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We define and investigate the notion of twisted convex hull for a subset of the Heisenberg group IH. We
show that, while the twisted convex hull of two points is always a bounded set, the twisted convex hull
of n > 2 points is, in general, an unbounded prism, with edges parallel to the t axis. These results shed
some light on the twisted convex subsets of IH ; in particular, we give a characterization of their interior.
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1. Introduction

Motivated by the role played by convex functions in the study of fully nonlinear subelliptic
PDE’s, recently many authors introduced and studied several notions of convexity in sub–
Riemannian geometries as Carnot groups, and, in particular, the Heisenberg group (see
[1], [4], [5]).

In [6] a definition of convex set of geometric type is considered and discussed; a subset A
of the geodesic metric space (IH, d) – where d denotes the Carnot–Carathéodory metric on
IH – is said to be geodetically convex if the image of any geodesic connecting two elements
in A is contained in A. The unexpected result is that, by contrast to the Euclidean case,
the geodetic convex envelope of three points is, in general, the whole group.

In this paper we consider a definition of convexity that is based on the group and dilation
structure of the Heisenberg group. This convexity, that was called strong H–convexity in
[4], relies on the notion of twisted convex (tw-convex) combination of two points g and g′

given by γg,g′(λ) = gδλ(g
−1g′), λ ∈ [0, 1]. We say that a set A is tw–convex if the curve

γg,g′ is contained in A, for every g, g′ ∈ A. A weaker notion of convexity can be given if
g′ is required to belong to the horizontal plane Hg; this is called weak H–convexity in [4].
In [3], we investigated an optimization problem within this framework.
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Our goal in this paper is to describe the tw–convex hull of subsets of IH. In particular,
we show that the tw–convex hull of two points is always a bounded set, contained in a
plane. In contrast, the tw–convex hull of more than two points is an unbounded subset of
IH, unless all points belong to the same left translate of a 2–dimensional subgroup. This
is reminiscent of the result of Monti and Rickly ([6]), but in our setting, the tw–convex
hull is not the whole group in general. Actually, we prove that, in general, the tw–convex
hull of n points is a prism with edges parallel to the t axis. Our results show that the
tw–convex sets are scarce. In particular, a bounded tw–convex set is always contained
in a left translate of some 2–dimensional subgroup; obviously, the gauge balls are not
tw–convex.

2. The Heisenberg group

The Heisenberg group IH = IH1 is the Lie group given by the underlying manifold IR3

with the non commutative group law

gg′ = (x, y, t)(x′, y′, t′) := (x + x′, y + y′, t + t′ + 2(x′y − xy′)) .

The unit element is e = (0, 0, 0) and the inverse of g = (x, y, t) is g−1 = (−x,−y,−t).
Left translations and anisotropic dilations are, in this setup, Lg0(g) = g0g and δλ(x, y, t) =
(λx, λy, λ2t) .

The differentiable structure on IH is determined by the left invariant vector fields

X =
∂

∂x
+ 2y

∂

∂t
, Y =

∂

∂y
− 2x

∂

∂t
, T =

∂

∂t
, with [X, Y ] = −4T ;

the vector field T commutes with the vector fields X and Y.

Let h be the Lie algebra of IH; then h = IR3 = V1 ⊕ V2, where V1 = span {X, Y } ,
V2 = span {T} . Via the exponential map exp we identify the vector αX + βY + γT in h

with the point (α, β, γ) in IH. For the inverse ξ : IH → h of the exponential mapping, we
have the unique decomposition ξ = (ξ1, ξ2) with ξi : IH → Vi.

Definition 2.1. Given a point g0 ∈ IH, the horizontal plane Hg0 associated to g0 is the
plane in IH defined by Hg0 = Lg0 (exp(V1)) = {g = (x, y, t) ∈ IH : t = t0 + 2y0x − 2x0y} .

It can be easily seen that: g′ ∈ Hg, g ∈ Hg′, and g−1g′ ∈ He = {(x, y, 0), x, y ∈ IR} are
three equivalent statements. Moreover, it is worth noticing that every horizontal plane
is associated to a unique point g0, and that two horizontal planes are parallel, in the
Euclidean sense, if and only if the associated points have the same projection on the
(x, y)–plane. Therefore their intersection is, in general, a straight line. Every horizontal
plane splits IH in two parts. Hence, given g 6∈ Hg0, we say that g = (x, y, t) is above Hg0

when t > t0 + 2y0x − 2x0y, and g is below Hg0 in the other case.

We recall that a curve γ, where γ(s) = (x(s), y(s), t(s)) : [0, 1] → IH, is said to be
horizontal if γ′(s) ∈ spanIR{X(γ(s)), Y (γ(s))} for almost every s ∈ [0, 1] and hence
t′(s) − 2y(s)x′(s) + 2x(s)y′(s) = 0.

Given two points g and g′, we consider the set Γg,g′ of all possible horizontal curves joining
these points. The Carnot–Carathéodory distance d is then defined as
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d(g, g′) = inf
γ∈Γg,g′

∫ 1

0

|γ′(s)| ds.

The infimum is actually a minimum, and the curve with minimum length is a geodesic.
In the case that g′ ∈ Hg, we call horizontal segment the horizontal geodesic that realizes
d(g, g′).

Definition 2.2. Given a, b, c ∈ IR, a2 + b2 6= 0, we define a vertical plane in IH as the
following subset π

π = {g = (x, y, t) ∈ IH : ax + by = c}.

It is easy to prove that every vertical plane is left translate of a vertical plane through
the origin. A curve γ is said to be vertical if γ′(s) ∈ spanIR{T (γ(s))} for almost every
s ∈ [0, 1], and hence x and y are constant. A vertical segment is the image of a vertical
curve. More in general, we call segment any convex closure, in the Euclidean sense, of the
set of two points of IH; clearly, horizontal and vertical segments are segments.

It is worthwhile noticing that left translations preserve horizontal planes, horizontal seg-
ments, vertical planes and vertical segments.

3. Twisted convex combination of points of IH

The main purpose of this paper is the investigation of the convex hull of a finite number
of points in IH, where the underlying convex combination is the tw–convex combination
already introduced in [4], [5]. Let us recall the following definition:

Definition 3.1. Given two points g, g′ ∈ IH, the twisted convex (tw–convex) combination
of g and g′ based on g is the point gλ defined by

gλ = gδλ(g
−1g′), λ ∈ [0, 1].

Explicit computations give us that, if g = (x, y, t) and g′ = (x′, y′, t′), then

gλ = ((1 − λ)x + λx′, (1 − λ)y + λy′, t + 2λ(x′y − xy′) + λ2(−t + t′ − 2x′y + 2xy′)).

From now on, we denote by γg,g′ the curve defined by

γg,g′(λ) = gλ, λ ∈ [0, 1].

Notice that, for every g, g′ ∈ IH,

U(γg,g′) = γ
(Ug),(Ug′)

, (1)

where U is a group isomorphism which commutes with dilations. In particular, this is
true for U = Lg0 , for every g0 ∈ IH.

In the following propositions, we list some properties of γg,g′ that can be derived with
easy computations starting from the explicit expression of gλ.

Proposition 3.2. Let g, g′ ∈ IH. Then γg,g′ is a segment if and only if g′ ∈ Hg, or

(x, y) = (x′, y′). In particular, it is horizontal in the first case, and vertical in the second.
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Proposition 3.3. Let g, g′ ∈ IH, such that γg,g′ is not a segment, and denote by πg,g′ the

vertical plane through g and g′. We have that

i) γg,g′ and γg′,g are contained in πg,g′;

ii) the curves γg,g′ and γg′,g are symmetric with respect to the point gm =
(

x+x′

2
, y+y′

2
, t+t′

2

)

∈ πg,g′, i.e., for every λ ∈ [0, 1], the midpoint of the segment with end points γg,g′(λ)
and γg′,g(1 − λ) is gm;

iii) the line rg tangent to the curve γg,g′, at the point g, is the intersection of the planes

Hg and πg,g′; its expression is rg(s) = (x + s(−x + x′), y + s(−y + y′), t + 2s(x′y −
xy′)), s ∈ IR; the line rg′ tangent to the curve γg′,g at the point g′ is parallel to the

line rg;

iv) if gλ is a point of γg,g′ such that rgλ
⊂ Hgλ

, then gλ = g.

The line rg, tangent to the curve γg,g′ at the point g, will play a role in the characterization
of the tw–convex hull of two points (see Theorem 4.2).

Now, we give the definition of tw–convex set in IH .

Definition 3.4. A set C ⊆ IH is twisted convex (tw–convex) if and only if

γg,g′ ⊂ C, ∀g, g′ ∈ C.

A weaker notion of convexity, the so called weak H–convexity, requires that γg,g′ ⊂ C for
every g ∈ C and g′ ∈ Hg ∩ C (see, for instance, [4]).

The notion of tw–convexity coincides with the strong H–convexity (see [4, Remark 7.5]).
It is known that the Carnot–Carathéodory ball {g ∈ IH : d(e, g) ≤ 1} is not weakly
H–convex, and therefore not even tw–convex. In [4] it is proved that the ball {g ∈ IH :
‖g‖ ≤ 1}, defined via the gauge

‖(x, y, t)‖ = ((x2 + y2)2 + t2)1/4,

is weakly H–convex, and it is claimed, without proof, that it is not tw–convex. In the
following, we set ourselves the aim of investigating this kind of convex sets.

A similar investigation was carried out in [6], where geodetically convex sets were char-
acterized. The authors considered the Carnot–Carathéodory metric in IH; within this
framework, a subset A ⊂ IH is said to be geodetically convex if any geodesic, i.e., length
minimizing horizontal curve, connecting two elements of A, lies in A. They showed that,
for any A ⊂ IH containing three points not lying on the same geodesic, the geodetic
envelope is the whole group IH .

Definition 3.5. Given A ⊆ IH, the tw–convex hull of A is the set

CHA =
⋂

{C ⊆ IH : C tw–convex, A ⊆ C} .

If A = {g1, . . . , gn}, we will denote CHA by CH(g1, . . . , gn).

Remark 3.6. i) From (1), it follows that, for every group isomorphism U which com-
mutes with dilations,

C is tw–convex ⇔ U(C) is tw–convex.
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In particular, the tw–convexity is invariant by left translation; therefore, for every
A ⊂ IH and g ∈ IH

CHA = Lg

(

CHL
g−1A

)

.

ii) For every A ⊂ IH and g ∈ CHA,

CHA = CHA∪{g}.

In the sequel, when dealing with tw–convex hulls of subsets A of IH, we will assume,
without loss of generality, that e belongs to A.

4. The twisted convex hull of two points

In this section, we analyse the tw–convex hull of two points g1, g2 ∈ IH.

If γg1,g2 is a segment, then CH(g1, g2) = γg1,g2, and CH(g1, g2) is geodetically convex, with
respect to the Heisenberg notion of geodesics (see [6]); we will not consider this trivial case.

x
y

t

g
1

g

g
2

g ,g
1    2

gg ,g
2    1

I(g ,g )
1    2

If γg1,g2 is not a segment, then we know that γg1,g2 is an arc of parabola; moreover, the
arcs γg1,g2 and γg2,g1 draw on their vertical plane the border of the symmetric leaf I(g1, g2).
This closed set is exactly the convex hull of γg1,g2 and γg2,g1 according to the Euclidean
idea of convexity. Using Propositions 3.2 and 3.3 i), we can see that any point inside
this leaf is a tw–convex combination of a couple of points on the border; in particular,
the set I(g1, g2) is included in CH(g1, g2). We notice that the Euclidean convex hull of
g1 and g2 is always contained in the CH(g1, g2). One can wonder whether the leaf, i.e.,
the Euclidean convex hull of γg1,g2 ∪ γg2,g1, is closed under the tw–convex combination of
any couple of points in I(g1, g2). We will show in the next example that the answer is
negative; we will provide a result that characterizes geometrically CH(g1, g2).

Example 4.1. Let g1 = e and g2 = (1, 0, 1). We prove that I(g1, g2) is not tw–convex.
Indeed, easy computations give that γg1,g2(λ) = (λ, 0, λ2), γg2,g1(λ) = (1 − λ, 0, 1 − λ2),
λ ∈ [0, 1]. Taking λ equal to 1

3
and 2

3
in γg1,g2(λ), we get the points g3 =

(

1
3
, 0, 1

9

)

and

g4 =
(

2
3
, 0, 4

9

)

, respectively. Then γg3,g4(λ) =
(

1+λ
3

, 0, 1+3λ2

9

)

, i.e., γg3,g4 is the curve

t = 1+3(3x−1)2

9
, where x ∈ [1

3
, 2

3
], and it lies on the (x, t)–plane. Since 1+3(3x−1)2

9
< x2

if and only if 1
3

< x < 2
3
, it follows that γg3,g4 6⊂ I(g1, g2), showing that I(g1, g2) is not

tw–convex.

Let us state and prove our result that characterizes geometrically CH(g1, g2).
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Theorem 4.2. Let g1 and g2 be two points in IH, with g2 /∈ Hg1 and having distinct

projections on the (x, y)–plane. Then

CH(g1, g2) = R(g1, g2) ∪ {g1} ∪ {g2},

where R(g1, g2) denotes the parallelogram lying in the vertical plane πg1,g2, with two edges

that are vertical segments through g1 and g2, and the other two that are horizontal segments

on the lines rg1 and rg2 respectively.

In particular, if g2 is above Hg1, then

R(g1, g2) =
{

(x, y, t) ∈ IH : x = (1 − λ)x1 + λx2, y = (1 − λ)y1 + λy2,

t1 − 2(x1y2 − x2y1)λ < t < t2 + 2(x1y2 − x2y1)(1 − λ), λ ∈ (0, 1)
}

.
(2)

Proof. Let us assume that g2 is above g1. Since CH(g1, g2) = Lg1(CH(e, g0)), where g0 =
g−1
1 g2 = (x0, y0, t0), with t0 > 0 and (x0, y0) 6= (0, 0), from Remark 3.6 and Proposition

3.3 it suffices to prove that

CH(e, g0) = R(e, g0) ∪ {e} ∪ {g0},

where

R(e, g0) = {g ∈ IH : g = (λx0, λy0, µt0), 0 < λ < 1, 0 < µ < 1}.

For the sake of clearness, we split the proof into three parts.

i) First, we show that one can define in IH two sequences {vn} and {zn} satisfying the
properties

v0 = e z0 = g0

vn+1 ∈ γvn,zn
zn+1 ∈ γvn,zn

in such a way that the limit of vn is as close as possible to (x0, y0, 0).

Indeed, fix two real numbers a and b, with 0 < a < b < 1, and consider the two points in
γe,g0

v1 = (ax0, ay0, a
2t0), z1 = (bx0, by0, b

2t0).

The idea is the following: on the curve γv1,z1 we take the two points v2 and z2 corresponding
to the choice of the parameters λ = a and λ = b. Then, starting from γv2,z2 , we define v3

and z3 according to the same rule, and so on. Let us denote by An and Bn the following
sums

An =

n−1
∑

0

(b − a)j , Bn =

n−1
∑

0

(b2 − a2)j .

We show by induction that vn and zn can be written as:

vn = (ax0An, ay0An, a2t0Bn)

and

zn = (ax0An + x0(b − a)n, ay0An + y0(b − a)n, a2t0Bn + (b2 − a2)nt0).
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Indeed, it can be easily verified that this is true for n = 1. Assume that vn and zn have
the expressions above, and compute vn+1 and zn+1 according to the same rule. From the
definition of tw–convex combination we get that the three components of vnδa(v

−1
n zn) are

(1 − a)ax0An + a(ax0An + x0(b − a)n),

(1 − a)ay0An + a(ay0An + y0(b − a)n),

a2t0Bn + a2(−a2t0Bn + a2t0Bn + (b2 − a2)nt0),

i.e., after reductions,
ax0An+1, ay0An+1, a2t0Bn+1,

that are actually the components of vn+1. Similar computations show that zn+1 = vnδb

(v−1
n zn).

Let us now consider the limit of vn as n → ∞; we get that

lim
n→∞

vn =

(

ax0

1 − (b − a)
,

ay0

1 − (b − a)
,

a2t0
1 − (b2 − a2)

)

.

This limit point can be chosen as close as we like to the point (x0, y0, 0) provided we make
a suitable choice of the numbers a and b; indeed, if we take ak = 1/k and bk = 1−(1/k3/2),
we have that

(

akx0

1 − (bk − ak)
,

aky0

1 − (bk − ak)
,

a2
kt0

1 − (b2
k − a2

k)

)

→ (x0, y0, 0),

if k → ∞, thereby showing our first claim.

Notice that the proof above can be adapted to show that also the point (0, 0, t0) is the
limit of a suitable sequence {v′

n} defined in an analogous way starting from two points of
γg0,e.

ii) We show that any point g ∈ R(e, g0) belongs to CH(e, g0), i.e., CH(e, g0) fills the open
rectangle R(e, g0). Since we already know that I(e, g0) is contained in CH(e, g0), we need
to prove that the inclusion g ∈ CH(e, g0) holds for any g ∈ R(e, g0) \ I(e, g0). Indeed, fix
such a point g = (x, y, t). We can assume that g is below γe,g0; a similar reasoning holds
if g is above γg0,e. Consider the set

Ag =

{

(x, y, t) ∈ R(e, g0) : min

{

x0,
x + x0

2

}

< x < max

{

x0,
x + x0

2

}

,

min

{

y0,
y + y0

2

}

< y < max

{

y0,
y + y0

2

}

, 0 < t <
t

2

}

.

From the first part of the proof, there exists at least one point g∗ = (x∗, y∗, t∗) ∈ Ag

that can be reached by a finite number of tw–convex combinations starting from points
in γg1,g2. Denote by g′ the intersection between the lines joining g with g∗, and e with g0.
Since g′ ∈ I(e, g0) and g∗, g, g′ are aligned, we argue that g ∈ I(g∗, g′), thereby showing
that g ∈ CH(e, g0).
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x
y

t

e

g

g
0

e,g
0

gg ,e
0

g

g*

g’

iii) Finally, we show that the set

R(e, g0) ∪ {e} ∪ {g0}

is tw–convex. Indeed, take any two points g′ = (x′, y′, t′), g′′ = (x′′, y′′, t′′) in R(e, g0) ∪
{e} ∪ {g0}, and consider g′δλ((g

′)−1g′′). Since the two points belong to the vertical plane
through e and g0, we get that

γg′,g′′(λ) = ((1 − λ)x′ + λx′′, (1 − λ)y′ + λy′′, t′ + λ2(−t′ + t′′)).

In particular, if g′ or g′′ belongs to R(e, g0), and λ ∈ (0, 1), it is easy to see that γg′,g′′(λ)
is in R(e, g0). The cases where both points belong to {e} ∪ {g0} are trivial.

It is interesting to compare formula (2) with the following one, that provides the tw–
convex hull of g1 and g2 in the case g2 ∈ Hg1 :

CH(g1, g2) =
{

(x, y, t) ∈ IH : x = (1 − λ)x1 + λx2, y = (1 − λ)y1 + λy2,

t = t1 − 2(x1y2 − x2y1)λ, λ ∈ [0, 1]
}

.

Remark 4.3. From the results of this section, it is not hard to infer that the Euclidean
convex hull of any subset A of IH is contained in CHA.

5. The twisted convex hull of 3 points

In this section, we study the tw–convex hull CH(g1, g2, g3). We will see that, in general,
such set is not closed and not open, as in the case n = 2; moreover, it is unbounded.

Let us first show an example that sheds some light on this situation. Starting from three
points of the plane t = 0, we show that it is possible to climb in the vertical direction and
to “reach” ∞. We are not interested in the study of the boundary of the tw–convex hull,
but we will give an intuitive idea of the climb in order to obtain an unbounded set.

Example 5.1. Let us consider the sequences {kn}n≥0, {hn}n≥0 and {gn}n≥0 of points of
IH defined by

kn = (1, 0, 2n), hn = (0, 1, 2n), gn = (0, 0, 2n),

for every integer n. We will prove that the closure of CH(k0, h0, g0) contains all the points
of the previous three sequences. We show that, for every n, starting from the points



A. Calogero, G. Carcano, R. Pini / Twisted Convex Hulls in the Heisenberg Group 615

x

y

t

g
0

g

h

k

k

h

0

0

11

1

h2g

k
2

2

kn, hn and gn, it is possible to obtain, through three suitable convex hull of two points,
the points kn+1, hn+1 and gn+1. In particular, let n be fixed; from previous Theorem 4.2,
it is easy to see that

kn+1 ∈ CH(kn, hn),

x

y

t

g
0h

k

k0

0

1

CH(k ,h )00

gn+1 ∈ CH(kn+1, gn),

x

y

t

g
0

g

h

k

k0

0

1

1

CH(k ,g )01

hn+1 ∈ CH(hn, gn+1),

x

y

t

g
0

g

h

k

k

h

0

0

11

1
CH(h ,g )10

Hence, {kn+1, hn+1, gn+1} ⊂ CH(kn, hn, gn). We remark that {kn+1, hn+1, gn+1} is not a
point of CH(kn, hn, gn), so our thinking is not rigorous, but an approximation argument
gives us that

{(x, y, t) : 0 < x < 1, 0 < y < 1 − x} ⊂ CH(k0, h0, g0).

In the next theorem, we prove a result that characterizes geometrically CH(g1, g2, g3) in
the case that the projections of such points on the (x, y)–plane are not aligned. In this
case, the interior of CH(g1, g2, g3) is the interior of an unbounded prism with vertical
edges; in particular, its section with the (x, y)–plane is an open triangle whose vertices
are the projections of g1, g2 and g3 on this plane. The boundary of CH(g1, g2, g3) is the
union of the three sets CH(g1, g2), CH(g1, g3) and CH(g2, g3).

Theorem 5.2. Let g1 = (x1, y1, t1), g2 = (x2, y2, t2), g3 = (x3, y3, t3) be points in IH,
with non aligned projections on the (x, y)–plane. Then the tw–convex hull CH(g1, g2, g3)
is the set

CH(g1, g2, g3) = R(g1, g2, g3) ∪ CH(g1, g2) ∪ CH(g1, g3) ∪ CH(g2, g3),
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where

R(g1, g2, g3) =

{

g ∈ IH : g =

(

3
∑

i=1

λixi,
3
∑

i=1

λiyi, t

)

, 0 < λ1, λ2, λ3 < 1,
3
∑

i=1

λi = 1

}

Proof. For the sake of clearness, we split the proof into four parts. The first three parts
show that the interior of CH(g1, g2, g3) is R(g1, g2, g3).

i) Let τ be the function τ : T → (−∞,∞], defined by

τ(x, y) = sup{t : (x, y, t) ∈ CH(g1, g2, g3)}, (x, y) ∈ T,

where T is the open triangle in IR2 defined by

T =

{

(x, y) : x =

3
∑

i=1

λixi, y =

3
∑

i=1

λiyi, 0 < λ1, λ2, λ3 < 1,

3
∑

i=1

λi = 1

}

.

We prove that τ is continuous on T.

Let us denote by t(x, y) the set {t : (x, y, t) ∈ CH(g1, g2, g3)}. Since the Euclidean convex
hull of g1, g2 and g3 is contained in CH(g1, g2, g3), t(x, y) is not empty. Moreover, the
tw–convex hull of (x, y, t0), (x, y, t∗), where t0, t∗ ∈ t(x, y), is a vertical segment, implying
that t(x, y) is an interval whenever card(t(x, y)) ≥ 2.

Let (x′, y′), (x′′, y′′) ∈ T, t′ ∈ t(x′, y′) and t′′ ∈ t(x′′, y′′). Since the segment joining the
points (x′, y′, t′) and (x′′, y′′, t′′) belongs to CH((x′, y′, t′), (x′′, y′′, t′′)), we have that

τ((λx′ + (1 − λ)x′′, λy′ + (1 − λ)y′′) ≥ λt′ + (1 − λ)t′′,

for every t′ ∈ t(x′, y′) and t′′ ∈ t(x′′, y′′). Hence τ is concave and consequently continuous
on T.

ii) We prove that τ is unbounded from above.

Let us suppose that there exists k > 0 such that τ(x, y) < k, for every (x, y) ∈ T. Fix
(x′, y′), (x′′, y′′) ∈ T, distinct. First, we prove that

τ(x′′, y′′) − τ(x′, y′) + 2(x′y′′ − x′′y′) = 0.

Assume, by contradiction, that

τ(x′′, y′′) − τ(x′, y′) + 2(x′y′′ − x′′y′) = α > 0. (3)

For every ǫ, 0 < ǫ < α/2, there exist t′ ∈ t(x′, y′) and t′′ ∈ t(x′′, y′′) such that

0 ≤ τ ′ − t′ < ǫ/2, 0 ≤ τ ′′ − t′′ < ǫ/2. (4)

Since (x′′, y′′, t′′) is above H(x′,y′,t′), an easy computation using (2) gives that

(

(1−λ)x′+λx′′, (1−λ)y′+λy′′, t′′+2(x′y′′−x′′y′)(1−λ)−ǫ/2
)

∈ CH
(

(x′, y′, t′), (x′′, y′′, t′′)
)

,
(5)
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for every λ ∈ (0, 1). Clearly, CH
(

(x′, y′, t′), (x′′, y′′, t′′)
)

⊂ CH(g1, g2, g3) and by (3)–(5)
we get

τ((1 − λ)x′ + λx′′, (1 − λ)y′ + λy′′) ≥ t′′ + 2(x′y′′ − x′′y′)(1 − λ) − ǫ/2

> τ(x′′, y′′) − ǫ + 2(x′y′′ − x′′y′)(1 − λ)

= τ(x′, y′) + α − ǫ − 2(x′y′′ − x′′y′)λ

> τ(x′, y′) + α/2 − 2(x′y′′ − x′′y′)λ.

(6)

From (6) and the continuity of τ we obtain that

τ(x′, y′) = lim
λ→0+

τ((1 − λ)x′ + λx′′, (1 − λ)y′ + λy′′)

> α/2 + τ(x′, y′),

a contradiction, since α > 0. Hence, for every (x′, y′), (x′′, y′′) ∈ T fixed and distinct we
have

τ(x′′, y′′) − τ(x′, y′) + 2(x′y′′ − x′′y′) = 0.

This equation gives that, for every (x′, y′), (x′′, y′′), (x′′′, y′′′) ∈ T,

(x′y′′ − x′′y′) + (x′′y′′′ − x′′′y′′) + (x′′′y′ − x′y′′′) = 0,

i.e., these points are aligned. We conclude that the projections on t = 0 of the points
g1, g2, g3 are aligned, contradicting our assumptions. So, τ is unbounded.

iii) Our purpose in this third part is to prove that τ is identically ∞.

If there exists at least one point (x, y) ∈ T such that τ(x, y) = ∞, the concavity of τ
implies our assertion. Let us suppose that τ(T ) ⊂ (−∞,∞). Then we can find a sequence
of points

{

(x′
n, y′

n)
}

n
of T such that τ(x′

n, y′
n) > n. For every ǫ > 0 there exists a sequence

{t′n}n such that

τ(x′
n, y′

n) − t′n < ǫ, (x′
n, y′

n, t
′
n) ∈ CH(g1, g2, g3),

for every n. Let us fix a point (x′, y′, t′) ∈ CH(g1, g2, g3); for n large, the point (x′
n, y′

n, t′n)
is above H(x′,y′,t′). Using (2), we have that, for n large enough,

(

(1−λ)x′+λx′
n, (1−λ)y′+λy′

n, t
′
n+2(x′y′

n−x′
ny′)(1−λ)−ǫ

)

∈ CH
(

(x′, y′, t′), (x′
n, y

′
n, t

′
n)
)

,

for every λ ∈ (0, 1). The continuity of τ gives that, for every n,

τ(x′, y′) = lim
λ→0+

τ((1 − λ)x′ + λx′
n, (1 − λ)y′ + λy′

n)

≥ lim
λ→0+

(t′n + 2(x′y′
n − x′

ny′)(1 − λ) − ǫ)

> n + 2(x′y′
n − x′

ny′) − ǫ.

Hence τ(x′, y′) = ∞.

In a similar way it is possible to prove that inf{t : (x, y, t) ∈ CH(g1, g2, g3)} = −∞, for
every (x, y) ∈ T.
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iv) From iii), it follows that

CH(g1, g2, g3) ⊇ R(g1, g2, g3) ∪ CH(g1, g2) ∪ CH(g1, g3) ∪ CH(g2, g3).

We need to show that the right hand side of the inclusion is tw–convex. Of course,
CH(gi, gj) is tw–convex, and R(g1, g2, g3) is tw–convex by iii). Suppose that g ∈ CH(gi, gj)
and g′ ∈ R(g1, g2, g3) or g′ ∈ CH(gi, gk) where the indexes i, j, k are all different; then,
R(g, g′) ⊂ R(g1, g2, g3). This concludes the proof.

Finally, let us consider the set CH(g1, g2, g3) where the projections of g1, g2, g3 onto the
(x, y)–plane are aligned. We assume, without loss of generality, that one of the three
points is e.

Remark 5.3. Let e, g1, g2 be distinct points in IH that belong to the same 2–dimensional
subgroup. Let g1 = (αs1, βs1, t1), g2 = (αs2, βs2, t2). Denote by sm and sM the minimum
and the maximum, respectively, of {s1, s2, 0}, and by tm and tM the minimum and the
maximum of {t1, t2, 0}. Then the tw–convex hull CH(e, g1, g2) is the set

CH(e, g1, g2) = R′(e, g1, g2) ∪ CH(e, g1) ∪ CH(g1, g2) ∪ CH(g2, e),

where R′(e, g1, g2) = {g ∈ IH : (αs, βs, t), sm < s < sM , tm < t < tM} .

The proof is left to the reader. We only note that the previous remark includes the
different situations where three, two or none of the projections are equal. The following
example gives an idea of the situation.

Example 5.4. Let g1 = (2, 8, 2), g2 = (1, 4,−2), g3 = (2, 8, 4) and g4 = (2, 8, 1). In the
next picture some tw–convex hulls are sketched, where the points of the broken lines are
not included and the points of the continuous lines are included.

x

y

t

g

g

2

1CH(e,g ,g )
21e

g
3

x

y

t

g
1CH(e,g ,g )

31e

CH(g ,g ,g )
31 4

g
3

x

y

t

g
1

g
4

6. The twisted convex hull of a set A

Let us first consider the tw–convex hull of n points of IH in the case n ≥ 4. At this point
there should be no surprises to the reader; indeed, passing from the case of three points to
the case of n points, with n ≥ 4, and with non aligned projections on t = 0, the situation
is not a novelty.

Theorem 6.1. Let A = {g1, g2, . . . , gn} ⊂ IH, where gi = (xi, yi, ti). Suppose that the

projection onto the (x, y)–plane of any B ⊆ A, with card (B) = 3 is not contained in a

straight line. Then the tw–convex hull CH(g1, g2, . . . , gn) is the set

CH(g1, g2, . . . , gn) = R(g1, g2, . . . , gn) ∪
(

⋃

1≤i<j≤n

CH(gi, gj)
)

,
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where

R(g1, g2, . . . , gn) =

{

g ∈ IH : g =

(

n
∑

i=1

λixi,

n
∑

i=1

λiyi, t

)

, 0 < λ1, . . . , λn < 1,

n
∑

i=1

λi = 1

}

.

The proof may be omitted since it is very similar to the case n = 3. If there are three points
gi, gj, gk that belong to the same 2–dimensional subgroup, we can argue as in Example
5.4.

Finally, assume that A ⊆ IH. From previous arguments, we easily deduce the following
result:

Theorem 6.2. Let A be a subset of IH. Denote by A0 the interior of the Euclidean convex

hull in IR2 of the set {(x, y) : ∃t ∈ IR, (x, y, t) ∈ A}.

If A is an open subset of IH, then the tw–convex hull CHA of A is given by

CHA = {g = (x, y, t) ∈ IH : (x, y) ∈ A0, t ∈ IR}.

If A is not open, then the interior of the tw–convex hull CHA of A is

int(CHA) = {g = (x, y, t) ∈ IH : (x, y) ∈ A0, t ∈ IR}.

Acknowledgements. We would like to thank an anonymous referee for his/her careful reading

of the paper, and for the given suggestions that deeply improved a previous version.

References

[1] Z. M. Balogh, M. Rickly: Regularity of convex functions on Heisenberg groups, Ann. Sc.
Norm. Sup. Pisa, Cl. Sci. (5), Vol. II (2003) 847–868.

[2] O. Calin, V. Mangione: Geodesics with constraints on Heisenberg manifolds, Result. Math.
44 (2003) 44–53.

[3] A. Calogero, G. Carcano, R. Pini: Optimization on the Heisenberg group, Optimization 55
(2006) 387–403.

[4] D. Danielli, N. Garofalo, D. M. Nhieu: Notions of convexity in Carnot groups, Commun.
Anal. Geom. 11 (2003) 263–341.

[5] G. Lu, J. J. Manfredi, B. Stroffolini: Convex functions on the Heisenberg group, Calc. Var.
Partial Differ. Equ. 19 (2004) 1–22.

[6] R. Monti, M. Rickly: Geodetically convex sets in the Heisenberg group, J. Convex Analysis
12 (2005) 187–196.


