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We study necessary and sufficient conditions for the existence of solutions in SBV0(Ω) of a variational
problem involving only bulk energy. Related to that we study the problem of finding u ∈ SBV0(Ω) such
that

∇u(x) ∈ E, a.e. in Ω,

subject to the condition
∫

Ω

∇u = ζ0|Ω|,

where E ⊆ R
N is a given set and ζ0 ∈ int co E is prescribed.

1. Preliminaries and Definitions

The problem of finding necessary and sufficient conditions for existence of solutions of the
problem:

inf

{
∫

Ω

f(∇u) dx : u ∈ W 1,∞
0 (Ω)

}

, (1)

where Ω is an open bounded subset of RN and f : RN → R
+
0 is a lower semicontinu-

ous function has received considerable attention (cf. [6], [7], [11], [12] and the references
therein). Recently the same question was also considered in a generalized setting, allowing
for other differential operators, namely the curl (cf. [5]), and general differential forms (cf.
[4]).
The purpose of this work is to extend the problem (1), to the space of functions of bounded
variation with zero trace: following closely the techniques used in [5] and [4], we look for
necessary and sufficient conditions for existence of solutions of

inf

{
∫

Ω

f(∇u) dx u ∈ SBV0(Ω)

}

, (2)

where ∇u is the absolutely continuous part of the gradient Du relative to Lebesgue
measure.

It is clear that, if f is convex, by Jensen’s inequality, (1) has u ≡ 0 as a trivial solution.
The main reason for considering the problem in the space of special functions of bounded
variation is that, in this new setting, it is not clear if problem (2) attains solution even if
f is convex.
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Notice that a more appropriate problem would take also the jump set into account.
Namely we could consider:

(P ) inf

{
∫

Ω

f(∇u) dx+

∫

Su

(1 + |[u](x)|)dHN−1(x) u ∈ SBV0(Ω)

}

,

penalizing both the existence of "jumps" and the "jump" itself (see for instance [1], [3]).
The main difficulty lies in the fact that we dont know what is inf(P ), in this case. However,
in studying the much simpler case where we do not penalize the existence of "jumps",
we hope to get some insight upon which values can be achieved by the bulk part of a
functional of this type.

We start with some notations which are used throughout this paper. Although these
notations are somewhat standard we mention them here for the sake of completeness.

• R
+
0 denotes the set of all non-negative real numbers.

• For E ⊆ R
N , E 6= ∅, we write spanE to denote the subspace spanned by E.

• Let W be a subspace of RN . We write dimW to denote the dimension of W .

• Hk denotes the k-dimensional Hausdorff measure.

• B(Ω) denotes the Borel σ-algebra of subsets of Ω.

• co C denotes the convex hull of C ⊆ R
N and coC its closure.

• For a convex set C ⊆ R
N ,

1. Aff(C) denotes the affine hull of C which is the intersection of all affine subsets
of RN containing C.

2. ri(C) denotes the relative interior of C which is the interior of C with respect to
the topology relative to the affine hull of C.

3. rbd(C) denotes the relative boundary of C which is C \ ri(C).

• For a function f : RN → R, f ∗∗ denotes the convex envelope of f , that is,

f ∗∗ = inf{g : g convex, g ≤ f},

For reasons that will become clear further on, we consider, Ω ⊂ R
N to be open, bounded

with Lipschitz boundary.

We recall briefly some facts on functions of bounded variation which will be used in the
sequel. We refer to [13], [16] and [20] for a detailed exposition on this subject.

Given a L1(Ω) function u the Lebesgue set of u, Ωu, is defined as the set of points x ∈ Ω
such that there exists ũ(x) ∈ R satisfying

lim
ε→0+

1

εN

∫

B(x,ε)

|u(y)− ũ(x)| dy = 0.

The Lebesgue discontinuity set Su of u is the set of points x ∈ Ω which are not Lebesgue
points, that is Su := Ω \Ωu. By Lebesgue’s Differentiation Theorem, Su is HN -negligible
and ũ : Ω → R, which coincides with u HN -almost everywhere in Ωu, is called the Lebesgue
representative of u.

The approximate upper and lower limits of u are given by

u+(x) := inf

{

t ∈ R : lim
ε→0+

1

εN
HN({y ∈ Ω ∩B(x, ε) : u(y) > t}) = 0

}
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and

u−(x) := sup

{

t ∈ R : lim
ε→0+

1

εN
HN({y ∈ Ω ∩B(x, ε) : u(y) < t}) = 0

}

;

if u+(x) = u−(x) then x ∈ Ωu and u+(x) = u−(x) = ũ(x). The jump set or singular set
of u is defined as

Ju :=
{

x ∈ Ω : u−(x) < u+(x)
}

and we denote by [u](x) the jump of u at x, i.e. [u](x) := u+(x)− u−(x).

A function u ∈ L1(Ω) is said to be of bounded variation, u ∈ BV (Ω), if for all j = 1, ..., N ,
there exists a finite Radon measure µj such that

∫

Ω

u(x)
∂φ

∂xj

(x) dx = −

∫

Ω

φ(x) dµj(x)

for every φ ∈ C1
0(Ω). The distributional derivative Du is the vector-valued measure µ

with components µj.

The space BV (Ω) is a Banach space when endowed with the norm

‖u‖BV = ‖u‖L1 + |Du|(Ω),

where |Du|(Ω) represents the total variation of the measure Du.

A set A ⊂ Ω is said to be of finite perimeter in Ω if χA ∈ BV (Ω). The perimeter of A in
Ω is defined by

PerΩ(A) := sup

{
∫

A

divϕ(x) dx : ϕ ∈ C1
0(Ω;R

N), ‖ϕ‖∞ ≤ 1

}

.

For a set A ⊂ Ω the reduced boundary of A in Ω, ∂∗A, is given by

∂∗A ∩ Ω = SχA
∩ Ω

and we recall that for HN−1 a. e. x ∈ ∂∗A, it is possible to define a measure theoretical
interior normal to A, νA(x) ∈ SN−1, such that

DχA(B) =

∫

B∩∂∗A

νA(x) dH
N−1(x)

for every B ∈ B(Ω).

If u ∈ BV (Ω) it is well known that Su is countably N − 1 rectifiable, i.e.

Su =
∞
⋃

n=1

Kn ∪ E,

where HN−1(E) = 0 and Kn are compact subsets of C1 hypersurfaces. Furthermore, for
HN−1 a.e. x ∈ Su, u

+(x) 6= u−(x) and there exists a unit vector νu(x) ∈ SN−1, normal to
Su at x, such that

lim
ε→0+

1

εN

∫

{y∈B(x,ε):(y−x)·νu(x)>0}

|u(y)− u+(x)| dy = 0
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and

lim
ε→0+

1

εN

∫

{y∈B(x,ε):(y−x)·νu(x)<0}

|u(y)− u−(x)| dy = 0.

In particular, HN(Su \ Ju) = 0.

If u ∈ BV (Ω) then the distributional derivative Du may be decomposed as

Du = ∇uHN + (u+ − u−)⊗ νuH
N−1⌊Su + Cu, (3)

where ∇u is the density of the absolutely continuous part of Du with respect to the
Lebesgue measure and Cu is the Cantor part of Du which vanishes on all B ∈ B(Ω) with
HN(B) < +∞. The three measures appearing in (3) are mutually singular.

The space of special functions of bounded variation, SBV (Ω), introduced by De Giorgi
and Ambrosio in [17], is the space of functions u ∈ BV (Ω) such that Cu = 0, i.e. for which

Du = ∇uHN + (u+ − u−)⊗ νuH
N−1⌊Su.

For Ω open bounded with Lipschitz boundary the outer unit normal to ∂Ω (denoted by
ν) exists HN−1 a.e., and we can define the trace for functions in BV (Ω). Namely, there
exists a bounded linear mapping:

T : BV (Ω) → L1(∂Ω;HN−1)

such that
∫

Ω

udivφ dx = −

∫

Ω

φ · d[Du] +

∫

∂Ω

(φ · ν)Tu dHN−1,

for all u ∈ BV (Ω) and φ ∈ C1(RN ;RN). The function Tu is uniquely defined up to sets
of HN−1⌊∂Ω measure zero, is called the trace of u on ∂Ω.

We denote by SBV0(Ω), the set of u ∈ SBV (Ω) such that Tu = 0 on ∂Ω. We will need
the following extension result:

Theorem 1.1. Let Ω ⊂ R
N open, bounded with ∂Ω Lipschitz. Let f1 ∈ BV (Ω), f2 ∈

BV (Rn\Ω̄). Define

f̄(x) =

{

f1(x) x ∈ Ω

f2(x) x ∈ R
n\Ω̄

Then f̄ ∈ BV (RN), and:

||Df̄ ||(RN) = ||Df1||(Ω) + ||Df2||(R
n\Ω̄) +

∫

∂Ω

|Tf1 − Tf2| dH
N−1.

2. Statement of the problem

Consider the following problem:

(P ) inf

{
∫

Ω

f(∇u) dx u ∈ SBV0(Ω)

}

,

where Ω ⊂ R
N is open bounded with Lipschitz boundary and f : Rn → R is convex,

attaining its minimum at ζ0. Two situations may occur:
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a) Suppose ζ0 = 0. Then, trivially, w = 0 is a (trivial) classical solution of (P ).

b) Suppose ζ0 6= 0. Since we can express Ω as a disjoint union of cubes plus a set of
small measure, take Ω to be a cube, and for ǫ > 0, let Ωǫ ⊂ Ω a smaller cube such
that |Ω\Ωǫ| ≤ ǫ . Then we can construct an admissible sequence for (P ) taking
uζ0 ∈ W 1,∞(Ω) such that Duζ0 = ζ0 and setting

un =

{

uζ0 in Ω 1

n

0 in Ω\Ω 1

n

,

it follows that inf(P ) = f(ζ0)|Ω|.

3. Necessary conditions

The following is a necessary condition for (P ) to attain solution.

Lemma 3.1. Suppose (P ) attains a solution u. Then:

i)

f(
1

|Ω|

∫

∇u) = f(ζ0), a.e. in Ω,

ii)

f(
∇u(x) + ζ0

2
) =

f(∇u(x)) + f(ζ0)

2
, a.e. in Ω.

Proof. The condition i) results trivially from Jensen’s inequality. Regarding condition
ii), if there exists u ∈ SBV0(Ω) such that

∫

Ω
f(∇u(x)) dx = f(ζ0)|Ω|, then:

f(ζ0)|Ω| =
1

2

[
∫

Ω

f(∇u) dx+ f(ζ0)|Ω|

]

=
1

2

[
∫

Ω

f(∇u) + f(ζ0)

]

≥

∫

Ω

f(
∇u+ ζ0

2
) ≥ f(ζ0)|Ω|

and we conclude that:

f(
∇u(x) + ζ0

2
) =

f(∇u(x)) + f(ζ0)

2
, a.e. in Ω.

From condition ii) of the previous lemma, if u is a minimizer for (P ), then either:

a)
∇u = ζ0 a.e. in Ω,

or

b) f is affine at ζ0 in at least one direction.

The first question we may pose is whether there is any function w ∈ SBV0(Ω) such that

∇w = ζ0, a.e. in Ω.
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For N = 1 one trivially can find such a solution (taking Ω = (0, 1), just consider a
piecewise affine function with slope ζ0 and such that w(0) = w(1) = 0, with for instance a
"jump" at x0 ∈ (0, 1)). However, for N > 2 there is not any function w ∈ SBV0(Ω) such
that

∇w = ζ0, a.e. in Ω.

This is a consequence of the following lemma:

Lemma 3.2. Let u ∈ SBV0(Ω) and suppose there exists λ ∈ R
N\{0} such that

< ∇u(x), λ >= 0, a.e. x ∈ Ω

and
< νu(x), λ >= 0, HN−1 a.e. on Su ∩ Ω.

Then u = 0 a.e. in Ω.

Proof. Since Tu = 0 on ∂Ω, for all φ ∈ C1(RN ;RN), we have:

∫

Ω

u divφ dx = −

∫

Ω

φ · [du] = −

∫

Ω

φ · ∇u dx−

∫

Su∩Ω

< φ, [u]νu > dHN−1(x)

Step 1. Suppose λ = e1. Then, taking η ∈ C1(RN), setting φ = (η, 0, . . . , 0) in the
previous equality

∫

Ω

u
∂η

dx1

= −

∫

Ω

η
∂u

dx1

dx−

∫

Su∩Ω

[u]η < e1, νu > dHN−1(x) = 0,

∀η ∈ C1(RN), according to the hypothesis. Taking in particular η ∈ C∞
c (RN), we conclude

that
Du

dx1

= 0,

(derivative in the sense of distributions). For x0 ∈ Ω\Su and for t ∈ (t−, t+), such that
x0 + t−e1, x0 + t+e1 ∈ ∂Ω, and x0 + te1 ∈ Ω for t ∈ (t−, t+), set:

ūx0
(t) := u(x0 + te1).

Then, ūx0
∈ SBV (R), for a.e. x ∈ Ω, and since its derivative is zero, we conclude that

ūx0
= cx0

, i.e., u is contant along lines with direction e1. Now, by the definition of trace,
considering x0 ∈ Ω\Su such that νu is well defined at x0 + t+e1, x0 + t−e1, we have

Tu(y) = lim
ǫ→0

1

HN(Bǫ(y) ∩ Ω)

∫

Bǫ(y)∩Ω

u(x) dx = 0,

at y = x0 + t+e1, y = x0 + t−e1, and since a ball centered at x0 and radius ǫ is contained
in translations (along the direction e1) and possibly dilations of, Bǫ(y) ∩ Ω with y =
x0 + t+e1, y = x0 + t−e1, we conclude that:

lim
ǫ→0

1

Bǫ(x0)

∫

Bǫ(x0)

u(x) dx = 0,
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i.e., by Lebesgue-Besicovitch differentiation theorem, u(x0) = 0 LN a.e. x0 ∈ Ω.

Step 2. Just apply a rotation argument: let Q be an orthogonal matrix such that Qe1 = λ
and define ũ(y) = u(Qy) for y ∈ Ω̃ := QTΩ. It is clear that ũ ∈ SBV0(Ω̃), with Sũ = {y ∈
Ω̃ : Qy ∈ Su}, and

< ∇ũ(y), e1 >= 0 a.e. y ∈ Ω̃,

< νũ(y), e1 >= 0, HN−1 a.e. on Sũ ∩ Ω̃.

Therefore, ũ = 0 in Ω̃ and hence u = 0 in Ω.

Corollary 3.3. Let N ≥ 2,Ω ⊂ R
N , and let ζ0 ∈ R

N\{0}. Then there is no u ∈ SBV0(Ω)
such that ∇w = ζ0 (a.e. in Ω).

Proof. We argue by contradiction. Suppose there exists w ∈ SBV0(Ω) such that∇w = ζ0
(a.e.). Since Tw = 0 on ∂Ω, we have, ∀φ ∈ C1(RN ;RN):

∫

Ω

w divφ dx = −

∫

Ω

φ · [dw] = −

∫

Ω

φ · ∇w dx−

∫

Sw∩Ω

< φ, [w]νw > dHN−1(x)

Let λ ∈ R
N\{0}, a vector orthogonal to ζ0 and consider the function φ ≡ λ, in the

previous equality. We conclude that:

< ∇w(x), λ >=< ζ0, λ >= 0, a.e. x ∈ Ω

and
< νw(x), λ >= 0, HN−1 a.e. on Sw ∩ Ω.

Hence, thanks to Lemma 3.2, w = 0, a contradiction.

Therefore, for N > 1, a necessary condition for (P ) to attain a solution is that f is affine
in at least one direction at ζ0. Notice that in fact a necessary condition is that f is affine
at ζ0. In fact, (writing for sake of simplicity Affζ0 instead of Aff({ζ0})), suppose that
dim Affζ0 = k (1 < k < N).Then, taking λ orthogonal to Affζ0 and arguing as in the
previous corollary we conclude that there is no u ∈ SBV0(Ω) such that ∇u ∈ Affζ0 .

4. Sufficient conditions

One might ask if this condition is also sufficient.

In order to answer that question, we will need a couple of lemmas which we will not prove
here. For the proof of these 2 lemmas we refer to [7], Lemma 2.11 of [12] and [14].

Lemma 4.1. Let E ⊂ R
N with dim span E = n ≤ N and let 0 ∈ ri (coE). Then there

exist m ≥ n+ 1, zα ∈ E, tα > 0 such that

m
∑

α=1

tαzα = 0,
∑

α=1

tα = 1, dim span{zα|α = 1, . . . ,m} = n.

Lemma 4.2 (Pyramids). Let Ω ⊂ R
N be open and bounded. Let zα ∈ R

N , tα > 0, α =
1, . . . ,m, with m ≥ N + 1, be such that

m
∑

α=1

tαzα = 0,
∑

α=1

tα = 1, dim span{zα|α = 1, . . . ,m} = N.
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Then there exists u ∈ W 1,∞
0 (Ω) satisfying

∇u ∈ {zα|α = 1, . . . ,m}, a.e. in Ω.

In order to look for solutions of our problem, we will now adapt Lemma 4.2 to our setting.
Namely, we have:

Lemma 4.3. Let Ω ⊂ R
N be open and bounded. Let zα ∈ R

N , tα > 0, α = 1, . . . ,m,
with m ≥ N + 1, be such that

m
∑

α=1

tαzα = ζ0,
∑

α=1

tα = 1, dim span{zα|α = 1, . . . ,m} = N.

Then there exists u ∈ SBV0(Ω) satisfying

∇u ∈ {zα|α = 1, . . . ,m}, a.e. in Ω.

and
∫

Ω

∇u = ζ0|Ω|.

Proof. We can take w.l.o.g. Ω to be the unit cube centered at origin with side length
equal to 1. Then, using translations and dilations, by Vitali’s covering theorem we have
the same result for a general Ω. Since

∑m

α=1 t
α(zα − ζ0) = 0, and dim span {zα − ζ0|α =

1, . . . ,m} = N , we can apply Lemma 4.2 to Q1 ⊂ Ω, Q1 = (−1
4
, 1
4
)N to get v1 ∈ W 1,∞

0 (Q1)
such that ∇v1 ∈ {zα − ζ0, α = 1, . . . ,m}. Now set w1 = v1 + g1 on Q1, where g1 is affine,
∇g1 = ζ0 and g1(−

1
4
, . . . ,−1

4
) = 0. Extending v1 by 0 to Ω, we constructed a function

w1 ∈ SBV0(Ω) such that ∇w1 ∈ {zα, α = 1, . . . ,m} a.e. in Q1,
∫

Q1
∇w1 = ζ0|Q1|, and

since
Sw1

⊂ ∂Q1,

and the functions involved are linear,

|Dsw1|(Ω) ≤ C(ζ0).2N.(
1

2
)N−11

2
. (4)

(Note that 2N is the number of faces of a cube in R
N .) Consider now the cube Q2 =

(−3
8
, 3
8
)N and set S2 = Q2 − Q̄1, and divide S2 into r(2)(open) cubes of side 1

23
, i.e.

S̄2 = ∪r(2)
i=1 Q̄

i
2(x

i,
1

23
).

In each cubeQi
2 apply Lemma 4.2 to obtain vi2 ∈ W 1,∞

0 (Qi
2),∇vi2 ∈ {zα−ζ0, α = 1, . . . ,m},

and set wi
2 = vi2 + gi2 in Qi

2 with gi2 affine, ∇gi2 = ζ0, g
i
2(x̄

i
2) = 0, where

x̄i
2 = xi

2 + (−
1

23
, . . . ,−

1

23
).

Extend each of the functions wi
2 by 0 to Ω and set

w2 = w1 +

r(2)
∑

i=1

wi
2.
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Clearly w2 ∈ SBV0(Ω),∇w2 ∈ {zα, α = 1, . . . ,m} a.e. in Q2, and
∫

Q2
∇w2 = ζ0|Q2|. Also,

since Sw2
⊂ ∪i=1,...,r(2)∂Q

i
2, we clearly have

|Dsw2|(Ω) ≤ |Dsw1|(Ω) + C(ζ0).r(2).(
1

23
)N−1.(

1

23
).

Now iterate the process. For

Qn = (−(
1

22
+

1

23
+ . . .+

1

2n+1
),

1

22
+

1

23
+ . . .+

1

2n+1
),

set Sn = Qn − ¯Qn−1, and divide Sn into r(n) cubes of side length 1
2n+1 . Notice that

r(n) ≤ 2N.

( 1
2
+ 1

22
+ . . .+ 1

2n

1
2n+1

)N−1

≤ 2N2(N−1)(n+1)

(

∞
∑

n=1

1

2n

)N−1

≤ 2N2(N−1)(n+1).

On each cube Qi
n set wi

n = vin + gin with vin and gin as before, and

wn =
n−1
∑

j=1

wj +

r(n)
∑

i=1

wi
n.

Fore each n ∈ N we obtain a function wn ∈ SBV0(Ω) satisfying the desired properties
and such that

|Dswn|(Ω)| ≤
n−1
∑

j=1

|Dswj|(Ω) + C(ζ0)2N2(N−1)(n+1)

(

1

2n+1

)N−1
1

2n+1
. (5)

We constructed a sequence {wn} ⊂ SBV0(Ω) that converges in BV (Ω) to

w =
∞
∑

n=1

wn.

For B ∈ B(Ω) such that HN(B) = 0, set B = B\(B ∪ Sw). It is clear that |Dwn|( B) =
0, ∀n ∈ N1, and so |Dw|( B) = 0 and therefore w ∈ SBV (Ω). Also, by continuity of the
trace operator, Tw = 0 on ∂Ω, and so

w ∈ SBV0(Ω),

and
∫

Ω

∇w = ζ0|Ω|,

and, combining (4), (5),
|Dsu|(Ω) ≤ C(ζ0)N.

Combining the previous lemma with the hypothesis of f affine at ζ0 we derive sufficient
conditions for existence of solutions to our problem. We start with a definition:
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Definition 4.4. A function g : RN → R is said to be affine at ζ0 if there exist an open
set S ∈ R

N such that ζ0 ∈ S and a ∈ R
N , b ∈ R such that

g(ζ) =< a, ζ > +b, ∀ζ ∈ S.

Remark 4.5. Note that in our case, the largest set S satisfying the previous definition is
convex since f is convex. We denote this set (or more generally its connected component
containing ζ0), by Sζ0 .

We are now in conditions to prove the following:

Theorem 4.6. Let f : RN → R be convex, and attaining its minimum at ζ0. Suppose
that f is affine at ζ0 . Then the problem:

(P ) inf

{
∫

Ω

f(∇u) dx u ∈ SBV0(Ω)

}

attains solution.

Proof. By definition, dim Affζ0 = N and ζ0 ∈ int co Sζ0 . By Lemmas 4.1 and 4.3, we
can construct u ∈ SBV0(Ω) such that ∇u ∈ E (a.e. in Ω), where

E = ∂Vζ0 .

Then,

∫

Ω

f(∇u(x)) dx =

∫

Ω

< a,∇u(x) > +b =< a,

∫

Ω

∇u > +b|Ω|

=

∫

Ω

f(ζ0) dx = f(ζ0)|Ω| = inf(P )

Remark 4.7. Note that, if 0 /∈ Sζ0 , then we may have existence on (nonclassical) solution
for (P ), with inf(P ) = f(ζ0)|Ω| < f(0)|Ω|.

5. Non-convex integrand

In the case where f is non-convex, consider as customary, the auxiliary problem:

(P̄ ) inf{

∫

Ω

f ∗∗(∇u) dx u ∈ SBV0(Ω)}.

where f ∗∗ denotes the convex-hull of f , i.e.,

f ∗∗ = inf{g : g convex, g ≤ f},

and suppose that f ∗∗ attains a minimum at ζ0. Two situations may occur:
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1)

ζ0 = 0.

Then, trivially inf(P̄ ) = f ∗∗(0)|Ω|, and if f(0) = f ∗∗(0), w = 0 is a trivial solution
for (P ) (and (P̄ )). Assuming that f(0) > f∗∗(0), let:

E = {ζ ∈ R
N : f(ζ) = f ∗∗(ζ)}.

Then, a sufficient condition for existence of solutions is:
There exists w ∈ SBV0(Ω) such that:
a)

∇u(x) ∈ E a.e. in Ω,

b)
∫

Ω

f ∗∗(∇u) = f ∗∗(0)|Ω|.

In fact, the previous conditions ensure that inf(P ) ≤
∫

Ω
f(∇u) = inf(P̄ ) and since

trivially inf(P̄ ) ≤ inf(P ), we are done.
An answer to this question is given by the classical setting: If dim span E = N, there
exists w ∈ W 1,∞

0 (Ω) that satisfies the conditions above, and this together with the
hypothesis of f ∗∗ affine at K = Ec, leads to the existence of solutions (cf. [6], [7], [14],
[8]). The condition on the dimension of the span of E is necessary and sufficient for
existence of such a w ∈ W 1,∞

0 (Ω). Also, Lemma 3.3, (and the comments that follow
it), show that this condition is also necessary in SBV0(Ω).

2)

ζ0 6= 0.

In this case, inf(P̄ ) = f ∗∗(ζ0)|Ω|, and two situations may arise:
2.1)

ζ0 ∈ K = {ζ ∈ R
N : f ∗∗(ζ) < f(ζ)}.

2.2)

ζ0 ∈ E = {ζ ∈ R
N : f ∗∗(ζ) = f(ζ)}.

2.1) A sufficient condition for existence of solutions is:
There exists w ∈ SBV0(Ω) such that:
a)

∇w ∈ E a.e. in Ω

b)
∫

Ω

f ∗∗(∇w) = f ∗∗(ζ0)|Ω|.

This leads to the consideration of the following differential inclusion problem:
Given E ⊂ R

N and ζ0 ∈ ¯coE find w ∈ SBV0(Ω) such that:

∇w ∈ E a.e. in Ω

∫

Ω
∇w = ζ0|Ω|.
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2.2) In this case, (ζ0 ∈ E), it would be sufficient to show that there exists u ∈ SBV0(Ω)
such that f(ζ0)|Ω| =

∫

Ω
f(∇u) dx. This problem would be easily solved if there exists

a function u ∈ SBV0(Ω) such that ∇u = ζ0, but this is impossible as shown in the
previous session.

Remark 5.1. By Jensen’s inequality, and since

¯coE = {ζ ∈ R
N | f(ζ) ≤ 0 for all f ;RN → R, f convex and f |E = 0},

we have that ζ0 is to be taken in ¯coE.

Therefore, existence of solutions of the differential inclusion problem together with affinity
hypothesis on f ∗∗ lead to existence of solutions. Taking into account the results from the
previous section, a partial answer is:

Theorem 5.2. Let K be bounded and connected and let ζ0 ∈ Kand let f ∗∗ be affine on
K̄. Then (P ) attains solution.

Proof. Since K (or more generally its connected component that contains ζ0) is open
(because f is lower semicontinuos and f ∗∗ is continuous), we have that ζ0 ∈int co∂K.
Applying now the results from the previous section we have the result.

Remark 5.3. If ζ0 ∈ E, but if there exist zα ∈ Vζ0 ⊂ E, tα ∈ (0, 1) in the conditions of
Lemma 4.1 and if f ∗∗ is affine on ¯intcoVζ0 , we still are able to apply the previous procedure
and obtain existence of solutions. In particular, if ζ0 ∈ intco E, and f is affine at ζ0 there
is solution of the problem.

Remark 5.4. This analysis suggests that, regarding a problem with jump term, the
infimum will result from some sort of compromise between f(ζ0)|Ω| and f(0)|Ω|. In fact,
applying Lemma 4.3 to any level set, Et = {ζ ∈ R

N : f(ζ) = t}, for t ∈ (f(ζ), f(0)), one
sees that we can construct functions uζ0,t ∈ SBV0(Ω) such that

∫

Ω
f(∇uζ0,t) = f(t)|Ω|.

By getting t "closer" to ζ0, the bulk energy decreases, while by getting t "closer" to 0,
the jump term should decrease.
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