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Let F be a closed set of the Euclidean space E?, with () # F # E? and d > 2. Let A be the set of
centers of all open balls contained in E?\ F which are maximal with respect to inclusion. We prove that
the Hausdorff dimension dimg(N) of N equals d when F' is, in the sense of Baire categories, a generic
compact subset of E¢, or when E? \ F is the interior of a generic convex body of E9.

If C is a generic convex body, we deduce that the set of all points of dC' where the “upper curvature”
of 9C' is positive and finite, is of Hausdorff dimension d — 1. Let CurvCt be the set of centers of upper
curvature of 9C, and w be any non empty open subset of EZ. We also prove that dimy(w N CurvCt) = d.

Let B be a generic compact subset of EZ, or a generic convex body of E?. Let a\ be the set of centers of all
closed balls containing B which are minimal with respect to inclusion. We also prove that dimg(aN') = d.

The proofs employ some of the ideas used in [19] to construct large cut loci in E<.
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1. Notation, Introduction

The aim of this section is to introduce the definitions and to present in a simplified form
our main results.

Throughout this paper, d is an integer > 2. R? is endowed with its usual Euclidean
structure, with inner product (. | .) and with induced norm ||.||.

First we recall some definitions and introduce some notations, concerning Hausdorff mea-
sures and generic properties.
1.1. Hausdorff measures

We denote by [a,b], |a,b], |a,b], and ]a,b] the real intervals, respectively closed, open,
left-closed-right-open and left-open-right-closed. We use the Landau notation

f=olg) and f~y
denoting that f = fg with 6 of limit respectively 0 and 1.

By a dimension function, we mean a homeomorphism A : [0, +oo[— [0, +o0].
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Definition 1.1. Let A be a subset of a metric space (E,J) and h a dimension function.

e diam A denotes the diameter sup{d(a,b) | a € A and b € B} of the set A.

o H'A) = inf{>_ h(diam A4,) | (A,) is a countable covering of A by sets satisfying
diam A,, < e}, for e > 0.

o H"(A) = sup..qH"(A) is the Hausdorff measure of A with respect to the dimension
function h.

When h(t) = t°, we also write

H® and H;
instead of H" and H". Here H* is the s-dimensional measure.
The Hausdorff dimension

of A is defined by the fact that H*(A) = 0 if s > dimy(A) and that H*(A) = oo if
0<s< dlmH(A>

The Lebesgue measure of a subset A of R? is given by

H(A)
vol(A) = (0,17
Using dimension functions, we can precise the information given by the Hausdorff di-
mension of a set. For instance, let us suppose that h(t) ~ t¢Int| (in zero) and that
H"(A) > 0 for some metric space A; then we have dimy A > d, and moreover A has no
countable covering (A,) by sets of Hausdorff dimensions < d. Similarly, if we suppose
that h(t) ~ 1/|Int| and that H"(A) = 0, then we have dimy A = 0.

1.2. Generic properties
Let X be a topological space and A C X.

The subset A is a Gg of X if it is the intersection of a countable family of open subsets of
X. The subset A is a F, of X if it is the union of a countable family of closed subsets of
X. The subset A is meager if it is included in the union of a countable family of closed
subsets of X of empty interiors.

A property P is said to be “generic” in X (in the sense of Baire categories), or shared by
“most elements” of X, or by “generic” elements of X, or by “typical” elements of X, if
the exceptional set of all the x € X not satisfying P is meager.

We will consider more specifically the generic properties of two topological spaces.
Definition 1.2 (hyperspaces).

e Cpct(R?) denotes the space of all non empty compact subsets of R%. It is a metric
space, boundedly compact, with respect to the Pompeiu-Hausdorff metric defined by

st (4.5 = (s e~ o )

e Cvb(R?) denotes the subspace of Cpct(R?), of all convex bodies of RY, i.e. of all convex
compact subsets of non empty interior.



A. Riviere / Hausdorff Dimension of Cut Loci of Generic Subspaces of Euclidean ... 825

e conv B denotes the convex hull of the set B C R¢.

Observe that the mapping B + conv B is a retraction of Cpct(R?) to the closure A of its
subspace Cvb(R?) (A is the set of all non empty compact convex subsets of R?).

See the papers by Schneider [25] for a survey of differential properties of convex surfaces,
and by Gruber [9] and Zamfirescu [33] for the properties of generic convex surfaces.

1.3. Cut locus

Let us define the set Np in which we are mainly interested, and also some other sets or
notions more or less obviously related to it.

Definition 1.3 (metric projection). Let ' C R% a € R? and A C R%. We define

e dist(a, F') =inf{|la —pl|| | p € F},

e Projp(a) = {p€ F | [la— pl| = dist(a, F)}.

o Projp(A) = Upea Projp(b).

When there is only one projection of a to F, we denote it by projp(a), we have then
Projp(a) = {projp(a)}.

When a,b € R? we write [a,b] = {(1 = XNa+ b |0 <\ <1}
Definition 1.4 (cut locus). Let F be a non empty closed subset of R%. We define

o Mp={aeR?|cardProjp(a) > 2},
o Np={aecRI\ F|VbeR? {a} and p € Projp(b), a & [b,p|}.

In other words, My is the set of points of R? which have at least two projections to F,
and N is the set of points of R which are never “crossed” by a projection ray to F.

Remark. If F is the complement R? \ int C' of the interior int C' of a convex body C' of
R?, then the boundary 0C of C' satisfies

MF = Ma(j and NF :Nac.

Example 1.5 Let d =2 and F be a non circular ellipse. Consider the two points p and
g of F' where the curvature of F' is maximal, and a, b the two curvature centers of F' at
these points. Then

Np =la,b] and Mg =[a,b]\ {a,b}.

Moreover we have p = projg(a), ¢ = projz(b), and card Projp(c) = 2 for all ¢ € Mp.

Remarks. We always have Mp C Np. The set Mp is considered more frequently than
NF, whose definition is less easy to understand (other equivalent characterizations of
elements of N could be given). My is often called the ambiguous locus of the metric
projection. The word medial azis is also used, sometimes for M as in [3], and sometimes
for N asin [4]. When the ambient space is a Riemannian manifold, it is better to consider
the set of points having at least two projection ray to I, to define the ambiguous locus.

Still the set A has been considered in many situations and with various names: the “rib”
in [17] and [18], the “skeleton” in mathematical morphology ([15] and [23]), the cut locus
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in Riemannian Geometry and its generalizations (first and mainly in the case where F' is
reduced to a point of a Riemannian manifold E) see [26], [11], [12], [34] and the recent
panorama [2].

Because we are concerned by the size of the cut locus, we first precise some known results
about it.

For most non empty compact subset F of R?, N is dense in R?, as proved by Zamfirescu
[32] and also by De Blasi and Myjak in [5] (in separable Hilbert spaces E of dimension
> 2 instead of E =R%). N is also dense in C' when F' = R?\ int C for a generic convex
body C' of R? (this follows for instance from Theorem 4.6, but a direct simple proof can
be given).

For every non empty proper closed subset F' of R?, Ny is a G4 subset of R? while Mp
is an F, subset of R?, and M is dense in N. Thus, when N is dense in the open set
Q = R4\ F, most points of  are in N'\ M.

For any 0 < s < d, there exists a convex body C' of R? such that dimy(Np \ Mp) = s, if
we set F' = R?\int C [19]. The same result is proved in [20] when d = 2 for convex bodies
of class C?, by more analytical methods. If F is a non empty proper closed subset of R?
such that the closure of N has a non empty interior, then we have dimyg(Np \ Mp) > 1
[19].

Theorem 3.9, p. 841 and Theorem 4.3, p. 843 imply the following result.

Theorem 1.6. We have dimg Ny = d when F is a generic non empty compact subset of
R?, and also when F =R\ int C, with C' a generic convex body of R?.

It was only known that dimy Nz \ Mpr > 1 and dimg Mp =d — 1.

A similar cut locus aNp can also be associated to a bounded subset B of R? when
we consider, instead of the distance from F', the “antidistance” from B defined by
adist(a, B) = sup{||a — p||, for p € B}, related to the farthest projection problem. We
will describe it in Section 5.

Theorem 5.11, p. 852 is analogous to Theorems 3.9, 4.3 and 4.6, for the cut locus generated
by the farther distance. It implies the following result.

Theorem 1.7. Let B be a generic compact subset of E?, or a generic convex body of
Ee. Let aNp be the set of centers of all closed balls containing B which are minimal for

inclusion. Then dimg(aNp) = d.

1.4. Curvature

Remark. Let us assume that d = 2 and that the boundary OF of F is a C3-submanifold
of R% If a € N'\ M, then a is a center of curvature of OF at p = projp(a), moreover the
curvature of OF has a zero derivative at p, and one may expect that p is a local maximum
of this curvature. Conversely, if a € R?\ F, p € Projp(a) and a is the curvature center of

OF at p, then a € Np.

These elementary observations and the example p. 825 should motivate the following
definitions.
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Definition 1.8 (local metric projection). For F' C R? and a € R?, we define
e Projlocp(a)={pe F|3Ir>0,Yqe F,|lg—p|l <r=|lg—all >|lp—all}.

Definition 1.9 (upper curvature). For a closed subset F of R? and ¢ € OF, we define

o curv,(F)=inf{1/|la —q|| | a € R\ {¢q} and ¢ € Projlocp(a)} € [0, +o0],

o GrCurvy = {(p,a) € F x R? such that for any real t > 0 we have t < 1 = p €
Projlocg(p+ t(a — p)) and t > 1 = p & Projlocg(p + t(a — p))}.

o CurvCtp = pry(GrCurvg) = {a | (p,a) € GrCurvp}.

o Xp=pr(GrCurvy) = {p| (p,a) € GrCurvp}.

curv,(F) is the “upper curvature” at p of OF when p € OF and R%\ F is convex.

When (p,a) € GrCurvg, then a is a kind of curvature center of F at p. CurvCtp is the set
of these curvature centers of F'. X is the set of points of OF such that 0 < curv,(F) < oo.

Question 1.10. Have we H?(CurvCty) = 0 for every closed subset of R9?

When R?\ F' is convex, we will prove (Property 4.9, p. 847) that

Thus we have the following result, wich is refined in Theorem 4.10, p. 847.

Theorem 1.11. For most convex bodies C of R and F = ]Rd\int C we have dimg Xp =
d—1.

Nothing was known about dimyg Xp. However Zamfirescu [29], [30], has also proved, using
[1], that (for most convex bodies C' of R? and F' = R%\ int C')

HHXE) = 0.

Sectional curvatures.

We will recall here some classical definitions. They will not be used in other parts of the
paper, but we need them here to precise the mentioned result of Zamfirescu, and also to
precise the meaning of Theorem 1.11.

Definition 1.12 (Sectional curvatures). Let C' be a convex body of R? p € 9C,
re R with ||z|]|=1, H=2t={y e R?| (z | y) =0} and ¢ : H — R a nonnegative
convex function with ¢(0) = 0 and such that, for some r > 0, we have Yy € H,||y|| <
r=p+y+epyrecaiC.

We suppose ¢ differentiable at 0 (thus OC' is smooth at p, one also says that p is a regular
point, or a smooth point, of dC'). Let y € H with ||y|| = 1. We define

e curvsup,,(0C) = limsupy, ., Q—W(p;ty)

Y

e curvinf, ,(0C) = liminfy;_o 2%,

e curv,,(9C) = curvinf, ,(0C) when curvsup,, ,(9C) = curvinf, ,(9C).
e We say that 9C has sectional curvatures at p if for all z € H with ||z|| = 1, we have
curvsup, ,(0C) = curvinf, . (9C) < oo.
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e SC(0C) denotes the set of points ¢ of JC at which OC' is smooth and has sectional
curvatures.

From these definitions we have
0 < curvinf,,(0C) < curvsup, ,(9C) < curvp(p) < oo
if =R\ int C. Moreover, using the convexity of ¢, one easily gets
curvp(p) = sup{curvsup, .(0C) | z € H and ||z|| = 1}.

The point p is called a Normal point, or an Euler point, of C if p € SC(9C) and if
curv, .(F) is a quadratic function of z. For example if ¢ has a second derivative in 0,
then p is an Euler point of 0C.

Theorem 1.13 (Klee, [13]). Most convex bodies C of R? are smooth (0C is a C* sub-
manifold of R?) and strictly convex.

Theorem 1.14 (Zamfirescu, [29], [30]). For most convex bodies C of R?, for each
p € OC and for each normal tangent vector y to OC at p we have

curvinf, ,(0C) =0 or curvsup, ,(0C) = co.

So if in Definition 1.4 we suppose C' generic and p € SC(9C), then for all z € H with
||2|| = 1 we have curvsup, ,(0C) = 0. Thus p is an Euler point of C'. Moreover curvg(p) =
0 if F =14\ int C. In other words,

p(2) = o(]|2][*)

for z € H and in zero.
Thus, combining Theorem 1.11 and Theorem 1.14, we get:
Theorem 1.15 (Euler points). For most conver bodies C' of R?,

dimy 0C' \ SC(AC) = d — 1

and for each p € OC \ SC(IC), p is not a Euler point of C.

1.5. Local cut locus

There is not a canonical way to localise the notion of Mp or of Nz, but we will need the
following ones.

Definition 1.16. For a non empty proper closed subset £ of R%, we define

o Mocr={aeR|VbeR\ {a} and p € Projloc(b) \ {a}, a & [b, p|},

o Nier= {a € R? such that for some non empty closed subset F’ of F we have a € Np
and Projp (a) C intp(F’) (the interior in F' of F')},

o Micr ={a€R?|3p,qe Projlocy(a) with p # ¢ and [|a — p[| = [|a — ql[}.



A. Riviere / Hausdorff Dimension of Cut Loci of Generic Subspaces of Euclidean ... 829

In other words, the point a is in Moc f, if it is never “crossed” by a local projection ray
to F'. We also have

Mioe.p = {a € R | 3F’ C F with card Proj(a) Nintp(F) > 2}.
We have the following elementary relations, about “local cut locus” and curvature centers:
NLOC,F \ FC NF C MOC,F

and

NAM C CurvCtp D Noe r \ Mioe -

Remarks. We always have H¥(Np) = 0, as proved in [18], and thus H%(Mec ) = 0.
The set My is always of H? -measure o-finite, as proved in [7], so Mige r is also of
HY'-measure o-finite.

Theorem 4.6, p. 846 is a local version of Theorem 4.3, and a stronger result. It implies
the following.

Theorem 1.17. For most convex bodies C of R?, for F' =R\ int C' and for every non
empty open subset w of R, we have

dlmH<W N -/\/ioc,F N NLOC,F \ MIOC,F) =d

and hence dimyg w N CurvCtp = d.

Curvature of boundaries of convex bodies. Let C be a convex body of R%. In this
paper we are concerned by two kinds of curvature of 9C', the upper curvature and the
lower curvature. We are also concerned by two specific cases, namely

(1) C'is a generic convex body of R¢, and
(2) C is the convex hull of a generic non empty compact subset of R?.

Concerning the upper curvature, we will see in Section 4 that the cases (1) and (2)
are very different. In the case (1), 9C has an everywhere large set of curvature cen-
ters (Theorem 1.17), and the set of corresponding points of JC' is a large subset of OC
(Theorem 1.11). In the case (2), OC has no curvature centers (Property 4.12, p. 848).

Concerning the lower curvature, we will see in Section 5 that the cases (1) and (2) are
similar. In both of them, OC has an everywhere large (dimg = d) set of curvature
centers, but the set of corresponding points of 9C is a small (dimyg = 0) subset of 9C
(Theorem 5.11, p. 852).

1.6. Porosity

Section 2 is devoted to a preliminary result that we want to describe here. Roughly
speaking, it says that there are large compact subsets K of R? which are small, with
respect to some orthogonal projections.

Definition 1.18. For a € R? and r > 0,
o S(a,r)={beR|[|b—al =r},
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e Bla,r)={beR?|||b—al| <r} and

e Bla,r)={beR||b—a|l <7}

are the sphere, the open ball and the closed ball of center a and of radius r. We will also
denote by

Dy the set of all affine hyperplanes of R?, affinely generated by subsets of Q% (the “rational
hyperplanes”); and by
Ds the set of all spheres S(c,7) with ¢ € Q% and r € Q* (the “rational spheres”).

Definition 1.19 (orthogonal projection). Let p be a point of a submanifold £ of R?
of class C!, a € RY and A C R%.

e T,(F) denotes the linear subspace of R?, of all vectors tangent to F' at p.

e N,(F) denotes the affine subspace of R normal to F at p, that is {z € R? such that
x — p is orthogonal to T,(F)}.

e 7r(a) denotes the orthogonal projection of a to F', that is {¢ € F' | a € N,(F)}.

o 7p(A) denotes (J,c 4 mr(D).

Remark. We obviously have Projlocy(a) C mp(a).

We will be concerned by the following notions of smallness of a set A.
Definition 1.20 (porosity). Let a € A C F C R<.

e The set A is strongly porous in F' at the point a if there exists a sequence (x,,) in F'\ {a}
converging to a such that dist(x,, A)/||x, — a|| converges to 1.

e The set A is strongly porous in F' if it is strongly porous in F' at every point of A.

e The set A is radially strongly porous at the point a if there exists two sequences (r,,) and
(e,) of positive numbers, converging to zero, and satisfying ANB(a, r,)\B(a, e,r,) = 0.

e The set A is radially strongly porous if it is strongly porous at every point of A.

Remark. If F'is a C'-submanifold of R? of dimension > 1, and A C F' is radially strongly
porous at the point a, then A is also strongly porous in F' at the point a.

Proposition 2.1 implies the following.
Proposition 1.21. Let A be an arbitrary subset of R with HY(A) = 0.

There exists a compact subset K of R\ A such that dimg K = d and satisfying, for all
F € Dy U Dg, the following properties.

e The orthogonal projection wp(K) of K to F is radially strongly porous.
o Vp,q€ K, p#q=mr(p) N7r(g) =0.

1.7. Out line of some proofs of the paper

Section 2 is used in each of the three others, while Sections 3, 4 and 5 are mainly inde-
pendant.

In Section 2, we will prove a preliminary result, Proposition 2.1, that we will use in each of
the other sections (for the proofs of Theorems 3.9, 4.3, 4.6 and 5.11) in a similar way. To
give an idea of these proofs, we outline now the proof of the first statement of Theorem 1.6.
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If we want to prove, for instance, that for most F' € Cpct(R?) we have dimy(Nr) = d,
then we just have to prove the existence of some compact subset K of R? such that
dimyg K = d and satisfying

(A)g : for most F' € Cpct(R?), we have K C Np.

We now choose K as in Proposition 1.21 with A being the union of all the Mg g for
H,H' € Dy. To prove (A)x we observe that, because of the compacity of K, the set
G = {F € Cpct(R?) such that K C N} is a Gs subset of Cpct(R?). Thus we only have
to prove the density of G. Here we use an approximation result, Lemma 3.4, p. 838 (in
other cases Lemma 4.1, p. 842 or 5.9, p. 850). It allows us to choose F' € Gk near F
when for each a € K there exists p € Projp(a) such that OF equals a rational hyperplane
H in a neighborhood of p.

In that case, we also need another approximation result like Lemma 3.7, p. 839 to prove
the density of the set of such sets I in Cpct(R?). At this point, we need that orthogonal
projections of K to rational spheres are radially strongly porous, and not only strongly
porous.

2. A large compact set with small projections

In this section we use the definitions given in Sections 1.1 and 1.6., but we need nothing
about cut locus.

2.1. Statement of Proposition 2.1

Proposition 2.1. Let h be a dimension function such that t* = o(h(t)) and let D be
a countable family of non empty submanifolds of R? of class C* and of dimensions €
{1,...,d—1}. Let A be an arbitrary subset of R with HY(A) = 0.

Then there exists a compact subset K of R\ A such that H"(K) > 0 and such that for
each F' € D, we have the following properties.

I) VpeF,card KNN,(F)<1.
Hence we have a continuous mapping nz" from 7p(K) to K (which is onto K when
F is closed).

II)  7p(K) is radially strongly porous.

Moreover we will see in the proof that we can also ask K to be radially strongly porous.
Remarks. It follows that 7z (K) is strongly porous in F.

It is not difficult to prove that most compact subset K of R satisfy I) and IT), but they
are also small: dimyg(K) = 0, and we need a large one.

Let us consider some particular cases of this proposition:

Case 1. All F € D are lines.

Case 2. All F € D are hyperplanes.

Case 3. All F € D are circles.

Case 4. All I € D are spheres (homeomorphic with S471).

The cases 2 and 4 will be enough for our main aim, but we find interesting to give and
prove a more general statement (we do not know how much it can be generalized).
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If we replace in Proposition 2.1 “radially strongly porous” by “strongly porous in F”,
then the case 2 of the new proposition becomes an easy consequence of the case 1.

Lemma 2 of [19] is essentially the case 1 (or 2) when d = 2 and cardD = 1, but our
argumentation here seems to us more simple.

If we want to use the case 2 of the proposition to find a compact set K such that
dimg(K) > d — 1, we choose h such that h(t) = o(t*) for some s > d — 1. It is known
then that we have H4™1(Proj(K)) > 0 for H? !-almost all z of the sphere S! = §(0, 1)
of R? and for the orthogonal hyperplane F' = x* (see [8], p. 85). Hence for such an F,
the orthogonal projection Projr(K) is not strongly radially porous. However, if we have
choosed D = Dy then it is not difficult to check that for most z € S, F = 2 satisfies
I) and II) of the proposition.

2.2. Dyadic net measures

We will use net measure ideas in a rather standard way (see [22], §7 for a general descrip-
tion of such measures).

Definition 2.2 (dyadic cubes). Let n € N.
F. denotes the set of dyadic cubes 27" (.75 + [0, 1]d), where x € Z%. We also set F =
Ukz(] Fr, fgn = Uogkgn Fie, on = Uan F, ...etc.

Definition 2.3 (Net measures). Let i be a dimension function and A C R%. We define
e W(C)=h2")ifneNand C € F,,

o hG) = Yacgh(A)if G C F,

o H:(A) = inf{h(G), where G C Fsy is a covering of A} if N € N,

o H"(A) = supyen Hi(A),

o H"(A) =inf{h(G), where G C Fay is a finite covering of A} if N € N,
¢ ﬁh(A) = SUPNeN ﬁ?v(A)

We have for every A C R¢,
H'(A) < 37H"(A). (1)
Indeed a bounded subset B of R? is included in the union of at most 3¢ elements of F,

for the first integer n such that B is not included in any cube x + [0,27"]¢. We also have
for every compact subset A of R?,

H"(A) < 3"H"(A), (2)

as one sees when replacing the covering G C F of A by G’ = {x + ry + r[0, 1]¢ where
z 470,19 € G and y € {—1,0,1}¢}. We have then h(G") < 37h(G), and moreover every
a € A has a neighborhood which is the union of a finite subfamily of G’, so G’ contains a
finite subcovering of A.

2.3. Construction of large compact subsets of R¢

We will use the following lemma to construct the large compact set K mentioned in
Proposition 2.1. It is a standard construction, but we do not know a precise reference for
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it, so we prove it. One may found similar ideas related with porosity in [16], p. 64, and
also in [14], p. 302 and p. 305.

Lemma 2.4. Let h be a dimension function such that t* = o(h(t)) and 0(t) := t~h(t) is
nonincreasing on |0, +00].

Let (K,)n>0 be a decreasing sequence of non empty compact subsets of R, such that each
K, is the union of a finite family of elements of Fur,, for some increasing sequence (M,,)
in N.

Suppose that for a sequence (N,,) of integers and a sequence () in |0, 1[ we have for each
n>0

i) 14 M, <N, < —1+ My,

i) AB(27N) > 0(27Mn) and

i) each C € Fy, such that C C K, satisfies HY(C N K1) > \HY(C); moreover,
there exists C' € Fup,,, such that C' C K, 1 Nint C.

Then the compact set K = (1,5, Ky satisfies H"(K) > 0.

Proof. We can suppose that My = 0 and that Ky = [0, 1]¢ € Fy. Because of (1) and (2),
it will be enough to prove that H"(K) > 0.

For G C F and C € F, we define (in this proof)
G¢={AecG|ACC}.

Let G C F be a finite covering of K, it will be enough to prove that &(G) > h(1). For
this, we can suppose that G is minimal (i.e. that no proper subset of G is a covering of
K'). We use then an induction over the first integer n such that G C F<uy,,,. Since the
case n = —1 is obvious, we suppose that n > 0.

Observe that G is also a covering of K, i, because for every C' € Fy,., such that
C' C K41 we have K Nint C # (), from ) and 7).

Now let C' € Fyy, \ G such that G¢ # (), we only have to prove that
(G > h(C).
Indeed, this allows to replace all A € G¢ by C' in G and doing that for all such elements

of Fy, enables to reduce our problem to the induction hypothesis.

The idea is to decompose C' in two parts C'4 and Cp, such that in each of them the
“wanted inequality is true in mean”.

More precisely, we consider A = GY N Fey,, Cu = Jacy A B = {B € Fy, such that
BcCand B¢ Cy} and Cp = g5 B.

Then we have C' = C4 U Cpi and vol C' = vol C 4 + vol Cg.
Let us observe that if A € Fy then vol(A4) = 27V4,

Because # is not increasing, we have for every A € A,

h(A) > 6(27) vol(A).
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Adding these inequalities gives

h(A) > 0(27Mm) vol(C y). (3)

As G is a covering of K,,.; and using i), then i), we have for every B € B: Z(QB) >
2 aegr 0(27 ) vol(A) = 0(27%) 37 4cgn vol(A N Kop) = 0(27")vol(B N Kypr) >
02~ )\, vol(B) > 6(27¥) vol(B).

Adding these inequalities gives us

R(GE\ A) > 027 M) vol(C),
that we add to (3) to get h(GF) > 8(2~M) vol(C) = h(C) as wanted.
2.4. Proof of a particular case of Proposition 2.1

Here we want to prove Proposition 2.1 when D is reduced to one line F' = R x {0}, where
we identify R? with R x R4 (when also A = ) and t + ¢t~¢h(t) is nonincreasing).

This proof will not be formally used for the general case, but it is convenient to present
the main ideas.

We use Lemma 2.4 and take My = 1 and K, = [0, 1]%.

Suppose n > 0, we must explain how to choose \,, N,, M, .1 and K, ;. Take \, =
27"=4+1 choose N, large enough to get #) and take M, 1 = N, +n+d — 1.

We will use an enumeration {0,1}¢"! = {y1,ys,...,y2a-1} to describe K, ;. Let X be
the finite set of all m € N such that K, N <%ﬂl] X Rd*) is of the type (%) X

2
2m+[0,1]41
(=),

We then define

Koy = U <m2n+d1 + (k—1)2" + [0, 1]) y (2zm + yi. + [0, 1]d—1) |

2Mn+1 2n+1

meX,1<k<2d-1

Then it is easy to check that this defines a sequence like in Lemma 2.4, and that K =
N,>0 Kn is as wanted. Indeed, at the n'™ step we have guaranteed that the subset K of
K, satisfies

e VreF, diamKNN,(F) <2 /d—1 (I follows), and
e 7p(K) has a covering by intervals [, with diam [, = 27+ and with k < [ =
inf [; — sup I, > (2" — 1)27M»+1 ([T follows).

Remarks. If we want to prove the case 1 of Proposition 2.1, we have to consider now
successively the lines of D (coming back infinitely to each of them). Moreover, we have
an adaptation to make because the canonical axes of R? are no more associated to lines

of D.

For the general case, we have other (more or less standard) adaptations to make.

We will use the following property.
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Lemma 2.5. If A C R? satisfies HY(A) = 0, then there exists a dimension function h
such that t¢ = o(h(t)) and H"(A) = 0.

According to [22], p. 81, A. S. Besicovitch (1956) proved more generally that given a
metric space A and a dimension function g such that HY(A) = 0, there always exists
another dimension function h with g = o(h) and such that H"(A) = 0.

2.5. Proof of Proposition 2.1
1) Let FeD,a=dimF and f=d — a.

We will consider “local normal” mappings ® : R* x R® — R? which are of class C!, such
that @(.,0) is a C*-imbedding of R® into F, and such that for each x € RY, ®(z,.) is an
affine isometry from R” to the affine normal space Ng(,) F of F at ®(x) (so we have the
orthogonality relation ®(x,y) — ®(z,0) L Tyu0 ). We then write

o Crit(®) = {®(x,y) such the differential dg(,,) of ® at (x,y) is not invertible} the set
of all critical values of P,

° CL)@:CI)(ROC,O)CF,

e Qg = {a € R?such that card ® !(a) = 1}, and

e OF = {a € R? such that dist(a, R\ Qg) > e}, for e > 0.

Choose a countable set X of such mappings ® in such a way that {we, ® € X} is a basis
of open sets of F'; and denote by Crit(#") the union of the Crit(®), for & € Xp. In other
words, Crit(F') is the set of the critical values of the canonical mapping from the normal
fiber N(F') to R%. By the Sard theorem we have

vol Crit(F') = 0.

Lemma 2.5 allows us (possibly after replacing h by some dimension function nearer from
t — t%) to suppose that for each F' € D, Crit(F) and the cut locus of F are of null
H"-measure, and that H"(A) = 0. In other words

H"(A U Crit(D)) = 0,
if we denote by Crit(D) the union of all the Crit(F) for F' € D.

We can also suppose that ¢t — ¢~?h(t) is non increasing (for instance, change h on |0, +o0
with ¢ — t4[1 + infyo.<; s7¢h(s)], as checked in [19], p. 222).

Let X be the countable set of all (F,®,1/n) for ' € D, & € Xr and n € N*. We choose
a sequence (&,) in X such that for any £ € X, the set of the integers n with &, = & is
infinite.

2) We use now Lemma 2.4 to build a compact set K, and we take My = 0 and K, =
[0,1]°.
We suppose n > 0 and explain how to choose \,,, N,,, M, 1 and K, ;.

First we set &, = (F, ®,¢), dim F' = a, f = d — . Let N be the first integer N > 0 such
that 2=Vv/d < ¢, and denote by K’ the union of all the sets C'N K,,, where C' € Fy is
such that CN K, N Q5 # 0 # K, Nint C. Thus K], is a compact set such that

K,NQ; C K, C K, Nint Q.
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Observe that ® is a homeomorphism from ®~!(int ) to int Qg, so ®~1(K) is compact
and we can choose 3y € R? and r > 0 such that ®~1(K!) C R® x (yo+ [0,7]7). We precise
that we make the choice of yy and r depending only of &, and not precisely of n (we make
the same choice at the step m of the construction if §,, = &), this is possible because we
are constructing a non increasing sequence (K,).

Take )\, = 279774~ and choose N, large enough to get i1).

We will use an enumeration {0,1,2,...,2" — 1}* = {y1,ys,...,Yams} to describe K, ;.
We will also consider the mappings fi : R* x R® — R and ¢ : R® x R? — R” defined by
fi(z,y) = z1 and by g(z,y) = y.

C™ will denote z + [0, p27"]¢, for a cube ¢ = z + [0, p]¢, with p > 0. K denotes the

closure of K, \ K/. Then for each P,M € N we define Ap and Kp,s by the following
three conditions.

e Ap is the union of the C™, for C € Fp such that for some integers m € Z and
ke {1,2,...,2""} we have fi(C) = 27F(m2" + [k — 1,k]) and g(C) C wyo +
27" (yk + [O,T]B).

® KP,M N KZ = KZ

e Kpy \ K] is the union of all the C'\ K]/, for C' € Fj; such that C C ®(Ap) N K.

For each C' € Fy, such that C' C K], one sees that we have then

. HYCN®(Ap))
Am HAC) 2An;
and when HY(C N ®(Ap)) > 0, we also have
. HYCNKpu)
lim ; = 1.
M—oo HY(C' N P(Ap))
We can thus choose P large enough so that for each C' € Fy, such that C' C K/, we have
W%Q—?C(’;‘P)) > \,. Then we can choose M, ; = M large enough so that the condition i)

will be true when we set K, .1 = Kp .

It is now easy to check that we obtain thus a sequence like in Lemma 2.4, so K, =
Nuso Kn satisfies H"(K) > 0.

Since AU Y U Crit(D) is included in some Gg-subset G' of R¢ such that H"*(G) = 0, we
can now choose in the Borel set K, \ G' a compact subset K such that H"(K) > 0, (see
Th. 57 of [22] for a general result about the existence of compact subspaces of positive
and finite H"-measure in a given space X of positive H"-measure).

3) We explain now why K is as wanted.

Let FeD,a=dimF,=d—a,p€ F and a,b € K NN,(F). Because a and b are not
in Crit(F), p, a and b are all in the same Q5 for some & = (F, ®,¢) € X. Consider one of
the infinitely many integers n such that &, = &.

We have then d (®~(a),®71(b)) < r27"/3, hence d (®~!(a),®~1(b)) = 0, hence a = b,
hence 1) is satisfied.

Observe that ®~1(K N K) is radially strongly porous at ®~1(a). From this we deduce
that K is strongly radially porous at a. This justifies the affirmation after the proposition
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if at least one of the manifolds in D is closed, and we can always assume that D contains
for instance a sphere.

The first projection pr; (®~1(K \ K”)) € R* of ® (K \ K!) is also radially strongly
porous at ®~!(p). From this we deduce that its image @ (pr; (1 (K \ K))) is radially
strongly porous at p.

On the other hand we have ® (pr; (7 (K))) = 7r(K)Nwg and also ® (pr; (2~ 1(K \ K)))
= mp(K \ K) Nws. But 75" is continuous on 7p(K) and K \ K is a neighborhood of
a = nz'(p) in K, hence mx(K \ K”) Nws is a neighborhood of p in 77(K). So 7p(K)
is radially strongly porous at p, thus 7r(K) is radially strongly porous. This ends the
proof.

3. Cut loci of generic compact subsets of R?
3.1. Class properties
We will need some easy class properties.

Lemma 3.1. For a given compact subset K of RY, the set of all non empty compact
subsets F of R? such that K \ F C N is a Gs of Cpct(R?).

Indeed, for a given ¢ > 0 the following condition defines a closed subspace of Cpct(R?):
Ja € K, b e R% and p € Proj(b) such that a € [b,p], ||a — p|| > € and ||a — b]] > &.

Lemma 3.2. For a given compact subspace K of RY, the set of all non empty compact
subsets F' of R? such that K N Migep # 0 is a F, of Cpct(R?).

Indeed, for a given € > 0 the following condition defines a closed subspace of Cpct(R?):
Jda € K,r >¢e,p,q € S(a,r)NF such that ||[p—q|| > ¢ and FNB(a,r)N(B(p,e)UB(g,¢€)) =
0.

Remark. For a given compact subspace K of R?, it is easy to check that the set of all
non empty compact subsets F of R? such that K C Moc r is a Gs of Cpet(R?) (this
seems untrue for ./\/'10,3’ r). However we will not use this fact because the only way we know
to prove the density of this set (in Propositions 3.8 and 4.5) is to found in it a dense G
subset of Cpct(R?).

Lemma 3.3. Let K, A be compact subsets of R Then Gy 4 = {F € Cpct(RY) such
that FNA # 0, FNOA =0 and K C Npaa} is a Gs of Cpct(RY). Moreover, F €
Gra= K CNoer.

Indeed U = {F € Cpct(R?) such that F Nint A # 0} and V = {F € Cpct(R?) such that
FNOA=0=FnNKnA} are open in Cpct(R%). So UNV is an open subset of Cpct(R?)
containing Gk 4. As the mapping F' +— ANF is continuouson UNV, Gga ={F € UNV
such that K\ (FNA) C Npaa} is Gs of UNV (and then of Cpct(R?)), by Lemma 3.1.
The last statement is obvious.

3.2. Approximation of F' at a compact subset

The following lemma is essentially a simple generalization of the first point of Lemma 1
of [19], which is used there to prove the existence of a closed subset F' of R? such that
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dirnH NF = 2.
Lemma 3.4. Let F € Cpct(R%), K be a compact subset of R*\ F, a € K and p =
projg(a). We suppose that
¢ Vbe K \ {CL}, p g PrOjF b;
e forsomer >0, (p+ (a—p)t)NB(p,r) =F NB(p,r), and
° Projr K s strongly porous at p in OF.
We consider
F' =R\ | B(b,dist(b, F)).

beK

Then (p,a) € GrCurvg:, hence a € Npr.

Remarks. The set F” is a kinf of “approximation of F' at K. It is a usefull tool for the
study of the cut locus.

For instance, for any K C R? we have N Nint K = NpNint K. From this, one deduces
that, for the study of the local properties of N, one can always suppose that the boundary
OF has some Lipschitz regularity.

We also have K C Np = K C Np. This is used in [19] to get closed sets F' with a
prescribed dimension dimyg N of the cut locus.

In this paper we will also use two adaptations of Lemma 3.4: Lemma 4.1, p. 842 and
Lemma 5.9, p. 850.

Proof of Lemma 3.4. We can suppose that ||a — p|| = 1.

We choose a sequence (p,) in B(p,r) NOF \ {p} converging to p, satisfying ||p, — p|| < 1,
and such that d,, := dist(p,, Projp K) ~ ||p, —p||. Denote by p!/, the point of 0F" “above”
Pn: P'n=pp+ A\p(a—p) for a A, > 0 as small as possible. It will then be enough to prove
that )
lim sup —————— > 1/2. (4)
n—co |[P = Pnll®

We can choose a,, in K such that p/, € Projp(a,), and then (a,) converges to a, so
R, := ||a, — || converges to 1. Denote by a!, the projection of a, to the hyperplane

p+(a—p)t
For n large enough, we have a!, = proj a,, we also have then ||a, —a,|| = ||a, — p,|| and
llaz, = pnll = 0n. So

(Rp— An)? = R2 — ||al, — pal|* < R2 = 6

n’

SO
20, ~ 2\ Ry — A2 > 62

and (4) follows (and actually 2\, ~ ||p — p,||?)-

3.3. Existence of a flat local projection

Property 3.5. Let A be a compact and strongly porous subset of R%. Then for every
A > 1 and € > 0, there exists a finite covering of A by balls B(a;, ;) satisfying a; € A,



A. Riviere / Hausdorff Dimension of Cut Loci of Generic Subspaces of Euclidean ... 839

0<r;<eand
Z#] = (Z) ZE(ai,)\n) QE(CLJ',)\’I”]').

Proof. Indeed, we can first choose a finite covering (B;);c; of A by balls B; = B(a;, ;)
such that a; € A, 0 < r; < e and AN Blas, 2Ar;) \ B(a;, ;) = 0. Because it is finite, we
can also assume that (B;);c; is minimal; that is, no proper subfamily is a covering of A.
Then (B;)e; is as wanted.

It is in the use of the following lemma, and of Lemma 4.4, that the radial strong porosity
is useful for our purpose.

Lemma 3.6. let ¢ € RY, r > 0 and K be a compact subset of R\ B(c,r) such that
Projg (.. (K) is radially strongly porous.

Then there exists a finite subset A of Q% N B(c,r) such that the rational polytope F =
conv(A) satisfies: Ya € K, OF is flat at p = projp(a) (in other words, OF contains a
neighborhood in p + (a — p)* of p).

Proof of Lemma 3.6. Denote by S the sphere S(c,r) and take A > 7 max{||c — al|/r,
for a € K}. By Property 3.5, we can now find a finite covering of Projg(K’) by balls
B(pi, pi) with p; € Projg(K), 2Ap; < rm and such that

i # 7= 0=DBpi,\n) ﬂE(pja Apj)-

Observe now that the convex body

Q = conv (S \ UB(P@ )\Pi)>

is flat at each point of Proj, (/). So we can choose a polytope F' C @ which is flat at each
point of Proj(K). Finally, by a small move of the vertexes of OF, we can also assume
that they are all in B(a,r) N Q.

The following result is an immediate consequence of the lemma above.

Lemma 3.7. Let K be a compact subset of R? such that for all S € Dy (defined in p. 830),
Projg(K) is radially strongly porous. Then a dense subset of Cpct(R?) is constituted by
all F € Cpct(RY) satisfying the following properties.

° 0 = FNK and F = Uivzl Py, where the P, are convex polytopes of non empty
interiors, with k #1= P, N P, = (.

° Va € K, OF is flat at each p € Projlocg(a) (in other words OF contains a neigh-
borhood in p + (a — p)* of p).

° the Py are rational (i.e. of the form conv A for A finite subset of Q¢).

Remarks. Any subset K of R? satisfying the conclusion of this lemma is of null Lebesgue
measure. To check this, one can obviously suppose K bounded and then observe that
voly(K) < (diam K) voly_1(0P;).

It is easy to check that most (non empty) compact subsets K of R? satisfy the conclusion
of the lemma.
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3.4. Cut loci of most compact subsets of R?

Proposition 3.8. Let h be a dimension function such that t¢ = o(h(t)). Then there
exists, by Proposition 2.1, a compact subset K of R such that H"(K) > 0 and satisfying
the following three properties.

(a) VF € Dy, K satisfies I) and II) of Proposition 2.1.

(b) VS € Ds, Projg(K) is radially strongly porous.

(C) VH,HIEDH,KQMHLJH/:Q.

Moreover, these three properties imply that, for most F' € Cpct(R?),
K C NpNNuoc.r \ Mie r-

Remarks. 1) We always have Ny N Nyoc r = Noocr \ F.

2) It is easily seen that we also have, for K as in the proposition and for most F,
Va € K, card Projlocy(a) = card N,

because K N Mige = 0.

3) The set AbsN(RR) of all the subsets K of R? satisfying K C N for most F' € Cpct(R?),
is a o-ideal of Henull sets (many similar o-ideals are involved with this work). For

instance S9! & AbsN(R?). More precisely, if w is a non empty open subset of R?, if
p € Ow, and if A contains a neighborhood of p in dw, A & AbsN(R?).

Most compact subsets K of R? satisfy the properties in this proposition, except for
HM(K) > 0. So they are in AbsN(RR?).

Proof of Proposition 3.8. 1) The existence of K is an immediate consequence of Propo-
sition 2.1.

2) Now we prove that most F' satisfy K C Np N Npoc p. It will be enough to prove that
for all rational closed ball B (thus B € Ds), the set G := {F € Cpct(R?) such that
FNOB=0and FNB # 0 = K C Npng}, which is a G4 of Cpct(R?) by Lemma 3.3, is
everywhere dense in Cpct(R?).

Consider such a rational closed ball B, and the open subset U = {F € Cpct(R?) such
that FNOB = and FN BN K = (} of Cpct(R?), which is everywhere dense because
int(K UOB) = ). Also consider the open subset V' = {F € U such that FN B # 0} of U.
As U\ V C Gp, we only have to prove the density in V' of Gp.

So let Fy € V and W be some open neighborhood of Fj in V. By Lemma 3.7, we can
choose Fy € W as in this lemma. Observe that for all p € 9F; such that 0F; is flat at p,
we have card{a € K such that p € Projlocp, (a)} < 1, because of I) of (a). Moreover (c)
implies that K N Mp, = 0. For F = BN F; and

=R\ | B(b, dist(b, F)),
beK
we have K C Np by Lemma 3.4.

For 0 < e < dist(K,90B), Lemma 3.4 also gives that Fy := (B(F,e)NF')U(F1\ B) € Gp.
We can choose € small enough so that £, € W. So Gg is dense in V.
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3) Observe now that G% = {F € Cpct(R?) such that K N My, = 0} is a Gs by
Lemma 3.2, which is dense because of (¢) and by Lemma 3.7. Thus most F' satisfy
K N Moo p =0, and this ends the proof.

Theorem 3.9. Let h be a dimension function such that t2 = o(h(t)). Then for most
F € Cpct(RY), we have H"(NF) > 0 and consequently dimg Np = d

More precisely, if w is any non empty open subset of R, then
H"(wN Np NNrocr \ Mieer) >0 and  dimy(w N Np N Nroc.r \ Miger) = d.

Proof. Consider one K as in Proposition 3.8. All the elements of the countable set
A= {z+rK, where z € Q% and r € Q% } share the properties of K. Thus we have for
most ' € Cpct(R?) and all A € A: A C Ny NNvoc.r \ Miee p. The theorem follows by
taking as usual h(t) ~ t¢|Int| to get the Hausdorff dimension.

Remarks. 1) We have also H"(A \ M) > 0 and dimg Projp(R?\ F) = dimg F =
0; moreover, projp is (continuous and) one to one between N\ M and a subset of
Projz(RZ\ F).

2) Recall that M, 5 is always of H41-o-finite measure and that for most F, we have
dimy F = 0. So in the theorem above, the main information is that H"(w N M,oc r) > 0.

3.5. Cut loci of most closed subsets of R¢

Let us observe that generic properties of Cpct(R?) can also be viewed as generic properties
of non empty closed subsets of R,

1) Indeed, at least for the problems considered in this paper, pertinent topologles on the

set C1(R?) of these closed subsets are obtained by an imbedding F — F into Cpct(Rd)
(endowed with the Vietoris topology; concerning hyperspace topologies, one can see Sec-

tion 1.1 of [10], or the fourth chapter of [21]), where R? is a compactification of R? (that
is a compact topological space havmg R? as an everywhere dense open subset) and where

F denotes the closure of F i in RY. Then Cpct(R?) is an everywhere dense open subspace
of the compact space Cpct (]Rd) and hence of CI(R%).

The simplest case is when Rd = R¢ U {oo} is the one point compactification of R%. A
more pertinent case, for the study at infinity of the cut locus (this is done in [17]), is
R? = R4 U S(RY), where S(R?) is the sphere at infinity of R? it is named the cosmic
compactification in [21], and is associated to the “total” convergence in Cl(R?).

2) It is also natural to endow CI(R?) with the usual Painlevé-Kuratowski convergence,
which is associated here with the Wijsman topology, and also with the Fell topology. It
is also the topology obtained by the imbedding F' — F U {co} of CI(R?) into Cpct(fR\d),
where R? = RZU {oo} is the one point compactification of RY. Cl(R?) is then a metrisable
separable locally compact space (an interesting distance on it is described in [21]).

Then Cpct(R?) is an everywhere dense, but meager, subspace of CI(R?). However, generic
elements of these two spaces behave very similarly for our purpose. More precisely, Propo-
sition 3.8 and Theorem 3.9 remain true if we substitute in them CI(R?) for Cpct(R?).
To check this, one has to make similar adaptation for Lemma 3.1, 3.2 and 3.3 (adding
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lla — p|| < 1/e in the proof of the the first, and r < 1/e in the proof of the second). The
proof of the new proposition is then almost the same, the proof of the new theorem is the
same.

4. Cut loci of the boundaries of most convex bodies of R¢
4.1. Approximation of a convex body at a compact subset

The following adaptation of Lemma 3.4 is also essentially a simple generalization of the
second point of Lemma 1 of [19], but our proof here is simpler.

Lemma 4.1. Let ¢ € R4, R > 0 and F be a non empty closed subset of R? such that
F D R4\ B(ce,R). Let K be a compact subset of R\ F, a € K and p = projp(a). We
suppose that Vb € K \ {a}, p & Projp(b), that for some r > 0,

S(c, R) N B(p,r) = 0F N B(p, ),
and that Projr K is strongly porous at p in OF.
If F' =R\ conv |, B(b, dist(b, F)), then (p,a) € GrCurve and so we have a € Npr.

Proof. We can suppose that a # ¢ and that R = 1.

Choose a sequence (p,) in OF converging to p, satisfying 0 < ||p, — p|| < [la — pl|/2,
llpn. — p|| < 7/2, and such that 6, := dist(p,, Projp K) ~ ||p. — p||-

We will focus on the part A, of dF above A, = B(pn,6n) N S(c,1). More precisely, for
q € A, we denote by g the point of OF" above ¢: ¢ = g+ A(c — ¢) for a A > 0 as small as
possible and A, := {g for ¢ € A,}. Put h(z) = dist(z, F) and S(z) := S(z, h()).

Let X, ={q1 | 1q1 + -+ + 1aqa € E;, where ay,...,aq € K, g >0, g + -+ pg =1
and g, € S(ag)}, K, ={be K| S(b)NX, #0} and r, = sup{h(z) | z € K, }.

We observe that p € Projp(a) and that OF" C B(c,1). Hence OF’ contains no segment
line [p, q] with ¢ # p. From this and because sup{||p — q||, ¢ € ;1;} — 0, we deduce that
sup{||lp — q|],q¢ € X,} — 0, then that sup{||a —b||,b € K,,} — 0. Hence (r,) converges to
reo = |la = pl|.

For n large enough, we also have Vb € K,,, projp(b) € S(c,1).

We consider for such n the set

Comcorv  |J  Blatrale—a).m).
qGS(C,l)\B(pn,(Sn)

Then :4\; C C, and I contains the flat part conv S,, of C,,, which is delimited by a d — 2
dimensional sphere S, of radius d/,(1 — r,), where 0/, ~ 6, is the radius of the sphere
S(pn, 0n) N S(c, 1). With ¢, = projg (p) € F', we have ||g, — p|| ~ ||pn — P||7s and then

lim sup (c=plan —229) > I,
n—oo [P = all 2
The conclusion follows.
Remark. In the proof above we have ||¢,—p||/||p» —p|| ~ ||la—pl||/R. The case |[a—p|| =

R is obvious and in the case R = 400, meaning that JF is flat at p, the lemma becomes
false.



A. Riviere / Hausdorff Dimension of Cut Loci of Generic Subspaces of Euclidean ... 843

4.2. Generic cut locus

The following proposition will immediately yield Theorem 4.3, which we consider the main
result of our paper, and which could also be deduced from Theorem 4.6. However we find
better to give a direct proof.

Proposition 4.2. Let K be a compact subset of R? satisfying, for all F € Ds, I) and II)
of Proposition 2.1, KNF = (), and such that for every S, S’ € Ds we have KNMgus = 0.

Then for most convex bodies C of R and F = R?\ int C, we have K \ F C N.

Proof. By Lemma 3.1, we only have to prove that the set G of such C is dense in
Cvb(R?). So take Cy € Cvb(R?Y) and € > 0, we can choose C; € Cvb(R?) such that
disty(Cp, C1) < € and such that C} is the intersection of a finite family of closed balls of
boundaries in Dg. Then ) = K N 9C,;. Now we can choose a finite subset A of int C},
such that projse, (A) Nprojye, (K) = 0 and large enough so that disty(Co, C2) < €, where

Cy = conv U B(a, dist(a, 9CY)).

ac AUKNint Cq
We get then C; € G by Lemma 4.1. The proposition is proved.

Theorem 4.3. Let h be a dimension function such that t¢ = o(h(t)).

Then for most conver bodies C' of R? and F = R?\ int C, we have H"(NF) > 0. Conse-
quently we also have dimy Ny = d. More precisely, for every non empty open subset w of
int C, we have H"(Np Nw) > 0.

Proof. Using Proposition 2.1, we choose K as in Proposition 4.2 and such that H"(K) >
0 and we consider the countable set D of all compact subsets of the form x + r K, where
r € QYand 0 < r € Q. It is obvious that these compact sets satisfy the same property
as K. So for C € Cvb(R%) generic, F = R?\ intC' and for all K’ € D, we have
K' CintC = K’ C Ny. The theorem follows by taking h(t) = t?| Int| for ¢ small enough
to get dimy Ny = d.

4.3. Existence of non trivial local projection
In view of Lemma 4.4 we define

e Projloci(a) = {p € F such that for some neighborhood F’ of p in F, we have
|la — p|| = dist(a, F’) < dist(a, "), where F" is the boundary OpF’ of F’ in F' (we
consider dist(a, ) = +00)}.

Lemma 4.4. Let K be a compact subset of R? and Uy the set of all convex bodies C' of
R? such that for every a € K, Projlocy(a) ¢ {a}, where F =R\ int C. Then Uy is an
open subset of Cvb(RY).

Moreover if for all S € Dg (defined in p. 830), Projs(K) is radially strongly porous, then
Uk is everywhere dense in Cvb(R?)

Similarly to our observation after Lemma 3.7, a subset K of R satisfying the last con-
clusion of Lemma 4.4 must be a H%null set.
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Proof. Uk is open because the set of all (a, F') such that Projlock(a) ¢ {a} is an open
subset of R? x Cpct(R?). So we only have to prove the density of Ug-.

Consider N rational closed balls By, = B(cg,r;) C R\ K, for 1 < k < N (thus ¢, € Q¢
and 0 < r, € Q). We only have to prove that one can choose for each k a subset Cj, of
By, in such a way that C' := conv(C; U--- U Cy) € Ukg.

Define @ := conv(B; U---U By) and w = {p € 9Q such that a neighborhood in 9Q of p
is included in one of the rational spheres 0By }. Then, using Definition 5.1, p. 848 of the
antiprojection Aproj, we have Aproj,(K) C w and ¢ := dist(Aprojo(K),0Q \ w) > 0.

Take k € {1,..., N}. We choose C} in a way similar to that of the choice of @) in the proof
of Lemma 3.6. With A > 7 max{||c; — a||/rs, for a € K}. Because of the radial strong
porosity of Projg(K), and thus of A := Aprojo(K) N dBy, we can now by Property 3.5,
p. 838, find a finite covering of A by open balls B(p;, p;) with p; € A, Ap; <€, 2Ap; <
and

i # = 0=B(pi, \p;) N B(p;, Apj)-

Observe now that for each a € K such that By, N Aprojg(a) # 0,

C) := conv (B,~C \ U B(pi, /\Pi)>

is flat at some point p of Projlocg, (a) \ {a} if F, = R?\ int C,. We have then p €
Projloci(a) \ {a} if F = R?\ int C, and thus C € Ug.
4.4. Generic local cut locus

Proposition 4.5. Let K be a compact subset of R satisfying I) and II) of Proposition
2.1 for all F € Ds, and such that K N Mgyug = 0 for every S, S’ € Dg. Then for most
convez bodies C' of R and F = R?\ int C' we have

K C MOC,F N NLOC7F \ MIOC,F'

Remark. If K is a compact subset of

Rd\ U Mg, or of Rd\ U Muyon,

S,8'eDg H,H'eDy
then we have, for most convex bodies C' of R? and F' = R?\ int C,
KN Mloc,F = @

Proof. 1) Observe that G’ = {C' € Cvb(R?) such that F' = R\ int C = KNMj. r = 0}
is a Gy by Lemma 3.2, which is dense because it contains every finite intersection of
rational closed balls (of not empty interior), because of the assumption ) = K N Mgys:.
So it remains to prove that for most C' € Cvb(R?) and F = R?\ int C we have K C
MOC,F N NLOC,F'

2) Let H be a closed rational half space of R? (then H € Dy). We denote by Uy the set
of the convex bodies of R? such that int C\ H # 0 # HNint C. Put Gy = {C € Uy such
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that if Fiyc := R?\int(H UC) and Ky o := {a € K Nint H such that Projp, (a)\ H #
0} C Ny, o} Uy is obviously an open subset of Cvb(R?), and Gy is a G of Uy because
for every ¢ > 0, {C € Uy such that there exist b € R?, p € Projp, .(b) and a € K N [p,b]
such that [|a — b|| > €, dist(p, H) > ¢ and dist(a,R?\ H) > ¢} is closed in Uy.

We prove now that Gy is dense in Uy. Consider Cy € Uy and V' an open neighborhood
in Uy of Cy. We choose C; € V which is the intersection of a finite number of rational
closed balls.

For € > 0 we define CZ° = {a € C} such that dist(a,R?\ C}) > €},

Cy =07 U < U Bla,dist(a, Fc,)) \ int H)

aeKNH

and C3 = conv (5. We choose € small enough so that C35 € V. Then we claim that
C3 € Gp. To check this, observe first that Cy C Cy and K¢, g\ Keyuw C MFH,C3 - NFH,CS‘
We choose thus a € K¢, g \ M Fioy and we must check that a € N Fri.cy- Observe that
P = Projp, . (a) = PrOjpy, o (a) € 0Cy \ H has a neighborhood in dC; which is included
in a rational sphere S(c¢, r) such that C; C B(e, r).

We also have, by Lemma 4.1, (p,a) € GrCurvg, where

F =R?\ conv | J B(b, dist(b, Frr,))

belL

and where L := {b € K N H such that B(b, dist(b, F, 1)) C B(c,7)} is a closed neighbor-
hood of a in K.

So we just have to check that OF contains some neighborhood of p in 0Fy ¢, i.e. in 0Cs.
We can choose now a closed half space H " of RY not containing p but containing the
following subset A of C}, and hence of B(c, 1),

A=ctu | | B, dist(d, Fuc,)) \ int H

be KNH\L

Observe then that any point of dC5 \ OF must lie on some tangent line A such that
ANB(a,l|la—p||) \ H=0and ANB(c,r) N H" # (). Since the union X of all such lines
is a closed subset of R and p € X, we have proved that G is everywhere dense in Uy.

Thus Gy is a Gs dense subset of the open Uy of Cvb(R?), so G = G U (Cvb(R?)\ Ug)
is a Gs dense subset of Cvb(RY).

3) Thus most C € Cvb(R?%) are in the intersection G”, over all H € Dg, of the sets
G"r; hence they are also in G = G'NG" N G", where G” = {C € Cvb(R?) such that
if = R?\ intC, then Va € K, Projlocj(a) ¢ {a}} is a dense open subset of R¢ by
Lemma 4.4.

Let then C € G, F =R\ intC and a € K. As C € G"”, we can choose p € Projlocp(a) \
{a}. Because C' € G’, we can also choose H a rational closed half space such that C' € Uy,
a € int H and p = projFH}c(a) ¢H AsC e G CG"CGY, wealso have C' € Gy. We
also have a € Ky ¢, hence a € Np, and a € J\/]oc’F.
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Because a € N, . \ Mg, we also have (p,a) € GrCurvg, ., hence (p,a) € GrCurvp.
As this is true for every p € Projlocp(a) \ {a}, we also have a € Ny oc r. This ends the
proof.

As Theorem 4.3 was deduced from Proposition 4.2, we deduce now the following result
from Proposition 4.5.

Theorem 4.6. Let h be a dimension function such that t* = o(h(t)). Then for most
convez bodies C of R and F = R%\ int C, we have for every non empty open subset w of
Rd

Hh(w N MOC,F N NLOC,F \ Mloc,F) > 0.

Consequently we also have dimp(w N Nige r N Nroc r \ Mioe r) = d.

For a € R¢ \ Mioe,r we have card Projlocp(a) < cardN. For a € R¢ and for most
C € Cvb(RY), and F = R4\ int C, we have card Projlocp(a) = card N. This is also true
for most C' € Cvb(R?) and for most a € R<.

Question 4.7. What can be said for most C' € Cvb(R%), and F' = R%\int C, of dimp{a €
R? such that Projlocg(a) is infinite}?

4.5. Curvature of a generic convex surface

Let C be a closed convex subset of R? of non empty interior, with C' # R?. For p € 9C, let
©(p) be the least upper bound of the numbers ||a — pl||, where a € C' and p € Projy-(a).
Let C be the subspace of the Euclidean space R? x R ~ R% of all the (p,¢) € C x R,
such that ¢ < ¢(p). We have then a continuous mapping P : C — C which associates to
(p,t) the unique a € C such that p € Projy-(a) and ||a — p|| = t. Moreover, ¢ is upper
semi continuous, so C is closed in R4+! (and compact when C'is compact).

Lemma 4.8. The mapping ®¢c defined above is 1-Lipschitzian on C.

Proof. Let us suppose that a,b € C, p € Projs-(a) and ¢ € Projy-(b). Considering
the tangent hyperplanes at p and ¢ of dC, we must have then (¢ —p | ¢ —p) > 0 and
(b—q|p—q)>0. Let r =||a—p|[, p=||b—¢q|| and s = ||p — ¢g||. We must then prove

that
lla = bl < V/s*+ (r —p)*. (5)

We can suppose that a # b and r > 0. Let C" = conv(S(a,r) US(b, p)), then p,q € 9C",
so we can suppose that C' = (C".

Then OC is of revolution around the line A = a+R(b—a), we have p € A :=9CNS(a,r)
and ¢ € B := 0dC N S(b, p). Moreover, there are two points ¢’ and b of A such that
A ={z €S(a,r) such that (xt —a |b—a) < (d' —a|b—a)} and B = {z € S(b, p) such
that (z —a|b—a) > (' —a|b—a)} (we also have (' —a |b—a) < (b —a|b—a)).

(In what follows a, b,  and p are known and we look for the lower value of s.) We can
suppose that a, b, p and ¢ are in a same plane H, and even in the same half plane H,

delimited by A. Now it is easy to see that the lower value of s is obtain when p—a 1L b—a
and ¢ —b L b— a. Then (5) is true as an equality.

Lemma 4.8 immediately implies the following result.



A. Riviere / Hausdorff Dimension of Cut Loci of Generic Subspaces of Euclidean ... 847

Property 4.9. If C is a closed convex subset of R? of non empty interior, C' # R? and
A C C, then we have the inequality

dimp(A) < 1+ dimg(Projye A).

Indeed, we have ®~1(A) C Projyc(A) x R, and thus
dimp(A) < dimp(Projyo(A) x R) = 1 + dimy Proj,- A

(see for instance [8], p. 95 for the last equality). From Property 4.9 and Theorem 4.6 we
get the next result.

Theorem 4.10. For most convex bodies C' of R? and F = R¢\ int C,
dimpg PrOjaC(NF mNLOQF \ Mloc,F) =d-—1.

More precisely, for every non empty open interval I of RY. and for every non empty open
subset J of 0C', we also have
dimHPLJ:d— 17

where P;; = pry(Gpy), and Gr; = {(p,a) such that a € Nioe p N Nrocr \ Mie r,
lla — p|| € I and p € Projlocg(a) N J} C GrCurvp.

Thus we have a large set X = {p where (p,a) € GrCurvg} of points in OC' where the
upper curvature of 9C' is finite and positive:

dimy(X) =d —1

and an analogous property restricted to the cases where the curvature radius belongs to
I and where the local projection belongs to J.

Proof. The first equality is an immediate consequence of Property 4.9 and Theorem 4.3.
For the second equality, we suppose C' “generic”, F' = R?\ int C' and I, J as above. We
can also suppose that A := inf/ > 0. Consider p € J and x € R? such that ||z|| = 1
and for each a € C, (a —p | ) > 0. Because C' is strictly convex (Theorem 1.13), if
we choose r > 1+ diam J + A large enough then we will have for all a € B(p + rx, 1),
Projlocg(a) \ {a} C J.

We use Theorem 4.6 to choose a € B(p 4+ rz,1) N Moe . We can now choose ¢ €
Projlocp(a) \ {a}, so we have ¢ € J and |la — ¢|| > A. Thus we can choose b € |a, (]
and some closed neighborhood A in F' of ¢ such that ||[b —¢|| € I, ANJC C J and
q = proj4(b). As C is strictly convex, we can more precisely suppose that A = H, \ int C
for some closed half-space H4 such that b & H 4.

The set w := {c € R? such that Proj,(c) C intp(A) and dist(c, A) € I} is an open
neighborhood of b. Then Proj ,(w ﬂ./\/]oc’F ﬂNLoc,F\Mbgp) C Prj. By Theorem 4.6 we
have dimgy(w’' N Moe r N Nroc,r \ Miee ) = d for every non empty open subset w' of w.

With € > 0 small enough so that B(b,e) C w, we associate to ¢ the intersection C. of
all closed half spaces H containing C' and such that (0H) N B(g,e) N ANOC # 0. We
also consider the union B, of all closed balls B(c, dist(c, A)) for ¢ € B(b,&). Observe that
HjiN B, C C,, so we can choose € small enough so that B. C C..
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Now we observe that for all ¢ € B(b,e) \ My, we have proj,(c) € Projye. (c), thus
Property 4.9 applied to the convex body C. gives

dll/nH PrOjA(B(b> 5) N MOC,F m~/\/’LOC,F \ Mloc,F) =d-— 17

hence dimy P; ; = d — 1. This ends the proof.

Question 4.11. For A > 0 and for a “generic convex body” C (and F = R?\ int (),
what can be said about dimy X¢ )\, where X¢ ) := {p € 0C such that curv,(F) = A}?

It can be proved (mainly by a Baire class argumentation) that X, contains a Cantor set
(so card X\ = card R) but we know nothing about its Hausdorff dimension.

4.6. Convex hull of a generic compact subset of R?

We end this Section 4 by an interesting, but much easier property (whose the last point
is also proved in [28], with a different argumentation).

Property 4.12. Let h be a dimension function. For most non empty compact subsets
K of R, if we set C' = conv K and F = R?\ int C, then

. CurvCtp = 0,

° Projp(int C') = {\ip1 + -+ + A\gpa € OC, where py,...,pq are affinely independant
points of K NOC, A\, > 0 and A\ + --- + Ay = 1} (thus OC is precisely flat on
Proj(int C') and curvy = +00 on 0C' \ Projx(int C)),

e  for every integer n, H"(K™) = 0. Thus dimg dC \ Proj(int C') = d — 2.

(Roughly speaking, the property says that C' behaves like a convex polytope.)

So we have then Nr = Mg, and it can be proved that Nz = Np U9C \ Projp(int C),
that N is contractible and locally arcwise connected.

Proof of Property 4.12. For the second point, observe that for every € > 0, the fol-
lowing set is closed in Cpct(R%): {K € Cpct(R?) for which there exists pi,...,ps1 € K
and a € int C' with dist(a, F') > ¢ and Projz(a) Nconv(py, ..., ps—1) # 0}. The first point
follows from the second. For the third point, observe that for every e > 0, the set {K €
Cpct(R?) such that there exists a finite covering (Ay)1<x<y with N™ > h(diam Ag) < e}
is open.

5. Adaptation to the antiprojection problem
5.1. Definitions, introduction

We describe now the cut locus aNp generated by the farthest projection to B. The
notations will emphasize the analogy with the cut locus Ny generated by the nearest
projection to F'.

Definition 5.1 (metric farthest projection). Let B C R? a € R? and A C R?. We
define

o adist(a, B) = sup{lla —p|| | p € B},

o Aprojp(a) = {p € B | lla— pl| = adist(a, B)},
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o Aprojg(A) = Uyes Aprojp(b).
When card Aprojg(a) =1 we set Aprojg(a) = {aprojgz(a)}.

Definition 5.2 (cut locus). Let B be a non empty compact subset of RY. We define

e aMp = {a e R?| card Aprojp(a) > 2},
o aNp={aeR?|Vbe R\ {a} and p € Aprojgz(b), b ¢ [a,p]}.

Example 5.3 Let d =2 and B be a non circular ellipse. Consider the two points p and
g of B where the curvature of B is minimal, and the two curvature centers a, b of B at
these points. Then

aNp = [a,b] and aMp = [a,b]\ {a,b}.

Moreover, we have p = aprojz(a), ¢ = aprojgz(b), and card Aprojgz(c) = 2 for all ¢ € aMp.

The properties of aN are very similar to those of N/. For example we always have
aMp C aNp. It can be checked that aNp is always of null H%measure (by the same way
as for N in [18]). Despite the fact that adist(., B) is less often considered than dist(., B),
the properties of aN are rather simpler than those of N'. One explanation for this is
that the multivalued operator A : a — a — (conv Aprojgz(a)) is more regular (—I + A is
monotone) than B : a — conv Projgz(a) — a (I + B is monotone).

Strong connectedness properties of aM have been proved by Westphal and Schwartz [27].
De Blasi and Myjak [5] have shown the density of aM for most non empty compact
subsets B of a strictly convex separable Banach space F of dimension > 2.

Definition 5.4 (local farthest pojection). Let B C R% a € R? and A C RY. We
define

e Aprojlocg(a) ={p€ B|3Ir>0,Yg€ B,|lg—p|| <r=|lg—al <|lp—all},
o Aprojlocg(A) = [Jye4 Aprojlocy(b),
Definition 5.5 (curvature). Let B be a non empty compact subset of R%, we define

e GrAcurvg = {(p,a) € BxR?|t > 1= pe Aprojlocg(p+tla—p))and 0 <t < 1=
p & Aprojlocg(p +t(a —p))}-
o AcurvCtg = {a | (p,a) € GrAcurvg}.

Thus if C is a convex body of R¢, the relation (p,a) € GrAcurve means that a is a
curvature center of 9C at p, relatively to the “lower curvature” acurv,(C), that is the
supremum of 1/||p — a|| for a € R? such that p € Aprojlocs(a). AcurvCtc is the set of
all such centers of curvature.

Definition 5.6 (local cut locus). Let B be a compact subset of R?, we define

o adj\/lloc,B = {CL € Rda Elpaq € AprOjIOCB(a’)7 HCL _pH = HCL - Q|| and p # Q}u
o aNiocp={a€R!|Vbe R\ {a} and p € Aprojlocg(b),b & [a, p]}.

We note some elementary relations.

Property 5.7. For any non empty compact subset B of R? and C' = conv B, we have
aNvoc,p C aNp,
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adist(., B) = adist(.,C'), Aprojz = Aprojq, aMp = aM¢, aNp = aNg,
AprojlocB NoC' D AproleCC, a/\/lloC,B D a./\/lloc,o, a./\/Loc,B C aJV‘LQc’C

and GrAcurvg D GrAcurve.

Proof. We prove only the last inclusion, which is least simple. We assume that (p,a) €
GrAcurve\GrAcurvg, and find a contradiction. We can assume that ||p—al| = 1. Because
(p,a) € GrAcurve, we can choose R > 1 large enough so that C' C B(p + R(a — p), R).
Because (p,a) ¢ GrAcurvg, we can choose 0 < p < 1 and r > 0 such that BN B(p,r) C
B(p + p(a — p),p). Consider a half space H = {xr € R? | (x —p | a — p) > &}, for some
e > 0 small enough so that B(p + R(a — p), R) \ H C B(p, ). Then C is included in the
convex body

C" = conv ((B(p+ pla —p),p) \ H) U (B(p + R(a —p), R) N H)).
But we have, for ' > 0 small enough, B(p,r’) N C' = B(p,r") NB(p + p(a — p), p), hence
B(p,7")NC C B(p+ p(a — p), p), in contradiction with (p,a) € GrAcurve.

Lemma 5.8. For a given compact subspace K of R%, the set of all non empty compact
subsets B of R? such that K NaM,. # 0 is a F, of Cpct(R?).

Indeed for a given ¢ > 0 the following condition define a closed subspace of Cpct(R?):
Jda € K,r > ¢, p,q € S(a,r)NB such that |[p—¢|| > ¢ and BN(B(p, e)UB(q,¢))\B(a,r) =
0.

5.2. Approximation of B at a compact subset

Lemma 5.9. Let ¢ € RY, r >0, R > 0 and C be a convex body of R containing the
closed ball B(c, R). Let K be a compact subset of R?, a € K and p = aproj-(a). Assume
that Vb € K \ {a}, p & Aproj. b, that

S(c, R) N B(p,r) = 0C NB(p,r),

and that Aproj. K is strongly porous at p in 0C. Define

c'= (B,
beK
where B(b) := B(b, adist(b, C)).
Then (p,a) € GrAcurver and therefore a € aNgr.

Proof. It is similar to the proof of Lemma 4.1. We can suppose that a # ¢ and that
R=1.
Choose a sequence (p,) in B(p,r) NOC \ {p} converging to p, satisfying ||p, — p|| < r/2,

and such that 0,, ;= dist(p,, Aproj K) ~ ||p, — p||. We have thus ||p — p,|| = 0n + €,0n,
where (g,) converges to zero.

Denote by A,, the half line p,, + R, (p, — ¢) and we set A,, N 9C" = {p!,}. We can choose
a, € K such that p/, € Aprojo(a,). Then (a,) converges to a and r, := ||a, — pl,||
converges to 1, = ||a — p||; moreover, for n large enough, aproj(a,) € S(c, 1).
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For such n we consider now the convex body

Co= [  Bulo),

4€S(c,)\B(pn,0n)

where B, (q) := B(q+7,(c—q), ). Set A, NOC,, = {p/'} and S,, = S(c,1)NS(pn, n). We
observe that p/, € C" and that p], € 0B, (q) for all ¢ € S,,. We thus consider ¢, = projg (p),
H,=q,+ (c—q,)* and {¢.} = H,NA,.

Use the decomposition p;) —p = (p) —¢q},) + (¢, — ¢n) + (¢» — p) and observe that (¢, —p |
c _p> ~ (5n5n)2/2 = 87216721/27 (qu —qn ’ ¢ _p) ~ <€n6n>6n = €n§72z and (pg - q; ’ ¢ _p) ~

S 9
2rp 2700
52 —Dn 2 .
Thus (p), —plc—p) ~ 3= ~ %, hence (p,a) € GrAcurver. The conclusion follows.

5.3. Generic cut loci for the farthest projection

Proposition 5.10. Let K be a compact subset of R? satisfying for all F, F' € Ds, I) and
II) of Proposition 2.1, and K NaMpyp = 0. Then

K C &/\/’LOC’B\aMloC’B (C aNB\aMB)

for most non empty compact subset B of R%, and also for most convex bodies B of RY.

Proof. 1) G = {B € Cpct(R?) such that K NaM,. p = 0} is a G5 by Lemma 5.8,
which is dense because it contains all finite union of disjointed closed rational balls, from
the condition K NaMpyp = 0 for F, F’ € Dg. Thus for most non empty compact subset
B of R% and for C' = conv B, we have K N aMigec = (). This also holds for most convex
bodies C' of R? because B + conv B is a retraction of Cpct(R?) to the closure of its
subspace Cvb(R?), and because aMioc 3 D aMioe cony B-

2) We prove now that K C aNLoch for most B. We associate to S € Dg the set Gg =
{B € Cpct(R?) such that BNconvS # ) = Ksp C aNpneonvs}, where Kgp = {a € K
such that Aprojgrcom s(@) \ S # 0}. We only have to prove that most B are in all Gg,
for S € Ds.

So take S = S(c,r) € Ds. Gs is a Gg subset of Cpct(R?) because for every ¢ > 0 the set
{B € Cpct(R?) such that there exist b € RY p € Aprojgreonvs(b), @ € K, A > 1 such
that a = p+ A(b—p), |la — b|| > € and dist(p, S) > €} is closed.

It remains to prove that G is everywhere dense in Cpct(R?). Take By € Cpct(R?) such
that By N B(c,r) # 0 and V an open neighborhood of Cy in Cpct(R?). Choose the union
B C R%\ S of a finite family of mutually disjoint rational closed balls, such that B € V
and BN B(c,r) # (. Then Lemma 5.9 gives, for € > 0, B; € Gg, where

By :=(B\ convS)U (E(B Nconv .S, e) N ﬂ B (a, adist(a, BN COHVS)))
aceK

(we have here K = Kgp = Kgp,). Moreover By € V if ¢ is small enough, and thus Gg
is everywhere dense.
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3) Finally let Cy be a convex body of R? such that Cy N B(c,r) # (). We apply the
construction above to By = Cp, we can ask also that conv By € V. Then we have also
Cy = conv By € Gg. Indeed, if a € Kg¢, and p € B(a,r) N ApProjg, neonv (@), then
p € 0By, hence p € Aprojg, qcony5(@). But ByNconv.S C CyNconv S and a € aNp,ncony s,
thus a € aNg,neonv 5-

We also have Cy € V if € is small enough. Thus we have K C aNoc ¢ for most convex
bodies C, this ends the proof.

We obtain now by Proposition 2.1 the next result.

Theorem 5.11. Let h be a dimension function such that t* = o(h(t)). Then for most
non empty compact subset B of R? and for every non empty open subset w of R, we have

Hh(w N aNLqu \ a/\/lloc,B) > 0.
Thus dimyg(w N AcurvCteony 8) = d, hence dimyg(w N AcurvCtg) = d. We also have

H" (Aprojlocz(R?)) = 0.

Similarly for most convex bodies C' of R and for every non empty open subset w of R,
we have

H'(wNaNoceo \ aMie ) >0 and H" (Aprojloc(R?)) = 0.

Thus dimg(w N AcurvCte) = d.

Results of Wieacker [28] immediately imply that 0 = dimy Aprojz(R?) (for most B);
he also proved that for most B and C' = conv B, Aproj.(R%) is homeomorphic to the
topological product of Q@ x {0,1} of Q and the Cantor set. According to Gruber [9],
p. 1332, 0 = dimy Aproj,(R?) (for most convex bodies C') is contained in the results of
Schneider and Wieacker [24], and Zamfirescu [31].

Proof. The assertions about aNioc 5 \ aMiee p and aNpoc o \ aMiee ¢ are obtained
from Proposition 5.10 in the same way as Theorem 3.9 was deduced from Proposition 3.8.
Moreover, from Property 5.7 we have aNpoc g \ aMioe 5 C aNLOC conv B \ @Mioc conv B C
AcurvCteony 5 C AcurvCtp. We also have for most B, H"(Aprojlocg(R%)) < H"(B) = 0.

It remains to prove that H" (Aprojloco(]Rd)) = 0 for most convex bodies C of R¢. For this
we only have to prove that H"(Lg, ) = 0, where R,r > 0 and Lp,c = {p € 0C | Ja €
R?, with |la — p|| < R and p € Aprojorg(,(a)}. But Lg,.c is upper semi continuous in
C, and the dense case where C' is a polytope lets us conclude. More precisely, for every

e > 0, the set of all convex bodies C' such that Lg, ¢ admits a finite covering (A4,) with
>~ h(diam A,) < € is a dense open subset of Cvb(R?).

5.4. Combination of Propositions 2.1 to 5.10

We can use Proposition 2.1 to get large compact subsets K satisfying the properties of
Propositions 3.8, 4.5 and 5.10. We can thus obtain more precise results, as for example
we have the following theorem.
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Theorem 5.12. Let h be a dimension function such that t* = o(h(t)). Then for most non
empty compact subset B of RY, for most convex bodies C' of R and for every non empty
open subset w of RY, we have H"(X) > 0, where X = wNaNoc g NNroczNaNLoccN
Nioe. r NNroc r \ (BUaMige p U Mige g U aMige 0 U Mioe ) and where F' = R?\ int C.

As observed by Zamfirescu [31], p. 202, for most convex bodies C' of R? we have ) =
(Projse int C') N Aprojo(R?), because of Theorem 1.14. This also holds for most non
empty compact subset B of R? and for C' = conv B. De Blasi and Zhivkov [6] have
proved the density in F, for generic non empty compact subsets B of a separable Hilbert
space E of dimension > 2, of the set C™™(B) of all a € E such that n = card Projg(a)
and m = card Aprojgz(a), when m +n < 2+ dim E.
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