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We find a criterion for uniform rotundity in every direction (URED) of Calderón-Lozanovskǐı sequence
spaces solving Problem XII from [7]. In order to do it, we study properties of the directed modulus of
convexity of Banach spaces. Next we introduce and study new notions such as uniform rotundity in every
interval (UREI) and uniform monotonicity in every interval (UMEI). They are crucial to get the main
criterion, that is a Köthe sequence space is UREI iff it is URED and order continuous. Then we show
the important (for further investigations) characterization of the property UREI on the positive cone of
Köthe sequence space. Applying that we prove the characterization mentioned at the beginning of the
abstract. As a corollary, we obtain the criterion for URED of Orlicz-Lorentz sequence spaces, which has
not been proved until now.
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1. Introduction

The fundamental geometric property called uniform rotundity (introduced by J. A. Clark-
son in 1936, [8]) is applied in many subjects of mathematics (approximation theory, op-
erator theory, fixed point theory and others). There is a lot of generalizations of this
property. The uniform rotundity in every direction (URED) is one of them. It was intro-
duced by A. L. Garkavi in [15] to characterize those Banach spaces in which every bounded
subset has at most one Chebyshev center. On the other hand, URED is an important
notion in the metric fixed point theory (see [6]). Namely, V. Zizler in [36] showed that
a Banach space that is URED possesses normal structure, a property that guarantees
the weak fixed point property (WFPP ) (see [23]). Consequently, if a Banach space is
URED, then it has WFPP. Note also that an URED Banach space need not have the
fixed point property (FPP ) in general. Really, it is enough to take the l∞ equipped with
the norm defined by M. A. Smith in [33]. Such a renormed l∞ is URED. On the other
hand, P. N. Dowling, C. J. Lennard and B. Turett proved that l∞ cannot be renormed
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to have FPP (see [11]). Note also that some generalizations of URED were considered
by M. A. Smith in [32] and [34]. It is worth to mention that the class of URED Banach
spaces is quite large. For example, each separable Banach space has an equivalent norm
that is URED (see [36]).

Our paper deals with the property URED in Calderón-Lozanovskǐı sequence spaces. The
Calderón-Lozanovskǐı spaces are widely investigated because of their role in the interpo-
lation theory (see [28], [29]). The study of geometric properties of these spaces became
interesting for many mathematicians (see e.g. [5], [12], [13], [14], [17], [25]). Sufficient
conditions for various properties of Calderón-Lozanovskĭı spaces have been presented in
[5], [13] and [17], but the necessity of some among those conditions was only proved and
it was concluded that some of sufficient conditions are not necessary. It has been shown
in [5, Remark 3] that geometry of Calderón-Lozanovskĭı space Eϕ can be �good� even if
geometry neither of E nor of ϕ is �good�. Namely, a couple of E and ϕ can be found such
that ϕ is not strictly convex and E is not strictly convex but Eϕ is uniformly convex. On
the base of this phenomena there was posed a natural open problem in [7] to find criteria
for geometric properties such as rotundity, uniform rotundity, local uniform rotundity,
URED and others in Calderón-Lozanovskĭı spaces. We solve this problem for URED
in the case of Calderón-Lozanovskĭı sequence spaces. The general approach comes from
[25]. However, the case of URED required a lot of new ideas. First we introduced a new
notion of uniform rotundity in every interval (UREI) that is equivalent in Köthe sequence
spaces to both URED and order continuity. This made possible studying of URED in
Calderón-Lozanovskĭı sequence spaces eϕ with e being order continuous. Further, it is
known that the crucial point in the investigations of geometric properties of spaces Eϕ is
the appropriate monotonicity property (see [14], [18], [25]). We introduce the notion of
uniform monotonicity in every interval (UMEI) which is suitable for UREI. Moreover,
to find criteria for a given geometric property A in Calderón-Lozanovskĭı spaces Eϕ, it is
very important to prove that any Köthe space E has the property A if and only if E+

has the property A. We showed the result of this type for UREI. Finally, we applied our
general theorems to characterize URED in Orlicz-Lorentz sequence spaces.

2. Preliminaries

Let S(X) (resp. B(X)) be the unit sphere (resp. the closed unit ball) of a real Banach
space (X, ‖·‖X).

We say that a Banach space X is rotund (X ∈ (R) for short) if for every x, y ∈ S(X)
with x 6= y we have ‖x+ y‖X < 2. X is called uniformly rotund in every direction

(X ∈ (URED) for short) if for any ε ∈ (0, 1) and z ∈ S(X) there exists δ(ε, z) ∈ (0, 1)
such that ∥∥∥

x+ y

2

∥∥∥
X
≤ 1− δ(ε, z)

for any x, y ∈ S(X) with x − y = εz. This form of the definition of URED comes from
[36, Proposition 1, (10)]. A function δ→X : [0, 2]×X \ {0} → [0, 1] defined by the formula

δ→X (ε, z) = inf
{
1−

∥∥∥
x+ y

2

∥∥∥
E
: x, y ∈ B (X) , x− y = λz for some λ > 0, ‖x− y‖X ≥ ε

}

is said to be the directed modulus of convexity. Clearly, X ∈ (URED) if and only if for
any ε ∈ (0, 2] and z ∈ X \ {0} we have δ→X (ε, z) > 0 (see also [21]).
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Let (T,Σ, µ) be a σ−finite and complete measure space. By L0 = L0(T ) we denote the
set of all µ-equivalence classes of real valued measurable functions defined on T.

A Banach space E = (E, ‖·‖E) is said to be a Köthe space if E is a linear subspace of L0

and

(i) if x ∈ E, y ∈ L0 and |y| ≤ |x| µ-a.e., then y ∈ E and ‖y‖E ≤ ‖x‖E ;

(ii) there exists a function x in E that is positive on the whole T (see [22] and [27]).

Every Köthe space is a Banach lattice under the obvious partial order (x ≥ 0 if x (t) ≥ 0
for µ-a.e. t ∈ T ). In particular, if we consider the space E over the non-atomic measure
µ, then we shall say that E is a Köthe function space. If we replace the measure space
(T,Σ, µ) by the counting measure space

(
N, 2N,m

)
, then we will say that E is a Köthe

sequence space and we denote it by e. In the last case the symbol ei = (0, ..., 0, 1, 0, ...)
stands for the i-th unit vector.

The set E+ = {x ∈ E : x ≥ 0} is called the positive cone of E. For any subset A ⊂ E
define A+ = A ∩ E+.

A point x ∈ E is said to have order continuous norm if for any sequence (xm) in E such
that 0 ≤ xm ≤ |x| and xm → 0 µ-a.e. we have ‖xm‖E → 0. A Köthe space E is called
order continuous (E ∈ (OC)) if every element of E has an order continuous norm (see
[22] and [27]).

E is said to be strictly monotone (E ∈ (SM)) if for each 0 ≤ y ≤ x with y 6= x we have
‖y‖E < ‖x‖E . We say that E is uniformly monotone (E ∈ (UM)) provided for every
q ∈ (0, 1) there exists p ∈ (0, 1) such that for all 0 ≤ y ≤ x satisfying ‖x‖E = 1 and
‖y‖E ≥ q we have ‖x− y‖E ≤ 1− p (see [3], [18]).

In the whole paper ϕ denotes an Orlicz function, i.e. ϕ : R → [0,∞], it is convex, even,
vanishing and continuous at zero, left continuous on (0,∞) and not identically equal to
zero. Denote

aϕ = sup {u ≥ 0 : ϕ (u) = 0} and bϕ = sup {u ≥ 0 : ϕ (u) < ∞} .

We write ϕ > 0 when aϕ = 0 and ϕ < ∞ if bϕ = ∞. Let ϕr = ϕχGϕ
, where

Gϕ =

{
{0} ∪ (aϕ, bϕ] if ϕ (bϕ) < ∞

{0} ∪ (aϕ, bϕ) otherwise.
(1)

The function ϕ is strictly convex if ϕ ((u+ v) /2) < (ϕ(u) + ϕ(v))/ 2 for all u, v ∈ R with
u 6= v.

Define on L0 a convex semimodular Iϕ by

Iϕ(x) =

{
‖ϕ ◦ x‖E if ϕ ◦ x ∈ E

∞ otherwise,

where (ϕ ◦ x) (t) = ϕ (x (t)) , t ∈ T. By the Calderón-Lozanovskĭı space Eϕ we mean

Eϕ = {x ∈ L0 : Iϕ(cx) < ∞ for some c > 0}
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equipped with so called Luxemburg norm defined by

‖x‖ϕ = inf {λ > 0 : Iϕ (x/λ) ≤ 1} .

We will assume in the whole paper that E has the Fatou property, that is, if 0 ≤ xn ↑ x ∈
L0 with (xn)

∞
n=1 in E and supn ‖xn‖E < ∞, then x ∈ E and ‖x‖E = limn ‖xn‖E . Since

E has the Fatou property, Eϕ has also this property (see [12]), whence Eϕ is a Banach
space.

We say an Orlicz function ϕ satisfies condition ∆2(0) (resp. ∆2(∞)) if there exist K > 0
and u0 > 0 such that ϕ(u0) > 0 (resp. ϕ(u0) < ∞) and the inequality ϕ(2u) 6 Kϕ(u)
holds for all u ∈ [0, u0] (resp. u ∈ [u0,∞)) . If there existsK > 0 such that ϕ(2u) 6 Kϕ(u)
for all u > 0, then we say that ϕ satisfies condition ∆2(R+). We write for short ϕ ∈ ∆2(0),
ϕ ∈ ∆2(∞), ϕ ∈ ∆2(R+), respectively.

For a Köthe space E and an Orlicz function ϕ we say that ϕ satisfies condition ∆E
2

(ϕ ∈ ∆E
2 for short) if:

1) ϕ ∈ ∆2(0) whenever E →֒ L∞;

2) ϕ ∈ ∆2(∞) whenever L∞ →֒ E;

3) ϕ ∈ ∆2(R+) whenever neither L
∞ →֒ E nor E →֒ L∞ (see [17]),

where the symbol E →֒ F stands for the continuous embedding of the space E into the
space F.

Relationships between the modular Iϕ and the norm ‖·‖ϕ are collected in [25].

If E = L1 (e = l1), then Eϕ (eϕ) is the Orlicz function (sequence) space equipped with the
Luxemburg norm. If E = Λω (e = λω), then Eϕ (eϕ) is the corresponding Orlicz-Lorentz
function (sequence) space denoted by (Λω)ϕ ((λω)ϕ) and equipped with the Luxemburg
norm (see [4], [17], [19] and [20]).

3. Results

For any ε ∈ [0, 1] and z ∈ E \ {0} define

δ→E+
(ε, z)

= inf
{
1−

∥∥∥
x+ y

2

∥∥∥
E
: x, y ∈ B (E)+ , x− y = λz for some λ > 0, ‖x− y‖E ≥ ε

}
.

The following lemma was proved by A. Kamińska and B. Turett in [21] for the directed
modulus of convexity δ→X (ε, z) , where X is an arbitrary Banach space. Since the positive
cone E+ has not a linear structure, so the result proved by them cannot be directly applied
for E+. Anyway, their idea can be applied in our case with some essential modifications.
To avoid the repetition of argumentations presented by them, preserving denotations used
in their proof of Theorem 2, we limit ourselves only to these modifications.

Lemma 3.1. Let E be a Köthe space and E+ be the positive cone of E.

(a) For each z ∈ E \ {0} the function δ→E+
(·, z) is continuous on [0, 1).

(b) For each ε ∈ [0, 1] the function δ→E+
(ε, ·) is continuous on E \ {0}.
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Proof. The proof of (a) is analogous to that concerning the continuity of the modulus
of convexity (see [30]). To prove (b), fix ε ∈ [0, 1] . Let z ∈ E \ {0} and take an arbitrary
sequence (zn) converging to z with ‖z‖E ≤ 2 ‖zn‖E . For each n ∈ N, there exist xn, yn ∈
B (E)+ and λn > 0 such that xn − yn = λnzn, ‖xn − yn‖E ≥ ε and

1

n
+ δ→E+

(ε, zn) ≥ 1−
∥∥∥
xn + yn

2

∥∥∥
E
.

Moreover

λn =
‖xn − yn‖E

‖zn‖E
≤

4

‖z‖E

for any n ∈ N. Let αn (t) = 0 ∧ λn (zn − z) (t) and βn (t) = 0 ∨ λn (zn − z) (t) , t ∈ T. By
boundedness of (λn) and inequalities

‖αn‖E ≤ λn ‖zn − z‖E , ‖βn‖E ≤ λn ‖zn − z‖E ,

we conclude that ‖αn‖E → 0 and ‖βn‖E → 0. Putting x̃n = xn − αn and ỹn = yn + βn,
we obtain x̃n, ỹn ∈ E+ and

x̃n − ỹn = xn − yn − (αn + βn) = λnzn − λn (zn − z) = λnz.

Define

xn =
x̃n

1 + λn ‖zn − z‖E
, yn =

ỹn
1 + λn ‖zn − z‖E

.

Obviously, xn, yn ∈ B (E)+ . We have also

‖xn − xn‖E =

∥∥∥∥
xn − αn

1 + λn ‖zn − z‖E
− xn

∥∥∥∥
E

=

∥∥∥∥
λn ‖zn − z‖E xn + αn

1 + λn ‖zn − z‖E

∥∥∥∥
E

≤ ‖αn‖E + λn ‖zn − z‖E → 0

and analogously

‖yn − yn‖E ≤ ‖βn‖E + λn ‖zn − z‖E → 0.

Hence

bn = ‖(xn − yn)− (xn − yn)‖E → 0.

Moreover, ‖xn − yn‖E ≥ ε − bn and xn − yn = λnz /(1 + λn ‖zn − z‖E) . Now, repeating
the same argumentation as in the proof of Theorem 2(b) from [21], we get the lower
semicontinuity of δ→E+

(ε, ·) , i.e.

lim inf
n→∞

δ→E+
(ε, zn) ≥ δ→E+

(ε, z) .

To prove the upper semicontinuity of δ→E+
(ε, ·) , put

cn =
2 ‖zn − z‖E

‖z‖E
and εn = (1 + cn) (ε+ cn) .



626 P. Kolwicz / R. Płuciennik / On Uniform Rotundity in Every Direction in ...

Then cn → 0, εn > ε and εn → ε. For any n ∈ N there are un, wn ∈ B (E)+ and αn > 0
such that

1

n
+ δ→E+

(εn, z) ≥ 1−
∥∥∥
un + wn

2

∥∥∥
E

with un − wn = κnz and ‖un − wn‖E ≥ εn. Obviously, |κn| ≤ 2/ ‖z‖E for any n ∈ N. Let
γn (t) = 0 ∧ κn (z − zn) (t) and ρn (t) = 0 ∨ κn (z − zn) (t) , t ∈ T. Similarly as above, we
conclude that ‖γn‖E → 0 and ‖ρn‖E → 0. Define

un =
un − γn

1 + κn ‖zn − z‖E
, wn =

wn + ρn
1 + κn ‖zn − z‖E

.

Then un, wn ∈ B (E)+ and un − wn = κnzn/ (1 + κn ‖zn − z‖E) . Moreover,

‖un − wn‖E =

∥∥∥∥
un − wn − (γn + ρn)

1 + κn ‖zn − z‖E

∥∥∥∥
E

≥
‖un − wn‖E

1 + κn ‖zn − z‖E
−

κn ‖zn − z‖E
1 + κn ‖zn − z‖E

≥
εn

1 + cn
− cn = ε.

Since ‖un − un‖E → 0 and ‖wn − wn‖E → 0, analogously as in [21], we get

lim sup
n→∞

δ→E+
(ε, zn) ≤ δ→E+

(ε, z) ,

which finishes the proof.

Lemma 3.2. Let E be an URED Köthe space. If z1, z2 ∈ E \ {0} and |z1| = |z2| , then
δ→E (ε, z1) = δ→E (ε, z2) for any ε > 0.

Proof. Let z1, z2 ∈ E \ {0} and |z1| = |z2| . Fix ε > 0. Take arbitrary x, y ∈ B(E) with
x− y = λz1 for some λ > 0 and ‖x− y‖E ≥ ε. Denote

A = {t ∈ supp z1 : z1(t) = −z2(t)} .

Define

x̃(t) =

{
x(t) for t ∈ T r A

−x(t) for t ∈ A,
ỹ(t) =

{
y(t) for t ∈ T r A

−y(t) for t ∈ A.

Then x̃− ỹ = λz2, ‖x̃− ỹ‖E ≥ ε and

|x̃(t) + ỹ(t)| =
∣∣(x(t) + y(t))χA(t)− (x(t) + y(t))χT\A(t)

∣∣ = |x(t) + y(t)|

for any t ∈ T. Hence

∥∥∥
x+ y

2

∥∥∥
E
=

∥∥∥∥
x̃+ ỹ

2

∥∥∥∥
E

≤ 1− δ→E (ε, z2).

Consequently,

δ→E (ε, z2) ≤ 1−
∥∥∥
x+ y

2

∥∥∥
E

for any x, y ∈ B(E) with x− y = λz1 for some λ > 0 and ‖x− y‖E ≥ ε. By the definition
of infimum, δ→E (ε, z2) ≤ δ→E (ε, z1). The opposite inequality we get by the symmetry.
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Proposition 3.3. The following conditions are equivalent:

(a) The Köthe space E is URED.

(b) For any ε ∈ (0, 2] and z ∈ E+ \ {0} there exists δ(ε, z) ∈ (0, 1) such that

∥∥∥
x+ y

2

∥∥∥
E
≤ 1− δ(ε, z)

for any x, y ∈ B(E) with x− y = λz for some λ > 0 and ‖x− y‖E ≥ ε.

Proof. The implication (a) ⇒ (b) is obvious. To prove (b) ⇒ (a) fix ε ∈ (0, 2] and
z ∈ E\{0} . Take arbitrary x, y ∈ B(E) with x−y = λz for some λ > 0 and ‖x− y‖E ≥ ε.
Denote

A = {t ∈ supp z : z(t) = |z(t)|} and B = {t ∈ supp z : z(t) = − |z(t)|} .

Obviously A ∩ B = ? and A ∪ B = supp |z| . Define x̃ and ỹ as in the proof of Lemma
3.2. Then x̃− ỹ = λ |z| , ‖x̃− ỹ‖E ≥ ε and there is δ(ε, |z|) > 0 such that

∥∥∥
x+ y

2

∥∥∥
E
=

∥∥∥∥
x̃+ ỹ

2

∥∥∥∥
E

≤ 1− δ(ε, |z|).

It is known that UR or even LUR of Köthe space implies OC (see [10] or [18]). However
this is not the case of URED since l∞ can be renormed to be URED (see [33, Counterex-
ample 2]). On the other hand OC of E seems to be useful in study rotundity properties
of Eϕ (see [12], [13], [14] and [25]). It leads to the following property called UREI that is
slightly stronger than URED in general Köthe spaces and it is equivalent to both URED
and OC in Köthe sequence spaces (see Theorem 3.8 below).

Definition 3.4. We say that a Köthe space E [the positive cone E+ of E] is uniformly

rotund in every interval (E ∈ (UREI) for short) [resp. E+ ∈ (UREI)] provided for any
ε > 0 and z ∈ E\ {0} there exists δ(ε, z) ∈ (0, 1) such that ‖x+ y‖E ≤ 2 (1− δ(ε, z)) for
any x, y ∈ B(E) [resp. x, y ∈ B(E)+] with |x− y| ≤ |z| and ‖x− y‖E ≥ ε.

It is easy to see that if E ∈ (UREI) , then E ∈ (URED) .

The monotonicity property of Köthe space E is crucial in order to get criteria for the
respective rotundity property of Eϕ. For example SM, UM, LLUM are crucial for R,
UR, LUR of Eϕ, respectively (see [12], [14], [18] and [25]).

Definition 3.5. We say that a Köthe space E is uniformly monotone in every interval

(E ∈ (UMEI) for short) provided for any ε > 0 and z ∈ E+ there exists δ(ε, z) ∈ (0, 1)
such that ‖x− y‖E ≤ 1 − δ(ε, z) for any x, y ∈ B(E)+ with 0 ≤ y ≤ x, ‖x‖E = 1,
‖y‖E ≥ ε and y ≤ z.

It is known that monotonicity property of E (for example SM, UM, LLUM) is a restric-
tion of an appropriate rotundity property (R, UR, LUR, resp.) to couples of comparable
nonnegative elements (see [18]). This is also the case with the pair UMEI and UREI.
Namely,
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Lemma 3.6. Let E be a Köthe space. If E ∈ (UREI), then E ∈ (UMEI). More-

over, if we restrict UREI to couples of compatible nonnegative elements, then the inverse

statement is true.

Proof. The proof is analogous to that of Theorem 1 in [18]. We present the proof for
the sake of convenience. Assume that E ∈ (UREI) . Let ε > 0, z ∈ E+\ {0} . Take
x, y ∈ B (E)+ with 0 ≤ y ≤ x, ‖x‖E = 1, ‖y‖E ≥ ε and y ≤ z. Set u = x and v = x− y.
Then |u− v| ≤ z and ‖u− v‖E ≥ ε. By the Definition 3.4, there is a δ1 = δ (ε, z) such
that ‖(u+ v) /2‖E ≤ 1− δ1. Consequently,

‖x− y‖E ≤ ‖x− y/2‖E = ‖(u+ v) /2‖E ≤ 1− δ1.

The proof of the inverse statement is similar.

Lemma 3.7. Let E be a Köthe space. If E ∈ (UMEI), then E ∈ (OC) .

Proof. Suppose that E /∈ (OC) . Then, in view of the well known result of Ando [2] (see
also [27]), there exists a sequence (un) in E+ with ‖un‖E = 1, suppun ∩ suppum = ∅ and
a function u ∈ E+ such that un ≤ u for each n ∈ N. Set

v =
∞∑

k=1

uk, z =
v

‖v‖E
, yn =

un

‖v‖E
and x = z.

It is easy to check that, taking ε = 1/ ‖u‖E , we get ‖yn‖E ≥ ε.Moreover, ‖
∑∞

k=1 uk − un‖E
→ ‖

∑∞
k=1 uk‖E as n → ∞ (see the proof of Proposition 2.1 in [10]), whence ‖x− yn‖E →

1. A contradiction.

For an analogous result concerning lower local uniform monotonicity or Kadec-Klee prop-
erty see [10, Proposition 2.1].

Theorem 3.8. Let e be a Köthe sequence space. Then e ∈ (UREI) if and only if e ∈
(OC) and e ∈ (URED) .

Proof. UREI implies URED in an obvious manner. Hence, in view of Lemma 3.6 and
3.7, only the sufficiency needs to be proved. Let ε > 0, z ∈ e. Take x, y ∈ B (e) with
|x− y| ≤ |z| and ‖x− y‖e ≥ ε. It is enough to show that

δI (ε, z) = inf {δ→e (ε, |w|) : |w| ≤ |z| , ‖w‖e ≥ ε} > 0.

Suppose for the contrary that δI (ε, z) = 0. Hence, we find a sequence (wn) with |wn| ≤ |z| ,
‖wn‖e ≥ ε and δ→e (ε, |wn|) → 0. Since each order interval is norm compact in order
continuous Köthe sequence space (see [35, Theorem 6.1]), passing to a subsequence, if
necessary, we may assume that there is an element w0 ∈ [0, |z|] such that ‖|wn| − w0‖e →
0. Since the directed modulus of convexity δ→e (ε, ·) is continuous function for each ε > 0
with respect to norm topology in e (see [21, Theorem 2]), we get δ→e (ε, |wn|) → δ→e (ε, w0) .
On the other hand ‖wn‖e ≥ ε, so ‖w0‖e ≥ ε. Applying the assumption that e ∈ (URED) ,
we get δ→e (ε, w0) > 0. This contradiction shows that δI (ε, z) > 0. Since

0 < δI (ε, z) ≤ inf {1− ‖(x+ y) /2‖e : x, y ∈ B (e) , |x− y| ≤ |z| , ‖x− y‖e ≥ ε} ,

by Definition 3.4, we finishes the proof.
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In the sequel we will need the following characterization of UMEI. The idea of proof has
been taken from [18, Theorem 6]. However, some parts do not go the same way.

Proposition 3.9. Let E be a Köthe space. The following assertions are equivalent:

(a) E ∈ (UMEI) .

(b) For each ε > 0 and z ∈ E+there is σ = σ (ε, z) > 0 such that for any x, y ∈ E+ with

‖x‖E = 1, ‖y‖E ≥ ε and y ≤ z we have ‖x+ y‖E ≥ 1 + σ.

(c) For each ε > 0 and z ∈ E+ there is ρ = ρ (ε, z) > 0 such that for any x, y ∈ E with

x ⊥ y, ‖x‖E = 1, ‖y‖E ≥ ε and |y| ≤ z we have ‖x+ y‖E ≥ 1 + ρ.

(d) For each ε > 0 and z ∈ E+ there is η = η (ε, z) > 0 such that for any x, y ∈ E+ with

‖x‖E = 1, y ≤ x and y ≤ z there holds
∥∥xχT\B

∥∥
E
≤ 1 − η whenever ‖yχB‖E ≥ ε

and B ∈ Σ.

Proof. (a) ⇒ (b) . Take ε > 0 and z ∈ E+. Let x, y ∈ B (E)+ be such that ‖x‖E = 1,
‖y‖E ≥ ε and y ≤ z. Defining x1 =

x+y
a

and y1 =
y
a
, where a = ‖x+ y‖E ≥ 1, we notice

that 0 ≤ y1 ≤ x1, ‖x1‖E = 1, ‖y1‖E ≥ ε
2
(because we can assume that a ≤ 2) and y1 ≤ z.

Since E ∈ (UMEI) , there exists δ = δ
(
ε
2
, z
)
such that

1

a
=

∥∥∥
x

a

∥∥∥
E
=

∥∥∥
x+ y

a
−

y

a

∥∥∥
E
= ‖x1 − y1‖E ≤ 1− δ.

Hence, taking σ = σ (ε, z) = min
{
1, δ

1−δ

}
> 0, we get

‖x+ y‖E = a ≥
1

1− δ
= 1 +

δ

1− δ
= 1 + σ.

The implication (b) ⇒ (c) is obvious.

(c) ⇒ (d) . Let ε > 0 and z ∈ E+. Take arbitrary x, y and a set B ∈ Σ as in (d) . Put

x1 =
xχT\B∥∥xχT\B

∥∥
E

, y1 =
yχB

2
∥∥xχT\B

∥∥
E

.

Then x1 ⊥ y1, ‖x1‖E = 1 and ‖y1‖E ≥ ε/2.Wemay clearly suppose that
∥∥xχT\B

∥∥
E
≥ 1/2,

whence y1 ≤ z. Then

1∥∥xχT\B

∥∥
E

=

∥∥∥∥∥
xχT\B + xχB∥∥xχT\B

∥∥
E

∥∥∥∥∥
E

≥ ‖x1 + y1‖E ≥ 1 + ρ,

where ρ = ρ (ε/2, z) is from (c) . So

∥∥xχT\B

∥∥
E
≤

1

1 + ρ
= 1− η

with η = η (ε, z) = ρ
1+ρ

.

(d) ⇒ (a) . Let ε > 0 and z ∈ E+. Take x, y ∈ B (E) with 0 ≤ y ≤ x, ‖x‖E = 1, ‖y‖E ≥ ε
and y ≤ z. Set B = {t ∈ T : y (t) ≤ εx (t) /2} . Then ‖yχB‖E ≤ ε/2 and consequently∥∥yχT\B

∥∥
E
≥ ε/2. Hence, by (d), we have

‖x− y‖E ≤
∥∥xχB + (x− εx/2)χT\B

∥∥
E
≤ 1− ε/2 +

ε

2
‖xχB‖E ≤ 1− ε/2 +

ε

2
(1− η1) ,

where η1 = η (ε/2, z) is from (d) . Now, taking δ = δ (ε, z) = ε
2
η1, we finish the proof.
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It is worth mentioning that property UMEI is applied in the ergodic theory (see Theorem
5.1 in [1], condition (c) is just UMEI according to Proposition 3.9(b)).

The following characterization we shall need in order to prove the main result.

Proposition 3.10. Suppose that e is a Köthe sequence space. Then eϕ ∈ (UMEI) if

and only if e ∈ (UMEI) , ϕ > 0, ϕ (bϕ) infi ‖ei‖e ≥ 1 and ϕ ∈ ∆e
2.

Proof. Necessity. The fact eϕ ∈ (UMEI) implies that eϕ ∈ (SM) . Consequently, by
Proposition 2.1(i) and Lemma 2.5 from [25], we get that ϕ > 0 and ϕ (bϕ) infi ‖ei‖e ≥ 1.
To prove that e ∈ (UMEI) we apply Proposition 3.9. Let ε > 0 and z ∈ e+. Take x, y ∈ e
with x ⊥ y, ‖x‖e = 1, ‖y‖e ≥ ε and |y| ≤ z.
If ‖z‖e ≤ 1, then set w = ϕ−1

r ◦|x| , u = ϕ−1
r ◦|y| . Then u,w are well defined by Proposition

2.1(ii) from [25]. Moreover u ⊥ w, Iϕ (w) = 1 and Iϕ (u) ≥ ε. Hence ‖w‖ϕ = 1, ‖u‖ϕ ≥

min {ε, 1} . Furthermore u = ϕ−1
r ◦ |y| ≤ ϕ−1

r ◦ z. Consequently, ‖u+ w‖ϕ ≥ 1+ ρ1, where

ρ1 = ρeϕ (ε ∧ 1, ϕ−1
r ◦ z) is from Proposition 3.9(c). Finally

‖x+ y‖e = ‖ϕ ◦ w + ϕ ◦ u‖e = ‖ϕ ◦ (w + u)‖e = Iϕ (u+ w) ≥ ‖u+ w‖ϕ ≥ 1 + ρ1.

Now, consider ‖z‖e > 1. Then define w as above and u = ϕ−1
r ◦

∣∣∣ y
‖z‖e

∣∣∣ . Since

Iϕ (u) =

∥∥∥∥
y

‖z‖e

∥∥∥∥
e

≥
ε

‖z‖e
,

we conclude that ‖u‖ϕ ≥ min
{

ε
‖z‖e

, 1
}
. Moreover, u ≤ ϕ−1

r ◦
(

z
‖z‖e

)
. Hence ‖u+ w‖ϕ ≥

1 + ρ2, with ρ2 = ρeϕ

(
ε

‖z‖e
∧ 1, ϕ−1

r ◦
(

z
‖z‖e

))
. Therefore

‖x+ y‖e ≥

∥∥∥∥x+
y

‖z‖e

∥∥∥∥
e

= ‖ϕ ◦ w + ϕ ◦ u‖e ≥ ‖u+ w‖ϕ ≥ 1 + ρ2.

Taking ρ = min {ρ1, ρ2} , we get (c) from Proposition 3.9, so e ∈ (UMEI) . Moreover,
by Lemma 3.7, we conclude that e ∈ (OC) . Hence, applying Lemma 2.9 from [25] and
Lemma 2.4 from [13], we conclude that ϕ ∈ ∆e

2.

Sufficiency. Let ε > 0 and z ∈ (eϕ)+ \ {0} . Take x, y ∈ eϕ with 0 ≤ y ≤ x, ‖x‖ϕ = 1,
‖y‖ϕ ≥ ε and y ≤ z. Put u = ϕ ◦ x, v = ϕ ◦ y. Then ‖u‖e = 1, ‖u‖e ≥ η (ε) , by Lemma
1.3 in [25]. Furthermore v ≤ ϕ ◦ z. Since e ∈ (UMEI) , we get

‖u− v‖e ≤ 1− δ1,

where δ1 = δe (η (ε) , ϕ ◦ z) . Applying superadditivity ϕ on R+ we obtain

Iϕ (x− y) = ‖ϕ ◦ (x− y)‖e ≤ ‖ϕ ◦ x− ϕ ◦ y‖e = ‖u− v‖e ≤ 1− δ1.

Finally, by Lemma 1.2 and 1.4 from [25], ‖x− y‖ϕ ≤ 1 − r1, where r1 = r1 (δ1) depends
only on ε and z, what finishes the proof.

The natural question is whether a geometric property can be equivalently considered on
positive cone E+. Such problem has been considered for many properties (e.g. R, UR,
LUR - see [18], [19], [20]) and positive answers are very useful.
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Theorem 3.11. For any Köthe sequence space e the following conditions are equivalent:

(a) e is UREI;

(b) e+ is UREI.

Proof. The implication (a) ⇒ (b) is obvious. To prove the inverse, suppose (b). Then
e ∈ (OC) . In view of Theorem 3.8, it remains to prove that e is URED. Let ε ∈ (0, 1)
and z ∈ S(e). Take arbitrary x, y ∈ S(e) with x− y = εz and set

A = {i ∈ N : x(i)y(i) ≥ 0} .

Let

δ+I (η, z) = inf
{
δ→e+ (η, |w|) : |w| ≤ |z| and ‖w‖e ≥ η

}
.

Applying the proof of Theorem 3.8 for the function δ→e+ instead of δ→e , in virtue of Lemma

3.1, we conclude that δ+I (η, z) > 0 for any η > 0. We divide the proof into two cases.

1) Suppose
∥∥xχN\A

∥∥
e
∨
∥∥yχN\A

∥∥
e
≤

1

4

(
δ+I

(
1

2
ε, z

)
∧ ε

)
.

Denote

x̃ = |x|χA and ỹ = |y|χA.

Then

ε = ‖εz‖e =
∥∥εzχA + εzχN\A

∥∥
e
=

∥∥εzχA + (x− y)χN\A

∥∥
e

≤ ‖εzχA‖e +
∥∥xχN\A

∥∥
e
+
∥∥yχN\A

∥∥
e
≤ ‖εzχA‖e +

1

2
ε.

Hence

‖x̃− ỹ‖e = ‖εzχA‖e ≥
1

2
ε.

Moreover,

∥∥∥
x+ y

2

∥∥∥
e

≤

∥∥∥∥
x̃+ ỹ

2
+

∣∣∣∣
xχN\A + yχN\A

2

∣∣∣∣
∥∥∥∥
e

≤

∥∥∥∥
x̃+ ỹ

2

∥∥∥∥
e

+
1

2

(∥∥xχN\A

∥∥
e
+
∥∥yχN\A

∥∥
e

)

≤ 1− δ→e

(
1

2
ε, εzχA

)
+

1

4
δ+I

(
1

2
ε, z

)
≤ 1−

3

4
δ+I

(
1

2
ε, z

)
.

2) Now, let
∥∥xχN\A

∥∥
e
∨
∥∥yχN\A

∥∥
e
≥

1

4

(
δ+I

(
1

2
ε, z

)
∧ ε

)
.

Notice that ∣∣∣
x+ y

2

∣∣∣χA =
|x|+ |y|

2
χA
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and ∣∣∣
x+ y

2

∣∣∣χN\A =

(
|x|+ |y|

2
− (|x| ∧ |y|)

)
χN\A.

Hence ∣∣∣
x+ y

2

∣∣∣ =
|x|+ |y|

2
− (|x| ∧ |y|)χN\A.

Similarly,
|x− y| = ||x| − |y||+ 2 (|x| ∧ |y|)χN\A.

Since e+ is URED, the directed modulus of convexity δ→e+(ε, z) > 0. To simplify denota-

tions, put η(ε, z) = 1
4

(
δ+I

(
3
4
ε, z

)
∧ ε

)
. We consider the following two subcases.

(a) Suppose that ∥∥(|x| ∧ |y|)χN\A

∥∥
e
< η(ε, z).

Divide the set N \ A into two parts D1 and D2 as follows

D1 = {i ∈ N \ A : |x(i)| ≥ |y(i)|} and D2 = {i ∈ N \ A : |x(i)| < |y(i)|} .

Define

x(i) =

{
|x(i)| for i ∈ A ∪D1

0 otherwise

and

y(i) =

{
|y(i)| for i ∈ A ∪D2

0 otherwise.

Denote v = x−y
ε
, we have that |v(i)| = |z(i)| for i ∈ A and |v(i)| ≤ |z(i)| for i ∈ N \ A.

Then

‖x− y‖e =
∥∥|x− y| − (|x| ∧ |y|)χN\A

∥∥
e

≥ ‖x− y‖e −
∥∥(|x| ∧ |y|)χN\A

∥∥
e
≥

3

4
ε.

Since x, y ∈ B (e)+ and x− y ≤ εv ≤ z, it follows that

∥∥∥
x+ y

2

∥∥∥
e

=

∥∥∥∥
x+ y

2
− (|x| ∧ |y|)χN\A

∥∥∥∥
e

≤

∥∥∥∥
x+ y

2

∥∥∥∥
e

+
∥∥(|x| ∧ |y|)χN\A

∥∥
e

≤ 1− δ+I

(
3

4
ε, z

)
+ η(ε, z) ≤ 1−

3

4
δ+I

(
3

4
ε, z

)
.

(b) Let ∥∥(|x| ∧ |y|)χN\A

∥∥
e
≥ η(ε, z).

Since
|x− y|χN\A ≥ 2 (|x| ∧ |y|)χN\A,
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we have ∥∥(x− y)χN\A

∥∥
e
≥ 2η(ε, z).

Moreover,

∥∥(x− y)χN\A

∥∥
e
≥

∥∥xχN\A

∥∥
e
∨
∥∥yχN\A

∥∥
e
≥

1

4

(
δ+I

(
1

2
ε, z

)
∧ ε

)
.

Define

D =

{
i ∈ Nr A :

(|x| ∧ |y|) (i)

|x− y| (i)
≥

1

4
η(ε, z)

}

and C = (Nr A)rD. We have

‖(|x| ∧ |y|)χC‖e ≤
1

4
η(ε, z) ‖(x− y)χC‖e ≤

1

2
η(ε, z).

Hence ‖(|x| ∧ |y|)χD‖e ≥
1
2
η(ε, z). Therefore

∥∥∥
ε

4
η(ε, z)zχD

∥∥∥
e
=

∥∥∥∥
1

4
η(ε, z) (x− y)χD

∥∥∥∥
e

≥
1

2
η(ε, z) ‖(|x| ∧ |y|)χD‖e ≥

1

4
η2(ε, z).

Moreover,

0 ≤
1

4
η(ε, z) |x− y|χD ≤

|x|+ |y|

2

and
∥∥∥ |x|+|y|

2

∥∥∥
e
≤ 1. Following the proof of Lemma 3.6, we conclude that if e+ ∈ (UREI) ,

then e ∈ (UMEI) . Hence we get

∥∥∥
x+ y

2

∥∥∥
e

=

∥∥∥∥
|x|+ |y|

2
− (|x| ∧ |y|)χN\A

∥∥∥∥
e

≤

∥∥∥∥
|x|+ |y|

2
− (|x| ∧ |y|)χD

∥∥∥∥
e

≤

∥∥∥∥
|x|+ |y|

2
−

1

4
η(ε, z) |x− y|χD

∥∥∥∥
e

≤ 1− λ(ε, z),

where λ(ε, z) = δ
(
1
4
η2(ε, z), z

)
and δ is from Definition 3.5. Taking

δ (ε, z) =
3

4
δ+I

(
1

2
ε, z

)
∧
3

4
δ+I

(
3

4
ε, z

)
∧ λ(ε, z),

we get the thesis.

Theorem 3.12. Suppose that e is a symmetric Köthe sequence space. Then eϕ ∈ (UREI)
if and only if

(a) e ∈ (UMEI) , ϕ > 0, ϕ (bϕ) ‖e1‖e ≥ 1, ϕ ∈ ∆e
2 and

(b) for any ε > 0 and any w ∈ e there is δ = δ (ε, w) ∈ (0, 1) such that for every

u, v ∈ B (e)+ with ‖u− v‖e ≥ ε and |u− v| ≤ |w| one has:

‖u+ v‖e ≤ 2 (1− δ (ε, w)) or
∥∥(u− v)χAδ(u,v)

∥∥
e
≥ δ (ε, w) ,

where

Aδ (u, v) =

{
i ∈ N : ϕ

(
x (i) + y (i)

2

)
≤

1− δ (ε, w)

2
[ϕ (x (i)) + ϕ (y (i))]

}

and x = ϕ−1
r ◦ u, y = ϕ−1

r ◦ v.
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To explain the idea of this theorem, note that the shape of S (eϕ) depends on the shape of
S (e) and on the form of ϕ. It is also clear that if e is not UREI, then S (e) contains,roughly
speaking, some "almost flat areas" denoted by Flat(S(e)). Then eϕ is UREI iff eϕ is
UMEI (Condition (a)) and either e is UREI or the function ϕ must be convex enough
on the set ϕ−1

r (Flat(S(e))) to improve (bring into relief) these "almost flat areas".

Proof. Necessity. If eϕ ∈ (UREI), then, by Lemma 3.6, eϕ ∈ (UMEI). Then conditions
(a) hold by Proposition 3.10.

Suppose now that condition (b) is not satisfied. Then there exist a number ε > 0, w ∈ e
and sequences (un)

∞
n=1 , (vn)

∞
n=1 in B (e)+ such that

‖un − vn‖e ≥ ε, |un − vn| ≤ |w| , ‖un + vn‖e > 2 (1− 1/n)

and
‖(un − vn)χAn

‖e < 1/n

for every n ∈ N, where

An =

{
i ∈ N : ϕ

(
xn (i) + yn (i)

2

)
≤

1

2

(
1−

1

n

)
[ϕ (xn (i)) + ϕ (yn (i))]

}

and xn = ϕ−1
r ◦ un, yn = ϕ−1

r ◦ vn. We will show that eϕ /∈ (UREI), i.e.

(i)
∥∥xn+yn

2

∥∥
ϕ
→ 1;

(ii) |xn − yn| ≤ |z| for a certain z ∈ eϕ \ {0};

(iii) ‖xn − yn‖ϕ 6→ 0.

Since Iϕ (f) ≤ ‖f‖ϕ for each f ∈ B (eϕ), to show (i) it is enough to prove that

∥∥∥ϕ ◦
(xn + yn

2

)∥∥∥
e
→ 1.

We have ‖(un − vn)χAn
‖e → 0. Hence (un − vn)χAn

→ 0 pointwisely. We claim that
(un − vn)χAn

⇉ 0 (uniformly). If not, passing to a subsequence (if necessary), without
loss of generality we can assume that there are γ > 0 and sequence (in) ⊂ N such that

|(un(in)− vn(in))χAn
(in)| > γ (2)

for any n ∈ N. The sequence (in) cannot contain any constant subsequence. Really,
suppose that there is a subsequence (ink

) such that ink
= i0 for any k ∈ N. By pointwise

convergence of (un − vn)χAn
, we have

lim
k→∞

∣∣(unk
(ink

)− vnk
(ink

))χAnk
(ink

)
∣∣ = lim

k→∞

∣∣(unk
(i0)− vnk

(i0))χAnk
(i0)

∣∣ = 0,

what contradicts the inequality (2). Therefore, without loss of generality, we can assume
that in 6= im for any n 6= m. Define tn = γχ{in}. Then tn → 0 pointwisely and, by (2),
tn ≤ |w| . Hence, by the order continuity of e, ‖tn‖e → 0. On the other hand ‖tn‖e = c > 0
for any n ∈ N, because e is symmetric. This contradiction proves the claim. Since

ϕ ◦ (xn − yn)χAn
≤ |(ϕ ◦ xn − ϕ ◦ yn)χAn

| = |(un − vn)χAn
| ,
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we conclude that ϕ ◦ (xn − yn)χAn
⇉ 0. Consequently,

(xn − yn)χAn
⇉ 0, (3)

because ϕ > 0. Since the symmetry of e implies the symmetry of eϕ, there exists M > 0
such that |s (i)| ≤ M for any s ∈ B (eϕ) and any i ∈ N. This and (3) together imply that
for any k ∈ N there is N(k) such that

ϕ ◦
(xn + yn

2

)
χAn

>
1

2

(
1−

1

k

)
[ϕ ◦ (xn) + ϕ ◦ (yn)]χAn

whenever n ≥ N(k). Taking for any k ∈ N a positive integer nk such that nk ≥ N(k) and
nk ≥ k, we have

ϕ ◦
(xnk

+ ynk

2

)
= ϕ ◦

(xnk
+ ynk

2

)
χAnk

+ ϕ ◦
(xnk

+ ynk

2

)
χN\Ank

>
1

2

(
1−

1

k

)
[ϕ ◦ (xnk

) + ϕ ◦ (ynk
)] =

(
1−

1

k

)
unk

+ vnk

2
.

Hence, by convexity of ϕ and our assumptions, we get

1 ≥
‖unk

‖e + ‖vnk
‖e

2
≥

∥∥∥
unk

+ vnk

2

∥∥∥
e
=

∥∥∥
ϕ ◦ xnk

+ ϕ ◦ ynk

2

∥∥∥
e

≥
∥∥∥ϕ ◦

(xnk
+ ynk

2

)∥∥∥
e
>

(
1−

1

k

)∥∥∥
unk

+ vnk

2

∥∥∥
e
>

(
1−

1

k

)(
1−

1

nk

)
.

Consequently, ∥∥∥ϕ ◦
(xnk

+ ynk

2

)∥∥∥
e
→ 1

as k → ∞. The double extract convergence theorem finishes the proof of (i).

To show (ii) consider two cases. If w ∈ B (e) , notice

ϕ ◦ (xn − yn) ≤ |ϕ ◦ xn − ϕ ◦ yn| = |un − vn| ≤ |w| ,

which implies that
|xn − yn| ≤ ϕ−1

r (|w|) ,

as required and element ϕ−1
r (|w|) is well defined (see Proposition 2.1(ii) from [25]). If

‖w‖e > 1, then

ϕ ◦

(
xn − yn
‖w‖e

)
≤

1

‖w‖e
|un − vn| ≤

|w|

‖w‖e

and consequently

|xn − yn| ≤ ‖w‖e ϕ
−1
r

(
|w|

‖w‖e

)
,

so (ii) holds true.

It remains to prove (iii). By the order continuity of e there exists a finite subset N1 =
{i1, i2, ..., ik} of positive integers such that

∥∥wχN\N1

∥∥
e
< ε/2. Hence

‖(un − vn)χN1
‖e ≥ ‖un − vn‖e −

∥∥(un − vn)χN\N1

∥∥
e
≥ ε−

∥∥wχN\N1

∥∥
e
>

ε

2
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for any n ∈ N. By the triangle inequality, it follows that

k∑

l=1

‖(un (il)− vn (il)) eil‖e =
k∑

l=1

|un (il)− vn (il)| ‖e1‖e >
ε

2

for every n ∈ N. Consequently, a positive integer jn ∈ N1 can be find such that

|un (jn)− vn (jn)| >
ε

2k ‖e1‖e

for any n ∈ N. Moreover, the fact un, vn ∈ B (e)+ implies that max {un (jn) , vn (jn)} ≤
1 /‖e1‖e for any n ∈ N. By the concavity of ϕ−1

r , it follows that

|xn (jn)− yn (jn)| =
∣∣ϕ−1

r (un (jn))− ϕ−1
r (vn (jn))

∣∣

> ϕ−1
r

(
1

‖e1‖e

)
− ϕ−1

r

(
1

‖e1‖e

(
2k − ε

2k

))
= γ

for any n ∈ N. Therefore

‖xn − yn‖ϕ ≥
∥∥(xn − yn)χ{jn}

∥∥
ϕ
≥ ‖γe1‖ϕ = γ ‖e1‖ϕ > 0

for any n ∈ N, i.e. (iii). This completes the proof of necessity.

Sufficiency. Suppose that the assumptions (a) and (b) are satisfied. Fix ε > 0 and z ∈ eϕ.
By Theorem 3.11, it is enough to show that (eϕ)+ is UREI. Let x, y ∈ B (eϕ)+ be such
that |x− y| ≤ |z| and ‖x− y‖ϕ ≥ ε. Define u = ϕ ◦ x and v = ϕ ◦ y. Then u, v ∈ B (e)+
and applying superadditivity ϕ on R+, we get

‖u− v‖e = ‖ϕ ◦ x− ϕ ◦ y‖e ≥ ‖ϕ ◦ (x− y)‖e ≥ η (ε) ,

because ‖x− y‖ϕ ≥ ε, ϕ > 0 and ϕ ∈ ∆e
2 (see Lemma 1.3 in [25]). Moreover, we will

prove that there exists K > 0 such that

|ϕ (x (i))− ϕ (y (i))| ≤ K |x (i)− y (i)| (4)

for any i ∈ N. To this end we consider two cases.

I. Suppose that either ϕ (bϕ) = ∞ or ϕ (bϕ) < ∞ and ϕ (bϕ) ‖e1‖e > 1. Take M > 0 with
ϕ (M) ‖e1‖e = 1. Then M < bϕ and the left hand side derivative ϕ

′

− (M) < ∞. Moreover,
setting K = ϕ

′

− (M) , we have |ϕ (a)− ϕ (b)| ≤ K |a− b| for any a, b ∈ [0,M ] . Finally,
note that |s (i)| ≤ M for any s ∈ B (eϕ) and i ∈ N.

II. Assume that ϕ (bϕ) ‖e1‖e = 1. Note that by our assumptions eϕ ∈ (UMEI) (see
Proposition 3.10). We apply Proposition 3.9(d) with η1 = ηeϕ (3ε/8, |z|) . By the symmetry

of e, the space eϕ is also symmetric. Take σ1 ∈
(
0, ε

4‖e1‖ϕ

)
such that ϕ (bϕ − σ1) ‖e1‖e ≥

1− η1/2.

We claim that x (i)∧ y (i) ≤ bϕ − σ1 for each i ∈ N. Indeed, otherwise, putting i0 ∈ N for
which x (i0) ∧ y (i0) > bϕ − σ1 we get

∥∥(x− y)χ{i0}

∥∥
ϕ
= |x (i0)− y (i0)| ‖e1‖ϕ ≤ ε/4.
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Then
∥∥(x− y)χ{i6=i0}

∥∥
ϕ
≥ 3ε/4. Define

A = {i 6= i0 : x (i) ≥ y (i)} and B = {i 6= i0 : x (i) < y (i)} .

We may assume that ‖(x− y)χA‖ϕ ≥ 3ε/8, because in the opposite case the proof is
analogous. Since (x− y)χA ≤ x and |x− y| ≤ |z|, by Proposition 3.9(d), we conclude
that

∥∥xχN\A

∥∥
ϕ
≤ 1− η1. Then

1− η1/2 ≤ ϕ (bϕ − σ1) ‖e1‖e < Iϕ
(
xχ{i0}

)
≤

∥∥xχN\A

∥∥
ϕ
≤ 1− η1.

This contradiction proves the claim. Setting K = ϕ(bϕ)−ϕ(bϕ−σ1)

σ1
we obtain (4). Hence,

by (4), |u− v| ≤ K |z| . Applying the assumption (b), we get ‖u+ v‖e ≤ 2 (1− δ1) or∥∥∥(u− v)χAδ1
(u,v)

∥∥∥
e
≥ δ1, where δ1 = δ (η (ε) , Kz) . If the first component of this disjunc-

tion is true, then

Iϕ

(x+ y

2

)
=

∥∥∥ϕ ◦
(x+ y

2

)∥∥∥
e
≤

1

2
‖ϕ ◦ x+ ϕ ◦ y‖e ≤ 1− δ1

whence, by Lemma 1.2 and 1.4 from [25], there is β1 = β1 (δ1) > 0 such that

‖(x+ y) /2‖ϕ ≤ 1− β1.

If not, then the second one must be true. Therefore, denoting Aδ1 (u, v) = A1, we get

ϕ ◦
(x+ y

2

)
≤

1

2
(ϕ ◦ x+ ϕ ◦ y)−

δ1
2
(ϕ ◦ x+ ϕ ◦ y)χA1

≤
1

2
(ϕ ◦ x+ ϕ ◦ y)−

δ1
2
|ϕ ◦ x− ϕ ◦ y|χA1

=
1

2
(ϕ ◦ x+ ϕ ◦ y)−

δ1
2
|u− v|χA1

.

Since e ∈ (UMEI) , we conclude that
∥∥ϕ ◦

(
x+y
2

)∥∥
e
≤ 1 − γ, where γ = γ

(
δ21
2
, K|z|δ1

2

)
.

Repeating the same arguments as in the part concerning the first component, there is
β2 = β2 (γ) > 0 such that ‖(x+ y) /2‖ϕ ≤ 1 − β2. Thus ‖(x+ y) /2‖ϕ ≤ 1 − β with
β = β1 ∧ β2 and consequently eϕ ∈ (UREI) , as required.

Corollary 3.13. Let e be an order continuous symmetric Köthe sequence space. Then

eϕ ∈ (URED) if and only if (a) and (b) from Theorem 3.12 are satisfied.

Since eϕ ∈ (URED) , eϕ is rotund. By Corollary 2.10 from [25], we get ϕ > 0, ϕ (bϕ) ‖e1‖e
≥ 1, ϕ ∈ ∆e

2. This implies that eϕ ∈ (OC) in view of Theorem 4.2 from [13]. Now applying
Theorem 3.8, we get that implies that eϕ ∈ (UREI) . Therefore, by Theorem 3.12, the
necessity is obvious. The sufficiency is an immediate consequence of Theorem 3.12.

4. Applications to Orlicz-Lorentz spaces

Now we consider Orlicz-Lorentz sequence spaces as a special class of Calderón-Lozanovskĭı
spaces. Recall that for any x ∈ l0 the symbol dx denotes the distribution function of x,
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that is dx (γ) = m ({i ∈ N : |x (i)| > γ}) for all γ ≥ 0, where m is the counting measure.
The decreasing rearrangement of x is denoted by x∗ and is defined by

x∗ (i) = inf {γ > 0 : dx (γ) < i}

for any i ∈ N. A function ω : N → R+ is said to be the weight function, if ω = (ω (i))
is a nonincreasing sequence. The Lorentz sequence space λω is the set of all sequences
x = (x (i)) such that ‖x‖λω

=
∑∞

i=1 x
∗(i)ω(i) < ∞. If e =λω, then eϕ is the Orlicz-Lorentz

sequence space (λω)ϕ equipped with the Luxemburg norm (see [4], [17], [19] and [20]).

It is worth to formulate criteria for uniform rotundity in every interval and for uniform
rotundity in every direction in (λω)ϕ because in this spaces they become more clear and
more specified. We start with the following theorem characterizing Lorentz sequence
spaces that are UMEI.

Theorem 4.1. The following conditions are equivalent:

(i) λω ∈ (UMEI);

(ii) λω ∈ (SM);

(iii)
∑∞

i=1 ω (i) = ∞.

Proof. The equivalence (ii) ⇔ (iii) follows from Lemma 3.1 in [25] (see also [16]). The
implication (i) ⇒ (ii) is an immediate consequence of definitions. It remains to prove the
implication (ii) ⇒ (i) only. Take ε ∈ (0, 1) and z ∈ (λω)+ \ {0} . Let x ∈ S (λω) and y
be such that 0 ≤ y ≤ x, y ≤ z and ‖y‖λω

≥ ε. By Lemma 3.2(ii) in [25], the Lorentz

space λω ∈ (OC) . Hence there exists a finite subset A ⊂ N such that
∥∥zχN\A

∥∥
λω

< ε
2
.

Consequently, setting y1 = yχA and k = cardA, we get

k∑

i=1

y∗1 (i)ω (i) = ‖y1‖λω
=

∥∥y − yχN\A

∥∥
λω

≥ ‖y‖λω
−
∥∥yχN\A

∥∥
λω

≥ ε−
∥∥zχN\A

∥∥
λω

>
ε

2
.

Denoting by i0 the smallest index in A for which y1 (i0) = maxi∈A |y1 (i)| , we get y1 (i0) =
y∗1 (1) and y∗1 (1)ω (1) ≥ ε/2k. Hence y1 (i0) ≥ ε/2kω (1) . By (iii), we can take N1 ∈ N

such that

ε

2kω (1)

N1−1∑

i=1

ω (i) > 1.

We find the smallest index i1 ∈ N such that x (i0) = x∗ (i1) . It is easy to see that the
number i1 ≤ N1. Indeed, otherwise

1 = ‖x‖λω
=

∞∑

i=1

x∗ (i)ω (i) ≥
i1∑

i=1

x∗ (i)ω (i) ≥ y (i0)

i1∑

i=1

ω (i) ≥
ε

2kω (1)

N1−1∑

i=1

ω (i) > 1

and we get a contradiction. Recall that x∗ (i1) = x (i0) ≥ y(i0). Let i2 ∈ N be the smallest
index such that i2 > i1 and x∗ (i1) − x∗ (i2) ≥ y (i0) /2 (such an index i2 exists since
λω ∈ (OC)). Hence, for i = i1, i1 + 1, ..., i2 − 1,

x∗ (i1)− x∗ (i) <
y (i0)

2
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and consequently

x∗ (i) > x∗ (i1)−
y (i0)

2
(5)

for i = i1, i1 + 1, ..., i2 − 1. By (iii), we can find an integer N2 such that

ε

4kω (1)

N2−1∑

i=N1

ω (i) > 1.

We claim that i2 ≤ N2. If not, then

1 = ‖x‖λω
=

∞∑

i=1

x∗ (i)ω (i) ≥
i2−1∑

i=i1

x∗ (i)ω (i) >
y (i0)

2

i2−1∑

i=i1

ω (i) ≥
ε

4kω (1)

N2−1∑

i=N1

ω (i) > 1.

This contradiction proves the claim. Therefore, applying among others (5), we get

‖x− y‖λω
≤ ‖x− y (i0) ei0‖λω

≤
∞∑

i=1

(
x−

y (i0)

2
ei0

)∗

(i)ω (i)

=

i1−1∑

i=1

x∗ (i)ω (i) +

i2−2∑

i=i1

x∗ (i+ 1)ω (i) +

(
x∗(i1)−

y(i0)

2

)
ω (i2 − 1) +

∞∑

i=i2

x∗ (i)ω (i)

=
∞∑

i=1

x∗ (i)ω (i)−
i2−1∑

i=i1

x∗ (i)ω (i) +

i2−2∑

i=i1

x∗ (i+ 1)ω (i) +

(
x∗(i1)−

y(i0)

2

)
ω (i2 − 1)

= 1−
i2−2∑

i=i1

(x∗ (i)− x∗ (i+ 1))ω (i)−

(
x∗ (i2 − 1)− x∗(i1) +

y(i0)

2

)
ω (i2 − 1)

≤ 1−
i2−2∑

i=i1

(x∗ (i)− x∗ (i+ 1))ω (N2)−

(
x∗ (i2 − 1)− x∗(i1) +

y(i0)

2

)
ω (N2)

= 1− (x∗ (i1)− x∗ (i2 − 1))ω (N2)−

(
x∗ (i2 − 1)− x∗(i1) +

y(i0)

2

)
ω (N2)

= 1−
y(i0)

2
ω (N2) ≤ 1−

εω (N2)

4kω (1)
.

Thus the proof is finished with δ = εω(N2)
4kω(1)

dependent only on ε and z.

To prove the next theorem, we need the following lemma.

Lemma 4.2. Let e be a Köthe sequence space. If e ∈ (UMEI) , then for every ε > 0
and z ∈ e+ \ {0} there is δ = δ (ε, z) > 0 such that for any sequences (xn) , (yn) ⊂ B(e)+
satisfying ‖xn‖e → 1, ‖yn‖e → 1 and |xn − yn| ≤ z for every n ∈ N, the condition

‖(xn − yn)χAn
‖e ≥ ε for any n ∈ N

implies ∥∥(xn − yn)χN\An

∥∥
e
≥ δ for n sufficiently large,

where An = {i ∈ N : xn(i) ≥ yn(i)} .
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Proof. Define wn = (xn − yn)χAn
. Passing to a subsequence, if necessary, it can be

assumed that ‖yn‖e ≥ 1 − 1
n
. Then 0 ≤ wn ≤ z, wn ≤ xn and ‖wn‖e ≥ ε. Since e ∈

(UMEI) , there is δ > 0 such that
∥∥xnχN\An

+ ynχAn

∥∥
e
= ‖xn − (xn − yn)χAn

‖e = ‖xn − wn‖e ≤ (1− δ) ‖xn‖e ≤ (1− δ) .

Hence
∥∥(xn − yn)χN\An

∥∥
e

=
∥∥xnχN\An

+ ynχAn
− yn

∥∥
e

≥ ‖yn‖e −
∥∥xnχN\An

+ ynχAn

∥∥
e
≥ 1−

1

n
− (1− δ) ≥

δ

2

for n > 2
δ
.

Theorem 4.3. The following conditions are equivalent:

(i) (λω)ϕ ∈ (UREI);

(ii) (λω)ϕ ∈ (URED);

(iii) (λω)ϕ ∈ (R);

(iv)
∑∞

i=1 ω (i) = ∞, ϕ ∈ ∆2(0), ϕ (bϕ)ω (1) ≥ 1 and ϕ is strictly convex on the interval[
0, ϕ−1

r

(
1

ω(1)+ω(2)

)]
.

Proof. Clearly, (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) (see [4] and [25]). It remains to prove that
(iv) ⇒ (i). By Theorem 4.1, the assumption

∑∞
i=1 ω (i) = ∞ is equivalent to the fact

that λω ∈ (UMEI). In particular, λω ∈ (OC) . Since the condition (a) of Theorem 3.12
is satisfied in an obvious manner, it is enough to prove that (iv) implies the condition (b)
of Theorem 3.12 with e = λω. Suppose now that condition (b) is not satisfied. Then there
exist a number ε > 0, w ∈ λω \ {0} and sequences (un)

∞
n=1 , (vn)

∞
n=1 in B (λω)+ \ {0} such

that
‖un − vn‖λω

≥ ε, |un − vn| ≤ |w| , ‖un + vn‖λω
> 2 (1− 1/n)

and
‖(un − vn)χAn

‖λω
< 1/n

for every n ∈ N, where

An =

{
i ∈ N : ϕ

(
xn (i) + yn (i)

2

)
≤

1

2

(
1−

1

n

)
[ϕ (xn (i)) + ϕ (yn (i))]

}

and xn = ϕ−1
r ◦ un, yn = ϕ−1

r ◦ vn. By the claim (iii) in the proof of necessity of Theorem
3.12, it implies that

‖xn − yn‖ϕ 9 0. (6)

Moreover,
‖(ϕ ◦ xn − ϕ ◦ yn)χAn

‖λω
→ 0. (7)

Hence the inequality

‖ϕ ◦ (xn − yn)χAn
‖λω

≤ ‖(ϕ ◦ xn − ϕ ◦ yn)χAn
‖λω

and assumption ϕ ∈ ∆2(0) yield that ‖(xn − yn)χAn
‖ϕ → 0. By (6), it follows that

∥∥(xn − yn)χN\An

∥∥
ϕ
9 0. (8)
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By (8), without loss of generality, passing to a subsequence if necessary, we can assume
that there is η0 > 0 such that

∥∥(xn − yn)χN\An

∥∥
ϕ
> η0

for any n ∈ N. By the claim (ii) in the proof of necessity of Theorem 3.12, there is
z ∈ (λω)ϕ such that |xn − yn| ≤ |z| . By the order continuity of (λω)ϕ there exists a finite

subset N1 ⊂ N such that
∥∥zχN\N1

∥∥
ϕ
< η0

2
. Hence

∥∥(xn − yn)χN1\An

∥∥
ϕ

=
∥∥(xn − yn)χ(N\An)∩N1

∥∥
ϕ

≥
∥∥(xn − yn)χN\An

∥∥
ϕ
−

∥∥(xn − yn)χ(N\An)\N1

∥∥
ϕ
> η0 −

η0
2

=
η0
2

for any n ∈ N. Let

Bn = {i ∈ N1 \ An : xn (i) ≥ yn (i)} and Cn = {i ∈ N1 \ An : xn (i) < yn (i)}

for every n ∈ N. Then, by the triangle inequality, at least one of numbers ‖(xn − yn)χBn
‖ϕ

or ‖(xn − yn)χCn
‖ϕ is not smaller than η0/4 for infinitely many n ∈ N. By the "symme-

try", passing to a subsequence, we can assume that

‖(xn − yn)χBn
‖ϕ >

η0
4

(9)

for any n ∈ N. Define n1 =card(N1) . Since ϕ ∈ ∆2(0), we conclude that there is η1 =
η1 (η0/4) such that

Iϕ ((xn − yn)χBn
) ≥ η1

for every n ∈ N. For any n ∈ N take an index in ∈ Bn for which

xn (in)− yn (in) = max {(xn (i)− yn (i)) : i ∈ Bn} .

Then
ϕ ((xn (in)− yn (in))) ≥

η1
n1ω (1)

for every n ∈ N. Since in ∈ Bn ⊂ N1 and card(N1) < ∞, there exist i0 ∈ N1 and a
subsequence (nk) such that ink

= i0 for any k ∈ N. Passing to this subsequence we can
assume that there is a positive integer i0 such that i0 ∈ Bn and

xn (i0)− yn (i0) ≥ ϕ−1
r

(
η1

n1ω (1)

)
> 0

for any n ∈ N. Define wn = xn (i0) , tn = yn (i0) . Without loss of generality, again passing
to a subsequence, if necessary, we can assume that wn → w0 and tn → t0. We have

w0 > t0 ≥ 0. Set α = ϕ−1
r

(
1

ω(1)+ω(2)

)
. Consider the following cases.

a) t0 < α. Then, by the definition of the set N \ An, we have

1

2
[ϕ (wn) + ϕ (tn)] ≥ ϕ

(
wn + tn

2

)
>

1− 1
n

2
[ϕ (wn) + ϕ (tn)] .
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Passing with n to ∞, we obtain

ϕ

(
w0 + t0

2

)
=

1

2
[ϕ (w0) + ϕ (t0)] .

Consequently, ϕ is affine on the nondegenerated interval (t0, w0) ∩ (t0, α) .

b) t0 ≥ α. Then w0 > α. Notice that ‖ϕ ◦ xn‖λω
≤ 1 implies that for any i 6= i0

xn (i) ≤ α (10)

for n sufficiently large. Really, if we found i1 6= i0 and a subsequence (nl) such that
xnl

(i1) > α for any l ∈ N, then, by the fact that xnl
(i0) → w0, we have

‖ϕ ◦ xnl
‖λω

=
∞∑

i=1

ϕ (xnl
(i))∗ ω(i) ≥ ϕ (xnl

(i1))ω (1) + ϕ (xnl
(i0))ω (2)

> ϕ (α)ω (1) + ϕ (α)ω (2) = 1

for l large enough. A contradiction.

Denote
Dn = {i ∈ N : yn (i) > xn (i)} .

Since Bn ⊂ N \Dn, by (9),

∥∥(xn − yn)χN\Dn

∥∥
ϕ
≥ ‖(xn − yn)χBn

‖ϕ ≥
η0
4

for every n ∈ N. Further, by Theorem 4.1, λω ∈ (UMEI) and consequently, by Propo-
sition 3.10, (λω)ϕ ∈ (UMEI) . Hence, applying Lemma 4.2, we conclude that there is
δ0 > 0 such that

‖(xn − yn)χDn
‖ϕ ≥ δ0

for every n ∈ N. Analogously as above, a finite subset N2 of integers can be found such
that

‖(xn − yn)χEn
‖ϕ ≥

δ0
2

for sufficiently large n ∈ N, where En := Dn ∩ (N \ An) ∩ N2. Consequently

Iϕ ((xn − yn)χEn
) ≥ δ1

for some δ1 depending only on δ0. Hence j0 ∈ En can be found such that

yn (j0)− xn (j0) ≥ ϕ−1
r

(
δ1

n2ω (1)

)
> 0,

for any n ∈ N, where n2 =card(N2) . Hence, defining pn = xn (j0) , rn = yn (j0) , without
loss of generality, we can assume that pn → p0 and rn → r0. Obviously j0 6= i0. It
follows, by (10), that rn ≤ α for n sufficiently large and consequently p0 < r0 ≤ α. Now,
repeating this same arguments as in the case a) we conclude that ϕ is affine on (p0, r0) .
The obtained contradiction shows that (iv) implies the condition (b) from Theorem 3.12.
Therefore (λω)ϕ ∈ (UREI) .
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5. Remarks

The following corollary summarizes the implications that exist between the properties
considered in this paper.

Corollary 5.1. Let E be a Köthe space. Then

E ∈ (UM)
(1)
=⇒ E ∈ (UMEI)

(2)
=⇒ E ∈ (SM) ,

E ∈ (UR)
(3)
=⇒ E ∈ (UREI)

(4)
=⇒ E ∈ (URED) .

Moreover, all of these implications cannot be reversed in general.

The implications (1), (2), (3) and (4) are obvious. To show that the implication (1)
cannot be reversed, it is enough to take E = λω with ω being not regular and satisfying∑∞

i=1 ω(i) = +∞ (see Example 1 from [14]). Recall that ω is regular if there is a number
K > 1 such that S (2n) ≥ KS (n) for any n ∈ N, where S (n) =

∑n
i=1 ω(i). Then

λω ∈ (UMEI) by Theorem 4.1. On the other hand λω /∈ (UM) (see [16]). Now, let
E = Lϕ be an Orlicz space with the Amemiya-Orlicz norm generated by an Orlicz function
ϕ that does not satisfy the suitable ∆2-condition and vanishes only at zero. Then, by
Theorem 5 from [9], E ∈ (SM) and E /∈ (OC) . Hence, by Lemma 3.7, E /∈ (UMEI) .
Consequently, the converse of the implication (2) is not true. Further, let E = (λω)ϕ
be such that ϕ and ω satisfy conditions in (iv) of Theorem 4.3, but ϕ is not uniformly

convex on the interval
[
0, ϕ−1

r

(
1

ω(1)+ω(2)

)]
. Then E ∈ (UREI) and E /∈ (UR) (see [4]),

so the implication (3) cannot be reversed. Finally, take E = l∞ equipped with the norm
introduced by M. A. Smith in [33] and defined for any x = (xi) ∈ l∞ by the formula

‖x‖S =

[
‖x‖2∞ +

∞∑

j=2

a2j (|x1|+ |xj|)
2

]1/2

,

where (aj) is a sequence of positive real numbers such that
∑∞

j=2 a
2
j = 1 and ‖·‖∞ is the

natural norm on l∞. M. A. Smith proved in [33] that (l∞, ‖x‖S) ∈ (URED) and that the
norms ‖·‖S and ‖·‖∞ are equivalent. Hence (l∞, ‖x‖S) /∈ (OC) . It follows, by Theorem
3.8 that (l∞, ‖x‖S) /∈ (UREI) . Consequently, the converse implication to (4) does not
hold.

Remark. The property UREI is related to the property URWC (uniform rotundity in
weakly compact sets of directions) considered by M. A. Smith in [32]. Namely, for any
Köthe space E we have

E ∈ (OC) and E ∈ (URWC) ⇒ E ∈ (UREI) .

It is an immediate consequence of Theorem 3.8 and the fact that URWC implies URED.
The converse implication is not true. It is enough to take E = l2 with the norm ‖·‖A
defined by M. A. Smith in [32]. The norm ‖·‖A is equivalent to the natural norm ‖·‖2 .
Hence (l2, ‖·‖A) ∈ (OC) .Moreover, M. A. Smith proved in [33] that (l2, ‖·‖A) ∈ (URED) .
By Theorem 3.8, it implies that (l2, ‖·‖A) ∈ (UREI) . On the other hand, (l2, ‖·‖A) /∈
(URWC) . Consequently, properties UREI and URWC are distinct.
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Open problem. Find full criteria for URED in the space Eϕ with E being Köthe
function space.

Some partial results in this direction have been obtained in [31]. To solve this problem
we cannot use the similar way as in Theorem 3.8 because each order interval in order
continuous Köthe function space is only weakly compact. Then the main difficulty is the
fact that a weakly convergent sequence need not converge in measure.
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[18] H. Hudzik, A. Kamińska, M. Mastyło: Monotonicity and rotundity properties in Banach
lattices, Rocky Mt. J. Math. 30(3) (2000) 933–949.
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(2005) 883–912.
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