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We give a new construction of holomorphic function with given almost all boundary values on a bounded
strictly pseudoconvex domain €2 with the boundary of class C2. Next we use this construction to solve
Radon inversion problem and describe exceptional sets for square integrals of holomorphic functions along
complex directions.

Keywords: Inner function, Radon inversion problem

1991 Mathematics Subject Classification: 32A05, 32A35

1. Introduction

In the papers [1, 10, 11}, the authors constructed an inner function on the domain with
a holomorphic support function. In this paper we use a similar holomorphic support
function as in [11] but we give a new construction of inner function. In fact we describe
our inner function in terms of a given Borel probability measure. As an application we
solve Radon inversion problem for holomorphic functions integrable with square along
complex directions. We also describe exceptional sets in terms of any Borel probability
measure. For more information about exceptional sets see [3, 4, 5, 6, 7, 8].

1.1. Geometric notions

Assume that © C C? is a bounded domain with the diameter 2R := sup, ,coq ||z — wl|.
Let o be a Borel probability measure on 0f).

First, we define so called holomorphic support functions (see also similar definition in
1))

Let S be a Borel subset of ). We shall say that ® : Q x .S — C is a holomorphic support
function on S if:

(1) ®(-,2) is holomorphic on € and continuous on €2.
(2) There exist constants ¢1,c2 > 0 such that for (z,w) € 0Q x S we have

exp (—ez ||z — w[”) < [®(z,w)| < exp (—er ||z — w]*) ;
(3) If T'is a compact subset of €2 then sup, ,crxs [P(z, w)| < 1.
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We say that €2 admits holomorphic support function on S if there exists a sequence
{Si}ien of Borel subsets of 92 such that S = (J,oy S and for a given i € N there exists a
holomorphic support function on S;.

For I :={1,..,k} and £ € UL, S, let pe(€) = min{i € I : € € S;}. Let us observe that if
®,; : A x §; — C is a holomorphic support function on S; for ¢ = 1, ..., k then

k
D : ﬁ X USZ > (Z,g) — CI)pk(E)(Zag)

i=1
is a holomorphic support function on Ule S,

Let z € 0Q and v : [0,1] 2 ¢ — (¢) € Q be a continuous curve such that (1) = z. We
say that v crosses 02 transversally at z if y(][0,1)) C Q and there exists 1 > « > 0 such
that for all ¢ € [0, 1] we have

ist(90,7(0) = inf [(t) ~w] > a(t) - =]
The set of all such continuous curves is denoted by I'q(z). Moreover, we denote B(x,r) =
{y e R¥: ||z —y| < r} for z € R*.
Let m; € R be such that £24(B(z,r)) = mgr’® where £™ is the m-dimensional Lebesgue

measure.

We say that A C C? is a-separated set if ||z — w| > «a for z,w € A and z # w.

2. Preliminary calculations

In this section we begin with a natural example of domain 2 which has a holomorphic
support function on 0f2.

Example 2.1. Let €2 be a bounded strictly pseudoconvex domain with the boundary of
class C%. Then  has a holomorphic support function on 9.

Proof. By Fornaess’ embedding [2] theorem, there exists a neighbourhood U of Q. a
strictly convex, bounded domain Q c C4 with the boundary of class C? and a holomor-
phic mapping ¢ : U — C¢ such that 1) maps U biholomorphically onto some complex
submanifold ¥(U) of C¢ and

1) w(@)cd,
(2) ¥(0Q2) C 09,

(3) w(U\D) TG,

(4)  (

Due to [9, Lemma 3.1.6] there exists a defining function p of class C? for (2 and constants
c3, ¢4 > 0 such that for &€ € 9Q and w € C? we have

¥ (U) intersects a0 transversally.

eswl® < A, (f,w) < ey [fwl)”

. 9? 07p(&) 8%p(€)
where H,(¢ w) == 3 Z] k=1 97,02, WiWk T 3 Za k=1 8z azkwawk + Z; k=1 33,07, WiWk-

Assume_that we have proved the following fact: there exist ¢;,c; > 0 such that for
z,& € 002 we have the following inequality:

—eallz =€ SRz = &,70) < —ea ||z =€ (1)
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where pe = (@(f),... @(f)) Let us observe that g(z,£) := exp ((z — £, 0¢)) is now

0z1 ? azi N
a holomorphic support function on 9 and due to Fornaess’ embedding [2] theorem the
following function 2 x 9Q 3 (z,w) — g(¥(2), ¥ (w)) is a holomorphic support function on
0.

So it suffices to prove (1). Let

@&, h) == (h, pe) + (h, pe) — pe(§+ ).
Since pg is of class C? therefore we have pe(§ + h) = pe(§) + (h, pe) + (h, pe) + H,(§, h) +
f(& h)||n]|*, where f is a continuous function such that f(£,0) = 0. Observe that
2R (2 — &, pe) = ¢(&, 2 — &) for z € 0 and € € 0N). In particular we may estimate
2R (z—&pe) _ —Hy (62— — (&2 =9Iz — ¢
l2 = €)1” [ERE3k B

WEZEP) o g ),
le—¢f

The above inequalities imply that there exist constants ¢y, ¢ > 0 such that (1) holds. O

c _f(€7z_€)

and

In order to control values of the constructed functions we need some information about
a-separated sets,

Lemma 2.2. Suppose that A = {1, ..,&s} is a 2a-separated subset of 0. For z € 98 let
Ap(z) ={{eAd:ak<|z—¢| <alk+1)}.

Then the set Ag(z) has at most (k + 2)* elements i.e. #A.(z) < (k+2)%%. The set Ay

has at most 1 element and s < max {1, (%)M

Proof. Observe that B(&;a) N B(&;a) = 0 for & # & € A. Moreover
U B(&a) C Bzak+2)).
§€AL(2)

Let dj be a number of elements of Ax(z). In particular

demga® = ) £ (B(§ ) < £2(B(z alk +2))) = ma(a(k + 2))*
E€AL(2)

We conclude that dy < (k + 2)%%. Moreover, if £, &, € Ag(2) then p(&;, &) < p(2,&) +
p(2,&) < 2as0 & =&, and dy < 1.

Since Q) C B(0, R) therefore if & > R then s < 1 so we may assume that o < R. In
particular

U B(&a) c B(0;2R)
£€A(2)
and we may estimate

smga?d < Zﬂgd (&;a)) < £2(B(0;2R)) < mq(2R)*
EeA
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Lemma 2.3. Let § > o > 0. There exists an integer N = N(«, ) such that: if t > 0
and A C 052 is at-separated set then A can be partitioned into N disjoint [Bt-separated
sets.

Proof. Let us select from A a maximal ft-separated subset A;. Next from A\ A; we
select a maximal (t-separated subset A;. We proceed this way till we exhaust A. Let A;
be the last non-empty set in this procedure. Let £ € A,. Observe that B(&,5t) N A, # 0
for k =1,...,s — 1. In particular B(&, ft) contains at least s different elements {&1, ..., &}
from A. Since B(E;, at) N B(&k, at) = () for j # k and B(&;; at) C B(E; (B + «)t) therefore

sma(at)* < Z L2 (B(&;at)) < L2 (B(& (B + a)t) < ma((8 + a)t)™.

j=1

We can conclude that s < (g + 1)2d. Now it suffices to choose a natural number N so
that (£ +1)* < N O

3. Inner function
In this section we construct an inner function for a domain ).
We prove the following fact.

Lemma 3.1. Let S be a Borel subset of 9Q and ® : Q@ x S — C be a holomorphic support
function on S. Let 6§ € (0,1). There exist constants C > ¢ > 0 and n € N (C, ¢,
n dependent only on 6, S) such that, if ¢ € (0,1), T is a compact subset of Q, H is a
continuous strictly positive function on 0 and g is a complex continuous function on OS2,
then we can choose my € N such that for m > mgy and each %-sepamted subset A of S

the functions' famr(z) = ZfeA H(&)P™(z,¢) exp ((2]” + arg g(f)) z) have the following
properties:

(1) ”fA,m,kHT <e;

(2)  |(fampr+9) (2] = 19(2)] < [famp(2)] < (1+20)H(z) for all z € 0Q;

(3) maxg—o, n1|(famr+9)(2)] —|g(2)| > (1 —20)H(z) for each z € 0Q such that
|z =& < T Jor some § € A.

Proof. There exist constants co > ¢; > 0 such that for (z,w) € 002 x S we have
exp (—ca 2 — wll?) < [0z, w)] < exp (—ex |12 — w]?).

There exists n € N such that cos (%) > 1 — 6. Observe that for 1) € R we have

max_ co <2k—7r+w>>1—

Let 0 < § < 1 be such that (1 —¢)(1 —6) —55 > 1 — 260 and 2§ < 6. Let ¢ > 0 be such
that e=°? > 1 — . There exists C' > ¢ such that for £ € N\ {0} we have

(k+2)*%
larg0 =0
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2d 2d
Due to Lemma 2.2 the set A has at most (4}%/5) elements i.e. #A < <4Rgﬁ>

Let t := sup, ,)erxs | P(z,w)|. Since 0 <t < 1, for w € T, mg high enough and m > my
we may estimate

4R 2d
Fams(w)] < S H 7 < ( f) VH] o < e

£eA

and conclude the property (1).
Let us denote for z € 90

Clk+1)
A = A <l|z=¢|| < .
(@)= {s e s ot < - < G
Let now s > 0 be so small that ||n —¢&|| < Cs = (1 —§)H(n) < H(§) < (+) (n)
and |g(n) — g(§)| < IH(§). We may assume that my is so large that s > % + - for

m > mg. Observe that we may estimate

> (/7<:+2)2de—”cfk2 < > 2t !
- — 922sy/m-1"

k>[2s/m]+1 k>[2sv/m]+1
Let myg be so large that |H|| < §22V™~1H(z) for m > mq and z € 95).

Let now z € 9. First assume that Ay(z) = 0. In particular due to Lemma 2.2 for
m > mg we may estimate

[(fame +9) (2)] = 9(2)] < [famu(z |<Z > H(¢ "
k=1 £€Ay(2)
< >0 >0 HEemalel
k=1 £eAk(2)
g e |
< (1+8)H(2) ; (k +2) + Saevml

< (1+6)0H(z)+6H(z) < 306H(2).

Now assume that AO( ) # (). Due to Lemma 2.2 we have Ay(z) = {&} for some & € A
where ||z — & < \ﬁ < Cs. In particular we can obtain the property (2):

[(fams+9) () = 9(2)| < [famn(z)| < H(&o) + 30H (2)
< (1+6)H(2) +36H(2) < (1+ 20)H(2)

for z € 9 and m > N.
Let now £ € A be such that ||z —¢| < \F < Cs. Let r = |®(z,6)|™ and 1y, := % +
arg ™ (z, &) +arg g(§), wk 2’”’“ +arg ®™(z, ). We have r > e~mezll== €7 > g2 > 1.

Moreover, there exists ko € {0, 1,...,n — 1} such that cosiy, > 1 — 6. In particular

H(E)re +g(©) = [H(E)re™ +|g()|]

= r2H(€)* + 2H(€) |9(€)] cos ¥, + |9(6)[*
> (1—0)°H(€)?+2(1—0)H(E)|9(E)] + |g(&)]”
> ((1—0)H(&) +g()]).
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Now we may conclude the property (3):

|(famoko +9) (2)] | famio (2) + 9(§)] — [g(2) — g(§)]

|H(&)re o +g(€)| = 30H(2) — [g(2) — g(§)]
(1—=0)H(&) + [g(§)] —40H(2)
(1—0)(1—08)H(2) +|g(2)] — 50H ()

(L =20)H(z) +]g(2)]-

VIV IV IV IV

]

Theorem 3.2. Let S be a Borel subset of 0S). Assume that there exists a holomorphic
support function on S. Let a € (0,1). There exists a natural number N = N(a,S) such
that, ife € (0,1), T is a compact subset of 2, H is a continuous, strictly positive function
on 0S), g is a complexr continuous function on OS2, then there exists a relatively open
neighbourhood U of S in 9 and there exist holomorphic functions fi,..., fy on £ and
continuous on Q such that || f;]|, < € and:

(1) 5 +9) D =l9(2)] < [fi(2)] < H(2) for j=1,...,N and z € 9
(2)  aH(z) <maxj—, .~ |(f; +9) (2)| = lg(2)| for z € U.

Proof. Let ® : Q x S — C be a holomorphic support function on S. Let € (0,1) be
such that i Jjg = a. Now constants C' > ¢ > 0 and n € N can be chosen from Lemma 3.1.
Due to Lemma 2.3 there exists a natural number Ny such that each \/—m—separated subset

of 0f) can be partitioned into Ny disjoint %—separated sets. Let us define N = nN,.

Let A be a maximal \/Lm—separated subset of S. It can be partitioned into A, ..., Ay,
disjoint %—separated sets. Now due to Lemma 3.1 there exists m and holomorphic

| < e and
(1) 15 +9) =g < 1fi(2)] < $55H(2) for 2 € 0Q, j =1,..., N

(2) maxp—o1,...n1|(fajr +9) (2)] — l9(2)| > 15gH(z) for each z € 99 such that
||z—§|]< — for some § € Aj and j = 1,..., No.

functions f; on © and continuous on Q such that || f;

Let K = szol UgeAj B(¢ ,\/—E). Since A is a maximal —=-separated subset of 5, one has
S C K. Moreover if z € K then there exist jo € {1,..., No} and &, € Aj, such that
|z — &l < J=- In particular

a(2) < x|+ 9) (2)] = () £ max [(;+ ) (2)] = Ig(2)

for z € K. Since K is a compact set and functions f;, g are continuous on 02, there exists
U, an open neighbourhood of K, such that inequality (2) is fulfilled. ]

Recall that o is a Borel probability measure on 0f).

Proposition 3.3. Assume that U is a relatively open subset of 9§t and K is a compact
subset of U. There exists a relatively open subset V' of 0§ such that K C V. CV CU
and o(V) = o(V).

Proof. Let us denote V. := {z € U : infyex ||z — w|| < e}. We may observe that there
exists g > 0 such that V., C U. In particular K C V. C V. C U for 0 < € < &y.
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Let Ay = {t €(0,g0) : a(Vi \ V) > k} Since Ay has at most k elements, J;, Ay is
a countable set and we may conclude that there exists r € (0,e0) \ Uypey Ar- Now it is
enough to observe that o(V,.) = (V) and set V := V. O

Lemma 3.4. Let S be a Borel subset of OS2 such that o(S) = 1 and Q admits holomorphic
support function on S. Let e,0 € (0,1), T be a compact subset of Q. If H is a continuous
strictly positive function on 0S) and g is a complex continuous function on 0S) then there

exists V, a relatively open subset of O, f holomorphic on  and continuous on Q such
that:

(1) Nfly <e.

(2) [(f +9) ()] = lg(2)| < H(2) for z € ON.
(3

(4

) I
) 1 +9) () = lg(2)] > 0H(2) for z€ V.
4) o(V)y=0o(V)>1-2e.

Proof. Let a,d € (0,1) be such that a —2§ = 6 and (1 —a)|g(2)| < dH(z) for all z € I.

There exists a sequence {S;},.y of Borel sets so that S = |J,. Si and for a given i € N
there exists a holomorphic support function on S;. Moreover, we can choose mg € N such
that o (2, Si) > 1 —e. Since there exists a holomorphic support function on ;"% S,
let us choose a natural number N = N (a,J!", S;) given by Theorem 3.2.

Moreover let us define a new Borel probability measure on 0f2 in the following way o (W) =
oW U 5)/o (U2 S).

Now we construct {Vi}, .y, a sequence of relatively open subsets in 02 and {f},cy, a
sequence of holomorphic functions on €2 and continuous on €2 such that

(a)  |fr(2)] < 55 for 2 € T}

(b)  wiia(z )—Wk( ) < [fu(2)] < geHi(2) for z € U2 Vs

(¢)  wri1(2) —wi(2) < |fu(2)] < Hk( ) for z € 0%;

(d)  wrs1(2) —wi(z) > aHg(z) for z € Vj;

(

_yk-lay
) Vic o\ UV, and 5(V,) = 5(Vi) > —=t W),

Nt1
where wy(2) = |g(2)], wmi1(2) = ‘(g + Z;n:l fj) (2)|,
Wint1(2) + wim(2).

Let k = 1. Due to Theorem 3.2 there exist fi, Vi such that (a)-(d) hold and &(V;) >
Due to Proposition 3.3 we can decrease V] so that (e) is also fulfilled.

Hy = H and H,,11(2) = Hpy(2) —

1
-

Now assume that fi,..., fr_1, V4, ..., Vx_1 are already constructed. There exists an open
k—1
set U such that U C 99Q\ Uk 1V and 5(U) = 5(U) > NEZ 70 e exists G,

N+l
a continuous function on 8(2 such that G(z) < H(z) for z € 09, G(z) < % H(z) for

z € Uk 1 V; and G(2) = H(2) for z € U. Now due to Theorem 3.2 there exist fy, V4 such

that (a)-(d) hold and Vi C U, 5(Vi) > 5(U) > =227 1 5(T77) = 5(V4) then (e)

also holds. Now suppose that 7 (V;) > &(V},). There exists K a compact subset of V; such

I o Uy -
that o(K) > % Due to Propositin 3.3 there exists an open set Vj such that

K CV, C Vi and 5(V;) = 5(Vi). We can redefine Vj, := Vj, and observe that conditions
(a)-(e) are fulfilled.

Now we use the constructed functions { fi}ren and relatively open sets {Vj }ren-
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k—1
Since ) 77, 7(V}) < 1, we may obtain limy_.o LL() < 0. In particular there exists
m € N large enough Such that 1 —e < 377, 5(V}). Let now define V = (Ji_, V; and

f Z] 1 f]
First we prove the properties (1), (4):

ia Em:a @S 1—8 >1—2¢

and |f(2)| <300, [fi(2)| <Xl gy <eforz €T If o(V) > o(V) then we can slightly
decrease all V; so that (4) is now fulfilled.

Observe that H,, — Hy = H,, — H = —w,, +w;. In particular the property (2) is obvious:
Wint1(2) —wi(2) < Hp(2) + win(2) — wi(2) = H(z) for z € 09.

If £ < j and z € V} then we may estimate
J Jj—1

(o328} 6| |(s+ 2 5) ]2
i=1 i=1

Now let z € V. There exists k € {1,...,m} such that z € V. Since Hy = H — wy + w;
therefore we may obtain the property (3):

d0H(2)

~ 150> -2

Wi (2) —wy(2) 2

n

wnt1(2) —wi(z) = .Z (wir1(2) —w;j(2)) + wi(2) —wi(2) + wit1(2) — wi(2)
> - Z —5H2—J(.Z)+wk(z)—w1(z)+aHk(z)
> —0H(2) + (1 —a) (wi(2) — wi(2)) + aH(2)
> —0H(z) = (1 —a)lg(z)| + aH(z) = (a — 26)H(z) = 0H(z).

]

Theorem 3.5. Let S be a Borel subset of 02 such that o(S) = 1 and such that Q admits
a holomorphic support function on S. Assume that G is a lower semicontinuous, strictly
positive function on 0S). Then there exists S a Borel subset of 02 and a non constant
holomorphic function f on € with the following properties:

) There exists {gn},cn, @ sequence of holomorphic functions on €2 and continuous on
Q such that g, converges uniformly to f on compact subsets of Q, |g.(2)] < G(2)
for z € 09, lim,, . |gn(2)| = G(2);
o(S) =0o(S) =1;
If v 1 [0,1] 2t — ~(t) € Q is a continuous curve crossing OS) transversally at
v(1) = z € S, then there exists a sequence {tn}hen C (0,1) such that lim,, oo t,, = 1
and lim, e | (4(2))] = G(2).

Proof. There exists {G), },,cn @ sequence of strictly positive continuous functions on 052
such that G(z) =Y _°_, Gn(2).

m=1

For a given o € (0,1) and U, a relatively open subset of 02 let us denote

[.(U):={y:v€Tlq(2),z € U,dist(092,7(0)) > e, dist(0Q,~(t)) > e||v(t) — z||} .
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We construct a sequence {&,},,y of positive numbers, a sequence {f},,cy of holomor-
phic functions on €, and a sequence {V/,}, .y of relatively open subsets of 92 such that
the following properties are fulfilled:

(1) 0<4dmepi1 <en <1,

(2) Ifz,weQand ||z — w| < memyy then |wp(2) — wn(w)] < &,
(3) €m+1Hm S Gm,

(4)  |fmlly, < emsr where Ty = {z € Q : dist(9, 2) > emia },

(5)  wWmt1(2) —wm(2) < Hp(z) for z € 09,

(6)  wWmt1(2) —wm(2) > (1 = epi1) Hp(2) for z € V,,,,

(7) o(Vy) =0(Viy) >1— 26,41,

where w1 = 0, W41 = ‘27:1 fj s H1 = G1 and

Hm+1 =H, — W41 + Wy + G(m—&-l > Gm+l~

If m = 1 then we can set £; = 1 and €5 € (0, 1) so that (3) is fulfilled. Now due to Lemma
3.4 there exist fi1,V; so that the properties (4)-(7) are fulfilled. Since w; = 0, we can
observe that properties (1)-(7) are fulfilled. Assume that (¢;,¢;41, fj, V;) are constructed
for j = 1,...,m so that (1)-(7) are fulfilled. Since w1 is continuous and depends only
on fi,..., fm, there exists €,,42 > 0 such that: (1)-(3) are fulfilled. Now we use again
Lemma 3.4 to construct f,,.1 and V41 so that (4)-(7) are fulfilled, which finishes the
construction of (€,,41, Ema2, frnt1, Vint1)-

Let Dy, :=(\_; Vin and D = {J, oy Di. Observe that o(Dy) > 1 =" 26,01 > 1 —¢.
In particular (D) = 1.

Let us observe that

Hyn — Hy = Z(Hk:-i-l — Hy) = Z(Wk — Wit + Grg1) = —Wmp1 + Z Gl
k=1 k=1 k=1
In particular
Wyl = —Hpme1 + ZGkJrl < ZGk+1 =G. (2)
k=0 k=0

Let now z € D. There exists m, € N such that z € V,,, for m > m,,.

We may estimate

Hp1(2) = Hp(2) — wmi1(2) + wn(2) + Gua1(2) < g1 Hin(2) + Graga(2)
< Gp(2) + Grga(2).

Due to (2) we can conclude that 377 Gri1(2) < W1 (2) < 3200, Grear(2) = G(z) and
therefore

lim w,(2) = G(z) (3)

m—00
for z € D. In particular we can choose g, ==Y ;- fx.

Let f = > | fm. Now we prove that the holomorphic function f has the required
properties.
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Assume that v : [0,1] 3 ¢ — () € Q is a continuous curve crossing 9 transversally at
(1) = z € D. There exists a > 0 such that v € I',(V},,) for m > m,. We can additionally
assume that a > % for m > m,. In particular v(0) € T,, for m > m,.

Now we can define t,, := sup{t € [0,1]: ~v(¢t) € T,,} and z,, := v(t,,). In particular
lim,, oo ty, = 1 and dist(0€2, z,,) = €my1. Since z, € Tj for j > m > m,, we have
|fi(zm)| < €41 for j > m. Now we may estimate

1 (zn)] = wm(z)l < D13 (zm)] < D g1 < .
j=m j=m
Since v € ' (V},,) therefore e,,11 = dist(082, z,,) > ||z — 2 ||. Observe that ||z — 2| <
=L < ey for m > m,. In particular due to property (2) we have |wi,(2) — win(2m)| <
em and || f(zm)| — wm(2)| < 2ep,. Now due to (3) we may conclude that
lim |f(zn)] = lim wy,(2) = G(z2).

m—00 m—0o0

Since (D) = o(S) = 1, we can define S := D, which finishes the proof. O

It is known (see [9, Theorem 8.4.1]) that a bounded holomorphic function f on a bounded
domain Q with the boundary of class C? has non tangent limits f*(z) for almost all
z € 09). In particular we can obtain a classical result about inner function:

Theorem 3.6. Let Q CC C" be a domain with the boundary of class C* and G be a
bounded, strictly positive and lower semicontinuous function on 0X). Let n denote (2n—1)-
dimensional Hausdorff measure on 0). Assume that 2 admits a holomorphic support
function on a Borel set S with full n measure. Then there exists f, a holomorphic bounded
function on Q such that || f||, < ||Gllsq and |f*(2)] = G(2) for n-almost all z € OS.

Proof. We can define a Borel probability measure o := %n. Let f be a holomorphic
function from Theorem 3.5. In particular we have || f||, < |G| 5. Moreover, since f has
f*(2) for almost all z € 99, therefore the last part of Theorem 3.5 gives us the following
equality: |f*(z)| = G(z) for n-almost all z € €. O

4. Applications for Radon inversion problem and exceptional sets.

Assume that Q C C" is a circular bounded domain such that v : [0,1] 2 t — tz € Q
crosses () transversally at z € 9€2. We can define a projective (n — 1)-dimensional space
Pt = P(OQ) = {[z] : 2 € 9Q} where [z] := Dz and D := {A € C : |[A\] < 1}. In
particular, we can identify 092 = ODP""!. Now we can consider the following Radon
inversion problem:

Assume that G is a lower semicontinuous function on P*~!. Let us construct a holomorphic
function f on 2 such that

G(z) = / FO) 2.

We solve this problem in terms of a given Borel probability measure:

Theorem 4.1. Let n be a Borel probability measure on P"~* and G be a strictly positive
and lower semicontinuous function on P"~1. Assume that Q admits a holomorphic support

function on O2.  Then there exists h a holomorphic function on Q such that G(z) =
Io |h(A2)[* £2(\) for n-almost all z € P*' and Io |h(A2)” £2(\) < G(z) for all z € 9.
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Proof. For a given set A C 02 we can define [A] := {[z] : z € A} and A(z) = {t €
(0,1] : e?™z € A} for z € 02. Now we define a Borel probability measure o on 952 by

putting o(A) = f[A] fA(z) dtdn(z).

Let G(Az) = \/G(z). Observe that G is a strictly positive and lower semicontinuous
function on 0. Due to Theorem 3.5 there exists S a Borel subset of 92 and a holomorphic
function f on € with the following properties:

° There exists {g, },cys @ sequence of holomorphic functions on € and continuous on

Q such that g, converges uniformly to f on compact subsets of Q, |g.(2)] < G(z)
for z € 9, limy .0 |gn(2)] = G(2);

o o(S)=0(09) =

o If z € S then there exists a sequence {r,}, . C (0,1) such that lim, .., r, = 1 and
limy, oo | f(rnz)| = G(2).

Since o(S) = 1, there exists a Borel set Sy C S such that n([Ss]) = 1 and ng(z) dt =1 for

z € Sy. In particular o(S;) = 1.

Using the maximum property for the holomorphic function D > A — f(Az) we may
conclude that limsup,_, |f(rz)| = G(z) for z € S5 and limsup,_,_ |f(rz)] < G(z) for
z € 0R.

Now there exists a sequence {pp,},,cy of homogeneous polynomlals such that f(w) =
> e Pm(w) for w € Q. Let a,, be such that [ |ampm(Az)]* d€3(N) = |pm(2)]>. Now we
can define a holomorphic function h := Y\ GmPm.

In particular we may estimate for z € Ss:

[P0 = X I = timsup 3 [pur2)
D

meN =17 eN

1
= limsup/ |f(7"62”isz)’2ds
0

r—1-

= /01 lim sup |f(7“62m82)’2 ds = (é(z))z = G(2).

r—1-
In the similar way we may obtain for z € 02 the following inequality:

/|h Az)[Pd€(N) = / limsup | f(r 2”isz)’2ds§G(z).

r—1-

Using the above theorem we can describe exceptional sets:

Theorem 4.2. Let E be a set of type Gs in P"™1 and n be a probability measure on E.
Then there exists a holomorphic function f such that fQ\DE |f|2 d&* < oo and E4(f) C E,

n(E) = n(EE(f)) where

B = {= e P [ 1700R a0 = oo
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Proof. We can assume that 7 is a Borel probability measure on P"~!. Let v be (2n —1)-
dimensional Hausdorff measure on 0€Q2. There exists a sequence {Uy,},. . in 0€2 of open,

circular sets such that
> v(Un\E)<1

meN

and ODE =), .n Unm. Let

meN

(2) = 1 for zeU,
Xm0 for z € 0Q\ U,,,.

Obviously X, is a lower semicontinuous function. Let G =1+ )« Xm. The function
G is also a lower semicontinuous function such that G(Az) = G(z) > 0 for |A| = 1 and
z € 90 so we can assume that G is defined on P"~!. On the basis of Theorem 4.1 there
exists a holomorphic function f € O(Q2) such that

(1) G(z)= [ |F(\2)> £2(\) for n-almost all z € P*~ 1.
2) fp 1F(\2)]? £2(\) < G(2) for all z € 9Q.

Observe now that

Gdv =1+ (Un \ E)
/89\6DE Z \

meN
There exists a constant C' > 0 such that

c / P den s/ / FO)2 AL (N (=) < / Gdv <2,
O\DE a\DE JIA<1 80\ODE

Moreover, since E = G~!(c0) therefore E3(f) C E and n(E) = n(E3(f)) which finishes
the proof. n
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