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This article is devoted to obtain the Γ-limit, as ε tends to zero, of the family of functionals

u 7→
∫

Ω

f
(
x,

x

ε
, . . . ,

x

εn
,∇u(x)

)
dx,

where f = f(x, y1, . . . , yn, z) is periodic in y1, . . . , yn, convex in z and satisfies a very weak regularity
assumption with respect to x, y1, . . . , yn. We approach the problem using the multiscale Young measures.
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1. Introduction

Multiscale composites are structures constituted by two or more materials which are finely
mixed on many different microscopic scales. The fact that a composite often combines
the properties of the constituent materials makes these structures particularly interesting
in many fields of science. There is a vast literature on the subject; we refer the reader to
[22] and references therein.

Determining macroscopic behavior of these strongly heterogeneous structures when the
size ε of the heterogeneity becomes “small” is the aim of homogenization theory.

In the particular case of a periodic multiscale composite, from a variational point of view,
the homogenization problem is to characterize the behavior, for the parameter ε tending
to zero, of functionals on W 1,p(Ω,Rs) of the type

Fε(u) =

∫

Ω

f
(
x, 〈 x

ρ1(ε)
〉, . . . , 〈 x

ρn(ε)
〉,∇u(x)

)
dx, (1)

where 〈·〉 denotes the fractional part of a vector componentwise, Ω is an open bounded
domain in Rd, ¤ is the unit cell [0, 1)d, ρk are the length scales and f = f (x, y1, . . . , yn, z)
is a non-negative function on Ω×¤n ×Ms×d.

The purpose of this paper is to analyze (1) under the following assumptions.

Assumption 1.1. f is convex in the argument z for all x ∈ Ω and y1, . . . , yn ∈ ¤.
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Assumption 1.2. f is p-coercive and with p-growth:

c1 |z|p ≤ f
(
x, y1, . . . , yn, z

) ≤ c2 (1 + |z|p)
for some p ∈ (1,+∞), c1, c2 > 0 and for all (x, y1, . . . , yn, z) ∈ Ω×¤n ×Ms×d.

Assumption 1.3. f is an admissible integrand, i.e., for every δ > 0 there exist a compact
set X ⊆ Ω with |Ω\X| ≤ δ and a compact set Y ⊆ ¤ with |¤\Y | ≤ δ, such that
f |X×Y n×Ms×d is continuous.

In particular we cover the following two significant cases (see Examples 4.12 and 4.13).

(i) The case of a single microscale (n = 1): the function f : Ω×¤×Ms×d → [0,+∞) is
continuous in x, measurable in y and satisfies Assumptions 1.1 and 1.2. Notice that
f is continuous in z uniformly with respect to x and hence is continuous in (x, z). It
is possible to interchange the regularity conditions on f requiring the measurability
in x and the continuity in y.

(ii) The case of a multiscale mixture of two materials: the function f : Ω×¤n×Ms×d →
[0,+∞) is of the type

f(x, y1, . . . , yn, z)

=
n∏

k=1

χPk
(yk) f1(x, y

1, . . . , yn, z) +
[
1−

n∏

k=1

χPk
(yk)

]
f2(x, y

1, . . . , yn, z),
(2)

where χPk
(k = 1, . . . , n) is the characteristic function of a measurable subset Pk of ¤

and the functions f1, f2 : Ω×¤n×Ms×d → [0,+∞) are measurable in x, continuous
in (y1, . . . , yn) and satisfy Assumptions 1.1 and 1.2. The regularity conditions on f1

and f2 can be replaced by the continuity in (x, y1, . . . , yn−1) and the measurability
in the fastest oscillating variable yn.

Problems of the type (1) have captured the attention of many authors. For instance, the
case of a single microscale ∫

Ω

f
(
x, 〈x

ε
〉,∇u(x)

)
dx

has been studied by Braides (see [8] and also [9, Chapter 14]) under Assumption 1.1 and
requiring in addition a p-growth condition on the integrand f and a uniform continuity
in x, precisely

|f(x, y, z)− f(x′, y, z)| ≤ ω(|x− x′|)[α(y) + f(x, y, z)
]

(3)

for all x, x′ ∈ Rd, y ∈ ¤ and z ∈ Ms×d, where α ∈ L1(¤) and ω is a continuous positive
function with ω(0) = 0. Recently Báıa and Fonseca [3] have studied this problem under
Assumpion 1.2 and requiring continuity in (y, z) and measurability in x.

In [10] (see also [9, Chapter 22], [19] and [20]) Braides and Lukkassen study functionals
of the form ∫

Ω

f
(
〈x
ε
〉, . . . , 〈 x

εn
〉,∇u(x)

)
dx.

The authors provide an iterated homogenization formula for functions as in (2) with an
additional request on the functions f1 and f2 of a uniform continuity, similar to (3), with
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respect to the slower oscillating variables y1, . . . , yn−1. The same result is obtained by
Fonseca and Zappale [16] but with a continuous function f satisfying Assumptions 1.1
and 1.2.

Since the variable x describes the macroscopic heterogeneity of the constituent materials
while the variables y1, . . . , yn describe the microscopic heterogeneity of the composite
structure, it is desirable to have the weakest possible regularity on them. In particular,
the oscillating variables should be able to describe the discontinuity on the interfaces
between different materials. At any rate the only request that f is borelian is not enough
to obtain a homogenization formula, as it is shown in Examples 5.10 and 5.11 (see also
[1] and [13]).

In order to weaken the continuity assumptions taken in the works cited above, we ap-
proach the problem using the multiscale Young measures as in [24] (see also [21] and
[23]). The peculiarity of our work is the introduction of the concept of admissible inte-
grand (Definition 4.10). The crucial point is to extend the lower semicontinuity property
(7) to this kind of integrand: this is achieved in Theorem 4.14.

The paper is organized as follows. In Section 2 we recall concepts and basic facts about
Young measures. In Section 3 we introduce the notion of multiscale convergence in the
general framework of multiscale Young measures. In Section 4 we discuss the properties
of admissible integrands. By Theorems 4.6 and 4.14 we derive, in Section 5, the upper
and lower estimates for the Γ(Lp)-limit of the family Fε (Lemmas 5.7 and 5.5). Finally,
in Section 6, we give an iterated homogenization formula.

2. Young measures

We gather briefly in this section some of the main results about Young measures, for more
details and proofs we refer the reader to [5], [11] and [26].

We denote with

• D a bounded and locally compact subset of Rl, equipped with the Lebesgue σ-algebra
L(D);

• |A| the Lebesgue measure of a set A ∈ L(D);

• S a locally compact and separable metric space, equipped with the Borel σ-algebra
B(S);

• U(D,S) the family of measurable functions u : D → S;

• C0(S) the space {φ : S → R continuous: ∀δ > 0 ∃Kδ ⊆ S compact: |φ(z)| < δ for z ∈
S \Kδ}, endowed with the supremum norm;

• M(S) the space of real valued and finite Radon measures on S;

• P(S) := {µ ∈M(S) : µ ≥ 0 and µ(S) = 1} the set of probability measures on S;

• L1(D,C0(S)) the Banach space of all measurable maps x ∈ D
φ−→ φx ∈ C0(S) such

that ‖φ‖L1 :=
∫
D
‖φx‖C0(S) dx is finite;

• L∞w (D,M(S)) the Banach space of all weak* measurable maps x ∈ D µ−→ µx ∈M(S)
such that ‖µ‖L∞w := ess supx∈D ‖µx‖M(S) is finite;

• Y(D,S) the family of all weak* measurable maps µ : D→M(S) such that µx ∈ P(S)
a.e. x ∈ D.
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Remark 2.1.

(i) As it is known, the dual of C0(S) may be identified with M(S) through the duality

〈µ, φ〉 =

∫

S

φ dµ ∀µ ∈M(S) and ∀φ ∈ C0(S).

(ii) A map µ : D →M(S) is said to be weak* measurable if x→ 〈µx, φ〉 is measurable
for all φ ∈ C0(S).

(iii) More precisely, the elements of L1(D,C0(S)), L∞w (D,M(S)) and Y(D,S) are equiv-
alence classes of maps that agree a.e.; we do not distinguish these maps from their
equivalence classes.

(iv) L∞w (D,M(S)) can be identified with the dual of L1(D,C0(S)) through the duality

〈µ, φ〉 =

∫

D

〈µx, φx〉 dx ∀µ ∈ L∞w
(
D,M(S)

)
and ∀φ ∈ L1

(
D,C0(S)

)
.

In the following we will refer to the weak* topology of L∞w (D,M(S)) as the topology
induced by this duality pairing.

(v) Let Ŷ(D,S) := {% ∈ M(D × S) : % ≥ 0 and %(A × S) = |A| ∀A ∈ B(D)}. By the
Disintegration Theorem [25], the map which associates to µ ∈ Y(D,S) the measure

µ̂ ∈ Ŷ(D,S) defined by

µ̂(A) :=

∫

D

(∫

S

χA(x, z)dµx(z)

)
dx ∀A ∈ B(D × S)

induces a bijection between Y(D,S) and Ŷ(D,S). Given a function f : D × S →
R µ̂-integrable, it turns out that f(x, ·) is µx-integrable for a.e. x ∈ D, x →∫
S
f(x, z)dµx(z) is integrable and

∫

D×S
fdµ̂ =

∫

D

(∫

S

f(x, z)dµx(z)

)
dx;

this last equality remains true if f is L(D)⊗ B(S)-measurable and non-negative.

The family U(D,S) can be embedded in L∞w (D,M(S)) associating to every u ∈ U(D,S)
the function

x
δu−→ δu(x),

where δu(x) is the Dirac probability measure concentrated at the point u(x).

Definition 2.2. A function µ ∈ L∞w (D,M(S)) is called the Young measure generated
by the sequence uh if δuh

⇀ µ in the weak* topology.

Remark 2.3. This notion makes sense: by the identification of L∞w (D,M(S)) ' L1 (D,
C0(S))∗ and as a direct consequence of the Banach-Alaoglu theorem, every sequence uh
in U(D,S) admits a subsequence generating a Young measure.

The following result is a “light” version of the Fundamental Theorem on Young Measures.
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Theorem 2.4. Let uh be a sequence in U(D,S) generating a Young measure µ and for
which the “tightness condition” is satisfied, i.e.,

∀δ > 0 ∃Kδ ⊆ S compact : sup
h∈N+

∣∣{x ∈ D : uh(x) 6∈ Kδ}
∣∣ ≤ δ. (4)

The following properties hold:

(i) µ ∈ Y(D,S);

(ii) if f : D × S → [0,+∞) is a Carathéodory integrand, then

lim inf
h→+∞

∫

D

f
(
x, uh(x)

)
dx ≥

∫

D

f(x)dx

where

f(x) :=

∫

S

f(x, z)dµx(z);

(iii) if f : D×S → R is a Carathéodory integrand and f (·, uh(·)) is equi-integrable, then
f is µ̂-integrable and f (·, uh(·)) ⇀ f weakly in L1(D).

We remember that a L(D)⊗ B(S)-measurable function f is a Carathéodory integrand if
f(x, ·) is continuous for all x ∈ D.

3. Multiscale Young measures

We introduce now the notion of multiscale convergence, an extension of the two-scale
convergence carried out by Allaire ([2]) in joint work with Briane. We present it in the
general framework of multiscale Young measures, following essentially the ideas exposed
in [27], [4] and [21].

We start presenting an example that does not only show a fine and explicit case of Young
measure, but it is a fundamental mainstay in this section. Before we add some new
notations:

• Ω is a bounded open subset of Rd, equipped with the Lebesgue σ-algebra L(Ω);

• ¤ is the unit cell [0, 1)d, equipped with the Lebesgue σ-algebra L(¤);

• n is the number of scales, a positive integer;

• ρ1, . . . , ρn are positive functions of a parameter ε > 0 which converge to 0 as ε does,
for which the following separation of scales hypothesis is supposed to hold:

lim
ε→0+

ρk+1(ε)

ρk(ε)
= 0 ∀k ∈ {1, . . . , n− 1};

• 〈x〉 ∈ ¤ is the fractional part of x ∈ Rd componentwise, i.e.,

〈x〉k = xk − bxkc for k ∈ {1, . . . , d},

where bxkc stands for the largest integer less than or equal to xk;

• p ∈ (1,+∞) and q ∈ [1,+∞] (unless otherwise stated), moreover q′ is the Hölderian
conjugate exponent of q;
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• C∞c (Ω) stands for the space of the functions in C∞(Ω) with compact support;

• Cper(¤k) is the space of the functions u = u(y1, . . . , yk) in C((Rd)k) ¤-periodic in
y1, . . . , yk; corresponding definitions hold for C1

per(¤k) and C∞per(¤k);

• W 1,p
per(¤) denotes the space of the functions in W 1,p

loc (Rd) ¤-periodic.

We fix a sequence εh → 0+ of values of the parameter ε.

Example 3.1. We denote by T the set ¤ equipped with the topological and differential
structure of the d-dimensional torus; any function on T can be identified with its periodic
extension to Rd, in particular

C(T ) = C0(T ) ' Cper(¤).

We consider the sequence vh : Ω → ¤n defined by

vh(x) :=

(
〈 x

ρ1(εh)
〉, . . . , 〈 x

ρn(εh)
〉
)
. (5)

For our example, we need an auxiliary ingredient concerning weak convergence. It is a
particular case of [14, Proposition 3.3].

Theorem 3.2. Riemann-Lebesgue lemma: given φ ∈ Cper(¤n), define φh(x) := φ(vh(x)).
Then φh ⇀

∫
¤n φ (y1, . . . , yn) dy1 . . . dyn weakly* in L∞(Ω).

As consequence of Riemann-Lebesgue lemma, for all ϕ ∈ L1(Ω) and φ ∈ Cper(¤n)
∫

Ω

ϕ(x)φ (vh(x)) dx→
∫

Ω×¤n

ϕ(x)φ
(
y1, . . . , yn

)
dx dy1 . . . dyn.

The map ϕ⊗φ that takes every x ∈ Ω into ϕ(x)φ(·)∈ Cper(¤n) belongs to L1 (Ω, Cper(¤n)).
Since the space L1(Ω) ⊗ Cper(¤n), defined as the linear closure of {ϕ ⊗ φ : ϕ ∈ L1(Ω)
and φ ∈ Cper(¤n)}, is dense in L1 (Ω, Cper(¤n)), we conclude that vh generates the Young
measure µ ∈ Y(Ω, T n) with

µx = Lx¤n for a.e. x ∈ Ω,

where Lx¤n is the restriction to ¤n of the Lebesgue measure on
(
Rd

)n
.

Definition 3.3. Let uh be a sequence in L1(Ω). The sequence uh is said to be multiscale
convergent to a function u = u(x, y1, . . . , yn) ∈ L1(Ω×¤n) if

lim
h→+∞

∫

Ω

ϕ(x)φ

(
x

ρ1(εh)
, . . . ,

x

ρn(εh)

)
uh(x)dx

=

∫

Ω×¤n

ϕ(x)φ
(
y1, . . . , yn

)
u

(
x, y1, . . . , yn

)
dx dy1 . . . dyn

for any ϕ ∈ C∞c (Ω) and any φ ∈ C∞per(¤n). We simply write uh Ã u. A sequence in
L1(Ω,Rm) is called multiscale convergent if it is so componentwise.

Proposition 3.4. Let uh be an equi-integrable sequence in L1(Ω) multiscale convergent
to a function u ∈ L1(Ω×¤n). Then uh converges weakly to u∞ in L1(Ω), where

u∞(x) :=

∫

¤n

u
(
x, y1, . . . , yn

)
dy1 . . . dyn.
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Proof. An equi-integrable sequence is sequentially weakly compact in L1, therefore it is
sufficient to prove that uh → u∞ in distribution. But this is a direct consequence of the
definition, taking φ ≡ 1. ¨

Let uh be a bounded sequence in L1(Ω,Rm); we consider the sequence wh : Ω → ¤n×Rm
defined by

wh(x) :=

(
〈 x

ρ1(εh)
〉, . . . , 〈 x

ρn(εh)
〉, uh(x)

)
. (6)

Suppose that wh generates a Young measure µ (at any rate this is true, up to a subse-
quence). Thanks to the boundness hypothesis, it can be easily proved that wh satisfies
tightness condition (4), so µ ∈ Y(Ω, T n × Rm). Roughly speaking, by Remark 2.1(v), it

is possible to piece together µ in a measure µ̂ ∈ Ŷ(Ω, T n ×Rm). Thanks to Example 3.1,

actually µ̂ ∈ Ŷ(Ω × ¤n,Rm) and so, by Remark 2.1(v) again, it is possible to dismantle
this measure in a new function ν ∈ Y(Ω×¤n,Rm), called the multiscale Young measure
generated by uh (with respect to (ρ1(εh), . . . , ρn(εh))). In particular we have:

Theorem 3.5. Let µ ∈ Y(Ω, T n × Rm) be the Young measure generated by wh and let
ν ∈ Y(Ω×¤n,Rm) be the multiscale Young measure generated by uh. Then

∫

Ω

(∫

¤n×Rm

f(x, y1, . . . , yn, z)dµx(y
1, . . . , yn, z)

)
dx

=

∫

Ω×¤n

(∫

Rm

f(x, y1, . . . , yn, z)dν(x,y1,...,yn)(z)

)
dx dy1 . . . dyn

for all f : Ω×¤n×Rm → R µ̂-integrable or non-negative L(Ω)⊗B(T n×Rm)-measurable.

The next statement lights up the link between Young measures and multiscale conver-
gence. Sometimes we will use in the sequel the shorter notation y := (y1, . . . , yn).

Theorem 3.6. Let uh be a bounded sequence in Lq(Ω,Rm), q ∈ [1,+∞), generating a
multiscale Young measure ν. The following properties hold:

(i) the center of mass ν, defined by

ν(x, y1, . . . , yn) :=

∫

Rm

z dν(x,y1,...,yn)(z),

is in Lq(Ω×¤n,Rm);

(ii) if uh is equi-integrable, then uh Ã ν;

(iii) if f : Ω×T n×Rm → [0,+∞) is a Carathéodory integrand, i.e., L(Ω)⊗B(T n×Rm)-
measurable and continuous on T n × Rm, then

lim inf
h→+∞

∫

Ω

f
(
x,wh(x)

)
dx ≥

∫

Ω×¤n

f(x, y1, . . . , yn) dx dy1 . . . dyn, (7)

where

f(x, y1, . . . , yn) :=

∫

Rm

f(x, y1, . . . , yn, z) dν(x,y1,...,yn)(z);
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(iv) if f : Ω×T n×Rm → R is a Carathéodory integrand and f(·, wh(·)) is equi-integrable,
then f(x, y, ·) is ν(x,y)-integrable for a.e. (x, y) ∈ Ω × ¤n, f is in L1(Ω × ¤n) and

f(·, wh(·)) Ã f .

Proof. Assertion (iii) is a straight consequence of Theorems 2.4(ii) and 3.5. The inte-
grability properties in assertion (iv) follow by Theorem 2.4(iii) and Remark 2.1(v), by
noting that µ̂ = ν̂. In order to prove the multiscale convergence, fixed ϕ ∈ C∞c (Ω) and
φ ∈ C∞per(¤n), we define the function g : Ω×¤n × Rm → R by

g(x, y, z) := ϕ(x)φ(y)f(x, y, z).

The function g is a Carathéodory integrand on Ω × T n × Rm and g(·, wh(·)) is equi-
integrable, thus, by Theorems 2.4(iii) and 3.5,

∫

Ω

g
(
x,wh(x)

) →
∫

Ω

(∫

¤n×Rm

g(x, y, z)dµx(y, z)

)
dx =

∫

Ω×¤n

ϕ(x)φ(y)f(x, y) dx dy.

Assertion (ii) follows by applying (iv) with f(x, y, z) = zj, j = 1, . . . ,m. Finally, by
Jensen’s inequality and (iii) with f(x, y, z) = |z|q, we obtain assertion (i):

∫

Ω×¤n

|ν(x, y)|q dx dy ≤
∫

Ω×¤n

(∫

Rm

|z|q dν(x,y)(z)

)
dx dy ≤ lim inf

h→+∞

∫

Ω

|uh(x)|q dx <+∞.

¨

Remark 3.7. Actually assertion (ii) is a compactness result about the multiscale con-
vergence: for every sequence uh equi-integrable in L1 or bounded in Lp, there exists a
subsequence uhi

which generates a multiscale Young measure and therefore multiscale
convergent. Remember that a bounded sequence in Lp is equi-integrable by Hölder’s
inequality.

We conclude with a basic result about bounded sequences in W 1,p(Ω).

Theorem 3.8. Given a sequence uh weakly convergent to u in W 1,p(Ω), we have that
uh Ã u and

∇uh Ã ∇u+
n∑

k=1

∇ykφk

for n suitable functions φk(x, y
1, . . . , yk) ∈ Lp(Ω×¤k−1,W 1,p

per(¤)
)
.

The proof can be found in [2, Theorem 2.6] and in [4, Theorem 1.6]. In the first reference,
the idea is to work on the image of W 1,2(Ω) under the gradient mapping, by characterizing
it as the space orthogonal to all divergence-free functions. Instead in the second reference
it is used its characterization as the space of all rotation-free fields. This last method is
simpler and works for general p, even if only the case p = 2 is examined in the original
statement. Another proof can be found in [24].
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4. Continuity results

As first result of this section, we show that it is possible to use in the multiscale conver-
gence a more complete system of “test functions”, not merely ψ(x, y) = ϕ(x)φ(y) with
ϕ ∈ C∞c (Ω) and φ ∈ C∞per(¤n). Following Valadier [27], we introduce appropriate classes
of functions.

Definition 4.1. A function ψ : Ω × ¤n → R is said to be admissible if there exist a
family {Xδ}δ>0 of compact subsets of Ω and a family {Yδ}δ>0 of compact subsets of ¤
such that |Ω\Xδ| ≤ δ, |¤\Yδ| ≤ δ and ψ|Xδ×Y n

δ
is continuous for every δ > 0.

Remark 4.2. It is not restrictive to suppose that the families {Xδ}δ>0 and {Yδ}δ>0 are
decreasing, i.e., δ′ ≤ δ implies Xδ ⊆ Xδ′ and Yδ ⊆ Yδ′ . Otherwise, it is sufficient to
consider the new families {X̃δ}δ>0 and {Ỹδ}δ>0, where

X̃δ :=
⋂
i≥iδ

X2−i , Ỹδ :=
⋂
i≥iδ

Y2−i

and iδ is the minimum positive integer such that 21−iδ ≤ δ.

Admissible functions have good measurability properties, as stated in the following lemma.
We omit the easy proof.

Lemma 4.3. If ψ : Ω × ¤n → R is an admissible function, then there exist a Borel set
X ⊆ Ω with |Ω\X| = 0 and a Borel set Y ⊆ ¤ with |¤\Y | = 0, such that ψ|X×Y n is

borelian. In particular, for every fixed ε, the function x → ψ
(
x, 〈 x

ρ1(ε)
〉, . . . , 〈 x

ρn(ε)
〉
)

is

measurable.

Definition 4.4. An admissible function ψ is said to be q-admissible, and we write ψ ∈
Admq, if there exists a positive function α ∈ Lq(Ω) such that

|ψ(x, y)| ≤ α(x) ∀(x, y) ∈ Ω×¤n.

The next theorem proves that it is possible to use Admq as system of test functions. The
proof is very close to [27, Proposition 5]. Before we state the following lemma, that can
be derived by [14, Lemma 3.1] (see also [2, Remark 2.13]). We use the same definition of
vh given in (5).

Lemma 4.5. Let Ak be a measurable subset of ¤ for k = 1, . . . , n and let A :=
∏n

k=1Ak.
Denoted with χA the characteristic function of A, the sequence χA(vh(·)) converges weakly*
to |A| in L∞(Ω).

Theorem 4.6. Let uh be a bounded sequence in Lq(Ω), q ∈ (1,+∞], generating a multi-
scale Young measure ν and let ψ ∈ Admq′. Then

lim
h→+∞

∫

Ω

ψ
(
x, vh(x)

)
uh(x)dx =

∫

Ω×¤n

ψ (x, y) ν (x, y) dx dy.

In particular, taking uh ≡ 1, we obtain

lim
h→+∞

∫

Ω

ψ
(
x, vh(x)

)
dx =

∫

Ω×¤n

ψ (x, y) dx dy. (8)
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Proof. Let δ > 0; by Lusin theorem applied to α and by definition of admissible function,
there exist two compact sets X ⊆ Ω and Y ⊆ ¤ such that |Ω\X| ≤ δ, |¤\Y | ≤ δ and
ψ|X×Y n , α|X are continuous. Let M := maxX α; by Tietze-Urysohn’s theorem, ψ|X×Y n

can be extended to a continuous function ψ0 on Ω × T n with |ψ0(x, y)| ≤ M for every
(x, y) ∈ Ω×¤n. We define on Ω×¤n × R the functions

f(x, y, z) := ψ(x, y)z and f0(x, y, z) := ψ0(x, y)z.

With the same definition of wh given in (6), the sequence f0(·, wh(·)) is equi-integrable
because |f0(x,wh(x))| ≤ M |uh(x)|. By Theorem 3.6(iv), f0(·, wh(·)) Ã f0 and therefore,
by Proposition 3.4, f0(·, wh(·)) ⇀

∫
¤n ψ0(·, y)ν(·, y) dy weakly in L1(Ω). This is sufficient

to assert that

lim
h→+∞

∫

X

f0

(
x,wh(x)

)
dx =

∫

X×¤n

ψ0 (x, y) ν (x, y) dx dy.

Now ∣∣∣∣
∫

Ω×¤n

ψ (x, y) ν (x, y) dx dy −
∫

Ω

f
(
x,wh(x)

)
dx

∣∣∣∣

≤
∣∣∣∣
∫

(Ω\X)×¤n

ψ (x, y) ν (x, y) dx dy

∣∣∣∣ +

∣∣∣∣
∫

X×¤n

[
ψ (x, y)− ψ0 (x, y)

]
ν (x, y) dx dy

∣∣∣∣

+

∣∣∣∣
∫

X×¤n

ψ0 (x, y) ν (x, y) dx dy −
∫

X

f0

(
x,wh(x)

)
dx

∣∣∣∣

+

∣∣∣∣
∫

X

[
f0

(
x,wh(x)

)− f
(
x,wh(x)

)]
dx

∣∣∣∣ +

∣∣∣∣
∫

Ω\X
f
(
x,wh(x)

)
dx

∣∣∣∣
= I+II+III+IV+V.

We have to show that I, II, IV and V can be made arbitrarily small. Observe that the
function

γI(x, y) := α(x)

∫

R
|z| dν(x,y)(z)

is in L1(Ω × ¤n) as consequence of Theorem 3.6(iii), Hölder’s inequality and the Lq-
boundness of the sequence uh:∫

Ω×¤n

γI(x, y) dx dy ≤ lim inf
h→+∞

∫

Ω

α(x) |uh(x)| dx

≤ ‖α‖Lq′ (Ω) sup
h
‖uh‖Lq(Ω) < +∞.

The same for γII(x, y) :=
∫

Ω
|z| dν(x,y)(z). By the absolute continuity of the integral and

by the estimates

I ≤
∫

(Ω\X)×¤n

γI(x, y) dx dy

and

II =

∫

X×(¤n\Y n)

[
ψ(x, y)− ψ0(x, y)

]
ν (x, y) dx dy

≤
∫

X×(¤n\Y n)

γI(x, y) dx dy +M

∫

X×(¤n\Y n)

γII(x, y) dx dy,
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we obtain that I and II tend to 0 for δ → 0. By using again Hölder’s inequality and the
Lq-boundness of uh, we get for a suitable positive constant c

IV ≤
∣∣∣∣
∫

X

χ¤n\Y n(vh(x))
[
f0

(
x,wh(x))− f(x,wh(x)

)]
dx

∣∣∣∣

≤
∫

X

χ¤n\Y n(vh(x)) [α(x) +M ] |uh(x)| dx

≤ c

(∫

X

χ¤n\Y n(vh(x)) [α(x) +M ]q
′
dx

) 1
q′

and

V ≤ c

(∫

Ω\X
[α(x)]q

′
dx

) 1
q′
.

By Lemma 4.5, it follows that χ¤n\Y n(vh(·)) = 1 − χY n(vh(·)) converges weakly* to
|¤n\Y n| and therefore

∫

X

χ¤n\Y n(vh(x)) [α(x) +M ]q
′
dx

h→∞−−−→ |¤n\Y n|
∫

X

[α(x) +M ]q
′
dx.

Hence we conclude that IV and V tend to 0 for h→∞ and δ → 0. ¨
Remark 4.7. Let ψ = ψ(x, y1, . . . , yn) be a real function on Ω × ¤n either continuous
in (y1, . . . , yn) and measurable in x or continuous in (x, y1, . . . , yk−1, yk+1, . . . , yn) and
measurable in yk. By Scorza-Dragoni theorem (see [15]), ψ is an admissible function.
This is no longer true if one removes the continuity assumption on two variables. More
generally, the invocation of (8) may be invalid, as shown in the next two examples. The
first covers the case ψ = ψ(x, y) (n = 1) while the second covers the case ψ = ψ(y1, y2).
We remark that in both examples ψ is a Borel function. See also the example in [1,
Proposition 5.8].

Example 4.8. Define the Borel sets Ai :=
⋃i−1
j=0{(x, y) ∈ [0, 1)2 : y = i x − j} and

A :=
⋃∞
i=1Ai. Now, in the simple case d = n = 1, ρ1(εh) = h−1 and Ω = (0, 1), consider

the function ψ(x, y) := χA(x, y). We have

∫ 1

0

ψ(x, 〈hx〉) dx ≡ 1 but

∫ 1

0

∫ 1

0

ψ(x, y) dx dy = 0.

Example 4.9. In the case d = 1, n = 2, ρ1(εh) = h−1, ρ2(εh) = h−2 and Ω = (0, 1),
consider the function ψ(y1, y2) := χA(y1, y2), where A is defined as in the former example.
We have

∫ 1

0

ψ(〈hx〉, 〈h2 x〉) dx ≡ 1 but

∫ 1

0

∫ 1

0

∫ 1

0

ψ(y1, y2) dx dy1 dy2 = 0.

Notice that the result of weak* convergence in L∞ stated in Lemma 4.5 is not applicable
to A.

So far we have considered Carathéodory functions f on Ω×T n×Rm. As we explained in the
introduction, one would like to have a minimal regularity in (x, y1, . . . , yn). For this reason,
we introduce an appropriate class of integrands and extend to this Theorem 3.6(iii).
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Definition 4.10. A function f : Ω × ¤n × Rm → [0,+∞) is said to be an admissible
integrand if for every δ > 0 there exist a compact set X ⊆ Ω with |Ω\X| ≤ δ and a
compact set Y ⊆ ¤ with |¤\Y | ≤ δ, such that f |X×Y n×Rm is continuous.

As in the analogous case for admissible functions (Lemma 4.3), it is easy to verify the
following measurability properties of admissible integrands.

Lemma 4.11. If f : Ω × ¤n × Rm → [0,+∞) is an admissible integrand, then there
exist a Borel set X ⊆ Ω with |Ω\X| = 0 and a Borel set Y ⊆ ¤ with |¤\Y | = 0,
such that f |X×Y n×Rm is borelian. In particular, for every fixed ε, the function (x, z) →
f

(
x, 〈 x

ρ1(ε)
〉, . . . , 〈 x

ρn(ε)
〉, z

)
is L(Ω)⊗ B(Rm)-measurable.

Example 4.12. Let f : Ω×¤× Rm → [0,+∞) be a function such that

(i) f(·, y, ·) is continuous for all y ∈ ¤;

(ii) f(x, ·, z) is measurable for all x ∈ Ω and z ∈ Rm.

By Scorza-Dragoni theorem, f is an admissible integrand. Clearly it is possible to replace
conditions (i) and (ii) with

(i)’ f(x, ·, ·) is continuous for all x ∈ Ω;

(ii)’ f(·, y, z) is measurable for all y ∈ ¤ and z ∈ Rm.

Example 4.13. Let f : Ω×¤n × Rm → [0,+∞) be a function of the type

f(x, y1, . . . , yn, z)

=
n∏

k=1

χPk
(yk) f1(x, y

1, . . . , yn, z) +
[
1−

n∏

k=1

χPk
(yk)

]
f2(x, y

1, . . . , yn, z),

where Pk (k = 1, . . . , n) is a measurable subset of ¤ and fj (j = 1, 2) is a non-negative
function on Ω×¤n × Rm such that

(i) fj is continuous in (y1, . . . , yn, z);

(ii) fj is measurable in x.

By Scorza-Dragoni theorem for every δ > 0 there exists a compact set X ⊆ Ω such that
the functions f1 and f2 are continuous on X ×¤n × Rm. By applying Lusin theorem to
each χPk

, we obtain that f is an admissible integrand. Obviously, the conditions (i) and
(ii) can be replaced by

(i)’ fj is continuous in (x, y1, . . . , yk−1, yk+1, . . . , yn, z);

(ii)’ fj is measurable in yk.

Theorem 4.14. Let uh be a bounded sequence in L1(Ω,Rm) generating a multiscale
Young measure ν and let f : Ω×¤n × Rm → [0,+∞) be an admissible integrand. Then,
with the same definition of wh given in (6),

lim inf
h→+∞

∫

Ω

f
(
x,wh(x)

)
dx ≥

∫

Ω×¤n

f(x, y1, . . . , yn) dx dy1 . . . dyn, (9)



M. Barchiesi / Homogenization of Functionals with Discontinuous Integrand 217

where as usual

f(x, y1, . . . , yn) :=

∫

Rm

f(x, y1, . . . , yn, z) dν(x,y1,...,yn)(z).

Proof. In addition assume initially that f is bounded from above by a constant b > 0:

f(x, y, z) ≤ b for all (x, y, z) ∈ Ω×¤n × Rm. (10)

By the admissibility condition, for every δ > 0 there exist a compact set X ⊆ Ω and a
compact set Y ⊆ ¤ such that |Ω\X| ≤ δ, |¤\Y | ≤ δ and f |X×Y n×Rm is continuous. By
Tietze-Urysohn’s theorem, f |X×Y n×Rm can be extended to a non-negative and continuous
function f0 on Ω × T n × Rm such that f0(x, y, z) ≤ b for every (x, y, z) ∈ Ω × ¤n × Rm.
Obviously f0 (·, wh(·)) is equi-integrable and so, by Theorem 3.6(iv) and by Proposition
3.4,

lim
h→+∞

∫

Ω

f0

(
x,wh(x)

)
dx =

∫

Ω×¤n

f0(x, y) dx dy.

For a suitable subsequence hi

lim
i→+∞

∫

Ω

f
(
x,whi

(x)
)
dx = lim inf

h→+∞

∫

Ω

f
(
x,wh(x)

)
dx.

We can write

lim
i→+∞

∫

Ω

f
(
x,whi

(x)
)
dx −

∫

Ω×¤n

f(x, y) dx dy

= lim
i→+∞

∫

Ω

[
f
(
x,whi

(x)
)− f0

(
x,whi

(x)
)]
dx

+

[
lim
i→+∞

∫

Ω

f0

(
x,whi

(x)
)
dx−

∫

Ω×¤n

f0(x, y) dx dy

]

+

∫

Ω×¤n

[
f0(x, y)− f(x, y)

]
dx dy = I+II+III.

Clearly, the negative part of III can be made arbitrarily small. Let us check that the same
holds for I. By Lemma 4.5,

I = lim
i→+∞

∫

Ω\X

[
f
(
x,whi

(x)
)− f0

(
x,whi

(x)
)]
dx

+ lim
i→+∞

∫

X

χ¤n\Y n(vhi
(x))

[
f
(
x,whi

(x)
)− f0

(
x,whi

(x)
)]
dx

≥− b |Ω\X| − lim
i→+∞

b

∫

X

χ¤n\Y n(vhi
(x)) dx

≥− b
(|Ω\X|+ |X| |¤n\Y n|) ≥ −b δ(1 + n |Ω|).

This concludes the first part of the proof.

In order to remove assumption (10) we consider, for k ∈ N+, the functions

fk(x, y, z) := min
{
k, f(x, y, z)

}
.
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By applying the first part of the theorem, we have

lim inf
h→+∞

∫

Ω

f
(
x,wh(x)

)
dx ≥ lim inf

h→+∞

∫

Ω

fk
(
x,wh(x)

)
dx ≥

∫

Ω×¤n

fk(x, y) dx dy.

By noting that fk is increasing and that fk(x, y, ·) → f(x, y, ·) a.e. in Rm for every fixed

(x, y) ∈ Ω×¤n, we deduce from the monotone convergence theorem that fk → f a.e. in

Ω×¤n. The sequence fk is increasing so, again from monotone convergence theorem,

∫

Ω×¤n

fk(x, y) dx dy
k→∞−−−→

∫

Ω×¤n

f(x, y) dx dy.

¨
Remark 4.15. Lower semicontinuity property (9) is not true if f is only borelian. For
instance, consider the function f(x, y, z) := [1 − ψ(x, y)] |z|, where ψ is defined as in
Example 4.8.

5. Gamma-convergence

In the present section we examine the multiscale homogenization of nonlinear convex
functionals by means of the Γ-convergence combined with the multiscale Young measures.

Before we recall the definition of Γ-convergence, referring to [9] and [12] for an exposition
of the main properties.

Definition 5.1. Let (U, τ) be a topological space satisfying the first countability axiom
and Fh, F functionals from U to [−∞,+∞]; we say that F is the Γ(τ)-limit of the sequence
Fh or that Fh Γ(τ)-converges to F , and write

F = Γ(τ)- lim
h→+∞

Fh,

if for every u ∈ U the following conditions are satisfied:

F (u) ≤ inf
{

lim inf
h→+∞

Fh(uh) : uh
τ−→ u

}
(11)

and
F (u) ≥ inf

{
lim sup
h→+∞

Fh(uh) : uh
τ−→ u

}
. (12)

We can extend the definition of Γ-convergence to families depending on a parameter ε > 0.

Definition 5.2. For every ε > 0, let Fε be a functional from U to [−∞,+∞]. We say
that F is the Γ(τ)-limit of the family Fε as ε→ 0+, and write

F = Γ(τ)- lim
ε→0+

Fε,

if we have for every sequence εh → 0+

F = Γ(τ)- lim
h→+∞

Fεh
.
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Throughout this section, we work in the space Lp(Ω,Rs) endowed with the strong topol-
ogy. As pointed out in the introduction, we consider a non-negative function f =
f (x, y1, . . . , yn, z) on Ω×¤n ×Ms×d satisfying Assumptions 1.1, 1.2 and 1.3.

We fully characterize the Γ(Lp)-limit of the family Fε : Lp(Ω,Rs) → [0,+∞] where the
functionals are defined by

Fε(u) :=





∫

Ω

f
(
x, 〈 x

ρ1(ε)
〉, . . . , 〈 x

ρn(ε)
〉,∇u(x)

)
dx if u ∈ W 1,p(Ω,Rs),

+∞ otherwise.

Precisely, this is our main result.

Theorem 5.3. The family Fε Γ(Lp)-converges and its Γ(Lp)-limit Fhom : Lp(Ω,Rs) →
[0,+∞] is given by

Fhom(u) =





∫

Ω

fhom
(
x,∇u(x))dx if u ∈ W 1,p(Ω,Rs),

+∞ otherwise,

where fhom is obtained by the following cell problem

fhom (x, z) := inf
φ∈Φ

∫

¤n

f
(
x, y, z +

n∑

k=1

∇ykφk(y
1, . . . , yk)

)
dy

with the space Φ defined by

Φ :=
n∏

k=1

Φk and Φk := Lp
(
¤k−1,W 1,p

per(¤,Rs)
)
.

Remark 5.4. (i) Using the p-growth condition of f and a density argument, it can be
shown that

fhom (x, z) = inf
φ∈Φreg

∫

¤n

f
(
x, y, z +

n∑

k=1

∇ykφk(y
1, . . . , yk)

)
dy,

where

Φreg :=
n∏

k=1

Φk,reg and Φk,reg := C1
(
¤k−1

, C1
per(¤,Rs)

)
. (13)

(ii) For every δ > 0 there exists a compact set X ⊆ Ω with |Ω\X| ≤ δ such that the
restriction of f to X × ¤n ×Ms×d is continuous in (x, z) for a.e. (y1, . . . , yn) ∈ ¤n and
so fhom is lower semicontinuous on X ×Ms×d. In particular fhom is L(Ω) ⊗ B(Ms×d)-
measurable.
(iii) The convexity, the p-coerciveness and the p-growth condition on f give the corre-
sponding properties for the function fhom. In particular Fhom is continuous onW 1,p(Ω,Rs),
endowed with the strong topology.
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Before proving the theorem, we state a series of lemmas. Only for simplicity of notations,
we restrict ourselves to the case s = 1. Fixed a sequence εh → 0+, we use for vh the same
definition given in (5).

Lemma 5.5. Let uh be a sequence converging weakly in W 1,p(Ω) to a function u. Then

lim inf
h→+∞

∫

Ω

f
(
x, vh(x),∇uh(x)

)
dx ≥

∫

Ω

fhom
(
x,∇u(x))dx.

Proof. For a suitable subsequence hi,

lim
i→+∞

∫

Ω

f
(
x, vhi

(x),∇uhi
(x)

)
dx = lim inf

h→+∞

∫

Ω

f
(
x, vh(x),∇uh(x)

)
dx.

Refining the subsequence if necessary, we can suppose that ∇uhj
generates a multiscale

Young measure ν ∈ Y(Ω×¤n,Rd). By Theorem 4.14 and Jensen’s inequality

lim
i→+∞

∫

Ω

f
(
x, vhi

(x),∇uhi
(x)

)
dx ≥

∫

Ω×¤n

(∫

Rd

f(x, y, z) dν(x,y)

)
dx dy

≥
∫

Ω×¤n

f
(
x, y,

∫

Rd

z dν(x,y)

)
dx dy

and by Theorems 3.6(ii) and 3.8

≥
∫

Ω×¤n

f
(
x, y,∇u(x) +

n∑

k=1

∇ykφk(x, y
1, . . . , yk)

)
dx dy

≥
∫

Ω

fhom
(
x,∇u(x))dx.

¨
Lemma 5.6. Let f : Rd → R be a convex function, such that for every z ∈ Rd

|f(z)| ≤ c (b+ |z|)p , (14)

where b and c are positive constants. Then, for all z1, z2 ∈ Rd

|f(z1)− f(z2)| ≤ c d (1 + 2p)
(
b+ |z1|+ |z2|

)p−1 |z1 − z2| . (15)

The proof can be derived from [17, Lemma 5.2]. We observe that in (15) the estimate
depends only by the costants b, c of growth condition (14) and not by the particular
function f .

Lemma 5.7. Let u ∈ W 1,p(Ω) ∩ C1(Ω). Then

inf
uh→u

{
lim sup
h→+∞

Fεh
(uh)

}
≤ inf

ψ∈Ψ

∫

Ω×¤n

f
(
x, y,∇u(x) +

n∑

k=1

∇ykψk(x, y
1, . . . , yk)

)
dx dy, (16)

where the inf’s are made respectively on the sequences uh that converge strongly in Lp(Ω)
to u and on the space Ψ defined by

Ψ :=
n∏

k=1

Ψk and Ψk := C1
(
Ω×¤k−1

, C1
per(¤)

)
.
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Proof. Given an arbitrary function ψ = (ψ1, . . . , ψn) ∈ Ψ, consider the sequence

uh(x) := u(x) +
n∑

k=1

ρk(εh)ψk
(
x, vkh(x)

)
,

where we used the short notation vkh(x) :=
(
〈 x
ρ1(εh)

〉, . . . , 〈 x
ρk(εh)

〉
)
. We have uh → u

strongly in Lp(Ω) and ∇uh = ∇u+
∑n

k=1∇ykψk + rh, with rh → 0 strongly in Lp(Ω,Rd).

The function g : Ω×¤n → R defined by

g(x, y) := f
(
x, y,∇u(x) +

n∑

k=1

∇ykψk(x, y
1, . . . , yk)

)

is admissible. Actually g ∈ Adm1, as evident by the estimate obtained through the
p-growth condition:

|g(x, y)| ≤ c2

[
1 + (n+ 1)p−1

(
|∇u(x)|p +

n∑

k=1

Mp
k

)]
,

where Mk := supΩ×¤k |∇ykψk|.
By Lemma 5.6, the following inequality holds for some positive constants b, c:

∣∣∣g
(
x, vh(x)

)− f
(
x, vh(x),∇uh(x)

)∣∣∣ ≤ c |rh(x)|
(
b+ |∇u(x)|p−1 + |rh(x)|p−1

)
.

By integrating over Ω, from Hölder’s inequality we obtain, for another positive constant c′,

∫

Ω

∣∣∣g
(
x, vh(x)

)− f
(
x, vh(x),∇uh(x)

)∣∣∣ dx ≤ c′
∫

Ω

|rh(x)|p dx

and thus Theorem 4.6 gives

lim
h→+∞

∫

Ω

f
(
x, vh(x),∇uh(x)

)
dx = lim

h→+∞

∫

Ω

g
(
x, vh(x)

)
dx

=

∫

Ω×¤n

g (x, y) dx dy =

∫

Ω×¤n

f
(
x, y,∇u(x) +

n∑

k=1

∇ykψk(x, y
1, . . . , yk)

)
dx dy.

¨

Definition 5.8. We say that Λ ⊆ L1(Ω) is an inf-stable family if, given {λ1, . . . , λN} ⊆ Λ
and {ϕ1, . . . , ϕN} ⊆ C1

(
Ω, [0, 1]

)
, with

∑N
j=1 ϕj = 1 and N ∈ N+, there exists a λ ∈ Λ

such that

λ ≤
N∑
j=1

ϕjλj.
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Lemma 5.9. Let Λ be an inf-stable family of non-negative integrable functions on Ω. If
for every δ > 0 there exists a compact set Xδ ⊆ Ω such that |Ω\Xδ| ≤ δ and λ|Xδ

is
continuous for each λ ∈ Λ, then the function infλ∈Λ λ is measurable and the following
commutation property holds:

inf
λ∈Λ

∫

Ω

λ(x) dx =

∫

Ω

inf
λ∈Λ

λ(x) dx. (17)

This lemma can be derived by [6, Lemma 4.3] (see also [18]), by noting that for every
δ > 0 infλ∈Λ λ = ess infλ∈Λ λ on Xδ. Anyway, we prefer to give a simple direct proof.

Proof. Firstly we observe that for every δ > 0 the function infλ∈Λ λ is lower semicontin-
uous on Xδ. In particular infλ∈Λ λ is measurable. By applying the Lindelöf theorem to
each family {Eλ

δ }λ∈Λ, where

Eλ
δ :=

{
(x, t) ∈ Xδ × R : λ(x) < t

}
,

we can find a sequences λi in Λ such that

inf
λ∈Λ

λ(x) = inf
i
λi(x) for a.e. x ∈ Ω.

Fixed N ∈ N+ and ζ > 0, we choose a δ > 0 such that
∑N

j=1

∫
Ω\Xδ

λj ≤ ζ. By the

continuity property of the elements λ ∈ Λ, the sets

Ai :=

{
x ∈ Xδ : λi(x) < inf

1≤j≤N
λj(x) + ζ

}

are open in Xδ. Notice that Xδ =
⋃∞
i=1Ai. For every i ∈ N+, let Bi be a open subset of Rd

for which Bi ∩Xδ = Ai and let {ϕi}i ⊆ C1
(
Ω, [0, 1]

)
be a partition of unity subordinate

to {Bi}i. By the inf-stability property, there exists a λ ∈ Λ such that λ ≤ ∑N
j=1 ϕjλj.

We have
∫

Ω

λ(x) dx =

∫

Ω\Xδ

λ(x) dx+

∫

Xδ

λ(x) dx

≤
N∑
j=1

∫

Ω\Xδ

ϕj(x)λj(x) dx+
∞∑
i=1

∫

Xδ

ϕi(x)λi(x) dx

≤ ζ +

∫

Ω

inf
1≤j≤N

λj(x) dx+ ζ |Ω| .

Being N and ζ arbitrary, the claim follows. ¨

Proof of Theorem 5.3. We are now ready to provide a proof of Theorem 5.3.

Let uh → u strongly in Lp(Ω). We want to show that lim inf Fεh
(uh) ≥ Fhom(u). In this

way inequality (11) will be proved. If lim inf Fεh
(uh) = +∞, there is nothing to prove, so

we can assume lim inf Fεh
(uh) < +∞. For a suitable subsequence hi,

lim
i→+∞

Fεhi
(uhi

) = lim inf
h→+∞

Fεh
(uh).
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For i large enough, Fεhi
(uhi

) is finite and therefore, by the definition of Fε, uhi
∈W 1,p(Ω).

Thanks to the p-coerciveness hypothesis on f , we can infer that uhi
is bounded in W 1,p(Ω).

Refining the subsequence if necessary, we can suppose that uhj
converges weakly in

W 1,p(Ω) to u and thus we can apply Lemma 5.5.

It remains to check inequality (12). If u ∈ Lp(Ω) \W 1,p(Ω), then Fhom(u) = +∞ and the
inequality is obvious, while if u ∈ W 1,p(Ω), then we can apply Lemma 5.7 and, as in [7,
Theorem 3.3], Lemma 5.9. In view of the density of W 1,p(Ω) ∩ C1(Ω) in W 1,p(Ω) and of
the continuity of Fhom, by a standard diagonalization argument, it is not restrictive to
assume that u ∈W 1,p(Ω) ∩ C1(Ω).

For every ψ = (ψ1, . . . , ψn) ∈ Ψ, define the function

λψ(x) :=

∫

¤n

f
(
x, y,∇u(x) +

n∑

k=1

∇ykψk(x, y
1, . . . , yk)

)
dy.

We claim that the family Λ := {λψ : ψ ∈ Ψ} satisfies the hypotheses of Lemma 5.9. In
fact, from the p-growth condition on f , it is easy to show that each function in Λ is
integrable on Ω. Moreover, by Remark 5.4(ii), for every δ > 0 there exists a compact set
X ⊆ Ω with |Ω\X| ≤ δ such that λψ is continuous on X for each ψ ∈ Ψ. It remains to
prove the inf-stability.

Given {ψ(1), . . . , ψ(N)} ⊆ Ψ and {ϕ1, . . . , ϕN} ⊆ C1
(
Ω, [0, 1]

)
, with

∑N
j=1 ϕj = 1 and

N ∈ N+, consider the function

ψ :=

(
N∑
j=1

ϕjψ
(j)
1 , . . . ,

N∑
j=1

ϕjψ
(j)
n

)
∈ Ψ.

Thanks to the convexity of f , we have λψ ≤
∑N

j=1 ϕjλψ(j) :

λψ(x) =

∫

¤n

f
(
x, y,∇u(x) +

N∑
j=1

n∑

k=1

∇ykϕj(x)ψ
(j)
k (x, y1, . . . , yk)

)
dy

=

∫

¤n

f

(
x, y,

N∑
j=1

ϕj(x)
(
∇u(x) +

n∑

k=1

∇ykψ
(j)
k (x, y1, . . . , yk)

))
dy

≤
N∑
j=1

ϕj(x)

∫

¤n

f
(
x, y,∇u(x) +

n∑

k=1

∇ykψ
(j)
k (x, y1, . . . , yk)

)
dy =

N∑
j=1

ϕj(x)λψ(j)(x).

Finally, by inequality (16), equality (17) and Remark 5.4(i),

inf
uh→u

{
lim sup
h→+∞

Fεh
(uh)

}
≤

∫

Ω

inf
ψ∈Ψ

(∫

¤n

f
(
x, y,∇u(x)+

n∑

k=1

∇ykψk(x, y
1, . . . , yk)

)
dy

)
dx

≤
∫

Ω

inf
φ∈Φreg

(∫

¤n

f
(
x, y,∇u(x) +

n∑

k=1

∇ykφk(y
1, . . . , yk)

)
dy

)
dx =

∫

Ω

fhom
(
x,∇u(x)) dx.

The proof is complete. ¨
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Assumption 1.3 cannot be weakened too much: even if f is a Borel function, Γ-convergence
Theorem 5.3 may be not applicable, as shown in the following examples (see also [13,
Example 3.1]).

Example 5.10. Let Ai be the Borel sets defined as in Example 4.8 and let B :=
⋃∞
i=1A2i.

Notice that
⋃
i6=j(Ai ∩ Aj) is countable. In the case d = n = s = 1, ρ1(εh) = h−1 and

Ω = (0, 1), consider the Borel function f(x, y, z) := [2− χB(x, y)] |z|p. We remark that f
satisfies only Assumptions 1.1 and 1.2. We have for every u ∈ W 1,p((0, 1))

Fh(u) =

∫ 1

0

f
(
x, 〈hx〉,∇u(x)) dx =





∫ 1

0

|∇u(x)|p dx if h ≡ 0 mod 2,

2

∫ 1

0

|∇u(x)|p dx if h ≡ 1 mod 2.

Clearly the sequence Fh is not Γ-convergent in Lp((0, 1)) with respect to the strong topol-
ogy.

Example 5.11. Let d = s = 1, n = 2, ρ1(εh) = h−1, ρ2(εh) = h−2 and Ω = (0, 1).
Consider the Borel function f(x, y1, y2, z) := [2−χB(y1, y2)] |z|p, where B is defined as in
the former example. Even if f does not depend by x and satisfies Assumptions 1.1 and
1.2, the sequence Fh is not Γ(Lp)-convergent.

6. Iterated homogenization

The homogenized function fhom can be obtained also by the following iteration:

f
[n]
hom

(
x, y1, . . . , yn−1, z

)
:= inf

φ∈W 1,p
per(¤,Rs)

∫

¤
f

(
x, y1, . . . , yn, z +∇φ(yn)

)
dyn,

f
[n−1]
hom

(
x, y1, . . . , yn−2, z

)
:= inf

φ∈W 1,p
per(¤,Rs)

∫

¤
f

[n]
hom

(
x, y1, . . . , yn−1, z +∇φ(yn−1)

)
dyn−1,

...

fhom (x, z) = f
[1]
hom (x, z) := inf

φ∈W 1,p
per(¤,Rs)

∫

¤
f

[2]
hom

(
x, y1, z +∇φ(y1)

)
dy1.

Remark 6.1. (i) The convexity, the p-coerciveness and the p-growth condition on f give

the corresponding properties for the function f
[n]
hom. Moreover, f

[n]
hom is still an admissible

integrand. In fact, for every δ > 0 there exist a compact set X ⊆ Ω with |Ω\X| ≤ δ and a
compact set Y ⊆ ¤ with |¤\Y | ≤ δ, such that the restriction of f to X×Y n−1×¤×Ms×d

is continuous in (x, y1, . . . , yn−1, z) for a.e. yn ∈ ¤. Consequently, following closely [16,

Lemma 4.1], it can be proved that f
[n]
hom is continuous on X × Y n−1 ×Ms×d.

(ii) Clearly, the properties of f
[n]
hom give the corresponding ones for f

[n−1]
hom and so on.

We prove only the inequality fhom ≤ f
[1]
hom, since the opposite inequality comes directly.

Fixed (x, z) ∈ Ω×Ms×d and φk ∈ Φk,reg (as defined in (13)) for k = 1, . . . , n− 1, by using
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a commutation argument as Lemma 5.9, we get

inf
φn∈Φn,reg

∫

¤n

f
(
x, y, z +

n∑

k=1

∇ykφk(y
1, . . . , yk)

)
dy

=

∫

¤n−1

inf
φn∈Φn,reg

(∫

¤
f
(
x, y, z +

n∑

k=1

∇ykφk(y
1, . . . , yk)

)
dyn

)
dy1 . . . dyn−1

≤
∫

¤n−1

f
[n]
hom

(
x, y1, . . . , yn−1, z +

n−1∑

k=1

∇ykφk(y
1, . . . , yk)

)
dy1 . . . dyn−1.

By repeating the commutation procedure, we obtain

inf
φn−1∈Φn−1,reg

∫

¤n−1

f
[n]
hom

(
x, y1, . . . , yn−1, z +

n−1∑

k=1

∇ykφk(y
1, . . . , yk)

)
dy1 . . . dyn−1

≤
∫

¤n−2

f
[n−1]
hom

(
x, y1, . . . , yn−2, z +

n−2∑

k=1

∇ykφk(y
1, . . . , yk)

)
dy1 . . . dyn−2

and so on. Then

fhom(x, z) ≤ inf
φ1∈Φ1,reg

. . . inf
φn∈Φn,reg

∫

¤n

f
(
x, y, z +

n∑

k=1

∇ykφk(y
1, . . . , yk)

)
dy ≤ f

[1]
hom(x, z).

Acknowledgements. I wish to thank Gianni Dal Maso for many helpful and interesting
discussions.

References

[1] G. Allaire: Homogenization and two-scale convergence, SIAM J. Math. Anal. 23(6) (1992)
1482–1518.

[2] G. Allaire, M. Briane: Multiscale convergence and reiterated homogenisation, Proc. R. Soc.
Edinb., Sect. A 126(2) (1996) 297–342.
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