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In this paper we study the notion of balanced complex polytope as a generalization of a symmetric
real polytope to the complex space C

n. We pay particular attention to the geometric properties of such
complex polytopes and of their counterparts in the adjoint form. In particular, we stress the differences
occurring with respect to the well-known real case. We also introduce and discuss the related definitions
of complex polytope norm and adjoint complex polytope norm.

1. Introduction

The notion of polytope in the real space R
n is very well known and developed (see, e.g.,

Ziegler [5]).

When a polytope is symmetric, it is the unit ball of a norm on R
n. Such kind of norms,

called polytope norms, constitute an important subset of all the norms which include, as
particular cases, the ∞-norm (or maximum norm) defined by ‖x‖∞ = max1≤i≤n |xi| and
the 1-norm defined by ‖x‖1 =

∑n

i=1 |xi|.
As is known, the real case is not always satisfactory in that it may sometimes be needed to
consider the complex space Cn instead of Rn. In particular, if one wants to keep on using
polytope norms also in C

n, then one has to adapt the notion of polytope to the complex
case. An example of such a situation may be found when trying to find an extremal norm
for a family of matrices, as is explained by Guglielmi, Wirth and Zennaro [2].

In this paper we define the balanced complex polytopes as generalizations of symmetric
real polytopes to the complex case (see Section 2) and introduce the related definition of
complex polytope norm (see Section 5).

We pay particular attention to the geometric properties of such complex polytopes (see
Section 3) and of their counterparts in the adjoint form (see again Section 2 and Section 4).
In particular, we stress the differences occurring with respect to the well-known real case.

Although most of the results are more or less straightforward particularizations or gener-
alizations of other results which can be found in the literature, here we prefer to always
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give a direct proof, in order to make the paper as selfcontained as possible.

2. Complex polytopes

We begin this section by recalling the concepts of convex, balanced and absolutely convex
set (see, e.g., Heuser [3]).

Definition 2.1. We say that a set X ⊂ C
n (X ⊂ R

p) is convex if, for all x′, x′′ ∈ X and
λ′, λ′′ ∈ R such that λ′, λ′′ ≥ 0 and λ′ + λ′′ = 1, it holds that λ′x′ + λ′′x′′ ∈ X .

Definition 2.2. Let X ⊂ C
n (X ⊂ R

p). Then the intersection of all convex sets contain-
ing X is called the convex hull of X and is denoted by co(X ).

It is well-known that co(X ) is the set of all the finite convex linear combinations of vectors
of X , i.e., x ∈ co(X ) if and only if there exist x(1), . . . , x(k) ∈ X with k ≥ 1 such that

x =
k
∑

i=1

λix
(i) with λi ≥ 0 and

k
∑

i=1

λi = 1.

In particular, if X = {x(i)}1≤i≤p is a finite set of vectors, then

co(X ) =
{

x ∈ C
n
∣

∣

∣
x =

p
∑

i=1

λix
(i) with λi ≥ 0 and

p
∑

i=1

λi = 1
}

.

Definition 2.3. We say that a set X ⊂ C
n is balanced if, for all x ∈ X and λ ∈ C such

that |λ′| ≤ 1, it holds that λx ∈ X .

Definition 2.4. Let X ⊂ C
n. Then the intersection of all balanced sets containing X is

called the balanced hull of X and is denoted by bal(X ).

It is well-known that

bal(X ) =
{

λx
∣

∣

∣
x ∈ X and λ ∈ C with |λ| ≤ 1

}

.

Definition 2.5. We say that a set X ⊂ C
n is absolutely convex if, for all x′, x′′ ∈ X and

λ′, λ′′ ∈ C such that |λ′|+ |λ′′| ≤ 1, it holds that λ′x′ + λ′′x′′ ∈ X .

Definition 2.6. Let X ⊂ C
n. Then the intersection of all absolutely convex sets con-

taining X is called the absolutely convex hull of X and is denoted by absco(X ).

It is well-known that absco(X ) is the set of all the finite absolutely convex linear com-
binations of vectors of X , i.e., x ∈ absco(X ) if and only if there exist x(1), . . . , x(k) ∈ X
with k ≥ 1 such that

x =
k
∑

i=1

λix
(i) with λi ∈ C and

k
∑

i=1

|λi| ≤ 1.

In particular, if X = {x(i)}1≤i≤m is a finite set of vectors, then

absco(X ) =
{

x ∈ C
n
∣

∣

∣
x =

m
∑

i=1

λix
(i) with λi ∈ C and

m
∑

i=1

|λi| ≤ 1
}

. (1)
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The next results are also well-known and easy to prove.

Proposition 2.7. A set X ⊂ C
n is absolutely convex if and only if it is balanced and

convex. Moreover, it holds that

absco(X ) = co(bal(X )) = bal(co(X )).

From here upwards, if X ′ and X ′′ are two subsets of Cn, we shall write X ′ ⊂ X ′′ (X ′ ⊃ X ′′)
to mean that X ′ ⊆ X ′′ (X ′ ⊇ X ′′) and X ′ 6= X ′′ (proper inclusions).

The forthcoming definition extends the usual definition of symmetric polytope in the real
space R

n.

Definition 2.8. We say that a bounded set P ⊂ C
n is a balanced complex polytope (in

short, b.c.p.) if there exists a finite set X = {x(i)}1≤i≤m of vectors such that span(X ) = C
n

and

P = absco(X ). (2)

Moreover, if absco(X ′) ⊂ absco(X ) for all X ′ ⊂ X , then X is called an essential system
of vertices for P, whereas any vector ux(i) with u ∈ C, |u| = 1, is called a vertex of P.

The following property characterizes the essential systems of vertices.

Proposition 2.9. Assume that P is a b.c.p. and that X = {x(i)}1≤i≤m is an essential
system of vertices for P. Then for each x(i) ∈ X the equality

x(i) =
m
∑

j=1, j 6=i

λjx
(j)

implies
m
∑

j=1, j 6=i

|λj| > 1. (3)

Proof. Assume, by contradiction, that (3) does not hold. Then it turns out that

x(i) ∈ absco(X \ {x(i)}).

This yields absco(X \ {x(i)}) = absco(X ), which is against the essentiality of X .

Remark that, geometrically speaking, a b.c.p. P is not a classical polytope. In fact, if
we identify the complex space C

n with the real space R
2n, we can easily see that P is

not bounded by a finite number of hyperplanes. In general, even the intersection P⋂R
n

is not a classical polytope. However, if the b.c.p. P admits an essential system of real
vertices, then P⋂R

n is a classical polytope.

Now we consider the concept that, in the literature, is often referred to as polarity or
duality (see again [5] and [3]). However, in view of the forthcoming Theorem 5.6, we
prefer to change the terminology. We shall use the usual Euclidean scalar product in C

n

defined by 〈x, y〉 =∑n

j=1 xjyj.
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Definition 2.10. Let X ⊂ C
n. Then the set

adj(X ) =
{

y ∈ C
n
∣

∣

∣
|〈y, x〉| ≤ 1 for all x ∈ X

}

(4)

is called the adjoint of X .

It is immediately seen that adj(X ) is closed and absolutely convex.

Definition 2.11. We say that a bounded set P∗ ⊂ C
n is a b.c.p. of adjoint type if there

exists a finite set X = {x(i)}1≤i≤m of vectors such that span(X ) = C
n and

P∗ = adj(X ) =
{

y ∈ C
n
∣

∣

∣
|〈y, x(i)〉| ≤ 1, i = 1, . . . ,m

}

. (5)

Moreover, if adj(X ′) ⊃ adj(X ) for all X ′ ⊂ X , then X is called an essential system of
facets for P∗, whereas any vector ux(i) with u ∈ C, |u| = 1, is called a facet of P∗.

The following property characterizes the essential systems of facets.

Proposition 2.12. Assume that P∗ is a b.c.p. of adjoint type and that X = {x(i)}1≤i≤m

is an essential system of facets for P∗. Then for each x(i) ∈ X there exists y(i) ∈ P∗ such
that

|〈y(i), x(i)〉| = 1 and |〈y(i), x(j)〉| < 1 for all j 6= i. (6)

Proof. The essentiality of the system X immediately implies that, for each x(i) ∈ X ,
there exists y(i) ∈ C

n such that

|〈y(i), x(i)〉| > 1 and |〈y(i), x(j)〉| ≤ 1 for all j 6= i.

Therefore, with y(i) = y(i)/〈y(i), x(i)〉, (6) is proved.

Unlike it happens for classical polytopes in R
n, it is not true that the class of b.c.p.’s

coincides with the class of b.c.p.’s of adjoint type. Indeed, for every b.c.p. P, the equality
P = adj(X ) implies that X is an infinite set of vectors and, analogously, the same impli-
cation holds whenever we express a b.c.p. of adjoint type P∗ in the form P∗ = absco(X ).

Intuitively, this may be explained by observing that, whereas in the real case the number
of vertices and facets of a symmetric polytope is always finite, in the complex case this
is not true. In fact, although the essential system of vertices (facets) X of a b.c.p. P
(of a b.c.p. of adjoint type P∗) is finite, the total number of vertices (facets) is infinite.
However, these aspects will be investigated more deeply later.

Now we examine the mutual relationships between b.c.p.’s and b.c.p.’s of adjoint type.

Proposition 2.13. Let X ⊂ C
n. Then

adj(absco(X )) = adj(X ).

Proof. Let y ∈ adj(X ). Now, if x ∈ absco(X ), then x =
∑k

i=1 λix
(i) with x(1), . . . , x(k) ∈

X and
∑k

i=1 |λi| ≤ 1. Therefore, we have that

|〈y, x〉| = |〈y,
k
∑

i=1

λix
(i)〉| ≤

(

k
∑

i=1

|λi|
)

max
1≤i≤k

|〈y, x(i)〉| ≤ 1.
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Thus y ∈ adj(absco(X )), too.

Viceversa, let y ∈ adj(absco(X )). Since X ⊆ absco(X ), it is clear that y ∈ adj(X ),
too.

Corollary 2.14. Let P be a b.c.p. and let X = {x(i)}1≤i≤m be a finite set of vectors such
that P = absco(X ). Then adj(P) is a b.c.p. of adjoint type and it holds that

adj(P) = adj(X ). (7)

The adjoint version of Proposition 2.13 holds. For the proof, we need the following lemma
regarding real convex sets, which is known as the theorem of the separating hyperplanes.
It is a well-known result and its (easy) proof can be found, e.g., in Luenberger [4].

Lemma 2.15. Given any closed convex set S ⊂ R
p and a point x /∈ S, there exists z ∈ R

p

such that
(z, x) < min

x∈S
(z, x), (8)

where (·, ·) denotes the Euclidean scalar product in R
p.

The geometric meaning of Lemma 2.15 is that there exists a hyperplane, represented by
z and containing x, such that all of S is contained in one open half-space produced by
that hyperplane.

Lemma 2.16. Let X ⊂ C
n be compact. Then bal(X ) is compact too.

Proof. It is clear that, X being bounded, then so is bal(X ).

Now consider a sequence {zk}k≥1 of vectors of bal(X ) such that there exists

lim
k→∞

zk = z ∈ C
n.

In order to prove that z ∈ bal(X ), observe that, for each k, we have zk = λkxk, where
λk ∈ C with |λk| ≤ 1 and xk ∈ X .

Since X is compact, there exists a sequence of integers ks such that

lim
s→∞

λks = λ with |λ| ≤ 1

and
lim
s→∞

xks = x ∈ X .

Therefore, it must be z = λx ∈ bal(X ).

Lemma 2.17. Let X ⊂ R
p and x ∈ co(X ). If dim(span(X − x)) = q, then there exist

q + 1 vectors x(1), . . . , x(q+1) ∈ X such that x ∈ co(x(1), . . . , x(q+1)).

Proof. By hypothesis, there exist x(1), . . . , x(k) ∈ X with k ≥ 1 such that

x =
k
∑

i=1

λix
(i) with λi > 0 and

k
∑

i=1

λi = 1.
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If k ≤ q + 1, the theorem is proved. Otherwise, we have k ≥ q + 2 and hence there exist
k real numbers δ1, . . . , δk, not all of them equal to zero, such that

k
∑

i=1

δi(x
(i) − x) = 0 and

k
∑

i=1

δi = 0. (9)

Therefore, for all ǫ > 0, we get

x =
k
∑

i=1

(λi + ǫδi)x
(i) and

k
∑

i=1

(λi + ǫδi) = 1.

Since at least one of the δi’s is nonzero and λi > 0 for all i = 1, . . . , k, there exists ǫ0 6= 0
such that λi + ǫδi ≥ 0 for all i = 1, . . . , k whenever −|ǫ0| ≤ ǫ ≤ |ǫ0| and such that
λj + ǫ0δj = 0 for a certain index j. Then, by (9) for ǫ = ǫ0, we have that

x ∈ co(x(1), . . . , x(j−1), x(j+1), . . . , x(k)).

It is clear that we can repeat the same procedure as many times as necessary to eliminate
k − q − 1 vectors among x(1), . . . , x(k). So the result is proved.

Remark that (9) is equivalent to

k
∑

i=1

δix
(i) = 0 and

k
∑

i=1

δi = 0.

Lemma 2.18. Let X ⊂ C
n be compact. Then co(X ) is compact too.

Proof. It is clear that, X being bounded, also co(X ) is so.

Now consider a sequence {zk}k≥1 of vectors of co(X ) such that there exists

lim
k→∞

zk = z ∈ C
n.

In order to prove that z ∈ co(X ), observe that Cn may be identified with R
2n. Therefore,

by Lemma 2.17, for each k, we have zk =
∑2n+1

i=1 λk,ix
(i)
k with λi > 0,

∑2n+1
i=1 λk,i = 1 and

x
(i)
k ∈ X , i = 1, . . . , 2n+ 1.

Since X is compact, there exists a sequence of integers ks such that, for i = 1, . . . , 2n+1,

lim
s→∞

λks,i = λi with
2n+1
∑

i=1

λi = 1

and

lim
s→∞

x
(i)
ks

= x(i) ∈ X .

Therefore, it must be z =
∑2n+1

i=1 λix
(i) ∈ co(X ).
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Proposition 2.19. Let X ⊂ C
n be compact. Then

adj(adj(X )) = absco(X ).

Proof. First of all, for convenience of notation, define S = absco(X ) and S∗ = adj(X ).
The inclusion X ⊆ adj(S∗) is obvious and, therefore, the absolute convexity of adj(S∗)
implies that S ⊆ adj(S∗), too.

In order to prove the opposite inclusion, we identify C
n with R

2n by the standard vector
space isomorphism Φ : Cn −→ R

2n such that a vector x = ℜ(x)+ iℑ(x) ∈ C
n is mapped

into the vector Φ(x) =

[

ℜ(x)
ℑ(x)

]

∈ R
2n.

For simplicity of notation, since no misunderstanding is possible, we use the notation x
for a vector if it is thought as an element of either Cn or R2n, and we give up to use the
notation Φ(x) in the second case.

Now assume that x /∈ S. Clearly, S is a convex subset of R2n and, since X is compact, by
Proposition 2.7 and Lemmas 2.16 and 2.18, also S is so. Therefore, Lemma 2.15 applies.

If we set c = (z, x) and d = minx∈S(z, x) in (8), by the symmetry of S, we have that

c < d < 0. Hence, by defining the vector y =

[

yR

yI

]

= d−1z ∈ R
2n, we obtain

(y, x) =
c

d
> 1 (10)

and
(y, x) ≤ 1 for all x ∈ S. (11)

By interpreting y = yR+iyI as a vector of Cn and by considering the usual scalar product
〈·, ·〉 in C

n, we easily obtain

(y, x) = ℜ(〈y, x〉) for all x ∈ C
n(R2n). (12)

Since S is balanced, we have that x ∈ S implies also eiϕx ∈ S for all ϕ ∈ R. Thus, by
(11) and (12), it holds that

(y, eiϕx) = ℜ(〈y, eiϕx〉) = ℜ(e−iϕ〈y, x〉) ≤ 1 (13)

for all x ∈ S and ϕ ∈ R.

Consequently, by choosing ϕ(x) = arg (〈y, x〉), we get

|〈y, x〉| = (y, eiϕ(x)x) ≤ 1 for all x ∈ S,

i.e., y ∈ adj(S), and therefore, by Proposition 2.13, y ∈ S∗.

On the other hand, (10) and (12) imply |〈y, x〉| > 1, i.e., x /∈ adj(S∗), and thus adj(S∗) ⊆
S.
Corollary 2.20. Let P∗ be a b.c.p. of adjoint type and let X = {x(i)}1≤i≤m be a finite
set of vectors such that P∗ = adj(X ). Then adj(P∗) is a b.c.p. and it holds that

adj(P∗) = absco(X ). (14)
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Corollaries 2.14 and 2.20 yield immediately the following result. In the literature, it is
often referred to as the bipolar theorem.

Theorem 2.21. Let P be a b.c.p. and let P∗ = adj(P). Then it holds that

P = adj(P∗). (15)

Conversely, let P∗ be a b.c.p. of adjoint type and let P = adj(P∗). Then it holds that

P∗ = adj(P). (16)

The next two propositions state that, given a b.c.p. P (a b.c.p. of adjoint type P∗), the
essential system of vertices (facets) X is uniquely determined, but for scalar factors of
unitary modulus.

Proposition 2.22. Assume that X = {x(i)}1≤i≤m and X = {x(i)}1≤i≤k are two essential
systems of vertices for a b.c.p. P. Then k = m and there exists a permutation {j1, . . . , jm}
of {1, . . . ,m} such that, for each i = 1, . . . ,m, x(i) = uix

(ji), where ui ∈ C with |ui| = 1.

Proof. By hypothesis, it holds that

x(i) =
m
∑

j=1

λijx
(j) with

m
∑

j=1

|λij| ≤ 1, i = 1, . . . , k, (17)

and

x(h) =
k
∑

i=1

µhix
(i) with

m
∑

i=1

|µhi| ≤ 1, h = 1, . . . ,m. (18)

Therefore, it follows that

x(h) =
m
∑

j=1

πhjx
(j), h = 1, . . . ,m, (19)

where

πhj =
k
∑

i=1

µhiλij with
m
∑

j=1

|πhj| ≤ 1, h = 1, . . . ,m, (20)

and

x(i) =
k
∑

h=1

σihx
(h), i = 1, . . . , k, (21)

where

σih =
m
∑

j=1

λijµjh with
k
∑

h=1

|σih| ≤ 1, i = 1, . . . , k. (22)

Now, fix an index h, 1 ≤ h ≤ m. If πhh 6= 1 in (19), in which case x(h) is linearly dependent
of the other vertices X ′ = {x(j)}j 6=h

1≤j≤m, the essentiality of X implies that x(h) /∈ absco(X ′)
and, therefore, it must be

|1− πhh| <
m
∑

j=1,j 6=h

|πhj|.
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On the other hand, if we add the quantity |πhh| to both sides, by the inequality in (20)
we obtain

|πhh|+ |1− πhh| < 1,

which is clearly impossible. Therefore, it must be

πhh = 1 (23)

in (19) and hence, again by the inequality in (20),

πhj = 0 for all j = 1, . . . ,m, j 6= h. (24)

Analogously, by using (21) and (22) and by the essentiality of X , for any i = 1, . . . , k, we
obtain

σii = 1 (25)

and
σih = 0 for all h = 1, . . . , k, h 6= i. (26)

Summarizing, if we define the matrices L = [λij]1≤i≤k,1≤j≤m and M = [µhi]1≤h≤m,1≤i≤k,
then (20), (23), (24) and (22), (25), (26) imply

LM = Im and ML = Ik,

where Im and Ik are the identity m×m- and k× k-matrix, respectively. Thus it must be
k = m and M = L−1.

In order to conclude the proof, observe that the inequalities in (17) and (18) imply ‖L‖∞ =
‖L−1‖∞ = 1, i.e., L is an isometry in the ∞-norm which, for all z ∈ C

m, is defined by
‖z‖∞ = max1≤i≤m |zi|.
This implies that all the columns of L are vectors of unitary ∞-norm, as they are the
images in L of the vectors of the canonical basis. So, for all j = 1, . . . ,m, there exists
an index ij such that |λijj| = 1. On the other hand, the inequality in (17) implies also
λij = 0 for all i 6= ij.

In conclusion, the matrix Lmust be of the form L = UP , where P is a permutation matrix
and U = diag(u1, . . . , um) with |ui| = 1, i = 1, . . . ,m. So the proof is complete.

Proposition 2.23. Assume that X = {x(i)}1≤i≤m and X = {x(i)}1≤i≤k are two essential
systems of facets for a b.c.p. of adjoint type P∗. Then k = m and there exists a permu-
tation {j1, . . . , jm} of {1, . . . ,m} such that, for each i = 1, . . . ,m, x(i) = uix

(ji), where
ui ∈ C with |ui| = 1.

Proof. By Corollary 2.20, we have that

adj(P∗) = absco(X ) = absco( X )

and that both X and X are essential systems of vertices for the b.c.p. adj(P∗). Thus the
result follows by Proposition 2.22.

Proposition 2.24. Assume that P∗ is a b.c.p. of adjoint type and that X = {x(i)}1≤i≤m

is an essential system of facets for P∗. Then X is an essential system of vertices for the
b.c.p. adj(P∗).
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Proof. Assume, by contradiction, that X is not an essential system of vertices for adj(P∗).
By Proposition 2.9, this means that, for at least one vertex, say x(1), we have

x(1) =
m
∑

j=2

λjx
(j) with

m
∑

j=2

|λj| ≤ 1. (27)

Then consider formula (6) for i = 1 in Proposition 2.12, so that (27) yields the absurde
chain of inequalities

1 = |〈y(1), x(1)〉| ≤
m
∑

j=2

|λj| · |〈y(1), x(j)〉| < 1.

Proposition 2.25. Assume that P is a b.c.p. and that X = {x(i)}1≤i≤m is an essential
system of vertices for P. Then X is an essential system of facets for the b.c.p. of adjoint
type adj(P).

Proof. Assume, by contradiction, that X is not an essential system of facets for adj(P) =
adj(X ) (see Corollary 2.14). Then there exists a proper subset X ′ ⊂ X which fulfils this
property. So, by Corollary 2.20 and Theorem 2.21, we have that

P = absco(X ) = absco(X ′)

and that both X and X ′ are essential systems of vertices for P. This contradicts Propo-
sition 2.22 and the proof is complete.

Given a b.c.p. P and the b.c.p. of adjoint type P∗ = adj(P), the foregoing Proposi-
tions 2.24 and 2.25 imply that

F (P∗) = V (P), (28)

where V (P) denotes the set of the vertices of P and F (P∗) denotes the set of the facets
of P∗.

We conclude this section by observing that, by Definitions 2.8 and 2.11 and by Theo-
rem 2.21, we can immediately get the following results.

Proposition 2.26. Let P∗ be a b.c.p. of adjoint type, X = {x(i)}1≤i≤m be an essential
system of facets, P = adj(P∗) and y ∈ ∂P∗. Then the following condition is satisfied:

(C1) |〈y, x〉| ≤ 1 ∀x ∈ P and ∃x ∈ ∂P, x = ux(j) for some j with u ∈ C, |u| = 1, such
that 〈y, x〉 = 1.

Remark that x in (C1) is a facet of P∗, i.e., a vertex of P = adj(P∗).

Proposition 2.27. Let P be a b.c.p., X = {x(i)}1≤i≤m be an essential system of vertices,
P∗ = adj(P) and x ∈ ∂P. Then the following conditions are satisfied:

(C2) |〈y, x〉| ≤ 1 ∀y ∈ P∗ and ∃y ∈ ∂P∗ such that 〈y, x〉 = 1;

(C3)
∑m

i=1 |µi| ≥ 1 whenever x =
∑m

i=1 µix
(i) and ∃λ1, . . . , λm ∈ C such that x =

∑m

i=1 λix
(i) with

∑m

i=1 |λi| = 1.
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3. The geometry of the b.c.p.’s

In this section we want to analyze some geometric features of the b.c.p.’s. More precisely,
we are interested in a description of their boundaries. As usually done, we shall write ∂P
(∂P∗) to denote the boundary of P (P∗).

In doing our geometric analysis, we shall try to use as much as possible the customary
terminology which can be found, for example, in Grünbaum [1].

Definition 3.1. Let P be a b.c.p., P∗ = adj(P) and y ∈ ∂P∗. Then the convex set

Fy = {x ∈ P
∣

∣

∣
〈y, x〉 = 1} (29)

is called a (geometric) face of P.

Clearly,

Fy ⊆ ∂P (30)

and, by property (C1) in Proposition 2.26, the face Fy is never empty.

Definition 3.2. Let P be a b.c.p. and y ∈ ∂P∗, where P∗ = adj(P). Then any vertex of
P belonging to Fy is called a vertex of Fy.

Theorem 3.3. Let P be a b.c.p. and y ∈ ∂P∗, where P∗ = adj(P). Then the set Xy of
all the vertices of Fy is nonempty and

Xy ⊆ X ,

where X = {x(i)}1≤i≤m is a suitable essential system of vertices for P.

Moreover, it holds that

Fy = co(Xy). (31)

Proof. By Theorem 2.21, we have that P = adj(P∗) and, thus, property (C1) in Propo-
sition 2.26 implies that Fy has at least one vertex.

By (29) the set Fy can not have two vertices which are proportional to each other. There-
fore, all the vertices of Fy belong to an essential system of vertices X = {x(i)}1≤i≤m for
P.

In order to prove (31), we can assume without restriction that the vertices of Fy are the
first p elements of X .

Then let x ∈ Fy. If p = m, the inclusion (30) and the property (C3) in Proposition 2.27
imply that

1 = 〈y, x〉 =
m
∑

i=1

λ̄i〈y, x(i)〉 =
m
∑

i=1

λ̄i ≤
m
∑

i=1

|λi| = 1,

so that

λi ≥ 0, i = 1, . . . ,m,

and hence x ∈ co(Xy).
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On the other hand, if p < m, it holds that

σ = max
p+1≤i≤m

|〈y, x(i)〉| < 1. (32)

Consequently, we have that

1 = 〈y, x〉 =
m
∑

i=1

λ̄i〈y, x(i)〉 =
p
∑

i=1

λ̄i +
m
∑

i=p+1

λ̄i〈y, x(i)〉

≤
p
∑

i=1

|λi|+ σ
m
∑

i=p+1

|λi| ≤ 1

and hence, by (32), we can conclude that

λi ≥ 0, i = 1, . . . , p and λi = 0, i = p+ 1, . . . ,m,

Therefore, once again, x ∈ co(Xy).

Conversely, since Fy is a convex set, it immediately follows that co(Xy) ⊆ Fy.

Proposition 3.4. Let P be a b.c.p., Fy be a (geometric) face of P and X ′
y ⊂ Xy. Then

absco(X ′
y)
⋂

Fy = co(X ′
y). (33)

Proof. It is obvious that co(X ′
y) ⊆ absco(X ′

y)
⋂

Fy.

In order to prove the opposite inclusion, it is not restrictive to assume that X ′
y =

{x(1), . . . , x(k)}. Then consider x ∈ absco(X ′
y)
⋂

Fy. It holds that

x =
k
∑

i=1

λix
(i) with

k
∑

i=1

|λi| = 1.

On the other hand, by (29) we get

1 = 〈y, x〉 =
k
∑

i=1

λ̄i〈y, x(i)〉 =
k
∑

i=1

λ̄i,

which implies that λi ≥ 0, i = 1, . . . , k. This means that x ∈ co(X ′
y).

The next theorem states that a nonempty intersection of faces still is a face.

Lemma 3.5. Let P be a b.c.p., P∗ = adj(P), Y ⊆ ∂P∗,

FY =
⋂

y∈Y

Fy (34)

and
XY =

⋂

y∈Y

Xy, (35)

where, for each y ∈ Y , Xy is given by Theorem 3.3.

Then it holds that
FY = co(XY ). (36)



N. Guglielmi, M. Zennaro / Balanced Complex Polytopes 741

Proof. The inclusion
co(XY ) ⊆ FY

is obvious.

If FY = ∅, then (36) is already proved. Otherwise, in order to prove the opposite inclusion,
consider x ∈ FY . Then let y ∈ Y so that we immediately have

x ∈ Fy = co(Xy).

It is not restrictive to assume that x(1), . . . , x(k) ∈ Xy are such that

x =
k
∑

i=1

λix
(i) with

k
∑

i=1

λi = 1 and λi > 0, i = 1, . . . , k.

Then, by (34), for any y ∈ Y we have

1 = 〈y, x〉 = 〈y,
k
∑

i=1

λix
(i)〉 ≤

k
∑

i=1

λi|〈y, x(i)〉| ≤
k
∑

i=1

λi = 1,

implying
〈y, x(i)〉 = 1, i = 1, . . . , k.

We can conclude that
x(1), . . . , x(k) ∈ Xy for all y ∈ Y

and hence, by (35), that
x ∈ co(XY ).

Theorem 3.6. Let P be a b.c.p., P∗ = adj(P), Y ⊆ ∂P∗ and

FY =
⋂

y∈Y

Fy. (37)

If FY 6= ∅, then there exists ỹ ∈ co(Y ) such that

FY = Fỹ.

Proof. Since all the sets of vertices Xy have cardinality ≤ m, by virtue of the foregoing
Lemma 3.5 there always exists a finite subset

Ỹ = {ỹ(1), . . . , ỹ(k)} ⊆ Y

with 1 ≤ k ≤ m such that

FY = co(XY ) = co(XỸ ) = FỸ .

As a consequence, it holds that

〈ỹ(j), x〉 = 1, j = 1, . . . , k ⇐⇒ x ∈ FY .
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Thus we consider the vector

ỹ =
1

k

k
∑

j=1

ỹ(j)

that clearly belongs to co(Y ) ⊂ P∗.

Let x ∈ FY (there exists such an x since FY 6= ∅). Then we have

〈ỹ, x〉 = 1

k

k
∑

j=1

〈ỹ(j), x〉 = 1,

so that ỹ ∈ ∂P∗ and
x ∈ Fỹ.

Vice versa, let x ∈ Fỹ. Then

1 = 〈ỹ, x〉 = 1

k

k
∑

j=1

〈ỹ(j), x〉 ≤ 1

k

k
∑

j=1

|〈ỹ(j), x〉| ≤ 1,

implying
〈ỹ(j), x〉 = 1, j = 1, . . . , k,

that is, x ∈ FY .

The foregoing theorem allows us to give the following definition.

Definition 3.7. Let P be a b.c.p. and x ∈ ∂P. Then we say that the set

Gx =
⋂

x∈Fy

Fy, (38)

is the face of P generated by x, that is, the smallest face of P that contains x.

Observe that, in this case, Y = {y ∈ ∂P∗
∣

∣

∣
x ∈ Fy}, which is always nonempty by virtue of

property (C2) in Proposition 2.27 (see also Definition 4.1 and formula (56) in Section 4).

Remark 3.8. The face Gx generated by x, which can be written also as Fy for a suitable
y, uniquely determines the set Xy of its vertices, that we also denote by Xx.

Proposition 3.9. Let P be a b.c.p. and x ∈ ∂P. Then x is a vertex if and only if
Gx = {x}.

Proof. Since Theorem 3.3 states that any face contains at least one vertex, if Gx = {x},
then x must be a vertex.

Vice versa, let x ∈ ∂P be a vertex and, by contradiction, assume that Gx ⊃ {x}. Again
Theorem 3.3 implies that Gx must contain another vertex, say x, not proportional to x.
Thus both x and x belong to an essential system of vertices of P and, by (38), it holds
that, for any y ∈ ∂P∗,

〈y, x〉 = 1 =⇒ 〈y, x〉 = 1.

Now the above implication clearly contradicts Proposition 2.12 and, therefore, the proof
is complete.
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It is useful to introduce the notion of dimension of a face. To this aim, we state the
following lemma.

Lemma 3.10. Let P be a b.c.p. and Fy be a face of P. Then it holds that

span(Fy − x) = span(Fy − u) (39)

and
dim(span(Fy − x)) = dim(span(Fy))− 1 (40)

for all x, u ∈ Fy.

Proof. Let x, u ∈ Fy. Then we have

Fy − x = Fy − u− (x− u) ⊂ span(Fy − u),

that implies
span(Fy − x) ⊆ span(Fy − u).

Obviously, the opposite inclusion holds too and, thus, (39) is proved.

In order to prove also (40), set

δ = dim(span(Fy))

and consider δ vectors x̃(1), . . . , x̃(δ) ∈ Fy, not necessarily vertices, which are linearly
independent. Then any other vector z ∈ Fy can be written in the form

z =
δ
∑

i=1

αix̃
(i).

Since scalar multiplication by y yields

δ
∑

i=1

αi = 1,

we have that

z − x̃(1) =
δ
∑

i=2

αi(x̃
(i) − x̃(1)).

We can conclude that the set of δ− 1 linearly independent vectors {x̃(2) − x̃(1), . . . , x̃(δ) −
x̃(1)} is a basis of the space span(Fy − x̃(1)). Therefore, by virtue of (39), the proof is
complete.

Definition 3.11. Let P be a b.c.p. and Fy be a face of P. Then we say that the number

dim(Fy) = dim(span(Fy))− 1

is the dimension of the face Fy.

We have the following result.
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Proposition 3.12. Let P be a b.c.p. and Fv, Fy be two faces of P such that Fv ⊂ Fy.
Then it holds that

dim(Fv) < dim(Fy).

Proof. Since Fv ⊂ Fy, it holds that

〈v − y, x〉 = 0 for all x ∈ Fv. (41)

It is obvious that dim(Fv) ≤ dim(Fy). If we assume that dim(Fv) = dim(Fy), then it
easily follows that

Fy ⊂ span(Fv).

Now, in view of (41), the above inclusion implies

〈v − y, x〉 = 0 for all x ∈ Fy

and, consequently, the absurde inclusion Fy ⊆ Fv.

Definition 3.13. Let P be a b.c.p. and P∗ = adj(P). Then we say that a vector y ∈ ∂P∗

is a facet of P if there exist n linearly independent vertices x(i1), . . . , x(in) belonging to an
essential system of vertices X = {x(i)}1≤i≤m of P such that

〈y, x(ij)〉 = 1, j = 1, . . . , n,

that is,

x(ij) ∈ Fy, j = 1, . . . , n.

Definition 3.14. Let P be a b.c.p. and y a facet of P. Then the set Fy is called a
(geometric) facet of P as well.

Remark 3.15. The dimension of a face Fy of a b.c.p. P can vary between 0 and n− 1.
In particular, a face Fy is a facet if and only if

dim(Fy) = n− 1,

whereas, by Proposition 3.9, a face Fy is a vertex if and only if

dim(Fy) = 0.

The next theorem gives an important upper bound for computational purposes.

Theorem 3.16. Let P be a b.c.p. and let Fy be a face of P of dimension d. Then, for
each x ∈ Fy, there exist s vertices x(i1), . . . , x(is) ∈ Xy with

s ≤ 2d+ 1 (42)

such that

x ∈ co
(

x(i1), . . . , x(is)
)

.
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Proof. Observe that Theorem 3.3 easily implies

Fy − x = co(Xy − x) (43)

and, hence, in C
n it holds that

dim(span(Xy − x)) = d.

Therefore, if we identify C
n with R

2n by the same standard vector space isomorphism
(which preserves convexity) we used in the proof of Proposition 2.19, we can conclude
that in R

2n

dim(span(Xy − x)) = 2d.

Consequently, by Lemma 2.17 the result is proved.

It is wellknown that, if the b.c.p. P is real, then (42) is replaced by the more stringent
inequality

s ≤ d+ 1. (44)

On the other hand, in the general complex case (44) is not true and the upper bound (42)
can be actually attained. This is illustrated by the following example.

Example 3.17. Consider the b.c.p.

P = absco
(

x(1), x(2), x(3)
)

included in C
2, where

x(1) = [1, i]T , x(2) = [1, 1− i]T , x(3) = [1, 1]T .

Note that, although these vectors belong to the same line in C
2 (of equation x1 = 1), they

form an essential system of vertices.

Now observe that the vector y = [1, 0]T satisfies

〈y, x(i)〉 = 1, i = 1, 2, 3,

so that y ∈ ∂P∗,

dim(Fy) = 1

and

Xy = {x(1), x(2), x(3)}.
If we consider

x =
1

3
x(1) +

1

3
x(2) +

1

3
x(3) =

[

1,
2

3

]T

∈ Fy,

a few simple calculations show that

x /∈ absco
(

x(1), x(2)
)

, x /∈ absco
(

x(1), x(3)
)

, x /∈ absco
(

x(2), x(3)
)

.

We can conclude that, in this case, the upper bound (42) is actually attained.
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We also observe that the b.c.p. P has also some facets with only two vertices. For example,

it turns out that the vector ỹ =
[

−1+2i
5

, 2−4i
5

]T
satisfies

〈ỹ,−x(1)〉 = 〈ỹ, x(2)〉 = 1 and |〈ỹ, x(3)〉| = 1√
5
< 1,

so that ỹ ∈ ∂P∗ and
Xỹ = {−x(1), x(2)}.

Indeed, by some routine calculations it is possible to show that the b.c.p. P has only one
facet (modulo scalar factors of unitary modulus) with three vertices other than Fy. It is

determined by the vector y =
[

2−i
5
, 3+i

5

]T
and the set of vertices is

Xy =

{

3− 4i

5
x(1),

4 + 3i

5
x(2), x(3)

}

. ⋄

In what follows, we describe some characterizing properties of the internal points of a
face.

Lemma 3.18. Let P be a b.c.p., Fy be a face of P that does not reduce to a vertex and
{x(i)}1≤i≤k = Xy be the set of vertices of Fy. Then x ∈ Fy \ ∂Fy if and only if it admits a
representation of the form

x =
k
∑

i=1

λix
(i) with

k
∑

i=1

λi = 1 and λi > 0, i = 1, . . . , k. (45)

Proof. Assume that x ∈ C
n admits the representation (45) with all positive coefficients.

Therefore, by virtue of (43) all the vectors of the form

x+
k
∑

i=1

ǫi(x
(i) − x) with ǫi ∈ R, i = 1, . . . , k and max

1≤i≤k
|ǫi| < min

1≤i≤k
λi

constitute a nonempty open neighbourhood of x in Fy, implying that x /∈ ∂Fy.

Vice versa, let x ∈ Fy \ ∂Fy. Then, for any vertex x(i) ∈ Xy, there exists x̃(i) ∈ ∂Fy such
that

x = αix
(i) + (1− αi)x̃

(i) with αi > 0, i = 1, . . . , k.

Since x̃(i) ∈ co(Xy), i = 1, . . . , k, it turns out that the representation

x =
1

k

k
∑

i=1

(

αix
(i) + (1− αi)x̃

(i)
)

is of the form (45) with all positive coefficients.

Corollary 3.19. Let P be a b.c.p., Fy be a face of P that does not reduce to a vertex,
x ∈ Fy and {x(i)}1≤i≤k = Xy be the set of vertices of Fy. Then x ∈ ∂Fy if and only if
there exists an index j ∈ {1, . . . , k} such that

λj = 0
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whenever x is written in the form

x =
k
∑

i=1

λix
(i) with

k
∑

i=1

λi = 1 and λi ≥ 0, i = 1, . . . , k. (46)

Proof. The sufficiency is an obvious consequence of Lemma 3.18.

Vice versa, if for any j ∈ {1, . . . , k} there existed a representation of x ∈ ∂Fy of the form
(46) with λj > 0, then we could make the average of all such representations and get one
of the form (45) with all positive coefficients, that would contradict Lemma 3.18.

Proposition 3.20. Let P be a b.c.p., Fy be a face of P that does not reduce to a vertex
and x ∈ ∂P. Then

x ∈ Fy \ ∂Fy =⇒ Gx = Fy.

Proof. If x ∈ Fy \ ∂Fy the inclusion Gx ⊆ Fy is obvious.

Vice versa, let z ∈ ∂P∗ such that x ∈ Fz. Then Lemma 3.18 yields

1 = 〈z, x〉 =
k
∑

i=1

λi〈z, x(i)〉 ≤
k
∑

i=1

λi|〈z, x(i)〉| ≤ 1

with λi > 0, i = 1, . . . , k, yielding

〈z, x(i)〉 = 1, i = 1, . . . , k.

Therefore, Xy ⊆ Fz and, consequently, by (38) it follows that Xy ⊆ Gx. Thus we can
conclude that Fy ⊆ Gx.

Remark 3.21. Unlike the case of a real polytope P, in the general complex case the
equality Gx = Fy is not a sufficient condition to assure that the point x is internal to the
face Fy.

The following example illustrates the previous remark.

Example 3.22. Consider the b.c.p. P and the face Fy of it which were introduced in the
previous Example 3.17.

It is easy to check that the vector

x =
1

2
x(1) +

1

2
x(2) =

[

1,
1

2

]T

∈ Fy

has no representations of the form (46) with a positive coefficient for x(3). Therefore, by
Corollary 3.19 we can conclude that x ∈ ∂Fy.

Nevertheless, it can also be easily seen that the only face of P which includes x is Fy, so
that Gx = Fy.

More in general, by using Corollary 3.19 we can prove that

∂Fy = co
(

x(1), x(2)
)

⋃

co
(

x(2), x(3)
)

⋃

co
(

x(1), x(3)
)

and that Gx = Fy for any x ∈ ∂Fy \ Xy. ♦
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The next theorem states the existence of a (geometric) facet including a given point on
the boundary of a b.c.p.

Theorem 3.23. Let P be a b.c.p. and let x ∈ ∂P. Then there exists a (geometric) facet
Fy such that x ∈ Fy.

Proof. By property (C2) in Proposition 2.27, there exists y ∈ ∂P∗, P∗ = adj(P), such
that 〈y, x〉 = 1, i.e., x ∈ Fy.

Now, let {x(i)}1≤i≤m be an essential system of vertices for P. We can assume without
restriction that x(1), . . . , x(p) (with p ≥ 1) are the vertices of the set Fy assured by Theo-
rem 3.3, i.e.,

〈y, x(i)〉 = 1, i = 1, . . . , p,

and that the remaining vertices x(p+1), . . . , x(m) are such that

|〈y, x(i)〉| < 1, i = p+ 1, . . . ,m. (47)

If span({x(1), . . . , x(p)}) = C
n, then y is a facet of P and the theorem is proved.

Otherwise, we have that

dim(span({x(1), . . . , x(p)})) ≤ n− 1. (48)

In this case we consider the set

Y = {y ∈ ∂P∗
∣

∣

∣
〈y, x(i)〉 = 1, i = 1, . . . , p}

and hence, since Theorem 3.3 implies that x ∈ co({x(1), . . . , x(p)}), it turns out that

x ∈ Fy for all y ∈ Y. (49)

Now we can assume without restriction that all the other vertices that are linearly depen-
dent on x(1), . . . , x(p), if any, are exactly x(p+1), . . . , x(q) for some q ≤ m−1, whereas all the
other vertices that are linearly independent of x(1), . . . , x(p) are exacltly x(q+1), . . . , x(m).

Then, on the set Y , we define the function

f(y) = max
q+1≤i≤m

|〈y, x(i)〉|. (50)

Since Y is compact and the function f is continuous on Y , it achieves its maximum M
at some vector ỹ ∈ Y . We can assume without restriction that

M = f(ỹ) = |〈ỹ, x(q+1)〉| = 〈ỹ, x(q+1)〉.

If we suppose that M < 1, because of (48) we can find z ∈ C
n sufficiently small such that

• 〈z, x(i)〉 = 0, i = 1, . . . , p,
and, therefore, also for i = p+ 1, . . . , q;

• 〈z, x(q+1)〉 > 0;

• |〈ỹ + z, x(i)〉| ≤ 1, i = p+ 1, . . . ,m.
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Therefore, it turns out that ỹ + z ∈ Y and that

M ≥ f(ỹ + z) ≥ 〈ỹ + z, x(q+1)〉 = M + 〈z, x(q+1)〉 > M,

which is an absurde inequality.

We can conclude that M = 1, that is, the set Fỹ has at least p+1 vertices and has higher
dimension than Fy. Moreover, by (49), it holds that x ∈ Fỹ.

It is clear that, if ỹ is not a facet itself, we can repeat the procedure a suitable number of
times until we find a (geometric) facet Fy which includes x.

Corollary 3.24. Let P be a b.c.p. and let Fy be a face. Then there exists a facet Fz such
that Fy ⊆ Fz.

Proof. Let x ∈ ∂P be such that Gx = Fy (see Proposition 3.20). Since Theorem 3.23
states that there exists a facet Fz such that x ∈ Fz, formula (38) concludes the proof.

The foregoing Theorem 3.23 and the inclusion (30) allow us to conclude that

∂P =
⋃

y∈F ∗(P)

Fy, (51)

where F ∗(P) is the set of all the facets of P. In other words, ∂P is the union of all the
(geometric) facets of P.

Another straightforward consequence of Theorem 3.23 is that

P = adj(F ∗(P)). (52)

However, it is not easy to determine an essential system of facets, i.e., a minimal subset Y
of F ∗(P) such that P = adj(Y ). In any case, such a minimal subset of facets Y exists by
virtue of Zorn’s lemma and, clearly, it is infinite. Moreover, we have the following result.

Proposition 3.25. Let P be a b.c.p. Then the set F ∗(P) of its facets is compact.

Proof. Since F ∗(P) ⊂ P∗, F ∗(P) is bounded. In order to prove that it is also closed,
consider a sequence {yk}k≥0 of its elements such that there exists

lim
k→∞

yk = y ∈ C
n.

Since P∗ is closed, also y ∈ P∗.

Now consider a vertex x of P and let ǫ > 0. Then there exists kǫ such that, for all k ≥ kǫ,
we have

|〈yk, x〉| ≤ |〈y, x〉|+ |〈yk − y, x〉|
≤ |〈y, x〉|+ ‖x‖2‖yk − y‖2
≤ |〈y, x〉|+ ǫ,

where ‖ · ‖2 denotes the Euclidean norm.
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Given an essential system of vertices X = {x(i)}1≤i≤m, if we assume that y is not a facet,
there exist p of such vertices, say x(1), . . . , x(p), such that

|〈y, x(i)〉| < 1, i = 1, . . . , p,

and such that the remaining vertices x(p+1), . . . , x(m), if any, do not span C
n. Therefore,

there exist a sufficiently small ǫ > 0 and corresponding kǫ such that, for all k ≥ kǫ and
i = 1, . . . , p, we have

|〈yk, x(i)〉| < 1

as well. But this clearly contradicts the assumption that the yk’s are facets of P.

4. The geometry of the b.c.p.’s of adjoint type and duality relationships

In this section we describe the boundary of a b.c.p. of adjoint type P∗ and point out some
useful relationships between b.c.p.’s and b.c.p.’s of adjoint type.

Definition 4.1. Let P∗ be a b.c.p. of adjoint type, P = adj(P∗) and x ∈ ∂P. Then the
convex set

F ∗
x = {y ∈ P∗

∣

∣

∣
〈y, x〉 = 1} (53)

is called a (geometric) face of P∗.

Clearly,
F ∗
x ⊆ ∂P∗ (54)

and, by property (C2) in Proposition 2.27, the face F ∗
x is never empty. Moreover, given

x ∈ ∂P and y ∈ ∂P∗, it holds that

y ∈ F ∗
x ⇐⇒ x ∈ Fy. (55)

The above equivalence allows us to rewrite the face generated by a given vector x ∈ ∂P
defined in (38) as

Gx =
⋂

y∈F ∗

x

Fy. (56)

In turn, the above formulae yield the following result.

Proposition 4.2. Let P be a b.c.p., P∗ = adj(P), x ∈ ∂P and Gx be the face of P
generated by x. Then, for any u ∈ ∂P, it holds that

u ∈ Gx ⇐⇒ F ∗
x ⊆ F ∗

u (57)

and, consequently, that

F ∗
x =

⋂

u∈Gx

F ∗
u . (58)

Proof. The equality (56) yields

u ∈ Gx ⇐⇒ u ∈ Fy for all y ∈ F ∗
x .

Then the equivalence (55) (for x = u) yields

u ∈ Gx ⇐⇒ y ∈ F ∗
u for all y ∈ F ∗

x ,
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that is, (57).

Finally, since x ∈ Gx, (58) is obvious.

Remark 4.3. By virtue of Proposition 3.20, it turns out that formulae (56) and (58)
implicitely define a one-to-one correspondence between the set of the faces of P and the
set of the faces of P∗.

Moreover, this correspondence is clearly strictly decreasing, that is,

Gu ⊂ Gx ⇐⇒ F ∗
u ⊃ F ∗

x (59)

for all u, x ∈ ∂P.

Definition 4.4. Let P∗ be a b.c.p. of adjoint type and x be a facet of P∗. Then the face
F ∗
x is called a (geometric) facet of P∗ as well.

In view of Definitions 4.1 and 4.4, property (C1) in Proposition 2.26 obviously yields the
following result.

Proposition 4.5. Let P∗ be a b.c.p. of adjoint type and let y ∈ ∂P∗. Then there exists
a (geometric) facet F ∗

x such that y ∈ F ∗
x .

By Proposition 4.5 and formula (54), we can conclude that

∂P∗ =
⋃

x∈F (P∗)

F ∗
x . (60)

In other words, ∂P∗ is the union of all the (geometric) facets of P∗. Moreover, ∂P∗ is
piecewise quadratic in the following sense.

Proposition 4.6. Let P∗ be a b.c.p. of adjoint type and X = {x(i)}1≤i≤m be an essential
system of facets for P∗. Moreover, let Φ : Cn −→ R

2n be the standard vector space

isomorphism such that, for each x = ℜ(x) + iℑ(x) ∈ C
n, Φ(x) =

[

ℜ(x)
ℑ(x)

]

.

Then the boundary of Φ(P∗) is contained in the union of the zero sets of m quadratic
polynomials pi(z1, . . . , z2n) ∈ R[z1, . . . , z2n] such that pi(0, . . . , 0) 6= 0, i = 1, . . . ,m.

Proof. It is straightforward to see that

∂Φ(P∗) = Φ(∂P∗).

Thus, by denoting the vectors z ∈ R
2n in the form

[

zR

zI

]

where zR, zI ∈ R
n, Proposi-

tion 2.26 implies that each z ∈ ∂Φ(P∗) satisfies the second degree algebraic equation

|〈zR + izI , x(i)〉|2 = 1

for at least one index i ∈ {1, . . . ,m}.
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We can conclude that ∂Φ(P∗) is included in the union of the zero sets of the quadratic
polynomials

pi =

(

n
∑

j=1

ℜ(x(i)
j )zRj + ℑ(x(i)

j )zIj

)2

+

(

n
∑

j=1

ℜ(x(i)
j )zIj −ℑ(x(i)

j )zRj

)2

− 1

in the 2n variables zR1 , . . . , z
R
n , z

I
1 , . . . , z

I
n.

Finally, observe that pi(0, . . . , 0) = −1, i = 1, . . . ,m.

Now we give the adjoint version of Definition 3.2.

Definition 4.7. Let P∗ be a b.c.p. of adjoint type and x ∈ ∂P, where P = adj(P∗).
Then any (geometric) facet of P∗ that contains F ∗

x is called a (geometric) facet passing
through F ∗

x .

The following theorem contains the adjoint version of Theorem 3.3.

Theorem 4.8. Let P∗ be a b.c.p. of adjoint type and x ∈ ∂P, where P = adj(P∗). Then
the set of all the facets u of P∗ such that F ∗

u passes through F ∗
x is nonempty and coincides

with the set Xx of the vertices of the face Gx of P generated by x.

Moreover, it holds that

F ∗
x =

⋂

u∈Xx

F ∗
u . (61)

Proof. By Proposition 2.24, the equivalence (57) implies that all the facets passing
through F ∗

x are necessarily vertices of Gx. Vice versa, by (58) it is obvious that

F ∗
x ⊆

⋂

u∈Xx

F ∗
u .

Therefore, by Proposition 2.25, the vertices of Gx are necessarily facets passing through
F ∗
x and, thus, the first part of the proof is complete.

In order to reverse the above inclusion, observe that

x =
k
∑

i=1

λix
(i) with

k
∑

i=1

λi = 1 and λi ≥ 0, i = 1, . . . , k,

where {x(1), . . . , x(k)} = Xx.

Now let

y ∈
⋂

u∈Xx

F ∗
u =

k
⋂

i=1

F ∗
x(i) ,

so that
〈y, x(i)〉 = 1, i = 1, . . . , k, (62)

and, hence,

〈y, x〉 =
k
∑

i=1

λi〈y, x(i)〉 =
k
∑

i=1

λi = 1.
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This implies that y ∈ F ∗
x and (61) is proved, too.

The next theorem states that a nonempty intersection of faces still is a face.

Theorem 4.9. Let P∗ be a b.c.p. of adjoint type, P = adj(P∗), X ⊂ ∂P and

F ∗
X =

⋂

x∈X

F ∗
x .

If F ∗
X 6= ∅, then there exists x̃ ∈ co(X) such that

F ∗
X = F ∗

x̃ .

Proof. Theorem 4.8 allows us to say that

F ∗
X =

⋂

u∈XX

F ∗
u , (63)

where

XX =
⋃

x∈X

Xx

is a set of facets of P∗.

If F ∗
X 6= ∅, then there exists y ∈ F ∗

X . Thus the equivalence (55) (for x = u) and (63)
imply that XX ⊆ Xy, the set of vertices of the face Fy of P. So we can conclude that the
set XX is finite and, consequently, that there exists a finite subset of faces

X̃ = {x̃(1), . . . , x̃(s)} ⊆ X

with 1 ≤ s ≤ m such that

F ∗
X =

s
⋂

i=1

F ∗
x̃(i) .

As a consequence, it holds that

〈y, x̃(i)〉 = 1, i = 1, . . . , s ⇐⇒ y ∈ F ∗
X .

Thus we consider the vector

x̃ =
1

s

s
∑

i=1

x̃(i)

that clearly belongs to co(X) ⊂ P.

Let y ∈ F ∗
X . Then we have

〈y, x̃〉 = 1

s

s
∑

i=1

〈y, x̃(i)〉 = 1,

so that x̃ ∈ ∂P and

y ∈ F ∗
x̃ .
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Vice versa, let y ∈ F ∗
x̃ . Then

1 = 〈y, x̃〉 = 1

s

s
∑

i=1

〈y, x̃(i)〉 ≤ 1

s

s
∑

i=1

|〈y, x̃(i)〉| ≤ 1,

implying
〈y, x̃(i)〉 = 1, i = 1, . . . , s,

that is, y ∈ F ∗
X .

The foregoing theorem allows us to give the adjoint version of Definition 3.7.

Definition 4.10. Let P∗ be a b.c.p. of adjoint type and y ∈ ∂P∗. Then we say that the
set

G∗
y =

⋂

y∈F ∗

x

F ∗
x , (64)

is the face of P∗ generated by y, that is, the smallest face of P∗ that contains y.

Then the adjoint version of formula (56) and Proposition 4.2 hold, too. We have

G∗
y =

⋂

x∈Fy

F ∗
x . (65)

Proposition 4.11. Let P∗ be a b.c.p. of adjoint type, P = adj(P∗), y ∈ ∂P∗ and G∗
y be

the face of P∗ generated by y. Then, for any v ∈ ∂P∗, it holds that

v ∈ G∗
y ⇐⇒ Fy ⊆ Fv (66)

and, consequently, that

Fy =
⋂

v∈G∗

y

Fv. (67)

Remark 4.12. Formulae (65) and (67) implicitely define the same one-to-one correspon-
dence between the set of the faces of P and the set of the faces of P∗ mentioned in
Remark 4.3.

Moreover,
G∗

v ⊂ G∗
y ⇐⇒ Fv ⊃ Fy (68)

for all v, y ∈ ∂P∗.

It is of interest to point out also the following (obvious) result.

Proposition 4.13. Let P be a b.c.p., P∗ = adj(P), x ∈ ∂P and y ∈ ∂P∗. Then

Gx = Fy ⇐⇒ G∗
y = F ∗

x .

Inspired by Proposition 3.9, we give the following definition.

Definition 4.14. Let P∗ be a b.c.p. of adjoint type. Then a vector y ∈ ∂P∗ is called a
vertex of P∗ if G∗

y = {y}.
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We can characterize all the vertices of a b.c.p. of adjoint type P∗ as follows.

Proposition 4.15. Let P∗ be a b.c.p. of adjoint type. Then a vector y ∈ ∂P∗ is a
vertex if and only if there exist n linearly independent facets x(i1), . . . , x(in), belonging to
an essential system of facets X = {x(i)}1≤i≤m of P∗, such that

〈y, x(ij)〉 = 1, j = 1, . . . , n,

that is,
y ∈ F ∗

x
(ij)

, j = 1, . . . , n.

Proof. Let y ∈ ∂P∗ and G∗
y = {y}. If we assume that Fy is not a facet of P = adj(P∗),

then Corollary 3.24 implies the existence of a facet Fz such that Fy ⊂ Fz. Consequently,
(68) makes the absurde and, hence, we can conclude that Fy is necessarily a facet. Even-
tually, Proposition 2.24 and Definition 3.13 complete the proof of the only-if-part.

Vice versa, let y ∈ ∂P∗ be the (necessarily unique) solution of the system of n linearly
independent equations 〈v, x(ij)〉 = 1, j = 1, . . . , n, and assume that {y} ⊂ G∗

y. Then there
exists z ∈ G∗

y, z 6= y and, consequently, (66) implies that such a system has the solution
z too, that makes the absurde.

Remark that, in view of Proposition 2.24, Definition 3.13 and the foregoing Proposi-
tion 4.15, the vertices of P∗ are the facets of P = adj(P∗). In other words, if we denote
by V ∗(P∗) the set of the vertices of P∗, we have that

V ∗(P∗) = F ∗(P).

Finally, observe that, by (52) and Propositions 2.19 and 3.25, it holds that

P∗ = absco(V ∗(P∗)). (69)

Analogously to the case of the equality (52), it is not easy to determine an essential system
of vertices, i.e., a minimal subset Y of V ∗(P∗) such that P∗ = absco(Y ), which exists by
virtue of Zorn’s lemma and is clearly infinite.

In what follows, we describe some characterizing properties of the internal points of a
face.

Lemma 4.16. Let P∗ be a b.c.p. of adjoint type, F ∗
x be a face of P∗ that does not reduce

to a vertex and y ∈ F ∗
x . Then y ∈ ∂F ∗

x if and only if there exists a facet u ∈ F (P∗) \ Xx

such that y ∈ F ∗
u .

Proof. Let there exists a facet u ∈ F (P∗) \ Xx such that y ∈ F ∗
u and assume, by con-

tradiction, that y /∈ ∂F ∗
x . Then for any z ∈ F ∗

x , z 6= y, there exists z̃ ∈ ∂F ∗
x such

that
y = αz + (1− α)z̃ with 0 < α < 1.

Thus we have

1 = 〈y, u〉 = 〈αz + (1− α)z̃, u〉 ≤ α|〈z, u〉|+ (1− α)|〈z̃, u〉| ≤ 1,

which implies
〈z, u〉 = 〈z̃, u〉 = 1.
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We can conclude that F ∗
x ⊆ F ∗

u , which is an absurde inclusion since u /∈ Xx. Therefore,
y ∈ ∂F ∗

x .

In order to prove the opposite implication, assume that y /∈ F ∗
u for all u ∈ F (P∗) \ Xx.

If Xx = {x(i)}1≤i≤k, then we consider other m − k vertices x(k+1), . . . , x(m) such that
X = {x(i)}1≤i≤m is an essential system of facets for P∗. Note that, since F ∗

x does not
reduce to a vertex, we have necessarily k < m. It follows that

max
k+1≤i≤m

|〈y, x(i)〉| < 1

and, hence, that there exists an open neighbourhood V of y in C
n such that

|〈v, x(i)〉| < 1, i = k + 1, . . . ,m, for all v ∈ V.

Then consider the affine subspace

S =
k
⋂

i=1

{v ∈ C
n
∣

∣

∣
〈v, x(i)〉 = 1},

which is nonempty since F ∗
x ⊂ S. Now it is clear that V

⋂

S is nonempty and is an open
neighbourhood of y in F ∗

x . Therefore, we can conclude that y /∈ ∂F ∗
x .

Proposition 4.17. Let P∗ be a b.c.p. of adjoint type, F ∗
x be a face of P∗ that does not

reduce to a vertex and y ∈ ∂P∗. Then

y ∈ F ∗
x \ ∂F ∗

x ⇐⇒ G∗
y = F ∗

x .

Proof. Assume that y ∈ F ∗
x \ ∂F ∗

x . Then it necessarily holds that G∗
y ⊆ F ∗

x and, on
the other hand, Lemma 4.16 implies that y /∈ F ∗

u for all u ∈ F (P∗) \ Xx. Therefore, by
Theorem 4.8 we can conclude that G∗

y = F ∗
x as they are two faces which have the same

set of facets passing through them.

Vice versa, assume that G∗
y = F ∗

x . Clearly, it holds that y ∈ F ∗
x . Since Theorem 4.8

implies that F ∗
x

⋂

F ∗
u ⊂ F ∗

x whenever u ∈ F (P∗) \ Xx, such an u for which y ∈ F ∗
u cannot

exist. Eventually, Lemma 4.16 yields y /∈ ∂F ∗
x .

We remark that, unlike the case of the faces of a b.c.p. P (see Remark 3.21), the equality
G∗

y = F ∗
x is a sufficient condition to assure that the point y is internal to the face F ∗

x .

The proof of the following lemma is the same as that of Lemma 3.10.

Lemma 4.18. Let P∗ be a b.c.p. of adjoint type and F ∗
x be a face of P∗. Then it holds

that

span(F ∗
x − y) = span(F ∗

x − v) (70)

and

dim(span(F ∗
x − y)) = dim(span(F ∗

x ))− 1 (71)

for all y, v ∈ F ∗
x .
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Definition 4.19. Let P∗ be a b.c.p. of adjoint type and F ∗
x be a face of P∗. Then we

say that the number
dim(F ∗

x ) = dim(span(F ∗
x ))− 1

is the dimension of the face F ∗
x .

Now we can state two further important relationships between the faces of P and the
faces of P∗ = adj(P).

Theorem 4.20. Let P be a b.c.p., P∗ = adj(P), x ∈ ∂P, y ∈ F ∗
x and u ∈ Gx. Then it

holds that

span(F ∗
x − y) =

(

span(Gx)
)⊥

. (72)

and

span(Gx − u) =
(

span(F ∗
x )
)⊥

. (73)

Proof. Formula (56) implies that 〈v, u〉 = 1 for all v ∈ F ∗
x and u ∈ Gx. Consequently,

u ⊥ F ∗
x − y and v ⊥ Gx − u. Therefore, the inclusions

span(F ∗
x − y) ⊆

(

span(Gx)
)⊥

(74)

and

span(Gx − u) ⊆
(

span(F ∗
x )
)⊥

(75)

are proved.

The inclusion opposite to (74) is obvious if
(

span(Gx)
)⊥

= {0}. Otherwise, let Xx =

{x(i)}1≤i≤k be the set of the vertices of Gx and consider v ∈ F ∗
x such that Fv = Gx. Then

v is such that
〈v, x(i)〉 = 1, i = 1, . . . , k,

and
|〈v, x(i)〉| < 1, i = k + 1, . . . ,m,

where x(k+1), . . . , x(m) are the remaining elements of an essential system of vertices of P
that includes Xx.

Now it is clear that there exists a sufficiently small neighbourhood of the null vector 0 in
(

span(Gx)
)⊥

such that, for any z ∈ V , we have

〈v + z, x(i)〉 = 1, i = 1, . . . , k,

and
|〈v + z, x(i)〉| < 1, i = k + 1, . . . ,m.

This means that Fv+z = Gx (since they have the same vertices), and hence v + z ∈ F ∗
x ,

for all of such z ∈ V , that implies

V ⊆ F ∗
x − v.
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Since
(

span(Gx)
)⊥

= span(V ), we can conclude that

(

span(Gx)
)⊥

⊆ span(F ∗
x − v).

Eventually, (70) completes the proof of (72).

In order to prove also (73), observe that Lemma 3.10, Lemma 4.18 and the equality (72)
imply

dim(span(Gx − u)) = dim(span(Gx))− 1

= dim
((

span(F ∗
x − y)

)⊥)

− 1

= n− dim(span(F ∗
x − y))− 1

= n− dim(span(F ∗
x ))

= dim
((

span(F ∗
x )
)⊥)

.

Eventually, (75) concludes the proof.

Corollary 4.21. Let P∗ be a b.c.p. of adjoint type, P = adj(P∗), y ∈ ∂P∗, x ∈ Fy and
v ∈ G∗

y. Then it holds that

span(G∗
y − v) =

(

span(Fy)
)⊥

.

and

span(Fy − x) =
(

span(G∗
y)
)⊥

.

Proof. In view of the foregoing Theorem 4.20, this result is an obvious consequence of
Propositions 3.20, 4.13 and 4.17.

Also the relationships between the dimensions of the faces of P and the faces of P∗ =
adj(P) are now obvious.

Corollary 4.22. Let P∗ be a b.c.p. of adjoint type, P = adj(P∗), x ∈ ∂P and y ∈ ∂P∗.
Then it holds that

dim(Gx) + dim(F ∗
x ) = n− 1

and
dim(G∗

y) + dim(Fy) = n− 1.

Remark 4.23. The dimension of a face F ∗
x of a b.c.p. of adjoint type P∗ can vary between

0 and n − 1. In particular, the previous corollary implies that the a face F ∗
x is a facet if

and only if
dim(F ∗

x ) = n− 1,

whereas a face F ∗
x is a vertex if and only if

dim(F ∗
x ) = 0.
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The foregoing Corollary 4.22 along with formula (59) yields the analogue of Proposi-
tion 3.12.

Proposition 4.24. Let P∗ be a b.c.p. of adjoint type and F ∗
u , F

∗
x be two faces of P∗ such

that F ∗
u ⊂ F ∗

x . Then it holds that

dim(F ∗
u ) < dim(F ∗

x ).

We conclude the section with a corollary to Theorem 4.8.

Corollary 4.25. Let P∗ be a b.c.p. of adjoint type and F ∗
x be a face of P∗ of dimension

d. Then there exist s facets F ∗
x(i1)

, . . . , F ∗
x(is)

, with s ≤ n− d, such that x(i1), . . . , x(is) are
linearly independent and

F ∗
x =

s
⋂

j=1

F ∗

x
(ij)

. (76)

Proof. Corollary 4.22 implies that dim(Gx) = n − d − 1. Therefore, there exist n − d
linearly independent vertices x(i1), . . . , x(in−d) ∈ Xx and, by Theorem 4.8, they are such
that

F ∗
x ⊆

n−d
⋂

j=1

F ∗

x
(ij)

. (77)

On the other hand, it is clear that the dimension of the face
⋂n−d

j=1 F
∗

x
(ij)

cannot exceed d.

Hence, by virtue of Proposition 4.24, the inclusion (77) is indeed an equality.

Finally, we observe that it might well be that the first s facets, for some s < n−d, already
satisfy the equality (76) (see the forthcoming Example 4.26).

Example 4.26. Consider the b.c.p.

P = absco
(

x(1), x(2), x(3), x(4)
)

included in C
3, where

x(1) = [1, 1, 1]T , x(2) = [−1, 1, 1]T , x(3) = [−1,−1, 1]T , x(4) = [1,−1, 1]T ,

and then consider its adjoint

P∗ = adj
(

x(1), x(2), x(3), x(4)
)

.

As it is illustrated by Figure 1 (where the intersection with the real space R3 is depicted),
choosing x = [0, 0, 1]T yields

Gx = co
(

x(1), x(2), x(3), x(4)
)

and
F ∗
x = {y}, where y = [0, 0, 1]T .

Moreover, accordingly with Corollary 4.22, it holds that

dim(Gx) = 2 and dim(F ∗
x ) = 0.
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On the other hand, the equality (76) holds with

s = 2 < n− dim(F ∗
x ) = 3,

since we have

F ∗
x = F ∗

x(1)

⋂

F ∗
x(3) = F ∗

x(2)

⋂

F ∗
x(4) . ⋄

x(2)x(3)

x(4) x(1)

x

x2 y2

x3 y3

x1
y1

y

x(2)x(3)

x(4) x(1)

x

x2 y2

x3 y3

x1
y1

y

Figure 4.1: Illustration of Example 4.26

5. Complex polytope norms

Now we extend the concept of polytope norm to the complex case in a straightforward
way.

Lemma 5.1. Any b.c.p. P is the unit ball of a norm ‖ · ‖P on C
n.
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Proof. Since span(X ) = C
n, the set P is absorbing. Therefore, since it is absolutely

convex and bounded, the Minkowski functional associated to P, defined for all z ∈ C
n by

‖z‖P = inf{ρ > 0 | z ∈ ρP}, (78)

is indeed a norm on C
n (see again [3]).

Definition 5.2. We shall call complex polytope norm any norm ‖ · ‖P whose unit ball is
a b.c.p. P.

Due to the substantial difference between a b.c.p. P and a b.c.p. of adjoint type P∗, we
need to introduce also the adjoint version of the concept of complex polytope norm.

Lemma 5.3. Any b.c.p. of adjoint type P∗ is the unit ball of a norm ‖ · ‖P∗ on C
n.

Proof. Since also P∗ is absorbing and absolutely convex, as in the proof of Lemma 5.1,
we can conclude that the Minkowski functional defined by

‖z‖P∗ = inf{ρ > 0 | z ∈ ρP∗} (79)

is a norm on C
n.

Definition 5.4. We shall call adjoint complex polytope norm any norm ‖ · ‖P∗ whose
unit ball is a b.c.p. of adjoint type P∗.

Now we illustrate an important link between polytope norms and adjoint polytope norms.

Theorem 5.5. Let P be a b.c.p. and let ‖ · ‖P be the corresponding complex polytope
norm. Then, for any z ∈ C

n, it holds that

‖z‖P = min
{

m
∑

i=1

|λi|
∣

∣

∣
z =

m
∑

i=1

λix
(i)
}

= max
y∈∂P∗

|〈y, z〉|, (80)

where P∗ = adj(P) and X = {x(i)}1≤i≤m is an essential system of vertices for P.

Analogously, let P∗ be a b.c.p. of adjoint type and let ‖ · ‖P∗ the corresponding adjoint
complex polytope norm. Then, for any z ∈ C

n, it holds that

‖z‖P∗ = max
1≤i≤m

|〈z, x(i)〉| = max
x∈∂P

|〈z, x〉|, (81)

where P = adj(P∗) and X = {x(i)}1≤i≤m is an essential system of facets for P∗.

Proof. The first equality in (80) is got just by rewriting (78) taking Definition 2.8 into
account. Then, by using some standard arguments, it can be easily seen that the second
equality in (80) follows from (78) as well.

Analogously, the two equalities in (81) are yielt by (79) and Definition 2.11.

Remark that, even if m ≥ 2n, as a consequence of Theorem 3.16, formula (80) can be
rewritten in the form

‖z‖P = min
{

2n−1
∑

j=1

|λij |
∣

∣

∣
z =

2n−1
∑

j=1

λijx
(ij) and {i1, . . . , i2n−1} ⊂ {1, . . . ,m}

}

. (82)
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Corollary 5.6. Let P be a b.c.p. and let ‖ · ‖P the corresponding complex polytope norm.
Moreover, let P∗ = adj(P) and let ‖ · ‖P∗ the corresponding adjoint complex polytope
norm. Then, for any complex n× n-matrix A and its adjoint A∗, it holds that

‖A‖P∗ = ‖A∗‖P . (83)

Proof. By (80) and (81) and by the definition of adjoint matrix A∗, we have

‖A‖P∗ = max
y∈∂P∗

‖Ay‖P∗ = max
y∈∂P∗

max
x∈∂P

|〈Ay, x〉| =

= max
x∈∂P

max
y∈∂P∗

|〈y, A∗x〉| = max
x∈∂P

‖A∗x‖P = ‖A∗‖P .

The next theorem shows that the set of the complex polytope norms is dense in the set of
all norms defined on C

n and that, consequently, the corresponding set of induced matrix
complex polytope norms is dense in the set of all induced n× n-matrix norms.

Theorem 5.7. Let ‖ · ‖ be a norm on C
n. Then for any ǫ > 0 there exists a b.c.p. Pǫ

whose corresponding complex polytope norm ‖ · ‖ǫ satisfies the inequalities

‖x‖ ≤ ‖x‖ǫ ≤ (1 + ǫ)‖x‖ for all x ∈ C
n. (84)

Moreover, denoting by ‖·‖ and ‖·‖ǫ also the corresponding induced matrix norms, it holds
that

(1 + ǫ)−1‖A‖ ≤ ‖A‖ǫ ≤ (1 + ǫ)‖A‖ for all A ∈ C
n×n. (85)

Proof. Let B be the unit ball of the norm ‖ · ‖ and let x1, . . . , xn ∈ ∂B such that
span({x1, . . . , xn}) = C

n. Then define the b.c.p.

P⋄ = absco({x1, . . . , xn}).

If ‖ · ‖⋄ is the vector norm corresponding to P⋄, by the equivalence of all the norms in C
n,

there exists a constant K > 0 such that

‖x‖⋄ ≤ K‖x‖ for all x ∈ C
n. (86)

Since ∂B is compact, given ǫ > 0, there exist a finite number of vectors y1, . . . , ykǫ ∈ ∂B
such that

∂B ⊂
kǫ
⋃

i=1

Si, (87)

where Si = {x ∈ C
n | ‖x− yi‖ < ǫ/K}. Then define the b.c.p.

Pǫ = absco({x1, . . . , xn, y1, . . . , ykǫ}).

Since B is absolutely convex, we clearly have

P⋄ ⊆ Pǫ ⊆ B. (88)

Therefore, if ‖ · ‖ǫ is the vector norm corresponding to Pǫ, then

‖x‖ ≤ ‖x‖ǫ ≤ ‖x‖⋄ for all x ∈ C
n. (89)
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On the other hand, (87) implies that, for any y ∈ ∂B, there exists yǫ ∈ ∂Pǫ such that

‖y − yǫ‖ < ǫ/K. (90)

Now consider an arbitrary x ∈ C
n, x 6= 0, and define y = x/‖x‖. By (86), (89) and (90),

it follows that

‖x‖ǫ ≤ (1 + ‖y − yǫ‖ǫ)‖x‖ ≤ (1 + ‖y − yǫ‖⋄)‖x‖
≤ (1 + ǫ)‖x‖, (91)

that is,
B ⊆ (1 + ǫ)Pǫ. (92)

proving (84).

Moreover, for any n× n-matrix A, (89) and (91) yield

‖A‖ǫ = max
‖x‖ǫ=1

‖Ax‖ǫ ≤ max
‖x‖=1

‖Ax‖ǫ ≤ (1 + ǫ) max
‖x‖=1

‖Ax‖ = (1 + ǫ)‖A‖

and

‖A‖ = max
‖x‖=1

‖Ax‖ ≤ (1 + ǫ) max
‖x‖ǫ=1

‖Ax‖ ≤ (1 + ǫ) max
‖x‖=1

‖Ax‖ǫ = (1 + ǫ)‖A‖ǫ,

that is, (85).

The adjoint version of the previous density theorem holds.

Theorem 5.8. Let ‖ · ‖ be a norm on C
n. Then for any ǫ > 0 there exists a b.c.p. of

adjoint type P∗
ǫ whose corresponding adjoint complex polytope norm ‖ · ‖∗,ǫ satisfies the

inequalities
(1 + ǫ)−1‖x‖ ≤ ‖x‖∗,ǫ ≤ ‖x‖ for all x ∈ C

n. (93)

Moreover, denoting by ‖ · ‖ and ‖ · ‖∗,ǫ also the corresponding induced matrix norms, it
holds that

(1 + ǫ)−1‖A‖ ≤ ‖A‖∗,ǫ ≤ (1 + ǫ)‖A‖ for all A ∈ C
n×n. (94)

Proof. Let B be the unit ball of the norm ‖ · ‖ and consider the set

B∗ = adj(B),

which is the unit ball of a norm on C
n as well. Then fix ǫ > 0 and apply the same

arguments of the proof of Theorem 5.7 to obtain the analogue of formulae (88) and (92)
for B∗, that is,

Pǫ ⊆ B∗ ⊆ (1 + ǫ)Pǫ,

where Pǫ is a suitable b.c.p.

By Proposition 2.19, we can write the adjoint inclusions

(1 + ǫ)−1P∗
ǫ ⊆ B ⊆ P∗

ǫ ,

where P∗
ǫ = adj(Pǫ). Therefore, the corresponding norm ‖ · ‖∗,ǫ satisfies the inequalities

(93).

At this point, the proof of (94) is the same as that of (85).
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Now we consider the so called ∞-norm and 1-norm which, for all z ∈ C
n, are defined by

‖z‖∞ = max1≤i≤n |zi| and ‖z‖1 =
∑n

i=1 |zi|, respectively.
As is wellknown in the real case, ‖ · ‖∞ and ‖ · ‖1 are adjoint to each other. In fact, they
are associated to the n-dimensional complex hypercube

H∗ = adj({e(1), . . . , e(n)}) (95)

and to its adjoint b.c.p., the n-dimensional complex crosspolytope

H = absco({e(1), . . . , e(n)}), (96)

respectively, where the e(i)’s are the vectors of the canonical basis of C
n. Note that

H∗
⋂

R
n is the classical n-dimensional hypercube and that H⋂R

n is the classical n-
dimensional crosspolytope.

By the way, it may be interesting to remark that, for n = 3, H∗
⋂

R
3 is equal to the b.c.p.

P of Example 4.26 and H⋂R
3 is equal to its adjoint P∗. Nevertheless, as it is easy to

verify, in the complex space C
3 we have that H ⊂ P∗ and H∗ ⊂ P.

The above two special norms can be used to express conveniently all the other complex
and adjoint complex polytope norms as follows. Given a b.c.p. P and an essential system
of vertices X = {x(i)}1≤i≤m, define the vertex matrix

V =
[

x(1) . . . x(m)
]

and, for the b.c.p. of adjoint type P∗ = adj(P), the facet matrix, adjoint of V ,

F = V ∗.

Then the first equality in (81) yields

‖z‖P∗ = ‖Fz‖∞, (97)

whereas, with λ = [λ1 . . . λm]
T , the first equality in (80) leads to

‖z‖P = min
V λ=z

‖λ‖1. (98)

Note that, if m = n, then (98) reduces to ‖z‖P = ‖V −1z‖1.
Now consider the case m > n. In order to compute ‖z‖P , assume without any restriction
that the first n columns of the vertex matrix V are linearly independent and define the
matrices

V1 =
[

x(1) . . . x(n)
]

and V2 =
[

x(n+1) . . . x(m)
]

.

Then, if λ ∈ C
m, define also the (m− n)-vector

µ = [λn+1 . . . λm]
T ,

so that any solution of the equation V λ = z may be written in the form

λ =

[

V −1
1 (z − V2µ)

µ

]

.
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In conclusion, we obtain

‖z‖P = min
µ∈Cm−n

∥

∥

∥

∥

[

V −1
1 (z − V2µ)

µ

]
∥

∥

∥

∥

1

, (99)

that is, the computation of ‖z‖P requires the solution of a minimization problem in C
m−n.

Therefore, in general, ‖z‖P∗ is clearly much easier to compute. However, even if m ≥ 2n,
formula (82) reveals that a minimizing λ in (98) can be found among those which have
at most 2n− 1 nonzero entries.

As far as the computation of the induced matrix norms ‖A‖P and ‖A‖P∗ is concerned,
Theorem 5.6 indicates that the problem is substantially the same. However, in order
to find a practical formula, it seems to us that it is easier to look first for ‖A‖P and,
subsequently, to compute ‖A‖P∗ as ‖A∗‖P . So, let us do this.

First of all, observe that, by Definition 2.8, we immediately have

‖A‖P = max
z∈∂P

‖Az‖P = max
1≤i≤m

‖Ax(i)‖P . (100)

Thus formula (99) yields

‖A‖P = max
1≤i≤m

min
µ∈Cm−n

∥

∥

∥

∥

[

V −1
1 (Ax(i) − V2µ)

µ

]
∥

∥

∥

∥

1

. (101)

In conclusion, by defining the (m− n)×m-matrix

M =
[

µ(1) . . . µ(m)
]

,

where, for each i = 1, . . . ,m, µ(i) gives the minimum in the right-hand side of (101), we
get the equality

‖A‖P =

∥

∥

∥

∥

[

V −1
1 (AV − V2M)

M

]
∥

∥

∥

∥

1

. (102)

As a consequence, in view of Theorem 5.6, with

F1 = V ∗
1 and F2 = V ∗

2 ,

we have also

‖A‖P∗ = ‖A∗‖P =

∥

∥

∥

∥

[

V −1
1 (A∗V − V2M)

M

]
∥

∥

∥

∥

1

=
∥

∥

[

(FA−M∗F2)F
−1
1 M∗

]
∥

∥

∞
. (103)

We can conclude with the following results.

Theorem 5.9. Let P be a b.c.p. and let V be the corresponding vertex n × m-matrix
(with m > n). Then, for any n×n-matrix A there exists an m×m-matrix Ã of the block
lower triangular form

Ã =

[

A O
A21 A22

]

(104)
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such that
‖A‖P = ‖Ṽ −1ÃṼ ‖1, (105)

where Ṽ is the block upper triangular m×m-matrix

Ṽ =

[

V1 V2

O I

]

, (106)

I being the (m− n)× (m− n)-identity matrix.

Proof. The result follows easily from (102) with

A21 = M1V
−1
1 and A22 = M2 −M1V

−1
1 V2, (107)

where
M1 =

[

µ(1) . . . µ(n)
]

and M2 =
[

µ(n+1) . . . µ(m)
]

.

Theorem 5.10. Let P∗ be a b.c.p. of adjoint type and let F be the corresponding facet
m× n-matrix (with m > n). Then, for any n× n-matrix A there exists an m×m-matrix
Ã of the block upper triangular form

Ã =

[

A A12

O A22

]

(108)

(which prolongs A to C
m) such that

‖A‖P∗ = ‖F̃ ÃF̃−1‖∞, (109)

where F̃ is the block lower triangular m×m-matrix

F̃ =

[

F1 O
F2 I

]

, (110)

I being the (m− n)× (m− n)-identity matrix.

Proof. The result follows easily from (103) with

A12 = F−1
1 M∗

1 and A22 = M∗
2 − F2F

−1
1 M∗

1 . (111)
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