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We prove a conjecture of De Giorgi on the regularity of the square distance function from manifolds of
arbitrary codimension in R

N .

1. Introduction

In [7] De Giorgi made the following conjecture.

Let E ⊆ R
N be a set and Ω be an open subset of RN , such that E ∩ Ω = E ∩ Ω. Define

ηE(x) =
1

2

[

dist(x,E)2
]

=
1

2
inf
y∈E

|y − x|2, x ∈ R
N , (1)

and assume that ηE ∈ Cω(Ω) (respectively C∞(Ω)). Then

E =
N
⋃

h=0

Eh,

where Eh ∈ VhC
ω(Ω) (respectively Eh ∈ VhC

∞(Ω)) and Ei ∩ Ej = ∅ for i and j ∈
{0, . . . , N}, i 6= j.

The symbol Cω(Ω) denotes the class of real analytic functions in Ω, and VhC
ω(Ω) stands

for the class of h-dimensional real analytic manifolds without boundary in Ω; an element
of V0C

ω(Ω) consists of a discrete set of points which is locally finite in Ω, and by definition
∅ ∈ VhC

ω(Ω) for any h ∈ {0, . . . , N}.

To understand the meaning of the conjecture some comments are in order.

(i) If we have given a compact h-dimensional manifold M of class C∞ without boundary
embedded in R

N , then the square distance function ηM from M is of class C∞ in a tubular
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neighbourhood of M (see [1]). The conjecture is concerned with the opposite conclusion,
namely to infer the regularity properties ofM once we know that ηM is sufficiently smooth.

(ii) If ∂A is a compact (N − 1)-dimensional manifold of class Ck, k ≥ 2, then the signed
distance function from ∂A (and the square distance function from ∂A) is of class Ck in
a tubular neighbourhood of ∂A, see for instance [13]. Conversely, if the signed distance
function from the compact ∂A is of class Ck in a suitable tubular neighbourhood of
∂A, then ∂A is of class Ck. Hence the conjecture becomes interesting for manifolds of
codimension higher than one.

(iii) As a consequence of the conjecture, there are noN -dimensional connected components
of E strictly contained in Ω; in other words, if EN is nonempty then it is composed of a
union of connected components of Ω.

The aim of this short note is to prove the conjecture, and some slightly stronger versions
of it. The interest in the square distance function and in its connections with the second
fundamental form of a manifold of arbitrary codimension was originated, as far as we
know, from the above mentioned paper of De Giorgi, and the more recent papers [8], [9].
Those ideas were developed in [15], [3], [4] and [5] in connection with mean curvature flow
in arbitrary codimension. We also recall the papers [2], [14], [10] where it is possible to
find a rather complete description of the geometric meaning of the higher derivatives of the
square distance function in terms of the second fundamental form and of its derivatives.

Finally, one of our motivations for proving such a kind of regularity result is that it can
be considered as a preliminary step toward an alternative proof of the local existence
of a unique smooth mean curvature flow in arbitrary codimension besides the one given
in [12]. We recall that the short time existence result for mean curvature flow in the
one-codimensional case using the signed-distance function was proved in [11].

2. Proof.

Given q ∈ {1, . . . , N} we let Idq := diag(1, · · · , 1, 0, · · · , 0) be the matrix having 1 (resp.
0) repeated q (resp. N − q) times. Given two n-dimensional symmetric matrices T1, T2,
when we write T1 ≥ T2 we mean that T1 − T2 is positive semidefinite. We set S

N−1 =
{v ∈ R

N : |v| = 1}, and for x ∈ R
N and ρ > 0 we let Bρ(x) := {y ∈ R

N : |x − y| < ρ};
〈·, ·〉 denotes the standard inner product in R

N , ∇ (resp. ∇2) denotes the gradient (resp.
the Hessian). Given a closed set C and x ∈ R

N , we let

ΠC(x) := {y ∈ C : |y − x| = dist(x,C)}.

We begin with the following preliminary result (see [1] and [6] for related results).

Lemma 2.1. Let E be a closed subset of R
N and let ηE be defined as in (1). Then

ηE is differentiable on E = {ηE = 0}. In addition, at any point x ∈ R
N where ηE is

differentiable, we have
|∇ηE(x)|

2 = 2ηE(x). (2)

In particular
E = {∇ηE = 0}. (3)

Proof. Fix y ∈ E. For any x ∈ R
N we have

0 ≤ ηE(x) = ηE(x)− ηE(y) ≤
|x− y|2

2
,
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which implies that ηE is differentiable at y with ∇ηE(y) = 0.

Let now x ∈ R
N be a differentiability point of ηE. If ηE(x) > 0 then also dE =

√

2ηE
is differentiable at x, with ∇ηE(x) = dE(x)∇dE(x), hence (2) follows from the eikonal
equation |∇dE(x)| = 1 satisfied by the distance function. If ηE(x) = 0, from the previous
arguments it follows ∇ηE(x) = 0, hence (2) is satisfied.

Remark 2.2. In general ηE is not of class C1 on {ηE = 0}, in the sense that there are no
open sets containing {ηE = 0} where ηE is C1. Indeed if E := {(x1, x2) ∈ R

2 : x1x2 = 0}
then ηE is not differentiable on {(x1, x2) ∈ R

2 : x1 = x2}.

Theorem 2.3. Let M ⊂ RN be an embedded h-dimensional manifold without boundary
of class Ck, k ≥ 2. Then for any y ∈ M there exists an open set U of RN containing y
such that ηM ∈ Ck−1(U) and ηM(y + p) = 1

2
|p|2 for any p in the normal space NM(y)

to M at y, with y + p ∈ U . In particular the matrix ∇2ηM(y) represents the orthogonal
projection on NM(y).

Proof. The proof is the same as the one in [1], which is given under the additional
assumptions that M is compact and k = +∞.

As proved for instance in [13], if h = N − 1, then ηM in Theorem 2.3 if of class Ck(U).

The next theorem is the main result of the present paper.

Theorem 2.4. Let E ⊂ R
N be a closed set, ηE be defined as in (1), let k ≥ 3 be an

integer and let Ω ⊆ R
N be an open set. Assume that

ηE ∈ Ck(Ω). (4)

Then any connected component of E∩Ω is a manifold of class Ck−1(Ω) without boundary.

Proof. From Lemma 2.1 we have

E ∩ Ω =
{

y ∈ Ω : ηE(y) = 0} = {y ∈ Ω : ∇ηE(y) = 0
}

. (5)

For all y ∈ E ∩ Ω we define the tangent cone CE(y) to E ∩ Ω at y as

CE(y) :=

{

αν : α ≥ 0, ν = lim
E∩Ω∋zn→y,zn 6=y

zn − y

|zn − y|

}

.

Observe that CE(y) = {0} if y is an isolated point of E ∩ Ω. We indicate with TE(y)
the smallest vector subspace of RN containing CE(y) and with NE(y) the orthogonal
complement of TE(y).

Since ηE is of class Ck(Ω) and k ≥ 3, we can consider the Hessian ∇2ηE on E ∩ Ω. In
particular, given y ∈ E ∩ Ω and ν ∈ S

n−1, we can define

λy(ν) := 〈ν,∇2ηE(y)ν〉.

We divide the proof into seven steps.

Step 1. We have
∇2ηE(y) ≤ IdN ∀y ∈ E ∩ Ω. (6)



356 G. Bellettini, M. Masala, M. Novaga / A Conjecture of De Giorgi on the Square ...

Let y ∈ E ∩Ω and ν ∈ S
N−1; we expand ηE at the point y+ tν (for |t| positive and small

enough so that the segment which connects y with y + tν is contained in Ω). From (4)
and (5) we obtain

1

2
t2 ≥ ηE(y + tν) =

1

2
〈ν,∇2ηE(y)ν〉t

2 + o(t2) =
1

2
λy(ν)t

2 + o(t2). (7)

Dividing by t and letting t → 0 we conclude that

λy(ν) ≤ 1. (8)

Since ν ∈ S
N−1 is arbitrary, (6) follows.

Step 2. We have
∇2ηE

∣

∣TE(y)
= 0 ∀y ∈ E ∩ Ω. (9)

Let y ∈ E ∩Ω and ν ∈ S
N−1. Let |t| be small enough in such a way that y + tν ∈ Ω. Let

yt ∈ E ∩ Ω be a point such that ηE(y + tν) = 1
2
|y + tν − yt|

2. From (7) we have

2

t2
ηE(y + tν) =

∣

∣

∣

y − yt
t

+ ν
∣

∣

∣

2

= λy(ν) + o(1), (10)

hence

lim
t→0

2

t2
ηE(y + tν) = λy(ν). (11)

Take now ν ∈ CE(y) ∩ S
N−1 and choose a sequence {yn} ⊂ E ∩ Ω converging to y and

with yn−y

|yn−y|
→ ν as n → +∞. Setting tn := |yn − y|, from (10) and (11) it follows that

0 ≤ λy(ν) = lim
n→∞

∣

∣

∣

∣

∣

y − ytn
tn

+ ν

∣

∣

∣

∣

∣

2

≤ lim
n→∞

∣

∣

∣

∣

∣

y − yn
tn

+ ν

∣

∣

∣

∣

∣

2

= 0.

Therefore λy(ν) = 0 for all ν ∈ CE(y) ∩ S
N−1 and (9) follows.

Step 3. We have
λy(ν) = 1 ∀y ∈ E ∩ Ω, ∀ν ∈ NE(y) ∩ S

N−1. (12)

Let y ∈ E ∩ Ω and ν ∈ NE(y) ∩ S
N−1. By (10) it follows that |y−yt

t
|2 is bounded for |t|

small enough. Therefore, possibly passing to a (not relabelled) subsequence and recalling
the definition of TE(y), we can suppose that y−yt

t
converges to a vector w ∈ TE(y) as

t → 0.

It follows from (8), (10) and the orthogonality between ν and w that

1 ≥ λy(ν) = lim
t→0

∣

∣

∣

y − yt
t

+ ν
∣

∣

∣

2

= |ν|2 + |w|2 = 1 + |w|2 ≥ 1,

and (12) follows.

Step 4. Assume that Ω \ E 6= ∅ and let x ∈ Ω \ E. Then

∇ηE(x) ∈ NE(y) \ {0} ∀y ∈ ΠE(x) ∩ Ω. (13)
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First we note that ∇ηE(x) 6= 0 is a consequence of (3). Therefore, by Steps 2 and 3, to
show (13) it is enough to prove that λy(∇ηE(x)/|∇ηE(x)|) = 1. Set zt := (1−t)y+tx with
t ∈ [0, 1]. Note that there exists δ ∈ (0, 1/2) such that zt ∈ Ω for any t ∈ [0, δ]∪ [1− δ, 1].
Moreover y ∈ ΠE(zt) and ηE(zt) =

1
2
|zt − y|2 for any t ∈ [0, 1]. Hence

λy

( ∇ηE(x)

|∇ηE(x)|

)

=
d2

dt2
1

2
|zt − y|2

|t=0

=
d2

dt2
t2

2 |t=0

= 1.

Step 5. For all y ∈ E∩Ω such that dimTE(y) = n < N there exist σ > 0 and an embedded
manifold Γ(y) of dimension n and of class Ck−1(Bσ(y)) such that Bσ(y) ⊂ Ω and

E ∩ Ω ∩Bσ(y) = Γ(y).

Let y be a point of E ∩ Ω and {ν1, . . . , νN−n} be an orthonormal basis of NE(y). Define

Fi(y) := 〈∇ηE(y), ν
i〉, i = 1, . . . , N − n, y ∈ Ω,

F :=
(

F1, . . . , FN−n

)

: Ω → R
N−n.

We observe that F ∈ Ck−1(Ω;RN−n) and the Jacobian of F at y coincides with the
orthogonal projection of ∇2ηE(y) on NE(y). In addition {y ∈ Ω : ∇ηE(y) = 0} ⊆ {y ∈
Ω : F (y) = 0}. Therefore from (5) we have

{y ∈ Ω : F (y) = 0} ⊇ E ∩ Ω. (14)

We choose σ > 0 so that the Jacobian of F has constant rank on Bσ(y). This is possible
since, from Steps 2 and 3, the rank of the (N × N)-matrix ∇2ηE(y) is N − n. Let us
define

Γ(y) := Bσ(y) ∩ {y ∈ Ω : F (y) = 0}.

The Implicit Function Theorem ensures that Γ(y) is a submanifold of class Ck−1(Bσ(y))
of dimension n. Note that the (14) implies

Γ(y) ⊇ E ∩ Ω ∩Bσ(y) and TΓ(y)(y) = TE(y). (15)

We now prove that
Γ(y) ⊆ E ∩ Ω. (16)

Let us consider the distance function dE =
√

2ηE; then dE ∈ Ck(Ω\E). Define, for ε > 0,
the sets

Σε :=
{

y ∈ Ω : ηE(y) = ε2/2
}

.

Since dE = ε > 0 and |∇dE| = 1 in Σǫ, by the Implicit Function Theorem we have that,
if Σε 6= ∅, then Σε is a (N − 1)-dimensional manifold of class Ck.

By the regularity properties of ηΓ(y) (see Theorem 2.3), we have that ηΓ(y) is of class

at least C1 in a neighbourhood of y; moreover for any v ∈ NΓ(y)(y) ∩ S
N−1 and ε > 0

small enough, setting xε(y) := y + εv, we have ηΓ(y)(xε(y)) = ε2/2. From (15) we have

ηΓ(y)(xε(y)) ≤ ηE(xε(y)), and since ηE(xε(y)) ≤ 1
2
|xε(y) − y|2 = ε2/2, we conclude that

ηE(xε(y)) = ε2/2. Therefore xε(y) ∈ Σε.
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From Step 4 we deduce that v and∇ηE(xε(y)) are parallel, more precisely v = ∇dE(xε(y)),
and y = xε(y)−∇dE(xε(y)). From (13) it also follows that TE(y) ⊆ TΣǫ

(xε(y)).

Take an orthonormal basis {τ 1, . . . , τn} of TE(y) and let

L := span
{

τ 1, . . . , τn,∇dE(xε(y))
}

be the vector space generated by TE(y) and by the normal to Σǫ at xε(y). Define

Λ := Σǫ ∩ (L+ xε(y)).

Then Λ is a n-dimensional manifold of class Ck in a neighbourhood of xε(y).

Let us consider the map ΠE between two n-dimensional manifolds of class Ck−1 defined
as

ΠE : V ∩ Λ → Σ ∩Bσ(y) ⊆ Γ(y), ΠE(x) := x−∇ηE(x),

where V is a suitable neighbourhood of xε(y). Observe that

ΠE(Σε) ⊆ E ∩ Ω. (17)

From Step 2 we can assume that |〈∇2ηE(xε(y))τ i, τ i〉| ≤ 1/2 for ε > 0 sufficiently small
and for any i = 1, . . . , n. It follows that the (tangential) Jacobian of ΠE is nonvanishing at
xε(y), hence by the Implicit Function Theorem we have that ΠE is a local diffeomorphism
around xε(y). This, together with (17), concludes the proof of Step 5.

Step 6. Let Σ be a connected component of E ∩ Ω. Then there exists an integer q ∈
{0, . . . , N} such that

∇2ηE
∣

∣NE(y)
= Idq ∀y ∈ Σ.

Since the trace of ∇2ηE(y) is a continuous function with respect to y and Σ is connected,
from Steps 2 and 3 we have that the dimensions of NE(y) and TE(y) are independent of
the choice of y ∈ Σ.

The following step, together with Step 5, concludes the proof of the theorem.

Step 7. Let y ∈ E ∩Ω be such that dim(TE(y)) = N . Then y belongs to the interior part
of E ∩ Ω.

Assume by contradiction that y belongs to the boundary of E∩Ω. Let ρ > 0 be sufficiently
small, x ∈ Bρ(y) \ y, and write xt := ty + (1 − t)x. Define t∗ := sup{t ∈ [0, 1] : xs ∈
E ∩ Ω for all s ∈ [0, t]}. Note that t∗ < 1. Moreover xt∗ ∈ E ∩ Ω, since E ∩ Ω is closed.
Denoting by Σ the connected component of E ∩Ω containing y, we point out that xs ∈ Σ
for any s ∈ [0, t∗]. Let us pick a decresing sequence {sn} ⊂ (0, 1) converging to t∗ as
n → +∞ and such that xsn ∈ Bρ(y) \ (E ∩ Ω) for any n ∈ N. By our assumption, Step
2 and Step 6 we have ∇2ηE(t

∗) = 0. On the other hand, from Step 4 it follows that 1 is
an eigenvalue of ∇2ηE(sn) for any n ∈ N. We conclude that ηE is not of class C2 at xt∗ , a
contradiction.

Remark 2.5. From the proof of Theorem 2.3 it follows that:

(i) given a connected component Σ of E ∩ Ω there is an open set containing Σ which
does not intersect any other connected component of E ∩ Ω;



G. Bellettini, M. Masala, M. Novaga / A Conjecture of De Giorgi on the Square ... 359

(ii) any connected component of E ∩Ω of dimension N is a connected component of Ω;

(iii) the assumption k ≥ 3 in Theorem 2.4 is used only in the proof of Step 5, in order
to show that ηΓ(y) is of class C

1 in a neighbourhood of y and xε(y) ∈ Σε;

(iv) if in the statement we substitute k with ∞ (resp. ω), then the thesis holds with
k − 1 substituted by ∞ (resp. ω); hence the conjecture of De Giorgi follows.
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