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This paper continues the study of semiconic duality of sets and functions that was started in the previous
papers by the author. We obtain formulas for negative polars of intersections of n closed convex semiconic
sets and for dual functions of sums of n convex lower semicontinuous semihomogeneous functions. A
particular attention will be paid to the case of polyhedral sets and functions.

1. Introduction

This paper is concerned with the study of semiconic duality of sets and functions that
was started earlier in [2, 3, 4]. The semiconic duality has applications in infinite linear
programming and in geometric theory of convex sets [3, 4]. Also, it can be of use in some
aspects of mathematical economics.

Let us recall some definitions and facts from [2, 3]1 that will be used throughout the paper.
A set C in a linear space that coincides with its semiconic hull, sconC := {λx : x ∈
C, λ ≥ 1}, is called semiconic. Clearly, for a convex semiconic set C one has C +C ⊆ C.
(Moreover, a convex set C is semiconic if and only if C + C ⊆ C and λC ⊆ C for every
λ > 1.) A set C in a locally convex space is called strictly semiconic if it is semiconic
and its closed convex hull does not contain the origin: 0 /∈ cl coC. In what follows, E is
a locally convex space, and E∗ is its topological dual space endowed with the weak-star
topology. The value that a functional x′ ∈ E∗ takes at an element x ∈ E is denoted as
〈x, x′〉. Given a nonempty subset C in E, by its negative polar we mean the set

C# := {x′ ∈ E∗ : 〈x, x′〉 ≤ −1 ∀x ∈ C}.

The set C# is nonempty if and only if 0 /∈ cl coC, in what case

scon cl coC = cl scon coC = cl co sconC

(see [3, Theorem 2.1]), C# is a closed convex strictly semiconic subset in E∗, and C# =
(scon cl coC)#. Moreover, the negative bipolar theorem (see [2, Corollary 1], [3, Corollary
3.1]) holds true as follows.

Theorem 1.1. Given a nonempty subset C ⊂ E such that 0 /∈ cl coC, the following
assertions are equivalent:

(a) C is closed, convex and semiconic (hence strictly semiconic);
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(b) C coincides with its negative bipolar

C## := (C#)# = {x ∈ E : 〈x, x′〉 ≤ −1 ∀x′ ∈ C#}.

The semiconic duality of sets generates some duality of strictly semihomogeneous convex
functions. A nonnegative function f : E → IR ∪ {+∞} is called semihomogeneous (resp.
strictly semihomogeneous) if its epigraph epi f = {(x, α) : f(x) ≤ α} is a semiconic (resp.
strictly semiconic) subset in E × IR. We say that f : E → IR+ ∪ {+∞} is a majorant
function if f 6≡ +∞ and there is a strictly semihomogeneous function h : E → IR+∪{+∞}
such that h(x) ≤ f(x) for all x ∈ E.

We consider the duality between E × IR and E∗ × IR determined by the bilinear form

〈(x, α), (x′, β)〉1 := 〈x, x′〉 − αβ, (x, α) ∈ E × IR, (x′, β) ∈ E∗ × IR,

and we will use this duality when dealing with negative polars of subsets C in E × IR.
The next result is proved in [3, Theorem 6.2].

Theorem 1.2. Suppose f : E → IR ∪ {+∞} is not identically equal to ∞, the following
statements are then equivalent:

(a) the function f is majorant;

(b) the negative polar of the epigraph of f is the epigraph of some function Df : E∗ →
IR ∪ {+∞}, which is not identically equal to ∞.

When these equivalent assertions hold true, the function Df is convex, lower semicontin-
uous and strictly semihomogeneous, and it is given by

Df(x′) = inf{β > 0 : 〈x, x′〉+ 1 ≤ βf(x) ∀x ∈ E} = sup
x∈E

〈x, x′〉+ 1

f(x)

(here, we assume by definition that 0/0 = 0).

The next result is a direct consequence of Theorem 1.2; see [3, Corollary 6.1].

Corollary 1.3. Suppose a function f : E → IR∪{+∞} is convex lower semicontinuous,
f 6≡ +∞, and its epigraph is a strictly semiconic set. Then (epi f)# is the epigraph of
some function E∗ → IR ∪ {+∞} if and only if f is nonnegative.

Given a majorant function f : E → IR ∪ {+∞}, the function Df defined in Theorem 1.2
will be referred to as dual to f . In such a case, the second dual function D2f := D(Df) :
E → IR ∪ {+∞} is defined by

D2f(x) = sup
x′∈E∗

〈x, x′〉+ 1

Df(x′)
,

and the equalities hold

D2f(x) = inf
λ≥1

λf∗∗
(x

λ

)

= sup
h∈H(f)

h∗∗(x) ∀x ∈ E,
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where f ∗∗ is the second Legendre-Fenchel conjugate function2 of f , and H(f) is the set
of all strictly semihomogeneous functions h : E → IR ∪ {+∞} satisfying h(x) ≤ f(x)
for all x ∈ E; see Theorem 6.4 and the proof of Theorem 6.1 in [3]. It follows that
D2(D2f) = D2f ≤ f .

The next result (see [3, Corollary 6.4]) may be considered as a negative bipolar theorem
for functions.

Theorem 1.4. Given a majorant function f : E → IR ∪ {+∞}, the following assertions
are equivalent:

(a) f is convex, lower semicontinuous, and strictly semihomogeneous;

(b) f = D2f .

In [3, 4]3, basing on the negative bipolar theorems, duality formulas for negative polars
and dual functions for particular sets and functions were given and duality of various
operations that do not lead out of the classes of closed convex strictly semiconic sets and
lower semicontinuous convex strictly semihomogeneous functions was examined.

In this paper we prove two representation theorems giving formulas for negative polars
(C1 ∩ · · · ∩Cn)

# and dual functions D(f1+ · · ·+ fn). The statements of the theorems are
in Section 2, and their proofs are in Sections 3 and 4. Section 5 is devoted to the case of
polyhedral sets and functions.

2. Main results

Lemma 2.1. Suppose C is a closed convex semiconic set which is not strictly semiconic,
then it is necessarily a cone.

Proof. Since C is closed convex and is not strictly semiconic, 0 ∈ cl coC = C. We have
to show that for every x ∈ C and λ > 0 one has λx ∈ C. Indeed, when λ ≥ 1, this holds
because C is semiconic, and when 0 < λ < 1, this holds because 0 and x are in C and C
is convex.

Theorem 2.2. 1. Suppose C1, . . . , Cn are closed convex semiconic sets in E, at least one
of them is strictly semiconic4, and their intersection is nonempty; then

(C1 ∩ · · · ∩ Cn)
# = cl

⋃

(t1,...,tn)∈Λ

(M(t1, C1) + · · ·+M(tn, Cn)), (1)

where Λ = {(t1, . . . , tn) ∈ IRn
+ : t1 + · · ·+ tn = 1},

M(t, C) := tC#, t > 0,

M(0, C) := (conC)0,

2The dual function Df is connected with the conjugate one f∗, f∗(x′) = sup{〈x, x′〉 − f(x) : x ∈ E}, via
the equality Df(x′) = inf{β > 0 : f∗(x

′

β
) ≤ − 1

β
}, which implies the inequality Df(x′)f∗( x′

Df(x′) ) ≤ −1

when 0 < Df(x′) < +∞. (In [3, Proposition 6.1] the latter inequality was erroneously given with the
equality sign.)
3Also see [2] where most results of [3] were announced without proofs.
4If none of Ci is strictly semiconic, then (C1 ∩ · · · ∩ Cn)

# = ?.
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conC = {αx : x ∈ C, α ≥ 0} is the conic hull of C, (conC)0 = {x′ : 〈x, x′〉 ≤ 0 ∀x ∈
conC} = {x′ : 〈x, x′〉 ≤ 0 ∀x ∈ C} is the conjugate (polar) cone of conC.

Furthermore, if all Ci are strictly semiconic, then

(C1 ∩ · · · ∩ Cn)
# = cl co

(

C#
1 ∪ · · · ∪ C#

n

)

, (2)

and if some Ci are not strictly semiconic, then

(C1 ∩ · · · ∩ Cn)
# = cl

(

∑

i/∈J

C0
i + co

⋃

i∈J

C#
i

)

, (3)

where J = {i : Ci is strictly semiconic}.
2. Suppose, in addition, that the intersection of all Ci, i = 1, . . . , n, contains a point which
is interior for n−1 of them or E is finite-dimensional and there is a point x0 ∈ C1∩· · ·∩Cn

such that5 x0 ∈ riCi for n− 1 of Ci; then

(C1 ∩ · · · ∩ Cn)
# =

⋃

(t1,...,tn)∈Λ

(M(t1, C1) + · · ·+M(tn, Cn)) . (4)

Furthermore, this may be rewritten as

(C1 ∩ · · · ∩ Cn)
# =







cl co
(

C#
1 ∪ · · · ∪ C#

n

)

, if J = {1, . . . , n};
∑

i/∈J

C0
i + cl co

⋃

i∈J

C#
i , if J 6= {1, . . . , n}. (5)

The following result is a particular case of Theorem 2.2.

Corollary 2.3. Suppose K is a closed convex cone, C is a closed convex semiconic set,
and their intersection is nonempty, then

(K ∩ C)# = cl (K0 + C#). (6)

(When C is not strictly semiconic, equality (6) remains true since in this case both its
sides are empty sets.) If, in addition, K ∩C contains a point, which is interior for K or
for C, then

(K ∩ C)# = K0 + C#. (7)

As follows from the next example, the closure in formulas (2) and (6) generally cannot be
omitted.

Example 2.4. Let us consider two sets in E = IR2 as follows:

C = {(x, y) : 0 ≤ x ≤ 4, y ≥ 1−
√
x } ∪ {(x, y) : x ≥ 4, y ≥ −x/4},

K = {(x, y) : x ≤ 0, y ≥ 0}.
5Here, riCi stands for the relative interior of Ci.
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Clearly, C = scon {(x, y) : x ≥ 0, y ≥ 1 −√
x } is closed, convex, and strictly semiconic,

K is a closed convex cone, and K ∩C = {(x, y) : x = 0, y ≥ 1}. An easy calculation gives
us

C# =

{

(x′, y′) : x′ ≤ y′2

4(1 + y′)
, y′ < −1

}

,

K0 = {(x′, y′) : x′ ≥ 0, y′ ≤ 0};
therefore K0 + C# = {(x′, y′) : y′ < −1}. At the same time, (K ∩ C)# = {(x′, y′) : y′ ≤
−1}.
Similarly, let us take C as above and define C1 = C, C2 = {(x, y) : (−x, y) ∈ C}, then
C1 ∩ C2 = {(x, y) : x = 0, y ≥ 1}, (C1 ∩ C2)

# = {(x′, y′) : y′ ≤ −1}, but co(C#
1 ∪ C#

2 ) =
{(x′, y′) : y′ < −1}.

Remark 2.5. Some results on negative polars of intersections of semiconic sets have been
stated earlier in [2, Theorem 2 (ii) and Corollary 3] and [3, Theorem 3.3 and Corollary
3.4] (see also [4, Theorem 3.2]); however, as may be seen from Example 2.4, there were
defects in their formulations. The correct formulations are given in Theorem 2.2(2) and
Corollary 2.3.

Theorem 2.6. Let f = f1 + · · · + fn, where f1, . . . , fn are convex lower semicontinuous
functions from E into IR+∪{+∞}. Suppose that f1, . . . , fm are strictly semihomogeneous,
fm+1, . . . , fn are semihomogeneous but not strictly semihomogeneous, and there is a point
x0 ∈ dom f1 ∩ · · · ∩ dom fn where at least n− 1 of the functions are continuous. Then for
every x′ ∈ E∗ the equality holds

Df(x′) =min
{

β : x′ =
n
∑

m+1

x′
i + lim

ν
(

m
∑

1

tνi x
′
iν), (t

ν
1, . . . , t

ν
m) ∈ Λ0m,

β = lim
ν

tνi βiν , (x
′
iν , βiν) ∈ epiDfi (i = 1, . . . ,m),

β ≥ di(x
′
i) (i = m+ 1, . . . , n)

}

,

(8)

where Λ0m = {(t1, . . . , tm) : ti > 0 (i = 1, . . . ,m), t1 + · · ·+ tm = 1}, di(z′) := inf{β > 0 :
z′

β
∈ dom f ∗

i }6 for each z′ ∈ E∗, and by definition, min? := +∞.

A formula for Df(x′) is substantially simplified when m = 1.

Corollary 2.7. Let f = f1 + · · · + fn, where f1, . . . , fn are semihomogeneous convex
lower semicontinuous functions on E, exactly one of them, namely f1, is strictly semiho-

mogeneous, and there is a point x0 ∈
n
⋂

1

dom fi where at least n − 1 of the functions are

continuous; then for each x′ ∈ E∗,

Df(x′) = min
x′

1
+···+x′

n=x′

max (Df1(x
′
1), d2(x

′
2), . . . , dn(x

′
n)) .

Remark 2.8. Note that a formula for D(f1 + · · · + fn) as given in [3, Theorem 6.7] is
not correct.

6When 0 ∈ int dom f∗

i , di becomes the Minkowski gauge functional of dom f∗

i .
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3. Proof of Theorem 2.2

1. The inclusion ⊇ in (1) is obvious. In order to establish the opposite inclusion, fix any
point x′

0 ∈ (C1 ∩ · · · ∩Cn)
# and consider the sequence x′

k := (1+ 1
k
)x′

0. Since it converges
to x′

0 as k tends to ∞, the inclusion ⊆ will follow if we show that x′
k belongs to the

right-hand side of (1) whenever k = 1, 2, . . . . Note that C# = {x′ : s(C, x′) ≤ −1} where
s(C) is the support function of C, s(C, x′) = sup{〈x, x′〉 : x ∈ C}. Since δ∗(C) = s(C)
where δ(C) is the indicator function of C (i.e. δ(C, x) = 0 for x ∈ C and δ(C, x) = +∞
for x /∈ C), one gets

δ∗(C1 ∩ · · · ∩ Cn, x
′
k) = s(C1 ∩ · · · ∩ Cn, x

′
k)

=

(

1 +
1

k

)

s(C1 ∩ · · · ∩ Cn, x
′
0) ≤ −

(

1 +
1

k

)

.
(9)

Furthermore, for every x ∈ E

δ(C1 ∩ · · · ∩ Cn, x) = δ(C1, x) + · · ·+ δ(Cn, x),

and since the conjugate function of the sum δ(C1, x) + · · ·+ δ(Cn, x) is the closure of the
infimal convolution δ∗(C1)� . . .�δ∗(Cn),

(δ(C1) + · · ·+ δ(Cn))
∗ = cl (δ∗(C1)� . . .�δ∗(Cn))

(see e.g. [5, Theorem 16.4] where the finite-dimensional case is considered; in general case
the proof is practically the same), one gets

δ∗(C1 ∩ · · · ∩ Cn, x
′
k) = cl (δ∗(C1)� . . .�δ∗(Cn)) (x

′
k)

= cl (s(C1)� . . .�s(Cn)) (x
′
k) (10)

= lim
V

inf
x′

V
∈V

(s(C1)� · · ·�s(Cn)) (x
′
V ),

where V runs a base V(x′
k) of weak

∗ neighborhoods of x′
k. Let us consider pairs ν = (V, ε)

where V ∈ V(x′
k), 0 < ε < 1

k
, and write ν ≻ ν ′ if and only if V ⊂ V ′, ε < ε′. It follows

from (10) that for every ν = (V, ε) one can find x′
ν ∈ V and x′

1ν , . . . , x
′
nν , such that

x′
1ν + · · ·+ x′

nν = x′
ν , (11)

s(C1, x
′
1ν) + · · ·+ s(Cn, x

′
nν) ≤ (s(C1)� · · ·�s(Cn)) (x

′
ν) +

ε

2
, (12)

(s(C1)� . . .�s(Cn)) (x
′
ν) ≤ inf

x′

V
∈V

(s(C1)� . . .�s(Cn)) (x
′
V ) +

ε

2
. (13)

Also, it follows from (10) that

δ∗(C1 ∩ · · · ∩ Cn, x
′
k) ≥ inf

x′

V
∈V

(s(C1)� . . .�s(Cn)) (x
′
V ), (14)

and we derive from (12)-(14) along with (9) that

s(C1, x
′
1ν) + · · ·+ s(Cn, x

′
nν) ≤ δ∗(C1 ∩ · · · ∩ Cn, x

′
k) + ε < −1. (15)
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Recall now that, according to [3, Theorem 2.2], a closed convex set C is semiconic if and
only if s(C, x′) is nonpositive or equals +∞ whenever x′ ∈ E∗. Since all Ci are closed
convex semiconic sets, (15) implies then s(Ci, x

′
iν) ≤ 0, i = 1, . . . , n, hence x′

iν ∈ M(0, Ci)
for all i.

If we could find (t1, . . . , tn) = (t1ν , . . . , tnν) ∈ Λ such that x′
iν ∈ M(ti, Ci), i = 1, . . . , n,

then x′
ν = x′

1ν + · · · + x′
nν will lie in the right-hand side of (1), and x′

k = lim
ν

x′
ν will lie

there as well. Thus, (1) will be established if we show that x′
iν ∈ M(ti, Ci), i = 1, . . . , n,

where (t1, . . . , tn) ∈ Λ.

If s(Ci, x
′
iν) ≤ −1 for some i, we take ti = 1 and tj = 0, j 6= i. Then x′

iν ∈ C#
i = M(ti, Ci),

x′
jν ∈ M(0, Cj) = M(tj, Cj), j 6= i, and the result follows.

If s(Ci, x
′
iν) > −1 for all i, then either

s(C1, x
′
1ν) + · · ·+ s(Cn, x

′
nν) = −1 (16)

or there is m < n such that

s(C1, x
′
1ν) + · · ·+ s(Cm, x

′
mν) ≥ −1,

s(C1, x
′
1ν) + · · ·+ s(Cm, x

′
mν) + s(Cm+1, x

′
m+1ν) < −1.

(17)

We take ti = −s(Ci, x
′
iν) for all i when (16) holds, and ti = −s(Ci, x

′
iν) for i = 1, . . . ,m,

tm+1 = 1− (t1 + · · ·+ tm), and ti = 0 for i > m+ 1 when (17) holds. Since in both cases
(t1, . . . , tn) ∈ Λ and x′

iν ∈ M(ti, Ci) for all i, the result follows, and formula (1) is thus
completely established.

To prove formulas (2) and (3), notice that Ci = conCi for i 6∈ J (see Lemma 2.1) hence
the right-hand sides of (2) and (3) are contained in the right-hand side of (1). Therefore,
it suffices to show that every x′ ∈ ⋃{M(t1, C1) + . . .M(tn, Cn) : (t1, . . . , tn) ∈ Λ} lies in

co
⋃

i∈J C
#
i if J = {1, . . . , n} or in cl

(

∑

i/∈J C
0
i + co

⋃

i∈J C
#
i

)

if J 6= {1, . . . , n}.

Let x′ = x′
1 + · · · + x′

n, where x′
i ∈ M(ti, Ci), i = 1, . . . , n, (t1, . . . , tn) ∈ Λ. If all ti > 0,

then M(ti, Ci) = tiC
#
i , i = 1, . . . , n, hence J = {1, . . . , n} and x′ ∈ t1C

#
1 + · · ·+ tnC

#
n ⊂

co(C#
1 ∪ · · · ∪ C#

n ).

Now consider the case where some ti equal 0. Let J(x′) = {i : ti = 0}, hence J(x′) ⊇
{1, . . . , n} \ J and

∑

i/∈J(x′)

ti = 1.

If i /∈ J(x′) then x′
i = tiz

′
i where z′i ∈ C#

i . If i ∈ J(x′) ∩ J , we take an arbitrary element
y′i ∈ C#

i (C#
i is nonempty because Ci is strictly semiconic) and set

z′i(ε) = y′i + ε−1x′
i,

where ε > 0. Since z′i(ε) ∈ C#
i + (conCi)

0 = C#
i whenever i ∈ J(x′) ∩ J, ε > 0, we get

for every ε, 0 < ε < 1,

ε
∑

i∈J(x′)∩J

z′i(ε) + (1− ε)
∑

i/∈J(x′)

tiz
′
i ∈ co

⋃

i∈J

C#
i .
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Taking into account that

ε
∑

i∈J(x′)∩J

z′i(ε) + (1− ε)
∑

i/∈J(x′)

tiz
′
i

tends to
∑

i∈J(x′)∩J

x′
i +

∑

i/∈J(x′)

x′
i =

{

x′, if J = {1, . . . , n},
x′ −∑i/∈J x

′
i, if J 6= {1, . . . , n}

as ε tends to 0, it follows that x′ ∈ cl co
⋃

i∈J C
#
i if J = {1, . . . , n} or x′ ∈ ∑i/∈J C

0
i +

cl co
⋃

i∈J C
#
i if J 6= {1, . . . , n}. Now, since obviously∑i/∈JC

0
i +cl co

⋃

i∈J C
#
i ⊆ cl

(
∑

i/∈J C
0
i

+co
⋃

i∈J C
#
i

)

, formulas (2) and (3) are completely proved.

2. Note that under the supposition on C1, . . . , Cn the duality formula

(δ(C1) + · · ·+ δ(Cn))
∗ = δ∗(C1)� . . .�δ∗(Cn) = s(C1)� . . .�s(Cn)

holds true, and the infimal convolution s(C1)� · · ·�s(Cn) is exact that is for every x
′ ∈ E∗

there are x′
1, . . . , x

′
n ∈ E∗ such that x′ = x′

1 + . . . x′
n and

(s(C1)� · · ·�s(Cn)) (x
′) = s(C1, x

′
1) + · · ·+ s(Cn, x

′
n);

see [5, Theorem 16.4], [1, Theorem 3.4.1 on p. 189]. Therefore, given x′
0 ∈ (C1∩· · ·∩Cn)

#,
we find x′

1, . . . , x
′
n such that x′

0 = x′
1 + . . . x′

n and

s(C1 ∩ · · · ∩ Cn, x
′
0) = (s(C1)� · · ·�s(Cn)) (x

′
0) = s(C1, x

′
1) + · · ·+ s(Cn, x

′
n),

and since s(C1 ∩ · · · ∩ Cn, x
′
0) ≤ −1, we get

s(C1, x
′
1) + · · ·+ s(Cn, x

′
n) ≤ −1. (18)

The reminder of the proof is as above provided that one uses (18) instead of (15) and
replaces x′

ν and x′
iν with x′

0 and x′
i.

Remark 3.1. As follows from the above proof, Λ in (1) may be replaced with a smaller
set Λ0 = {(t1, . . . , tn) ∈ Λ : ti > 0, i = 1, . . . , n}.

Remark 3.2. A different proof of (1) is as follows: general formula (3) hence (1) results
from its particular cases (2) and (6) if one takes into account a well-known formula
for the dual cone of an intersection of closed convex cones: (

⋂

i/∈J Ci)
0 = cl(

∑

i/∈J C
0
i ).

Furthermore, formulas (2) and (6) can be established independently by using a separation
theorem. An advantage of this method is its shortness, but we prefer to give a direct proof
of formula (1) in general situation and then to get (2) and (6) as its consequences.

4. Proofs of Theorem 2.6 and Corollary 2.7

Proof of Theorem 2.6. One has epi f = AC, where

C =

{

(x, α, α1, . . . , αn) : fi(x) ≤ αi (i = 1, . . . , n),
n
∑

1

αi ≤ α

}

,
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A is a linear operator (projector) of E × IRn+1 onto E × IR acting by formula

A(x, α, α1, . . . , αn) = (x, α).

According to [3, Proposition 3.4], the equality holds

epiDf = (epi f)# = (AC)# = A∗−1(C#), (19)

hence
Df(x′) = inf{β ≥ 0 : (x′, β) ∈ A∗−1(C#)}, (20)

and for every x′ ∈ domDf this infimum is attained at some β. We consider the duality
between E × IRn+1 and E∗ × IRn+1 determined by the bilinear form

〈(x, α, α1, . . . , αn), (x
′, β, β1, . . . , βn)〉2 := 〈x, x′〉 − αβ −

n
∑

1

αiβi,

therefore the conjugate operator A∗ : E∗ × IR → E∗ × IRn+1 acts by formula

A∗(x′, β) = (x′, β, 0, . . . , 0). (21)

Our nearest goal is to calculate C#. One has

C = C0 ∩ C1 ∩ · · · ∩ Cn,

where

C0 = {(x, α, α1, . . . , αn) : α1 + · · ·+ αn ≤ α},
Ci = {(x, α, α1, . . . , αn) : fi(x) ≤ αi}, i = 1, . . . , n.

Clearly, Ci, i = 1, . . . ,m, are strictly semiconic, Ci, i = m+1, . . . , n, and C0 are semiconic
but not strictly semiconic, and the point (x0, f(x0)+2n, f1(x0)+1, f2(x0)+1, . . . , fn(x0)+
1) belongs to all Ci (i = 0, 1, . . . , n) and is interior for at least n of them. Applying
statement 2 of Theorem 2.2 yields then

C# = C0
0 +

n
∑

m+1

C0
i + cl co

m
⋃

1

C#
i . (22)

Now, an easy calculation gives

C0
0 = {(x′, β, β1, . . . , βn) : x

′ = 0, β ≥ 0, β1 = · · · = βn = −β},
C0

i = {(x′, β, β1, . . . , βn) : β = 0, βj = 0 (j 6= i),

βi > 0, f∗
i (

x′

βi

) ≤ 0 or βi = 0, x′ = 0}, i = m+ 1, . . . , n,

and since f ∗
i (

x′

βi

) ≤ 0 is equivalent to x′

βi

∈ dom f ∗
i (see [3, Proposition 4.4]), the last

equality may be rewritten as

C0
i = {(x′, β, β1, . . . , βn) : β = 0, βj = 0 (j 6= i),

βi > 0,
x′

βi

∈ dom f ∗
i or βi = 0, x′ = 0}, i = m+ 1, . . . , n.
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Furthermore, since fi is nonnegative, one has 0 ∈ dom f ∗
i , and the relation [βi > 0, x′

βi

∈
dom f ∗

i or βi = 0, x′ = 0] is rewritten as βi ≥ di(x
′). We get

C0
i = {(x′, β, β1, . . . , βn) : β = 0, βj = 0 (j 6= i), βi ≥ di(x

′)},
i = m+ 1, . . . , n.

Next, it is easily seen that

C#
i = {(x′, β, β1, . . . , βn) : β = βj = 0 (j 6= i), (x′, βi) ∈ epiDfi}

for i = 1, . . . ,m. It follows that (x′, β, β1, . . . , βn) ∈ cl co
m
⋃

1

C#
i if and only if there exist

generalized sequences (tν1, . . . , t
ν
m) ⊂ Λ0m and (x′

iν , βiν) ⊂ epiDfi, i = 1, . . . ,m, such that
x′ = limν

∑m
1 tνi x

′
iν , βi = limν t

ν
i βiν (i = 1, . . . ,m), β = βm+1 = · · · = βn = 0.

Now, taking into account (22) along with the above equalities for C0
0 and C0

i , i = m +
1, . . . , n, we derive from (19) and (21) that epiDf comprises the pairs (x′, β) such that

x′ = lim
ν

m
∑

1

tνi x
′
iν +

n
∑

m+1

x′
i, β = lim

ν
tνi βiν (i = 1, . . . ,m), and β = βi (i = m + 1, . . . , n),

where βiν ≥ Dfi(x
′
iν) (i = 1, . . . ,m), βi ≥ di(x

′
i) (i = m + 1, . . . , n), and the result

follows.

Proof of Corollary 2.7. Considering the same sets Ci (i = 0, 1, . . . , n) and C as in the
proof of Theorem 2.6 and applying to them statement 2 of Theorem 2.2 yields

C# = C0
0 +

n
∑

2

C0
i + C#

1 .

Next, arguing as in the proof of Theorem 2.6 and applying (19) we get

epiDf = A∗−1

(

C0
0 +

n
∑

i=2

C0
i + C#

1

)

. (23)

Now, since C0
0 +

∑n
2 C

0
i + C#

1 comprises the vectors

(x′
1 + · · ·+ x′

n, β,−β + β1,−β + β2, . . . ,−β + βn) ∈ E∗ × IRn+1,

for which β ≥ 0, β1 ≥ Df1(x
′
1), βi ≥ di(x

′
i) (i = 2, . . . , n), (23) along with (21) implies that

epiDf consists of (x′, β) such that x′ = x′
1+· · ·+x′

n, β ≥ max (Df1(x
′
1), d2(x

′
2), . . . , dn(x

′
n)),

and the result follows.

Remark 4.1. A similar argument shows that if hypotheses of Theorem 2.6 are satisfied
and the set

C0
0 +

n
∑

m+1

C0
i + co

m
⋃

1

C#
i (24)

is closed, then the formula holds true

Df(x′) = minmax
(

t1Df1(x
′
1), . . . , tmDfm(x

′
m), dm+1(x

′
m+1), . . . , dn(x

′
n)
)

, (25)

where minimum is taken over all x′
1, . . . , x

′
n ∈ E∗, (t1, . . . , tm) ∈ Λ0m such that t1x

′
1 +

· · ·+ tmx
′
m + x′

m+1 + · · ·+ x′
n = x′.
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5. A case of polyhedral sets and functions

Recall (see [5]), that a set C in E is called polyhedral if it can be represented in form

C = {x ∈ E : 〈x, x′
k〉 ≤ αk, k = 1, . . . , N},

where N is a positive integer, x′
1, . . . , x

′
N ∈ E∗, α1, . . . , αN ∈ IR.

A function f : E → IR ∪ {+∞} is called polyhedral if its epigraph is a polyhedral set in
E × IR.

It is clear that polyhedral sets are convex closed and polyhedral functions are convex
lower semicontinuous.

Theorem 5.1. Suppose C1, . . . , Cn are polyhedral semiconic sets in E, at least one of
them is strictly semiconic, and their intersection is nonempty; then

(C1 ∩ · · · ∩ Cn)
# =







co
(

C#
1 ∪ · · · ∪ C#

n

)

, if J = {1, . . . , n};
∑

i/∈J

C0
i + co

⋃

i∈J

C#
i , if J 6= {1, . . . , n},

where J = {i : Ci is strictly semiconic}.

Corollary 5.2. Suppose K is a polyhedral cone, C is a polyhedral semiconic set, and
their intersection is nonempty, then

(K ∩ C)# = K0 + C#.

If C is strictly semiconic, this is a particular case of Theorem 5.1, otherwise both (K∩C)#

and K0 + C# are empty.

To prove Theorem 5.1, the following lemma will be needed.

Lemma 5.3. Given positive integers m < n and n nonzero linear functionals y′1, . . . , y
′
n ∈

E∗, the set

M =

{

x′ =
n
∑

1

λiy
′
i : λi ≥ 0 (i = 1, . . . , n),

m
∑

1

λi ≥ 1

}

is closed.

Proof. Consider the set

M0 =

{

x′ =
n
∑

1

λiy
′
i : λi ≥ 0 (i = 1, . . . , n),

m
∑

1

λi = 1

}

.

It is closed by [5, Theorem 19.1] (this theorem may be applied since M0 is a subset of
finite-dimensional space Lin(y′1, . . . , y

′
n) spanned over y′1, . . . , y

′
n); and as M = sconM0, it

follows from [3, Proposition 2.2 (2)] that M is closed too.

Proof of Theorem 5.1. Since Ci are polyhedral, there is a representation

Ci = {x ∈ E : 〈x, x′
ik〉 ≤ αik, k = 1, . . . , Ni}, i = 1, . . . , n, (26)
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such that all x′
ik are nonzero. We can assume without loss of generality that all αik are

nonpositive. Indeed, since λCi ⊆ Ci whenever λ > 1, it follows that every positive αik in
(26) may be replaced with 0. Finally, taking into account Lemma 2.1, we’ll assume that
αi1 = · · · = αiNi

= 0 whenever i 6∈ J .

A direct calculation then yields

C0
i =

{

Ni
∑

k=1

λikx
′
ik : λik ≥ 0 (k = 1, . . . , Ni)

}

, i 6∈ J.

Further, fix i ∈ J , denote Ji := {k ∈ {1, . . . , Ni} : αik < 0}, and consider Ni closed half-
spaces Hik = {x ∈ E : 〈x, x′

ik〉 ≤ αik}, k = 1, . . . , Ni. Clearly, Hik is strictly semiconic
if and only if k ∈ Ji. An easy calculation yields H0

ik = {λx′
ik : λ ≥ 0} for k /∈ Ji, and

H#
ik = {λx′

ik : λ ≥ 1/|αik|} for k ∈ Ji. Now, applying Theorem 2.2 (see (3)) along with
Lemma 5.3 to the set Ci = Hi1 ∩ · · · ∩HiNi

gives us

C#
i =







∑

k/∈Ji

λikx
′
ik +

∑

k∈Ji

λiky
′
ik : λik ≥ 0 (k = 1, . . . , Ni),

∑

k∈Ji

λik ≥ 1, y′ik = x′
ik/|αik| (k ∈ Ji)

}

, i ∈ J.

We get

co
n
⋃

i=1

C#
i =







n
∑

i=1

∑

k/∈Ji

tikx
′
ik +

n
∑

i=1

∑

k∈Ji

tiky
′
ik : tik ≥ 0 (k = 1, . . . , Ni; i = 1, . . . , n),

n
∑

i=1

∑

k∈Ji

tik ≥ 1, y′ik = x′
ik/|αik| (k ∈ Ji, i = 1, . . . , n)

}

when J = {1, . . . , n}, and

∑

i/∈J

C0
i + co

⋃

i∈J

C#
i =







∑

i/∈J

Ni
∑

k=1

tikx
′
ik +

∑

i∈J

∑

k/∈Ji

tikx
′
ik +

∑

i∈J

∑

k∈Ji

tiky
′
ik :

tik ≥ 0 (k = 1, . . . , Ni; i = 1, . . . , n),

∑

i∈J

∑

k∈Ji

tik ≥ 1, y′ik = x′
ik/|αik| (k ∈ Ji; i ∈ J)

}

when J 6= {1, . . . , n}. According to Lemma 5.3, both sets are closed, and applying
Theorem 2.2 (see (2) and (3)) completes the proof.

Theorem 5.4. Let f = f1 + · · · + fn, where f1, . . . , fn are polyhedral functions on E.
Suppose that f1, . . . , fm are strictly semihomogeneous, fm+1, . . . , fn are semihomogeneous
but not strictly semihomogeneous, and the effective domains of all the functions have a
common point (dom f1 ∩ · · · ∩ dom fn 6= ?); then Df(x′) is given by formula (25).
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Proof of Theorem 5.4. Considering the same sets Ci (i = 0, 1, . . . , n) and C as in the
proof of Theorem 2.6 and applying to them Theorem 5.1, we see that the corresponding
set (24) is closed. Now, taking into account Remark 4.1, the result follows.

Remark 5.5. There are some defects in my paper [3] (and in its short version [2]). The
main of them are indicated in Remarks 2.5 and 2.8 and in a footnote on p. 857. Yet one
omission: I forgot to say that the function ϕ in [3, Proposition 4.6] is semihomogeneous.
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