} be the function defined by ψ(x) = 1/b(x)2 if
b(x) 6= 0 and ψ(x) = +∞ otherwise. The function ψ−ϕ is lower semicontinuous, bounded
below, and identically equal to +∞ outside U . Since X has the Radon-Nikodym property,
according to the Stegall variational principle [32], there exists g ∈ X∗ such that ψ−ϕ+ g
attains its minimum at some point x ∈ U . So for every h ∈ X:

ψ(x+ h)− ϕ(x+ h) + g(x+ h) ≥ ψ(x)− ϕ(x) + g(x),

and consequently,
ψ(x+ h)− ψ(x) + g(h) ≥ ϕ(x+ h)− ϕ(x).

Since the function ψ is T p-smooth at x, there exits a polynomial Q of degree ≤ p with
Q(0) = 0, such that

|ψ(x+ h)− ψ(x)−Q(h)| = o(‖h‖p).

Then the desired polynomial is P (h) = Q(h) + g(h).

Remark 4.9. By the results in [5] if a Banach space has the Radon-Nikodym property
and admits a T p-smooth bump function for 1 ≤ p < 2, then it is superreflexive and it
admits an equivalent norm with modulus of smoothness of power type p. In this case,
proceeding as in [6] it is possible to prove that every continuous convex function defined
on an open convex subset U has points of T p-smoothness on a dense set of U .

As a direct consequence of the above Theorem, we now obtain the following:

Corollary 4.10. Let 1 ≤ p < ∞, let X be a Banach space with the Radon-Nikodym
property, and let U be an open subset of X. Suppose that there is a function ϕ : X → R

which is continuous on U and pointwise rough of order p on U . Then X does not admit
a T p-smooth bump function.

Remark 4.11. In the analogous result given in Proposition 1.1 of [13], it should be said
that the space admits the Radon-Nikodym property. In fact, we do not know whether the
result remains true without the assumption of Radon-Nikodym property. In this sense, we
note that there exist spaces with modulus of asymptotic uniform convexity of power type
p and without the Radon-Nikodym property. Namely, in [12] it is proved that predual
JT∗ of the James tree space JT has modulus of asymptotic uniform convexity of power
type 3 and nevertheless, this space fails the Radon-Nikodym property.

Remark 4.12. Note that by Theorem II.5.3 in [6] and Corollary 4.10 it follows that, in
the case p = 1, if X is a separable space with the Radon-Nikodym property the following
are equivalent:
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1. There exists an equivalent rough norm on X.

2. There exist an open subset U of X and a function ϕ : X → R which is continuous
on U and rough of first order on U .

3. There is no T 1-smooth bump function on X.

It would be interesting to know if this equivalence remains true for p = 2. More precisely,
if the non-existence of a T 2-smooth bump function (or norm) implies the existence of an
equivalent norm which is rough of second order.

Combining the above results, we obtain the following Corollary, which follows the lines of
[7]:

Corollary 4.13. Let 1 ≤ p < ∞ and let X be a Banach space with the Radon-Nikodym
property. If X is T p-smooth and has modulus of asymptotic pointwise convexity of power
type p, then it admits a separating polynomial of degree ≤ p.

In general, having a norm rough of order p is not equivalent to the fact that the space
admits a renorming with modulus of asymptotic uniform convexity of power type p. For
instance, in [13] it is proved that, for p ≥ 1, the norm of the Lorentz sequence space
d (w ; p) is rough of order p. Nevertheless, this space cannot be equivalently renormed with
modulus of asymptotic uniform convexity of power type p; otherwise by [23], since this
space is reflexive and has modulus of smoothness of power type p, it would be isomorphic
to a subspace of ℓp. This example motivates the introduction of some variants of the
notion of roughness.

Consider a Banach space and a subset S of X. Let 1 ≤ p < ∞ and ε > 0 be given. We
say that a function ϕ : X → R is ε-sequentially rough of order p on S if, given x ∈ S,
given 0 < t ≤ 1, and a polynomial P of degree ≤ p with P (0) = 0, there exists a weakly
null sequence (hn) in X with ‖hn‖ = 1,

lim
n→∞

ϕ(x+ thn)− ϕ(x)− P (thn)

tp
> ε.

In the same way, we say that ϕ is ε-uniformly sequentially rough of order p on S if given
x ∈ S, given 0 < t ≤ 1, and a polynomial P of degree ≤ p with P (0) = 0, for every
weakly null sequence (hn) in X with ‖hn‖ = 1,

lim
n→∞

ϕ(x+ thn)− ϕ(x)− P (hn)

tp
> ε.

As usual, we say that ϕ is sequentially (resp. uniform sequentially) rough of order p on
S if it ε-sequentially (resp. uniform sequentially) rough of order p on S, for some ε > 0.
Both conditions imply roughness of order p on S. On the other hand, it is obvious that
a function which is uniform sequentially rough of order p is sequentially rough of order p.
As before, in the case of a norm, we understand that S is the unit sphere SX .

In the following result we show that, under some assumptions on the space, the property of
modulus of asymptotic convexity of power type is equivalent to a certain kind of sequential
roughness of high order.

Recall that a family {eα}α∈T of vectors of a Banach space X is called an M-basis of X if
there exist functionals e∗α ∈ X∗, such that e∗β(eα) = 1 if β = α and e∗β(eα) = 0 if β 6= α,
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and {eα}α∈T is linearly dense in X. If in addition {e∗α}α∈T is linearly dense in X∗, then
the M -basis {eα}α∈T is said to be shrinking. Let us point out that every reflexive space
has a shrinking M -basis [31].

Proposition 4.14. Let 1 < p < ∞ and let X be a Banach space with a shrinking M-
basis, such that every polynomial of degree ≤ p on X is w.s.c. Then, the following are
equivalent:

(1) The norm is uniformly sequentially rough of order p.

(2) The norm has modulus of asymptotic uniform convexity of power type p.

Proof. In [27] and [24] it is shown that if the space X has a shrinking M -basis, then for
each each x ∈ SX and each 0 < t ≤ 1:

δ(t;x) = inf { sup
n∈N

‖x+ thn‖ − 1}

where the infimum is taken over all weakly null sequences (hn) in SX . It is easy to check
that the supremum can be replaced by the limsup.

In order to prove (1) implies (2), assume that the norm is ε-uniformly sequentially rough of
order p. Then it is enough to consider P = 0 in the definition to obtain that δ(t;x) ≥ εtp,
for every x ∈ SX and 0 < t ≤ 1.

To prove (2) implies (1), assume that δ(t;x) ≥ Ctp for every x ∈ SX and 0 < t ≤ 1.
Consider x ∈ SX , 0 < t ≤ 1, a polynomial P of degree ≤ p with P (0) = 0, and a weakly
null normalized sequence (hn). Since P is w.s.c. then limn→∞ P (thn) = 0. Thus,

lim
n→∞

‖x+ thn‖ − 1− P (thn)

tp
= lim

n→∞

‖x+ thn‖ − 1

tp
≥
C

2
tp.

Then the norm is C
2
-uniformly sequentially rough of order p.

Sequential roughness of order p provides in this way new examples of functions which are
rough of order p. Namely, in the case of Orlicz sequence spaces we have the following.

Proposition 4.15. Let 1 ≤ p < ∞, and let M be an Orlicz function. Suppose that
αM = p is reached at p, and there exists ε > 0 such that for every δ > 0:

lim
t→0

M(δt)

M(t)δp
> ε.

Then, the function Φ : hM → R defined by Φ((xn)) =
∑∞

n=1M(|xn|) is ε
2
-sequentially

rough of order p.

Proof. We will show first the following fact:

Fact: "Let δ > 0 be fixed. There are α > 0 and k ∈ N such that for every a ∈ hM there
is n0 ∈ N such that if uαn =

∑n+k
i=n+1 αei, then δ ≤ ‖uαn‖ ≤ 3

2
δ and for n ≥ n0:

Φ(a+ uαn)− Φ(a) ≥
ε

2
δ."
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We proceed in several steps. We start with the case a = 0. Let 0 < t1 ≤ 1
2
be such

that M(t1δ) > εM(t1), and consider α = δt1. Then M(α) = M(α
δ
δ) > εM(α

δ
). Consider

now k = max{j ∈ N; ‖
∑j

i=1 αei‖ ≤ 3
2
δ}. By construction, since α ≤ δ

2
we have that

‖
∑k

i=1 αei‖ ≥ δ. Now define uαn =
∑n+k

i=n+1 αei. Then uαn verifies δ ≤ ‖uαn‖ ≤ 3
2
δ for all

n ∈ N and since M is non-decreasing and ‖uα‖ ≥ δ we have 1 = Φ
(

uα
n

‖uα
n‖

)

≤ Φ
(

uα
n

δ

)

.

Therefore, for all n ∈ N,

Φ(uαn) = kM(α) ≥ εkM(
α

δ
) = εΦ(

uαn
δ
) ≥ ε.

Consider now the case 0 6= a =
∑∞

n=1 aiei ∈ hM . Let α > 0, let k ∈ N and uαn as above
with δ ≤ ‖uαn‖ ≤ 3

2
δ. Denote by:

[a]n =
n
∑

i=1

aiei, [a]n =
∞
∑

i=n+1

aiei, [a]mn =
m
∑

i=n+1

aiei.

Since Φ is orthogonally additive with respect to the basis, if m = k + n we have:

Φ(a+ uαn)− Φ(a) = Φ([a]n) + Φ([a]mn + uαn) + Φ([a]m)− Φ([a]n)− Φ([a]n)

= Φ([a]mn + uαn) + Φ([a]m)− Φ([a]n).

Using again that M is continuous at α we may choose r > 0 small enough to assure that
|M(α + t) −M(α)| ≤ ε

4k
if 0 < t ≤ r. Then, we choose n0 ∈ N enough large to assure

that if k ≥ n0, Φ([a]k) ≤
ε
16

and |ak| ≤ r. Then, if n ≥ n0 we have:

Φ(a+ uαn)− Φ(a) ≥
n+k
∑

i=n+1

M(α)−
n+k
∑

i=n+1

|M(ai + α)−M(α)| − |Φ([a]m)| − |Φ([a]n)|

≥ Φ(uαn)−
ε

2
≥
ε

2
.

Note that since αM is reached at p the basis has an upper p-estimate ([14]). Then if hM is
not isomorphic to ℓp, the basis does not admit any subsequence with a lower k-estimate
with k = [p], where [p] is the greatest integer less or equal than p. Consequently by [16]

the basis is Pk-null and {u
(α)
n } is also Pk-null and then the function Φ is ε

2
-weakly rough

of order p.

Remark 4.16. As a consequence of the above result ifM(t) ∼ tp log | t| at 0 the function
Φ on the space ℓM is rough of order p.

5. Best order of smoothness of Nakano spaces.

In this Section we give some applications of our previous results, in order to compute the
best order of smoothness of Nakano spaces ℓ(pn). These are the modular spaces associated
to the sequence of Orlicz functions Mn(t) = tpn where pn ≥ 1 for all n ∈ N. The
smoothness of these spaces has been studied in [26], where in particular the following
result is obtained:
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Proposition 5.1. Let pn ≥ 2k, with limn→∞ pn = 2k. If ℓ(pn) admits a C2k-smooth bump,
then ℓ(pn) is isomorphic to ℓ2k.

In the case pn ≤ 2k, an analogous result is given in [26], only for k = 1, 2. Here we extend
this result for every k ∈ N. In order to do it we need the following lemma, where we
consider the function Φ : ℓ(pn) → R defined by:

Φ((xn)
∞
n=1) =

∞
∑

n=1

|xn|
pn .

Lemma 5.2. Let 1 ≤ pn ≤ 2k, with limn→∞ pn = 2k. Suppose that there exist 0 < δ ≤ 1
and a polynomial P of degree ≤ 2k such that |P (x)| ≥ Φ(x) for every x ∈ ℓ(pn) with
‖x‖ ≤ δ. Then, the space ℓ(pn) is isomorphic to ℓ2k.

Proof. First note that, since pn ≤ 2k, if (xn)
∞
n=1 verifies

∑∞
n=1 |xn|

pn < ∞ then
∑∞

n=1 |xn|
2k < ∞. This means that the inclusion mapping T : ℓ(pn) → ℓ2k is continu-

ous. Assume that T is not an isomorphism. Then, there exists a sequence (hn)
∞
n=1 ∈ ℓ2k

with 0 ≤ hn < δ, such that (hn)
∞
n=1 /∈ ℓ(pn). We may choose an increasing sequence

of integers (kn) such that if Dn = {kn + 1, . . . , kn+1} then
∑

j∈Dn
h2kj → 0 if n → ∞,

∑

j∈Dn
h
pj
j ≥ 1 and ‖

∑

j∈Dn
hjej‖ ≤ 2. Then, if j ∈ Dn:

|P1(hjej)|+ · · ·+ |P2k−1(hjej) + |P2k(hjej)| ≥ h
pj
j ,

and consequently,

∑

j∈Dn

2k
∑

m=1

|hmj Pm(ej)| ≥
∑

j∈Dn

h
pj
j ≥ 1.

Without loss of generality we may assume 2k − 1 < pn for all n ∈ N. Then the basis
of ℓ(pn) is p-convex for 2k − 1 < p < 2k. This implies that every weakly null sequence
in the space admits an upper ℓp estimate and consequently by [15] all polynomials of
degree less or equal than 2k− 1 are weakly sequentially continuous. Then, proceeding as
in Lemma 3.1, for each m = 1, . . . 2k − 1 it follows that ‖Pm‖Hn

→ 0 as n → ∞, where
Hn = [ek : k ≥ n+ 1]. Consider now the complexified space X̃ of X as in [16] and the
complexified polynomials P̃m. Then, ‖P̃m‖Hn

→ 0 as n → ∞ for each m = 1, . . . 2k − 1.
Let 1 ≤ m ≤ 2k − 1 be fixed and consider the m- generalized Rademacher functions
introduced in [2]. Using the same techniques as in [16] we have:

∑

j∈Dn

|hmj Pm(ej)| =

∫ 1

0

P̃m

(

∑

j∈Dn

ǫjhjrj(t)ej

)

dt

≤ C‖P̃m‖Hn
‖
∑

j∈Dn

hjej‖
m ≤ C2m‖P̃m‖Hn

→ 0 as n→ ∞,

where C is the unconditional constant of the basis {en} in the complexified space, and
|ǫj| = 1 for j ∈ Dn are complex numbers chosen in such a way that P̃m(hjǫjej) =
|Pm(hjej)|.
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On the other hand for m = 2k we have:

∑

j∈Dn

|hj|
2k|P2k(ej)| ≤ ‖P2k‖

(

∑

j∈Dn

h2kj

)

→ 0 if n→ ∞.

Consequently,

∑

j∈Dn

|
2k
∑

i=1

hijPi(ej)| ≤
2k
∑

i=1

∑

j∈Dn

|hj|
i|Pi(ej)| → 0 if n→ ∞

which is a contradiction.

Proposition 5.3. Let 1 ≤ pn ≤ 2k, with limn→∞ pn = 2k. Then there is a T 2k-smooth
bump function on ℓ(pn) if, and only if, ℓ(pn) is isomorphic to ℓ2k.

Proof. The "if" part is trivial. For the converse, we apply Theorem 4.8 to the function
Φ and we find x ∈ ℓ(pn) and a polynomial Q of degree ≤ 2k such that:

Φ(x+ h)− Φ(x)−Q(h) ≤ o(‖h‖2k).

Summing this inequality with the analogue for −h, we obtain that the polynomial P (x) =
Q(x) +Q(−x) has degree ≤ 2k and satisfies:

Φ(x+ h) + Φ(x− h)− 2Φ(x) ≤ P (h) + o(‖h‖2k). (2)

Since the case k = 1 is considered in [26], we restrict ourselves to the case k ≥ 2. In this
case we can assume without loss of generality that pn ≥ 2 for every n ∈ N, and it can be
proved that there exists C > 0 such that

Φ(x+ h) + Φ(x− h)− 2Φ(x) ≥ CΦ(h),

whenever ‖h‖ ≤ 1. Furthermore, it is easy to see that Φ(h) ≥ ‖h‖2k for ‖h‖ ≤ 1. Then
there exists δ > 0 such that, if ‖h‖ ≤ δ:

P (h) ≥ Φ(x+ h) + Φ(x− h)− 2Φ(x) + o(‖h‖2k) ≥ CΦ(h)−
C

2
‖h‖2k =

C

2
Φ(h).

Thus by Lemma 4.2 we obtain the conclusion.

Corollary 5.4. Let 1 ≤ pn ≤ p = 2k, and limn→∞ pn = p. If the function Φ has a point
of T p-smoothness then ℓ(pn) is isomorphic to ℓ2k.

Proof. If Φ has a point of T p-smoothness then Φ verifies (2) and then we get the con-
clusion in the same way as before.
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