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In this paper we extend for a locally Lipschitz function the notion of Clarke’s generalized Jacobian to the
setting where the domain lies in an infinite dimensional normed space. When the function is real-valued
this notion reduces to the Clarke’s generalized gradient. Using this extension, we obtain an exact smooth-
nonsmooth chain rule from which the sum rule and the product rule follow. Also an exact formula for
the generalized Jacobian of piecewise differentiable functions will be provided.
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1. Introduction

The field of nonsmooth analysis eminated from the theory of convex analysis that was
developed by Rockafellar in [30].

In his pioneering work [8] Clarke introduced the generalized gradient for a locally Lipschitz
function f : D → R defined on an open subset D of a finite dimensional space X as

∂cf(p) := co
{
x∗ ∈ X∗ | ∃ (xi)i∈N in Ω(f) : lim

i→∞
xi = p and lim

i→∞
Df(xi) = x∗

}
, (1)

where Ω(f) ⊆ D is the set of points where f is differentiable, which by Rademacher’s
celebrated theorem, is of full measure in D. Note that since f is locally Lipschitz over a
finite dimensional domain, then the notions of Fréchet- and Gateaux-differentiability are
equivalent.

In the same paper, the following characterization was obtained

∂cf(p) :=
{
x∗ ∈ X∗ | f ◦(p, h) ≥ 〈x∗, h〉, ∀h ∈ X

}
, (2)

where

f ◦(p, h) := lim sup
x→p,t↓0

f(x+ th)− f(x)

t
. (3)
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It was then observed in [10] that equation (2) can be used to introduce the generalized
gradient when X is an infinite dimensional space.

On the other hand, when X and Y are finite dimensional normed spaces and f : D → Y
is a vector-valued locally Lipschitz function Clarke extended in [9], [11] the notion defined
by (1) and introduced a generalized Jacobian as

∂cf(p) := co
{
A ∈ L(X, Y ) | ∃ (xi)i∈N in Ω(f) : lim

i→∞
xi = p and lim

i→∞
Df(xi) = A

}
. (4)

Based on the Rademacher’s theorem another but related approach was proposed by Pour-
ciau in [27].

When X is infinite dimensional, derivative-like objects have been the focus of research
since the late seventies. For instance, Warga introduced in [37], [38] the notion of derivate
containers, Halkin defined the concepts of screens and “fans� in [15], [14]. Sweetser
[33], [34] also considered the concept of shields. Thibault employed the limit points of
directional difference quotients in [35] (see (35) below).

The idea of defining derivative-like objects via various tangent cones to the graph of the
function goes back to Aubin in [2], a summary of this approach can be found in [3]. A
related notion, the fan derivative D◦f(p) : X → 2Y , was introduced by Ioffe in [16] as

D◦f(p)(h) :=
{
y ∈ Y | (y∗ ◦ f)◦(p, h) ≥ 〈y∗, y〉, ∀y∗ ∈ Y ∗

}
, (h ∈ X), (5)

where (y∗◦f)◦ is the Clarke generalized directional derivative of the real-valued map y∗◦f
defined in (3). It was also shown in [16] that if X is finite dimensional then, for all h ∈ X,

D◦f(p)(h) = ∂cf(p)(h),

i.e., the fan derivative D◦f(p) is generated by the elements of the Jacobian ∂cf(p).

On the other hand, in 1973 Clarke showed in his thesis [7] and later in [8] that the
generalized gradient can be defined via normal cones. This idea, namely, to involve
normal cones as opposed to tangent cones, led to the notion of coderivatives introduced
by Mordukhovich in [21], [22] for the finite dimensional setting and in [23] when both the
domain and the range spaces are infinite dimensional. For f : X → Y the coderivative,
D∗f(p) : Y ∗ → X∗, of f at p is defined as

D∗f(p)(y∗) :=
{
x∗ ∈ X∗ | (x∗,−y∗) ∈ N

(
(p, f(p)); graph f

)}
, (y∗ ∈ Y ∗), (6)

where N
(
(p, f(p)); graph f

)
denotes Mordukhovich’s normal cone to the graph of f at

(p, f(p)).

When X is finite dimensional, it was shown in [23] that, for all y∗ ∈ Y ∗,

coD∗f(p)(y∗) = y∗ ◦ ∂cf(p).

A relatively recent survey on the different subdifferentials and their properties is given in
[5] where also an extended list of references could be found.

Except Halkin’s screen and Sweetser’s shields, these derivative-like objects are not given
in terms of a relevant set of linear operators. However, as clearly stated by Ioffe in
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1981, [16]: “One can expect that the derivatives defined by way of operators have some
additional good properties. Therefore the question . . . seems to be important.� Such
good properties should definitely be translated as having “tight� calculus rules in terms
of linear operators and computational utility in the applications. To our knowledge, this
question has not been answered in a satisfactory manner.

A possible approach to answer Ioffe’s question could be to define, for any normed space
X, a generalized Jacobian as the set of linear operators

∂Gf(p) := co
{
Φ ∈ L(X, Y )| ∃ (xi)i∈N in D such that f is Gateaux differentiable at xi,

lim
i→∞

xi = p, and Φ is a w∗-cluster point of
(
Df(xi)

)
i∈N

}
.
(7)

In general, ∂Gf(p) could be empty. However, ifX is a separable Banach space, then, by the
results of Aronszajn [1], Christensen [6], Mankiewicz [20], and Phelps [26] (see the book
[4] for a summary of further results), a locally Lipschitz function f is differentiable in the
sense of Gateaux on a dense subset ΩX(f) of D (whose complement is a Gauss-null set).
Therefore, in this special case, ∂Gf(p) is nonempty. Hence, by the weak∗-compactness of

the ball BL(X,Y ), it follows that ∂
Gf(p) is a weak∗-compact and nonempty subset of the

space L(X, Y ). A similar approach was followed by Thibault in [36] where he introduced
generalized Jacobians that also depend on a Haar-null set of D ⊆ X, where X is a
separable Banach space. Furthermore, a smooth-nonsmooth chain rule for Thibault’s
generalized Jacobians was obtained in [36].

It is an open problem whether the approach using ∂Gf(p) would obtain results parallel
to those in this paper. The main obstacle resides in the absence of properties that lead
to a useful chain rule and further calculus rules.

The aim of this paper is to answer the question posed by Ioffe in the affirmative. We
provide a satisfactory extension of Clarke’s approach of generalized Jacobian (4) to locally
Lipschitz functions from any normed space X into a finite dimensional normed space Y .
Our generalized Jacobian, ∂f(p), is defined to be a set of linear operators from X to
Y . When X is finite dimensional our generalized Jacobian coincides with the Clarke’s
generalized Jacobian (4). On the other hand, when the domain is infinite dimensional and
the image space is R, ∂f(p) turns out to be exactly equal to Clarke’s generalized gradient
(2). Consequently, the fan generated by our generalized Jacobian is Ioffe’s fan derivative,
and the fan generated by the adjoint of ∂f(p) is the closed convex hull of Mordukhovich’s
coderivative.

Throughout this paper, let X and Y denote normed spaces and always assume that Y
and all the image spaces are finite dimensional. As usual, let X∗ and Y ∗ stand for their
topological dual spaces, respectively. The open and closed unit balls in any normed space
Z in the paper will be denoted by BZ and BZ , respectively. If Y is of dimension n, then
the space of continuous linear maps L(X, Y ) is isomorphic to the product space (X∗)n,
therefore, when speaking about the weak∗-topology in L(X, Y ), we refer to the product
weak∗-topology in (X∗)n.

Let D be a nonempty open subset of X, p be an arbitrary point in D and let f : D → Y
be a locally Lipschitz function. Given a linear subspace L ⊆ X, the function f is called
L-(Gateaux)-differentiable at a point p if there exists a continuous linear map DLf(p) :
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L→ Y such that, for all h ∈ L,

DLf(p)(h) = f ′(p, h) := lim
t→0

f(p+ th)− f(p)

t
. (8)

We denote by ΩL(f) the set of those points p in D where f is L-differentiable.

Clearly, the X-differentiability is equivalent to the standard Gateaux-differentiability. In
this case, the subscript X will be omitted from the notation, i.e., DXf(p) will simply be
denoted by Df(p). On the other hand, if L = lin{h} = 〈h〉 is the linear span of a nonzero
vector h ∈ X, then the L-differentiability of f means that the two-sided directional
derivative, f ′(p, h), of f at p in the direction h exists and

D〈h〉f(p)(h) = f ′(p, h). (9)

It is also immediate to see that if f is L-differentiable at p ∈ D, then

‖DLf(p)‖ ≤ ℓf (p), (10)

where the Lipschitz modulus ℓf (p) of f at p is defined as

ℓf (p) := inf
t>0

sup

{
‖f(x)− f(y)‖

‖x− y‖

∣∣∣∣ x, y ∈ p+ tBX , x 6= y

}
. (11)

Another important observation is that if K,L are linear subspaces of X with K ⊆ L and
f is L-differentiable at p then f is also K-differentiable at p and

DLf(p)|K = DKf(p). (12)

In the sequel, denote by Λ(X) the collection of all finite dimensional subspaces of X.
If L ∈ Λ(X) then the function g : L ∩ (D − p) → Y defined by g(u) := f(p + u) is
locally Lipschitz at u = 0, therefore, by Rademacher’s theorem, g is almost everywhere
differentiable in a neighborhood of u = 0. Thus, in view of the estimate (10), there exist
a sequence ui ∈ L such that ui → 0 and the sequence Dg(ui) = DLf(p + ui) converges.
Based on this observation, we introduce the pre L-Jacobian and the L-Jacobian of f via
the following formulae:

∆Lf(p) :=
{
A ∈ L(L, Y ) | ∃ (xi)i∈N in ΩL(f) : lim

i→∞
xi = p and lim

i→∞
DLf(xi) = A

}
,

∂Lf(p) := co∆Lf(p).
(13)

Note that here the sequence (xi) is not necessarily contained in the affine subspace p+L,
and hence, ∂Lf(p) could be larger than Clarke’s generalized Jacobian of the restricted
function f |p+L at p, which is ∂cg(0), where g is the function defined above.

Clearly, ∆Lf(p) is a nonempty compact and ∂Lf(p) is a nonempty compact convex set
of the finite dimensional space L(L, Y ). Now we are able to introduce the generalized
Jacobian which is the main object of this paper:

∂f(p) :=
{
Φ ∈ L(X, Y ) : Φ|L ∈ ∂Lf(p), ∀L ∈ Λ(X)

}
. (14)

As a technical tool, we shall also need the so called intermediate L-Jacobian defined by

∂̂Lf(p) :=
{
Φ ∈ L(X, Y ) : Φ|L ∈ ∂Lf(p)

}
. (15)
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The importance of the intermediate L-Jacobians lies in the fact that our generalized
Jacobian is the intersection of all the intermediate L-Jacobians.

∂f(p) =
⋂

L∈Λ(X)

∂̂Lf(p). (16)

If X is finite dimensional then, by (12), we have that ∆Xf(p)
∣∣
L
⊆ ∆Lf(p). This yields

∂Xf(p)
∣∣
L
⊆ ∂Lf(p), whence

∂̂Xf(p) ⊆ ∂̂Lf(p).

Thus, by (16),

∂f(p) =
⋂

L∈Λ(X)

∂̂Lf(p) = ∂̂Xf(p) = ∂Xf(p). (17)

However ∂Xf(p) coincides with Clarke’s generalized Jacobian. Therefore, the generalized
Jacobian defined above extends Clarke’s generalized Jacobian to the general normed space
setting.

The structure of this paper is organized as follows. In Section 2, the most basic properties
of our generalized Jacobian are obtained. A smooth-nonsmooth exact chain rule and its
consequences, the sum rule, the product rule, are derived in Section 3. We provide a com-
parison between our generalized Jacobian and each of Clarke’s generalized gradient, (in
the real-valued case), Ioffe’s fan derivative, Mordukhovich’s coderivative, and Thibault’s
limit points in Section 4. In the last section, we develop an equation for the generalized
Jacobian of “piecewise differentiable� functions which is a generalization of the result ob-
tained for the finite dimensional setting by Scholtes in [32] and by Kuntz and Scholtes in
[19].

2. Properties of the Generalized Jacobian

Our first result summarizes the most basic properties of our generalized Jacobian.

Theorem 2.1. Let f : D → Y be a locally Lipschitz function. Then we have the following
properties for ∂f(p) defined in (14).

(i) For all p ∈ D, the generalized Jacobian ∂f(p) is nonempty, w∗-compact, and convex.

(ii) For all p ∈ D, ∂f(p) is a subset of the ball ℓf (p)BL(X,Y ), where ℓf (p) is defined by
(11).

(iii) If f is Gateaux-differentiable at p ∈ D, then its Gateaux-derivative Df(p) is in
∂f(p).

Proof. Let ρ be any number bigger than r := ℓf (p). Then, by (11) there exists t > 0,
such that f is Lipschitz continuous on the ball p+ tBX with ρ as a Lipschitz constant.

Let h ∈ X be fixed and let L = 〈h〉. Then, by (10), ‖D〈h〉f(x)‖ ≤ ℓf (x) ≤ ρ holds for all
x ∈ Ω〈h〉(f) ∩ (p+ tBX).

Let Φ ∈ ∂f(p) be arbitrary. Then Φ(h) ∈ ∂〈h〉f(p)(h), whence

Φ(h) ∈ co
{
lim
i→∞

D〈h〉f(xi)(h)
∣∣∣ ∃ (xi)i∈N in Ω〈h〉(f) ∩ (p+ tBX) : lim

i→∞
xi = p

}
.
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Thus ‖Φ(h)‖ ≤ ρ‖h‖ follows for all h ∈ X. Since ρ > r was arbitrary, we get ‖Φ‖ ≤ r.

This shows that ∂f(p) is bounded and is contained in the ball rBL(X,Y ). Thus, (ii) holds.

Let y1, . . . , yn be a basis for Y and, for y ∈ Y , denote by α1(y), . . . , αn(y) the coordinates
of y with respect to this basis. Then α := (α1, . . . , αn) : Y → R

n is a continuous linear
isomorphism. Then, there exist positive constants 0 < β ≤ γ such that

β‖y‖ ≤ max
(
|α1(y)|, . . . , |αn(y)|

)
≤ γ‖y‖, (y ∈ Y ).

Next, we show that, for any L ∈ Λ(X), the intersection ∂̂Lf(p) ∩ ρBL(X,Y ) is nonempty,
convex and weak∗-compact, where ρ := γr

β
≥ r = ℓf (p).

To verify the nonemptiness of ∂̂Lf(p) ∩ ρBL(X,Y ), let A : L→ Y be an arbitrary element
of ∂Lf(p). Then α1 ◦ A, . . . , αn ◦ A are linear functionals on L with norm not greater
than γ‖A‖ ≤ γr. By the Hahn–Banach extension theorem, there exist linear functionals
x∗1, . . . , x

∗
n ∈ X∗ such that

x∗k|L = αk ◦ A, ‖x∗k‖ ≤ γr (k = 1, . . . , n).

Then the linear map Φ defined by Φ = α−1 ◦ (x∗1, . . . , x
∗
n) is obviously a continuous linear

extension of A, hence it is an element of ∂̂Lf(p). On the other hand, for all h ∈ X,

β‖Φ(h)‖ ≤ max
(
|α1(Φ(h))|, . . . , |αn(Φ(h))|

)
= max

(
|x∗1(h)|, . . . , |x

∗
n(h)|

)
≤ γr‖h‖,

hence ‖Φ‖ ≤ γr

β
= ρ. Thus Φ ∈ ρBL(X,Y ) also holds.

The convexity of ∂̂Lf(p) ∩ ρBL(X,Y ) is obvious. To see that ∂̂Lf(p) is weak∗-closed, let

Φ be the weak∗-cluster point of a net Φι in ∂̂Lf(p). Then Φ|L is also a cluster point
of the net Φι|L ∈ ∂Lf(p). The set ∂Lf(p) being compact, we get that Φ|L ∈ ∂Lf(p)

whence Φ ∈ ∂̂Lf(p) follows. Thus, by the Banach–Alaoglu theorem, the intersection

∂̂Lf(p) ∩ ρBL(X,Y ) is also weak∗-compact.

Now we prove that the family
{
∂̂Lf(p) ∩ ρBL(X,Y ) : L ∈ Λ(X)

}
satisfies the finite inter-

section property.

If K,L ∈ Λ(X) with K ⊆ L, then by (12) we get that ∆Lf(p)
∣∣
K
⊆ ∆Kf(p) holds. This

yields ∂Lf(p)
∣∣
K
⊆ ∂Kf(p), whence

∂̂Lf(p) ⊆ ∂̂Kf(p) (18)

follows for all K,L ∈ Λ(X) with K ⊆ L.

If L1, . . . , Lk ∈ Λ(X) are arbitrary subspaces then, it follows from the inclusions Li ⊆
L1 + · · ·+ Lk that

∅ 6= ∂̂L1+···+Lk
f(p) ∩ ρBL(X,Y ) ⊆

k⋂

i=1

(
∂̂Li

f(p) ∩ ρBL(X,Y )

)
,

Thus, indeed, the family
{
∂̂Lf(p) ∩ ρBL(X,Y ) : L ∈ Λ(X)

}
satisfies the finite intersection

property. Hence

∅ 6=
⋂

L∈Λ(X)

(
∂̂Lf(p) ∩ ρBL(X,Y )

)
.
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To complete the proof of the nonemptiness of ∂f(p) and condition (i), it now suffices to
observe that

⋂

L∈Λ(X)

(
∂̂Lf(p) ∩ ρBL(X,Y )

)
= ∂f(p) ∩ ρBL(X,Y ) = ∂f(p)

and that the left hand side is w∗-compact, convex.

Finally, assume that f is Gateaux-differentiable at p. Then, due to the local Lipschitz
property of f , for all L ∈ Λ(X), the restriction Df(p)|L is the L-Gateaux-derivative of f
at p, whence Df(p)|L ∈ ∆Lf(p). Thus Df(p) ∈ ∂f(p) follows.

Theorem 2.2. Let f : D → Y be a locally Lipschitz function. Then, the map p 7→ ∂f(p)
is upper semicontinuous on D in the following sense: If a sequence (pi)i∈N in D tends to
p, an element Φ ∈ L(X, Y ) is a weak∗-cluster point of a sequence (Φi)i∈N and Φi ∈ ∂f(pi)
holds for all i, then Φ ∈ ∂f(p).

Proof. Let (pi)i∈N be a sequence of points, Φi ∈ ∂f(pi) be a sequence of linear maps and
let Φ ∈ L(X, Y ) a weak∗-cluster point of the sequence (Φi)i∈N.

Let L ∈ Λ(X) be arbitrarily fixed. Then there is a subsequence (Φik) such that
(
Φik |L

)

tends to Φ|L in the (finite dimensional) space L(L, Y ) as k → ∞. On the other hand,
for all k ∈ N, we have that Φik |L ∈ ∂Lf(pik). By Carathéodory’s theorem and by the
definition of the L-Jacobian ∂Lf(pik), for all k ∈ N, there exist nonnegative numbers

λk0, . . . , λkm with λk0 + · · ·+ λkm = 1 and points uk0, . . . , ukm ∈ ΩL(f)∩
(
pik + (1/k)BX

)

(where m stands for the dimension of the space L(L, Y )) such that

∥∥∥Φik |L −
m∑

j=0

λkjDLf(ukj)
∥∥∥ <

1

k
. (19)

By taking a subsequence if necessary, we may assume that the sequences
(
DLf(uk0), . . . , DLf(ukm)

)
∈ L(L, Y ) and (λk0, . . . , λkm) ∈ R

m+1

converge and the latter tends to (λ0, . . . , λm). Observe also that the sequences ukj tend
to p for all j ∈ {0, . . . ,m}. Thus, taking the limit k → ∞ in (19), we get that

Φ|L = lim
k→∞

Φik |L =
m∑

j=0

λj lim
k→∞

DLf(ukj) ∈
m∑

j=0

λj∆Lf(p) ⊆ ∂Lf(p)

holds for all L ∈ Λ(X). Hence, Φ ∈ ∂f(p) and thus the theorem is proved.

Remark 2.3. From the proof of Theorem 2.2 the following useful fact about ∂Lf is
readily obtained: If pi → p, Ai ∈ ∂Lf(pi), and Ai → A in L(L, Y ) then, A ∈ ∂Lf(p).

As consequence of Theorem 2.1 and Theorem 2.2, we have the following result.

Corollary 2.4. Let f : D → Y be a locally Lipschitz function. Then, for all p ∈ D,

∂Gf(p) ⊆ ∂f(p) (20)

where ∂Gf(p) is defined in (7).
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Proof. Let Φ ∈ L(X, Y ) such that there exists a sequence (xi)i∈N in ΩX(f) converging to
p and Φ is weak∗-cluster point of the sequence (Df(xi)). We have that Df(xi) ∈ ∂f(xi)
for all i. Therefore, by Theorem 2.2, Φ must belong to ∂f(p). Now, using the convexity
and the weak∗-closedness of ∂f(p), the statement follows.

Recall that whenX is a separable Banach space, then ∂Gf(p) is nonempty. It is undecided
whether, in this case, the reversed inclusion in (20) is valid. However, in the case of
piecewise smooth functions, we shall show in Theorem 5.5 that the equality in (20) holds.

3. A Chain Rule and Its Consequences

The main result of this section offers a chain rule for a smooth-nonsmooth composition.
In this section Z, and Y1, · · · , Yk also denote finite dimensional normed spaces. The proof
of this chain rule is based on the following two lemmas.

Lemma 3.1. Let f : D → Y be a locally Lipschitz function and let L ∈ Λ(X) and
x ∈ ΩL(f). Then, for any set N ⊆ L of Lebesgue measure zero, and for any ε > 0, there

exist elements y0, . . . , ym ∈ ΩL(f)∩
(
x+(L\N)

)
and nonnegative numbers λ0, . . . , λm ≥ 0

with λ0+· · ·+λm = 1 such that, for all j ∈ {0, . . . ,m}, we have the inequalities ‖yj−x‖ < ε
and ∥∥∥DLf(x)−

m∑

j=0

λjDLf(yj)
∥∥∥ < ε, (21)

where m is the dimension of the space L(L, Y ).

Proof. Consider the function g(u) : (D−x)∩L→ Y defined by g(u) := f(x+u). Then,
since x ∈ ΩL(f), the function g is Gateaux-differentiable at u = 0. Thus Dg(0) ∈ ∂cg(0),
where now ∂cg stands for the standard Clarke generalized Jacobian of g as in (4). On the
other hand, by the results of Warga [38] and Fabian & Preiss [12],

∂cg(0) = co
{
A ∈ L(L, Y ) | ∃ (vi)i∈N in Ω(g) \N : lim

i→∞
vi = 0 and lim

i→∞
Dg(vi) = A

}
.

By Carathéodory’s theorem, there exist m+ 1 elements A0, . . . , Am of the set

{
A ∈ L(L, Y ) | ∃ (vi)i∈N in Ω(g) \N : lim

i→∞
vi = 0 and lim

i→∞
Dg(vi) = A

}
.

and λ0, . . . , λm ≥ 0 with λ0 + · · ·+ λm = 1 such that

Dg(0) = λ0A0 + · · ·+ λmAm. (22)

Now, we can find points u0, . . . , um in
(
Ω(g) \N

)
∩ εBL such that

∥∥Aj −Dg(uj)
∥∥ < ε

(
j ∈ {0, . . . ,m}

)
. (23)

From (22)–(23), it follows that

∥∥∥Dg(0)−
m∑

j=0

λjDg(uj)
∥∥∥ < ε,

This inequality, with the notation yj := x+ uj directly yields (21).
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Applying Lemma 3.1, we first prove the chain rule for L-Jacobians. Recall that Y and Z
are of finite dimension.

Lemma 3.2. Let f : D → Y be a locally Lipschitz function near p and g : O → Z be
continuously differentiable at f(p), where O ⊆ Y is an open set containing f(p). Then,
for all subspaces L ∈ Λ(X),

∂L(g ◦ f)(p) = Dg
(
f(p)

)
◦ ∂Lf(p). (24)

Proof. In view of the definition of the pre L-Jacobian and of the convexity and compact-
ness of each of the sets ∂L(g ◦ f)(p) and Dg

(
f(p)

)
◦ ∂Lf(p), to prove (24), it suffices to

show that

∆L(g ◦ f)(p) ⊆ Dg
(
f(p)

)
◦ ∂Lf(p) and Dg

(
f(p)

)
◦∆Lf(p) ⊆ ∂L(g ◦ f)(p). (25)

For the first inclusion in (25), let A be an arbitrary element of the set ∆L(g ◦f)(p). Then,
there exist elements (xi)i∈N in ΩL(g◦f) such that the sequences xi and DL(g◦f)(xi) tend
to p and A, respectively. By taking x := xi, ε := 1/i, and

N :=
[(
ΩL(g ◦ f) \ ΩL(f)

)
∩ (xi + L)

]
− xi ⊆ L

in Lemma 3.1, we obtain that, for all i ∈ N, there exist elements yi0, . . . , yim ∈ ΩL(g ◦f)∩
ΩL(f)∩ (xi +L) and nonnegative numbers λi0, . . . , λim ≥ 0 with λi0 + · · ·+ λim = 1 such
that, for all i ∈ N and for all j ∈ {0, . . . ,m}, we have the inequalities ‖yij −xi‖ < 1/i and

∥∥∥DL(g ◦ f)(xi)−
m∑

j=0

λijDL(g ◦ f)(yij)
∥∥ < 1

i
. (26)

Without loss of generality, we may assume that f(yij) ∈ O, for all i ∈ N and j ∈
{0, . . . ,m}. Then, since f is L-differentiable at yij and g is differentiable at f(yij), the
standard chain rule implies

DL(g ◦ f)(yij) = Dg
(
f(yij)

)
◦DLf(yij). (27)

Taking a subsequence if necessary, we may also assume that the sequences
(
DLf(yi0), . . . , DLf(yim)

)
∈ L(L, Y )m+1 and (λi0, . . . , λim) ∈ R

m+1

converge and the latter tends to (λ0, . . . , λm). Upon taking the limit as i→ ∞ in (26) and
in (27), the continuous differentiability of g at f(p) and the fact that, for all j ∈ {0, . . . ,m},
the sequences yij tend to p, yield

A = lim
i→∞

DL(g ◦ f)(xi) = Dg
(
f(p)

)
◦

m∑

j=0

λj lim
i→∞

DLf(yij)

∈ Dg
(
f(p)

)
◦

m∑

j=0

λj∆Lf(p) ⊆ Dg
(
f(p)

)
◦ ∂Lf(p),

which proves the first part of (25).

The proof of the second inclusion in (25) is elementary. Indeed, let A be an arbitrary
element of Dg

(
f(p)

)
◦ ∆Lf(p). Then there exist M ∈ ∆Lf(p) and a sequence (xi)i∈N
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in ΩL(f) such that A = Dg
(
f(p)

)
◦ M , and the sequences xi and DLf(xi) converge,

respectively, to p and to M as i → ∞. Then, by the standard chain rule, xi ∈ ΩL(g ◦ f)
and, for all i ∈ N,

DL(g ◦ f)(xi) = Dg
(
f(xi)

)
◦DLf(xi).

Taking the limit i→ ∞, we obtain that the sequence D(g ◦ f)(xi) converges and

lim
i→∞

DL(g ◦ f)(xi) = Dg
(
f(p)

)
◦M = A.

This shows that A ∈ ∆L(g ◦ f) ⊆ ∂L(g ◦ f) and proves the second inclusion of (25).

The main result of this section is contained in the next theorem called the smooth-
nonsmooth chain rule.

Theorem 3.3. Let f : D → Y be a locally Lipschitz function near p ∈ D and g : O → Z
be continuously differentiable at f(p), where O ⊆ Y is an open set containing f(p). Then,

∂(g ◦ f)(p) = Dg
(
f(p)

)
◦ ∂f(p). (28)

Proof. For brevity, denote the linear map Dg
(
f(p)

)
by M and its range M(Y ) by W .

Since M is surjective onto W , there exists a continuous linear map M+ : W → Y which
is the right inverse of M , i.e., the identity M ◦M+(w) = w is satisfied for all w ∈W .

To show the inclusion “⊆� in (28), let Ψ ∈ ∂(g ◦ f)(p). Then, by Lemma 3.2, for all
L ∈ Λ(X), we have

Ψ|L ∈ ∂L(g ◦ f)(p) = Dg
(
f(p)

)
◦ ∂Lf(p) =M ◦ ∂Lf(p).

Taking L to be the one dimensional subspace spanned by an element h ∈ X, it follows
from this inclusion that Ψ(h) is an element of the space W for all h ∈ X.

Given that Ψ ∈ ∂(g ◦ f)(p), by Theorem 2.1, we have that ‖Ψ‖ ≤ ℓg◦f (p).

Let L ∈ Λ(X) be fixed and A ∈ ∂Lf(p) such that Ψ|L = M ◦ A. Then ‖A‖ ≤ ℓf (p),
and repeating the argument of the proof of Theorem 2.1, it follows that there exists a
continuous linear extension Φ : X → Y of A such that ‖Φ‖ ≤ γ

β
ℓf (p). Define

Φ̂ :=M+ ◦Ψ+ Φ−M+ ◦M ◦ Φ.

Then,

‖Φ̂‖ ≤ ‖M+‖‖Ψ‖+ ‖Φ‖+ ‖M+ ◦M‖‖Φ‖

≤ ‖M+‖ℓg◦f (p) +
γ

β
ℓf (p) + ‖M+ ◦M‖

γ

β
ℓf (p) =: ρ,

furthermore, by the right inverse property of M+, and by using that the image of Ψ is in
W ,

M ◦ Φ̂ =M ◦M+ ◦Ψ+M ◦ Φ−M ◦M+ ◦M ◦ Φ = Ψ

and

Φ̂|L =M+ ◦Ψ|L + Φ|L −M+ ◦M ◦ Φ|L

=M+ ◦M ◦ A+ A−M+ ◦M ◦ A = A ∈ ∂Lf(p).
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Therefore Φ̂ is in ∂̂Lf(p)∩ (ρBL(X,Y )) and hence Ψ =M ◦ Φ̂ ∈M ◦
(
∂̂Lf(p)∩ (ρBL(X,Y ))

)
.

Since L was arbitrary, we obtain that

Ψ ∈
⋂

L∈Λ(X)

(
M ◦

(
∂̂Lf(p) ∩ (ρBL(X,Y ))

))
. (29)

We show that this inclusion implies Ψ ∈M ◦
(⋂

L∈Λ(X) ∂̂Lf(p) ∩ (ρBL(X,Y ))
)
yielding

Ψ ∈M ◦
( ⋂

L∈Λ(X)

∂̂Lf(p) ∩ (ρBL(X,Y ))
)
=M ◦

(
∂f(p) ∩ (ρBL(X,Y ))

)
=M ◦ ∂f(p),

which is to be proved.

For, define the set F ⊆ L(X, Y ) by

F :=
{
Φ ∈ L(X, Y ) |M ◦ Φ = Ψ

}
.

Observe that if Ψ 6∈M ◦
(⋂

L∈Λ(X) ∂̂Lf(p) ∩ ρBL(X,Y )

)
, then

F ∩
(
ρBL(X,Y )

)
∩
( ⋂

L∈Λ(X)

∂̂Lf(p)
)
= ∅.

Note that F is weak∗ closed, ρBL(X,Y ) is weak∗-compact. Therefore, there is a finite
system {L1, . . . , Lk} of subspaces such that

∅ = F ∩
(
ρBL(X,Y )

)
∩ ∂̂L1

f(p) ∩ · · · ∩ ∂̂Lk
f(p) ⊇ F ∩

(
ρBL(X,Y )

)
∩ ∂̂L1+···+Lk

f(p),

that is,

Ψ 6∈M ◦ ∂̂L1+···+Lk
f(p) ∩

(
ρBL(X,Y )

)

which, by (29), produces a contradiction. Hence, the inclusion “⊆� holds.

To see that the reversed inclusion “⊇� is valid in (28), let Ψ ∈M ◦∂f(p). Then Ψ =M ◦Φ
for some element Φ ∈ ∂f(p). Therefore, using Lemma 3.2, for all L ∈ Λ(X), we get

Ψ|L = (M ◦ Φ)|L =M ◦ (Φ|L) ∈M ◦ ∂Lf(p) = ∂L(g ◦ f)(p).

This proves that Ψ ∈ ∂(g ◦ f)(p) and thus validates the inclusion “⊇� in (28).

The chain rule regarding the nonsmooth-nonsmooth composition is being developed in
[24].

Using Theorem 3.3, the following more general chain rule follows. Here, however, the
equality is not valid in general.

Corollary 3.4. Let f1 : D → Y1, . . . , fk : D → Yk be locally Lipschitz functions near
p ∈ D and let g : O → Z be continuously differentiable at (f1, . . . , fk)(p), where O ⊆
Y1 × · · · × Yk is an open set containing (f1, . . . , fk)(p). Then,

∂
(
g ◦ (f1, . . . , fk)

)
(p) ⊆

k∑

j=1

Djg ◦ (f1, . . . , fk)(p) ◦ ∂fj(p), (30)

where Djg stands for the jth partial Jacobian of g.
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Proof. The statement follows if Theorem 3.3 is applied to the functions g and f =
(f1, . . . , fk) and by using the easy-to-obtain inclusion

∂(f1, . . . , fk)(p) ⊆ ∂f1(p)× · · · × ∂fk(p). (31)

Note that if ∂fj(p) is a singleton for all but one j then (31) and also (30) hold with
equality.

Now we list a number of important direct special cases of Corollary 3.4.

Taking the function g(x, y) := x+y where x, y ∈ Y , Corollary 3.4 reduces to the so-called
sum rule.

Corollary 3.5. Let f, g : D → Y be locally Lipschitz functions. Then, for all p ∈ D,

∂(f + g)(p) ⊆ ∂f(p) + ∂g(p).

If g(x, y) := x · y, where x is an n×m− and y is an m× k−matrix and “·� is the matrix
multiplication, then we get a product rule.

Corollary 3.6. Let f : D → R
n×m and g : D → R

m×k be locally Lipschitz functions.
Then, for all p ∈ D,

∂(f · g)(p) ⊆ ∂f(p) · g(p) + f(p) · ∂g(p).

4. Comparison to Known Notions

In this section we establish how our generalized Jacobian relates to Clarke’s generalized
gradients, Mordukhovich’s coderivative, Tibault’s limit set, and Ioffe’s fan derivative.

The first result states that, in the case of a real-valued function, the generalized Jacobian
and Clarke’s generalized gradient (defined via (2)) coincide.

Theorem 4.1. Let f : D → R be a locally Lipschitz function. Then, for all p ∈ D,

∂f(p) = ∂cf(p). (32)

An immediate consequence of Theorem 4.1 (whose proof is given later) is the following
connection between our generalized Jacobian and Mordukhovich’s coderivativeD∗f(p)(y∗)
defined in (6).

Corollary 4.2. Assume that X is an Asplund space and let f : D → Y be a locally
Lipschitz function near p ∈ D. Then, for all y∗ ∈ Y ∗,

y∗ ◦ ∂f(p) = cow
∗

D∗f(p)(y∗). (33)

Proof. Since X is Asplund, it results from [23, Theorems 5.2 and 8.11] that, for all
y∗ ∈ Y ∗, cow

∗

D∗f(p)(y∗) = ∂c(y∗ ◦ f)(p). On the other hand, by Theorem 4.1 and the
smooth-nonsmooth chain rule Theorem 3.3,

∂c(y∗ ◦ f)(p) = ∂(y∗ ◦ f)(p) = y∗ ◦ ∂f(p), (34)

which completes the proof.
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The next result involves the notion of limit points of directional difference quotients
introduced by Thibault [35] regarding a vector-valued function. For f : X → Y , Thibault’s
limit set is defined by

δf(p, h) :=

{
y ∈ Y

∣∣ ∃ (xi)i∈N in D, ∃ (ti)i∈N in R+ such that

lim
i→∞

(xi, ti) = (p, 0) and lim
i→∞

f(xi + tih)− f(xi)

ti
= y

}
.

(35)

The following theorem states that the fan generated by our generalized Jacobian is the
same as the convex hull of Thibault’s limit set and it also coincides with Ioffe’s fan
derivative (defined in (5)).

Theorem 4.3. Let f : D → Y be a locally Lipschitz function. Then, for all p ∈ D and
for all h ∈ X,

∂f(p)(h) = co δf(p, h) = D◦f(p)(h). (36)

An immediate consequence of Theorem 4.3 we get

Corollary 4.4. A locally Lipschitz function f : D → Y is strictly Gateaux-differentiable
at p ∈ D if and only if its generalized Jacobian ∂f(p) reduces to the singleton {Df(p)}.

In order to prove both Theorem 4.1 and Theorem 4.3, we shall first establish the following
result which, in fact, is needed for the proof of both theorems.

Lemma 4.5. Let f : D → Y be a locally Lipschitz function. Then, for all p ∈ D and for
all h ∈ X,

∂f(p)(h) ⊆ co δf(p, h), (37)

Proof. Let h ∈ X be fixed. Taking L to be the linear span lin{h} = 〈h〉, we have that
∂f(p)|〈h〉 ⊆ ∂〈h〉f(p). Thus, it suffices to show that,

∂〈h〉f(p)(h) ⊆ co δf(p, h). (38)

This inclusion will follow if we show that ∆〈h〉f(p)(h) ⊆ δf(p, h). For, let A ∈ ∆〈h〉f(p)
be arbitrary. Then there exist a sequence (xi) in Ω〈h〉(f) that tends to p and for which
D〈h〉f(xi) converges to A as i → ∞. Then D〈h〉f(xi) = f ′(xi, h) tends to A(h). By the
〈h〉-differentiability of f at xi, there exists 0 < ti < 1/i such that

∥∥∥
f(xi + tih)− f(xi)

ti
− f ′(xi, h)

∥∥∥ <
1

i
.

Thus

A(h) = lim
i→∞

f ′(xi, h) = lim
i→∞

f(xi + tih)− f(xi)

ti
∈ δf(p, h),

which yields the inclusion (38).

Now we proceed to prove Theorem 4.1.
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Proof of Theorem 4.1. First, we show that ∂f(p) ⊆ ∂cf(p). Since f is real-valued, it
follows from (37) that, for all h ∈ X,

max
(
∂f(p)(h)

)
≤ max

(
δf(p, h)

)
= lim sup

(x,t)→(p,0+)

f(x+ th)− f(x)

t

= f ◦(p;h) = max
(
∂cf(p)(h)

)
.

Since both ∂f(p) and ∂cf(p) are weak∗-compact convex sets in X∗, the above inequality
yields ∂f(p) ⊆ ∂cf(p).

To show the converse, namely, ∂cf(p) ⊆ ∂f(p), we will use the approximate subdifferential
∂Af(p) that was introduced by Ioffe (see e.g., [17]) which is defined as

∂Af(p) :=
⋂

L∈Λ(X)

lim sup
x→p

∂−fx+L(x), (39)

where

fx+L(u) :=

{
f(u) if u ∈ D ∩ (x+ L)

∞ if u ∈ D \ (x+ L),

∂−fx+L(x) :=
{
x∗ ∈ X∗ | d−fx+L(x, h) ≥ 〈x∗, h〉, ∀h ∈ X

}
,

and d−F (x, h) is the lower Dini directional derivative of the function F = fx+L at a point
x ∈ domF defined as

d−F (x, h) := lim inf
(t,u)→(0+,h)

F (x+ tu)− F (x)

t
.

It is known in [17, Proposition 3.3] that

∂cf(p) = cow
∗

∂Af(p).

Hence, the convexity and the w∗-closedness of ∂f(p) yield that the inclusion ∂cf(p) ⊆
∂f(p) would hold once we show that ∂Af(p) ⊆ ∂f(p). For, let x∗ ∈ ∂Af(p), then, for all
L ∈ Λ(X), we have x∗ ∈ lim supx→p ∂

−fx+L(x).

Fix L ∈ Λ(X). Then, by (39), we have that there exist two sequences (xi)i∈N and
(x∗i )i∈N such that, for all i, x∗i ∈ ∂−fxi+L(xi), the sequence xi converges to p and x∗ is
a w∗-cluster point of (x∗i )i∈N. Since f is Lipschitz near p then, for x near p, we have
||∂−fx+L(x)|| ≤ ℓf (p) + 1 and thus, a subsequence of (x∗i ) (which we do not relabel)
satisfies

x∗i |L → x∗|L.

By the definition of ∂−fxi+L(xi), we have, for all i ∈ N,

lim inf
(t,u)→(0+,h)

fxi+L(xi + tu)− fxi+L(xi)

t
≥ 〈x∗i , h〉, (h ∈ X).

By restricting h in the above inequality to L and by using the definition of fxi+L, we get

g◦i (0, h) ≥ lim inf
t↓0

f(xi + th)− f(xi)

t

= lim inf
t↓0

fxi+L(xi + th)− fxi+L(xi)

t
≥ 〈x∗i , h〉, (h ∈ L),



Zs. Páles, V. Zeidan / Generalized Jacobian 447

where gi is defined by gi(u) := f(xi + u) for u ∈ (D − xi) ∩ L.

Thus, by using the note after (13), it results that

x∗i |L ∈ ∂cgi(0) ⊆ ∂Lf(xi), (i ∈ N).

From Remark 2.3, it follows that

x∗|L ∈ ∂Lf(p).

Since L was arbitrarily fixed in Λ(X), it results from the last inclusion and from the
definition of ∂f(p) that x∗ ∈ ∂f(p), showing that ∂Af(p) ⊆ ∂f(p), which completes the
proof.

In the rest of this section we shall prove Theorem 4.3. This proof employs Lemma 4.5
and a simple particular case of the chain rule displayed in Theorem 3.3.

Proof of Theorem 4.3. It suffices to show the following inclusions:

(i) ∂f(p)(h) ⊆ co δf(p, h),

(ii) δf(p, h) ⊆ D◦f(p)(h),

(iii) D◦f(p)(h) ⊆ ∂f(p)(h).

Inclusion (i) is already obtained in Lemma 4.5.

For inclusion (ii), let v ∈ δf(p, h), then v = limi→∞
f(xi+tih)−f(xi)

ti
for some sequences

xi ∈ D, ti > 0 with (xi, ti) → (p, 0+). Hence, for any y∗ ∈ Y ∗, it follows that

〈y∗, v〉 = lim
i→∞

(y∗ ◦ f)(xi + tih)− (y∗ ◦ f)(xi)

ti

≤ lim sup
(t,x)→(0+,p)

(y∗ ◦ f)(x+ th)− (y∗ ◦ f)(x)

t
,

that is, v ∈ D◦f(p)(h).

For inclusion (iii), we shall show that we have in fact an equality, namely, for all y∗ ∈ Y ∗,

〈
y∗, D◦f(p)(h)

〉
=

〈
y∗, ∂f(p)(h)

〉
.

From the definition of Ioffe’s fan derivative in (5) and by using (34), we have

〈
y∗, D◦f(p)(h)

〉
=

〈(
D◦f(p)

)∗
y∗, h

〉
=

〈
∂c(y∗ ◦ f)(p), h

〉

=
〈
y∗ ◦ ∂f(p), h

〉
=

〈
y∗, ∂f(p)(h)

〉
.

Therefore both identities in (36) are validated.

5. Generalized Jacobian of Piecewise Differentiable Functions

“Piecewise smooth� functions have received considerable attention in the last few years
because of applications to solution methodology in optimization. See [18], [19], [25], [31],
[28], [29], [32]. Intuitively, a piecewise smooth function is a function whose domain can be
partitioned into finitely many “pieces� relative on which smoothness holds and continuity
holds across the joins of the pieces. More formally, given some continuous functions
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g1, . . . , gk : D → Y , a function f : D → Y is called a continuous selection of {g1, . . . , gk}
if it is continuous on D and, for all x ∈ D, it satisfies

f(x) ∈ {g1(x), . . . , gk(x)}.

When the functions g1, . . . , gk are differentiable (resp. C1) on D, then we say that f is
piecewise differentiable (resp. piecewise smooth).

The main result of this section is Theorem 5.5 below which offers an explicit formula
for the generalized Jacobian of a continuous selection of a finite family of differentiable
functions in terms the convex hull of the derivatives of the functions that are “active�
at the point considered. For its proof, we need the auxiliary results contained in the
subsequent lemmas.

First we recall the notion of the contingent cone. Given a set Q ⊆ X and a point x in the
closure of Q, the contingent cone T (Q|x) of Q at x is defined by

T (Q|x) :=
{
h ∈ X | ∃ (hi)i∈N in X, ∃ (ti)i∈N in R+ : hi → h,

ti ↓ 0, and x+ tihi ∈ Q for all i
}
.

It is obvious that the mapping Q 7→ T (Q|x) is monotone, i.e., if Q1 ⊆ Q2 and x ∈ Q1,
then T (Q1|x) ⊆ T (Q2|x). The following lemma describes an additivity property of this
map.

Lemma 5.1. Let Q1, . . . , Qk ⊆ X and x ∈ Q1 ∩ · · · ∩Qk. Then

T (Q1 ∪ · · · ∪Qk|x) = T (Q1|x) ∪ · · · ∪ T (Qk|x). (40)

Proof. The inclusion “⊇� easily follows from the monotonicity property of the contingent
cone.

To show the reversed inclusion “⊆�, let h ∈ T (Q1 ∪ · · · ∪Qk|x) be arbitrary. Then there
exist sequences hi → h and ti ↓ 0 such that x+ tihi ∈ Q1 ∪ · · · ∪Qk for all i. Obviously,
one of the sets Q1, . . . , Qk, say Qj, contains infinitely many members of the sequence
x+ tihi. Thus, there exists i1 < i2 < · · · such that x+ tiℓhiℓ ∈ Qj for all ℓ. Consequently,
h ∈ T (Qj|x), which proves the inclusion “⊆� in (40).

We recall that the union of finitely many nowhere dense sets is again nowhere dense.
Indeed, let A and B be arbitrary nowhere dense sets. We may assume that they are closed.
To show that A ∪ B does not contain an open ball, let x be an arbitrary point of A ∪ B
and let r > 0. Then, since A does not contain interior points, the open set (x+ rBX) \A
is nonempty. Thus, there exist y ∈ x+rBX and s > 0 such that y+sBX ⊆ (x+rBX)\A.
The ball y + sBX is not covered by B since B is also nowhere dense, therefore, A ∪ B
cannot contain the ball x+ rBX .

Then next lemma shows that if a point is surrounded by finitely many sets then at least
one of the sets has a large contingent cone at that point.

Lemma 5.2. Let Q1, . . . , Qk ⊆ X, x ∈ Q1 ∩ · · · ∩ Qk and assume that x is an interior
point of Q1 ∪ · · · ∪ Qk. Then there exists an index j ∈ {1, . . . , k} such that the closed
linear hull linT (Qj|x) is the entire space X.
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Proof. If x is an interior point of Q1 ∪ · · · ∪Qk, then T (Q1 ∪ · · · ∪Qk|x) = X. Thus, by
Lemma 5.1, we have that T (Q1|x) ∪ · · · ∪ T (Qk|x) = X. Hence

linT (Q1|x) ∪ · · · ∪ linT (Qk|x) = X. (41)

If all the closed linear subspaces linT (Q1|x), . . . , linT (Qk|x) are proper subspaces of X
then they do not have interior points. Hence they are nowhere dense. Thus, by the
property of nowhere dense sets, the left hand side of equation (41) is also nowhere dense,
which yields an obvious contradiction with (41).

Lemma 5.3. Let D ⊆ X be an open subset and assume that D1, . . . ,Dk ⊆ D are closed
in the relative topology of D and that D = D1 ∪ · · · ∪ Dk. Then D is covered by the sets
D◦

1, . . . ,D
◦
k.

Proof. Assume, on the contrary that D is not covered by the sets D◦
1, . . . ,D

◦
k. Then let

x be arbitrary point in H := D \
(
D◦

1 ∪ · · · ∪D◦
k

)
. Due to the openness of H, there exists

r > 0 such that the closed ball x+ rBX is contained in H. Hence

x+ rBX ⊂ D and (x+ rBX) ∩ D
◦
j = ∅ (j ∈ {1, . . . , k}).

The emptiness of the intersection (x+ rBX)∩D◦
j means that (x+ rBX)∩Dj is nowhere

dense. On the other hand, by the assumption of the lemma, the sets (x + rBX) ∩
D1, . . . , (x + rBX) ∩ Dk form a covering for x + rBX , hence x + rBX is also nowhere
dense. The contradiction obtained proves the statement.

Lemma 5.4. Let Φ,Φ1, . . . ,Φk ∈ L(X, Y ) be arbitrary linear maps such that, for all
L ∈ Λ(X),

Φ|L ∈ co
{
Φ1|L, . . . ,Φk|L

}
. (42)

Then
Φ ∈ co

{
Φ1, . . . ,Φk

}
. (43)

Proof. Let, for L ∈ Λ(X) the set ΓL ∈ R
k be defined as

ΓL :=
{
(γ1, . . . , γk) | γ1, . . . , γk ≥ 0, γ1 + · · ·+ γk = 1, γ1Φ1|L + · · ·+ γkΦk|L = Φ|L

}
.

Then, ΓL is a compact convex subset of Rk. Its nonemptiness follows from the assumption
(42). It is also obvious that if L1 ⊆ L2, then ΓL1

⊇ ΓL2
. Thus, for an arbitrary finite

collection of subspaces L1, . . . , Lm ∈ Λ(X),

ΓL1
∩ · · · ∩ ΓLm

⊇ ΓL1+···+Lm
6= ∅,

which shows that the family
{
ΓL | L ∈ Λ(X)

}
satisfies the finite intersection property.

Due to the compactness, we obtain that
⋂

L∈Λ(X)

ΓL 6= ∅.

By taking (γ1, . . . , γk) ∈
⋂

L∈Λ(X) ΓL and L = lin{h}, it follows that, for all h ∈ X,

Φ(h) = γ1Φ1(h) + · · ·+ γkΦk(h).

Thus Φ = γ1Φ1 + · · ·+ γkΦk ∈ co
{
Φ1, . . . ,Φk

}
, which completes the proof.
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The main result of this section is contained in the next theorem. It describes the gener-
alized Jacobian of a piecewise differentiable function in terms of the convex hull of the
derivatives of the relevant differentiable functions. As an immediate consequence, we also
get that our generalized Jacobian and the Gateaux-Jacobian defined in (7) coincide in
this case. When X is finite dimensional analogous results were obtained by Scholtes [32]
and by Kuntz & Scholtes [19].

Theorem 5.5. Let f : D → Y be a continuous function and assume that there exist
functions g1, . . . , gk : D → Y that are continuously differentiable at p such that the sets

Dj :=
{
x ∈ D | f(x) = gj(x)

} (
j ∈ {1, . . . , k}

)
(44)

form a covering of D (i.e., D = D1 ∪ · · · ∪ Dk). Then f is Lipschitz near p and

∂f(p) = co
{
Dgj(p) : p ∈ D◦

j

}
= ∂Gf(p), (45)

where ∂Gf(p) is the Gateaux-Jacobian of f at p defined in (7).

Proof. The covering property of the sets D1, . . . ,Dk assures that f is a continuous selec-
tion of {g1, . . . , gk}. On the other hand, the functions gi are Lipschitz near p, therefore,
by a theorem of Hager [13], f is Lipschitz near p.

In view of Corollary 2.4, we have that ∂Gf(p) ⊆ ∂f(p). Hence, it suffices to show that

(i) ∂f(p) ⊆ co
{
Dgj(p) : p ∈ D◦

j

}
and (ii) co

{
Dgj(p) : p ∈ D◦

j

}
⊆ ∂Gf(p). (46)

The inclusion (i) in (46) will be proved in three steps. By their continuous differentiablity
at p, the functions g1, . . . , gk are also locally Lipschitz near p. Without loss of generality,
we may assume that g1, . . . , gk are differentiable on D and that f, g1, . . . , gk are also
Lipschitz on D.

Step 1: For all L ∈ Λ(X) and for all x ∈ ΩL(f), there exists an index j such that x ∈ D◦
j

and
DLf(x) = Dgj(x)|L. (47)

The sets D1, . . . ,Dk (that are closed in D) form a covering of D, therefore, by Lemma
5.3, the system {D◦

1, . . . ,D
◦
k} also covers D. Define, for x ∈ D, the index set I(x) by

I(x) :=
{
j ∈ {1, . . . , k} | x ∈ D◦

j

}
.

First, we prove that
⋃

j∈I(x) D
◦
j ∩ D is a neighborhood of the point x. Assuming the

contrary, there exists a sequence (xi) in D, converging to x such that xi 6∈
⋃

j∈I(x) D
◦
j ∩D

for all i. Hence, due to the covering property of the system {D◦
1, . . . ,D

◦
k}, infinitely many

members of the sequence (xi) are contained in D◦
j ∩ D for some j 6∈ I(x). Then, by the

closedness of D◦
j , the point x belongs to D◦

j , which contradicts the definition of I(x).

Set Qj := (D◦
j ∩ D − x) ∩ L for j ∈ I(x). Then, for all j ∈ I(x), 0 is in Qj. On the other

hand ⋃

j∈I(x)

Qj =
(( ⋃

j∈I(x)

D◦
j ∩ D

)
− x

)
∩ L
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is a neighborhood of 0 in the subspace L. In view Lemma 5.2, it follows that there exists
j ∈ I(x) such that

linT (Qj|0) = L (48)

(where the contingent cone is taken only in the subspace L). To complete the proof of
this step, we are going to show that (47) is satisfied by this index j.

Let h ∈ T (Qj|0) be a nonzero element. Then there exist sequences hi → h and ti ↓ 0 such

that, for all i, tihi ∈ (D◦
j ∩ D − x) ∩ L. Then, hi ∈ L and x+ tihi ∈ D◦

j ∩ D ⊆ Dj for all
i. Thus, f(x+ tihi) = gj(x+ tihi) holds for all i and also f(x) = gj(x). Hence, for all i,

gj(x+ tihi)− gj(x)

ti
=
f(x+ tihi)− f(x)

ti
.

Upon taking the limit i → ∞, using the local Lipschitz property of f and gj, the L-
differentiability of f at x, and the differentiability of gj at x, we get that

Dgj(x)(h) = lim
i→∞

gj(x+ tihi)− gj(x)

ti
= lim

i→∞

f(x+ tihi)− f(x)

ti
= DLf(x)(h).

Hence, for all elements h of T (Qj|0),

Dgj(x)(h) = DLf(x)(h). (49)

By the continuity and linearity, this equation is also valid for elements h of the closed
linear hull of T (Qj|0), which is equal to L by (48). Thus we obtain that (49) holds for all
h ∈ L, which completes the proof of Step 1.

Step 2: For all L ∈ Λ(X) and for all p ∈ D,

∆Lf(p) ⊆
{
Dgj(p)|L : j ∈ I(p)

}
. (50)

Let A ∈ ∆Lf(p). Then there exists a sequence (xi)i∈N in ΩL(f) converging to p such that
DLf(xi) tends to A as i → ∞. Then, as we have seen in Step 1, for each i, there exists
an index ji such that xi ∈ D◦

ji
and DLf(xi) = Dgji(xi)|L. The sequence j1, j2, . . . takes

only finitely many values, therefore, by taking a subsequence if necessary, we can assume
that it is constant, say j1 = j2 = · · · = j. Thus, for all i,

DLf(xi) = Dgj(xi)|L and xi ∈ D◦
j .

Taking the limit i→ ∞, using the continuous differentiability of gj and the closedness of

D◦
j , we get

A = Dgj(p)|L and p ∈ D◦
j .

This proves that A is a member of the set on right hand side of (50).

By the convexity of the right hand side in (50), it immediately follows that, for all L ∈
Λ(X)

∂Lf(p) ⊆ co
{
Dgj(p)|L : j ∈ I(p)

}
. (51)

Step 3: For all p ∈ D,
∂f(p) ⊆ co

{
Dgj(p) : j ∈ I(p)

}
. (52)
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Let Φ ∈ L(X, Y ) be an arbitrary element of ∂f(p). Then, in view of (51), for all L ∈
Λ(X),

Φ|L ∈ co
{
Dgj(p)|L : j ∈ I(p)

}
.

Using Lemma 5.4, it follows that

Φ ∈ co
{
Dgj(p) : j ∈ I(p)

}
,

which proves (52) and completes the proof of the theorem.

For inclusion (ii) in (46), let, for some j, the point p be in D◦
j . Then there exists a sequence

(xi)i∈N in D◦
j such that xi → p as i → ∞. Since, for all i, xi ∈ D◦

j , therefore f and gj
coincide in a neighborhood of xi which yields that f is Gateaux-differentiable at xi and
Df(xi) = Dgj(xi) for all i. By the continuity of Dgj at p, we have that Df(xi) → Dgj(p)
as i→ ∞, whence Dgj(p) ∈ ∂Gf(p) follows.

The following corollary is parallel to a well-known result for the case where Y = R, [11,
Proposition 2.3.12], it immediately follows from Theorem 5.5.

Corollary 5.6. Let f := max(g1, . . . , gk), where g1, . . . , gk : D → R are continuously
differentiable functions. Then, for all p ∈ D,

∂f(p) = co
{
Dgj(p) : p ∈ D◦

j

}
,

where Dj := {x ∈ D | gj(x) = f(x)} for j ∈ {1, . . . , k}.

Finally, in the example below, we compute the generalized Jacobian of a vector-valued
function.

Example 5.7. Let X be an at least two dimensional normed space and let ϕ and ψ be
two linearly independent linear functionals over X. Define f : X → R

3 by

f(x) :=
(
|ϕ(x)|, |ψ(x)|, |ϕ(x) + ψ(x)|

)
.

Then, it is easy to recognize that f can be obtained in terms of the following 6 smooth
functions:

g1 = (ϕ, ψ, ϕ+ ψ), g2 = (−ϕ, ψ, ϕ+ ψ), g3 = (ϕ,−ψ, ϕ+ ψ),

g4 = (−ϕ,−ψ,−ϕ− ψ), g5 = (−ϕ, ψ,−ϕ− ψ), g6 = (ϕ,−ψ,−ϕ− ψ).

It is also easy to see that 0 ∈ D◦
j for all j, where Dj = {x ∈ X : f(x) = gj(x)}. Therefore,

∂f(0) = co{g1, . . . , g6}.
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