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We present an iterative method for finding zeroes of maximal monotone operators in a real Hilbert space.
The underlying idea relies upon the discretization of a first order dissipative dynamical system which
allows us to preserve the local feature, as well as to obtain convergence results. The main theorems do
not only recover known convergence results of standard and inertial proximal methods, but also provide
a theoretical basis for the application of new iterative methods.

Keywords: Monotone operators; standard and inertial proximal methods; minimization

2000 Mathematics Subject Classification: Primary 49J53, 65K10; Secondary 49M37, 90C25

1. Introduction and preliminaries

Throughout the paper (H, 〈·, ·〉) is a real Hilbert space and A : H → 2H is a maximal
monotone operator, that is, A is monotone, namely ∀x, y ∈ H,∀v ∈ A(x),∀w ∈ A(y), 〈v−
w, x−y〉 ≥ 0, and the graph GrA = {(x, v) ∈ H×H; v ∈ A(x)} is not properly contained
in the graph of any other monotone operator. The resolvent, JA

λ
:= (I+λA)−1, of A with

parameter λ > 0 is a nonexpansive mapping satisfying the following key property:

JA

λ
(x) = x if and only if 0 ∈ A(x).

We are interested in solving the problem

(P) Find x ∈ H such that 0 ∈ A(x).

To this end, we propose an algorithm based upon an implicit discretization of the following
first order dissipative dynamical system introduced in [3]:





x(1)(t) + β∇φ(x(t)) + ax(t) + by(t) = 0,
y(1)(t) + ax(t) + by(t) = 0,
x(0) = x0, y(0) = y0,

(1)
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where φ is assumed to be a convex differentiable function, the initial data x0 and y0 belong
to H and where β > 0, b > 0 and a+ b > 0.

It is worth mentioning that most of the existing numerical methods for minimizing a
function are based upon a discretization of some continuous equations with appropriate
convergence properties. The standard proximal point algorithm and the gradient method
come from the first order steepest descent equation x(1)(t) + ∇φ(x(t)) = 0. Conversely
the inertial proximal method is inspired by the heavy ball with friction dynamical system
x(2)(t)+αx(1)(t)+∇φ(x(t)) = 0. The latter system was introduced by Attouch et al. [6] for
overcoming some of the drawbacks of the steepest descent method. It turns out that when
φ is convex, the two trajectories of the last two equations weakly converge to minimizers of
φ. Nevertheless, there is a drastic difference between them. By contrast with the steepest
descent method, the heavy ball with friction dynamical system is no more a descent
method. In the latter case, the function φ(x(t)) does not decrease along the trajectories
in general; it is the energy of the system E(t) := 1

2
|x(1)(t)|2 + φ(x(t)) that is decreasing.

This confers on this system interesting properties for the exploration of local minima of
φ (see [6] for more details). It also appears that its trajectories may exhibit oscillations
which are not desirable. In view of numerical optimization purposes, Alvarez and Pérez
[4] have studied the "Continuous Newton" method ∇2φ(x(t))x(1)(t) + ∇φ(x(t)) = 0. If
one combines this last system with the heavy ball system with friction, the system thus
obtained,

x(2)(t) + αx(1)(t) + β∇2φ(x(t))x(1)(t) +∇φ(x(t)) = 0, (2)

inherits most of the advantages of the two preceding systems and corrects both of the
above mentioned drawbacks: the term ∇2φ(x(t))x(1)(t) is a clever geometric damping
term, while the acceleration term x(2)(t) makes the Newton dynamical system well-posed,
even if ∇2φ(x(t)) is degenerate (see Attouch, Redont [7] for a first study of this question).
It is worth mentionning that (2) is a second order system both in time and in space.
Furthermore, it was proved that (2) is equivalent in some sense to the system (1) which is
first-order in time and with no occurrence of the Hessian (see [3] for more details). This
matter opens new interesting perspectives such as considering (2) for nonsmooth functions
only lower semi-continuous or involving constraints, with clear applications to mechanics
and PDE’s (wave equations, shocks). It then seems natural to investigate implicit and/or
non-implicit discretization of (1) for numerical and theoretical optimization purposes,
because an accurate discrete version of an equation is supposed to preserve the essential
properties of the continuous one. Motivated by the above arguments and inspired by the
system (1), we introduce and analyze convergence properties of the following Dissipative
Proximal Method, (DPM) for short, for the monotone inclusion 0 ∈ A(x):

Given parameters (λn), (θn) in (0,+∞), µ ∈ [0, 1], γ ∈ (0, 2) and α ∈ (−∞,+∞), this
iterative method generates two sequences (xn) and (yn) by:





Initialization: (x0, y0) in H×H.
Step 1: xn+1 := JA

λn
(xn − θn(αxn + γyn)) .

Step 2: yn+1 = (1− γ)yn − α(µxn+1 + (1− µ)xn).
(3)

The goal of this paper is to provide a broad framework for the design and the analysis of
algorithms based on a discretization of the system (1). This framework will not only lead
to a unified convergence analysis of some existing algorithms in convex optimization and
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variational inequalities, but will also serve as a basis for the development of a new class
of algorithms. More specifically, we would like to emphasize that the standard proximal
point algorithm proposed in [16] is nothing but the special case of DPM when α = γ = 0
and that the inertial proximal method initiated in [1] for convex minimization and further
developed in [2] corresponds to the particular case of DPM where α = −1, γ = 1 and
µ = 0.
Under suitable conditions on the parameters, we prove a discrete version of the main
theorem in [3] in a more general context. More precisely, we prove that the proposed
algorithm generates an asymptotically regular sequence (xn) which weakly converges to-
ward a solution of 0 ∈ A(x). An application to convex minimization and some concluding
remarks are also provided.

2. Asymptotic Convergence

To begin with, let us state an elementary and key property.

Lemma 2.1. For any q ∈ A−1(0), we have

an+1 − an ≤
(

α+ γ

(

1

θn
− µα

))

〈q − xn+1, xn+1 − xn〉

+ 〈xn+1 − xn, yn+1 − yn〉+ µα|xn+1 − xn|2,
(4)

where an := 〈q − xn, αxn + γyn〉.

Proof. First, we successively have

an+1 − an = 〈q − xn+1, αxn+1 + γyn+1〉 − 〈q − xn, αxn + γyn〉
= 〈q − xn+1, α(xn+1 − xn) + γ(yn+1 − yn)〉+ 〈xn − xn+1, αxn + γyn〉
= α〈q − xn+1, xn+1 − xn〉+ γ〈q − xn+1, yn+1 − yn〉

+ 〈xn − xn+1, αxn + γyn〉

Moreover, by Step 2 in (3) we have

yn+1 = yn − γyn − αxn − αµ(xn+1 − xn),

hence

αxn + γyn = −(yn+1 − yn)− µα(xn+1 − xn). (5)

Consequently, we get

an+1 − an = α〈q − xn+1, xn+1 − xn〉+ γ〈q − xn+1, yn+1 − yn〉
+ 〈xn − xn+1,−(yn+1 − yn)− µα(xn+1 − xn)〉

= α〈q − xn+1, xn+1 − xn〉+ γ〈q − xn+1, yn+1 − yn〉
+ 〈xn+1 − xn, yn+1 − yn〉+ µα|xn+1 − xn|2.

(6)

On the other hand, Step 1 in (3) amounts to

(I + λnA)xn+1 ∋ xn − θn(αxn + γyn),
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which by monotonicity of A yields

〈xn+1 − xn, xn+1 − q〉 ≤ −θn〈αxn + γyn, xn+1 − q〉,
hence by virtue of (5) we get

〈xn+1 − xn, xn+1 − q〉 ≤ θn〈(yn+1 − yn) + µα(xn+1 − xn), xn+1 − q〉
= −θn〈yn+1 − yn, q − xn+1〉+ θnµα〈xn+1 − xn, xn+1 − q〉,

so that

〈yn+1 − yn, q − xn+1〉 ≤
(

µα− 1

θn

)

〈xn+1 − xn, xn+1 − q〉. (7)

Combining (6) and (7), we then infer the desired result

The following elementary result will be useful to build the discrete energy.

Lemma 2.2. For any q ∈ A−1(0), we have

Fn+1 − Fn ≤
(

−1

2
+ α2

(

1

2
− µ

)

+ µα

)

|xn+1 − xn|2

+ γ
(γ

2
− 1

)

|yn+1 − yn|2

+ (α(γ(1− µ)− 1) + 1) 〈xn+1 − xn, yn+1 − yn〉

+

(

1− α− γ

(

1

θn
− µα

))

〈xn+1 − q, xn+1 − xn〉.

(8)

where Fn = 1
2
|(q − xn) + (αxn + γyn)|2.

Proof. To estimate the term Fn+1 − Fn, let us set

bn =
1

2
|q − xn|2,

cn =
1

2
|αxn + γyn|2.

Then, we can write

bn+1 − bn =
1

2

(

|q − xn+1|2 − |q − xn|2
)

= 〈xn − xn+1, q −
xn+1 + xn

2
〉 (9)

= 〈xn − xn+1, q − xn+1〉+ 〈xn − xn+1,
xn+1 − xn

2
〉,

namely

bn+1 − bn = −〈xn+1 − xn, q − xn+1〉 −
1

2
|xn+1 − xn|2. (10)

We also have

cn+1 − cn =
1

2
|αxn+1 + γyn+1|2 −

1

2
|αxn + γyn|2

= 〈α(xn+1 − xn) + γ(yn+1 − yn), α
xn+1 + xn

2
+ γ

yn+1 + yn

2
〉.

(11)
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Moreover, it is easily checked that

αxn + γyn = α
xn+1 + xn

2
+ γ

yn+1 + yn

2
− α

2
(xn+1 − xn)−

γ

2
(yn+1 − yn),

which in the light of (5) yields

α
xn+1 + xn

2
+ γ

yn+1 + yn

2

= − (yn+1 − yn)− µα(xn+1 − xn) +
α

2
(xn+1 − xn) +

γ

2
(yn+1 − yn) (12)

=
(γ

2
− 1

)

(yn+1 − yn) + α

(

1

2
− µ

)

(xn+1 − xn).

Consequently, we deduce

cn+1 − cn = 〈α(xn+1 − xn) + γ(yn+1 − yn),
(γ

2
− 1

)

(yn+1 − yn) + α

(

1

2
− µ

)

(xn+1 − xn)〉

that is

cn+1 − cn =

(

α
(γ

2
− 1

)

+ αγ

(

1

2
− µ

))

〈xn+1 − xn, yn+1 − yn〉

+ α2

(

1

2
− µ

)

|xn+1 − xn|2 + γ
(γ

2
− 1

)

|yn+1 − yn|2,
(13)

or equivalently

cn+1 − cn = α (γ(1− µ)− 1) 〈xn+1 − xn, yn+1 − yn〉

+ α2

(

1

2
− µ

)

|xn+1 − xn|2 + γ
(γ

2
− 1

)

|yn+1 − yn|2.
(14)

Furthermore, it is easily observed that

Fn+1 − Fn = (an+1 − an) + (bn+1 − bn) + (cn+1 − cn),

where an = 〈q−xn, αxn+γyn〉. Using Lemma 2.1 and thanks to (10) and (14), we finally
obtain the desired result

In order to prove our main convergence result, the idea is to apply the following well-known
Opial lemma on weak convergence in Hilbert spaces.

Lemma 2.3. Let H be a Hilbert space and (xn) a sequence in H such that there exists a

nonempty set S ⊂ H satisfying:

(i) For every x̃ ∈ S, limn|xn − x̃| exists.
(ii) If (xnν

) weakly converges to x̃ for a subsequence nν → +∞, then x̃ ∈ S.

Then, there exists x̄ ∈ S such that (xn) weakly converges to x̄.

We are now in a position to prove the main convergence theorem.
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Theorem 2.4. Let γ ∈ (0, 2), µ ∈ [0, 1], let α be any real number, suppose that λ =
lim infn λn > 0 and assume the set of zeroes of the maximal monotone mapping A is

nonempty. There exists a positive constant θ such that if (θn) is a nondecreasing sequence

in (0, θ), then the sequences (xn) and (yn) generated by scheme (3) satisfy the following

properties:

(i) limn→+∞ |xn+1 − xn| = limn→+∞ |yn+1 − yn| = 0.

(ii) limn→+∞ dist(0, A(xn)) = 0.

(iii) (xn) weakly converges to a zero of A.

Proof. From Lemma 2.2, we have

Fn+1 − Fn ≤ d1|xn+1 − xn|2 − d2|yn+1 − yn|2
+ d3〈xn+1 − xn, yn+1 − yn〉 − ρn〈xn+1 − q, xn+1 − xn〉,

(15)

where

d1 =

(

−1

2
+ α2

(

1

2
− µ

)

+ µα

)

,

d2 = γ
(

1− γ

2

)

,

d3 = (α(γ(1− µ)− 1) + 1) ,

ρn = −
(

1− α− γ

(

1

θn
− µα

))

.

Observing that

〈xn+1 − q, xn+1 − xn〉 = −1

2
|xn − q|2 + 1

2
|xn+1 − q|2 + 1

2
|xn+1 − xn|2

and noting that (ρn) is a non-increasing sequence, since (θn) is non-decreasing, the previ-
ous inequality leads to

Fn+1 − Fn ≤
(

d1 −
ρn

2

)

|xn+1 − xn|2 − d2|yn+1 − yn|2

+ d3〈xn+1 − xn, yn+1 − yn〉
ρn

2
|xn − q|2 − ρn+1

2
|xn+1 − q|2,

(16)

or equivalently

Fn+1 +
ρn+1

2
|xn+1 − q|2 −

(

Fn +
ρn

2
|xn − q|2

)

≤
(

d1 −
ρn

2

)

|xn+1 − xn|2 − d2|yn+1 − yn|2 + d3〈xn+1 − xn, yn+1 − yn〉.
(17)

Clearly, d2 is a positive constant, provided that γ ∈ (0, 2), therefore the previous inequality
may be equivalently rewritten as

Fn+1 +
ρn+1

2
|xn+1 − q|2 −

(

Fn +
ρn

2
|xn − q|2

)

≤ − d2|(yn+1 − yn)−
d3

2d2
(xn+1 − xn)|2 +

(

d1 −
ρn

2
+

d23
4d2

)

|xn+1 − xn|2.
(18)



P.-E. Maingé, A. Moudafi / A Proximal Method for Maximal Monotone ... 875

Now, let us define the discrete energy sequence by

En = Fn +
ρn

2
|xn − q|2 = 1

2
|(q − xn) + (αxn + γyn)|2 +

ρn

2
|xn − q|2 (19)

and set

kn = −
(

d1 −
ρn

2
+

d23
4d2

)

. (20)

It is then immediate that (18) is equivalent to

En+1 − En + d2|(yn+1 − yn)−
d3

2d2
(xn+1 − xn)|2 + kn|xn+1 − xn|2 ≤ 0. (21)

An elementary computation shows that

−kn = d1 −
ρn

2
+

d23
4d2

= α2

(

1

2
− µ

)

+ µα− α

2
− γ

2

(

1

θn
− µα

)

+
(1 + α(γ(1− µ)− 1))2

2γ(2− γ)

=
γ

2

(

µα− 2

γ

(

1

2
− µ

)

(α− α2) +
(1 + α(γ(1− µ)− 1))2

γ2(2− γ)
− 1

θn

)

and

−ρn = γ

(

1− α

γ
+ µα− 1

θn

)

.

It is obviously seen that there exists a positive constant θ such that

1

θ
> µα+

2

γ

(

1

2
− µ

)

(α− α2) +
(1 + α(γ(1− µ)− 1))2

γ2(2− γ)

and
1

θ
> µα+

1− α

γ
.

Clearly, for θn ∈ (0, θ], the two sequences (ρn) and (kn) are then positive. Consequently,
(En) is a positive and non-increasing sequence, hence (En) is converging and it is thus
bounded. Therefore, taking into account (21), we immediately obtain

∑

n≥0 kn|xn+1 −
xn|2 < ∞ and

∑

n≥0 |(yn+1−yn)− d3

2d2
(xn+1−xn)|2 < ∞. Noticing that (θn) is a converging

sequence, because it is non-decreasing and θn ∈ (0, θ], this shows that (kn) converges
to a positive real number. We then easily derive that

∑

n≥0 |xn+1 − xn|2 < ∞ and
∑

n≥0 |yn+1 − yn|2 < ∞, hence

lim
n→+∞

|xn+1 − xn| = lim
n→+∞

|yn+1 − yn| = 0.

As a consequence, by (5) we obtain limn→+∞ |αxn + γyn| = 0. Observing that (ρn) is
also a converging sequence with ρn > 0 and bounded away from 0, by (19) we conclude
that the sequence (|xn − q|) is convergent, hence condition (i) of Lemma 2.3 holds with
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S = A−1(0). Next, since (xn) is thus bounded, let x̄ be any of its weak cluster points. By
passing to the limit in

xn − xn+1

λn

− θn

λn

(αxn + γyn) ∈ A(xn+1),

and by taking into account the fact that limn |xn+1 − xn| = limn |αxn + γyn| = 0 and
that the graph of a maximal monotone operator is closed in H ×H for the weak-strong
topology, see for instance Brézis [9], we deduce that 0 ∈ A(x̄). Thus the condition (ii) of
Lemma 2.3 is also satisfied, which proves the weak convergence of (xn)

It is worth noting that in the case γ = 1, α = −1 and µ = 0 our result improves Proposi-
tion 2.1 of [2].

Now we turn our attention to the convex minimization case. Given a convex lower semi-
continuous proper function φ, our interest is in solving the convex minimization problem
minx∈H φ(x) via its optimality condition, namely

find x̄ ∈ H such that 0 ∈ ∂φ(x̄). (22)

In this context, (DPM) is nothing but:







Initialization: (x0, y0) in H×H.

Step 1: xn+1 := Argmin{φ(x) + 1

2λn

|x− (xn − θn(αxn + γyn)) |2}.
Step 2: yn+1 = (1− γ)yn − α(µxn+1 + (1− µ)xn).

(23)

By applying Theorem 2.4, we obtain:

Proposition 2.5. Let γ ∈ (0, 2), µ ∈ [0, 1], let α be any real number, suppose that

λ = lim infn λn > 0 and that Argmin φ, the set of minimizers of φ on H, is nonempty.

There exists a positive constant θ such that if (θn) is a non-decreasing sequence in (0, θ),
then the sequences (xn) and (yn) generated by scheme (3) satisfy the following properties:

(i) limn→+∞ |xn+1 − xn| = limn→+∞ |yn+1 − yn| = 0.

(ii) limn→+∞∇φ(xn) = 0.

(iii) (xn) weakly converges to a minimizer of the function φ.

Finally, we would like to emphasize that algorithm (3) can also be used to compute the
saddle points of a proper closed convex-concave function L, since finding saddle points
of L, namely (x∗, y∗) ∈ H verifying L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗) ∀(x, y) ∈ H, is
equivalent to finding the zeroes of the corresponding maximal monotone operator TL :=
∂1L× ∂2(−L), where ∂1L (resp. ∂2L) stands for the subdifferential of the function L with
respect to the first (resp. the second) variable.

Conclusion. The main purpose of this article is to establish the asymptotic convergence
of some new implicit iterative methods for solving monotone inclusions. These algorithms,
which generalize the classical proximal algorithm [16] and the inertial proximal method
[2], are obtained by a discretization of a first order dissipative dynamical system. In the
discrete setting and in the more general context of maximal monotone operators, we prove
a similar result of that proposed in the continuous case by Alvarez et al. [3].
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We did not consider errors, ek, in the computation of the resolvent and/or replace A by
its εk-enlargement, for a clearer presentation of the results. It is worth mentioning that
the results are still valid for these type of approximate versions under conditions involving
summability of the sequences ek and (

√
λkεk)k∈IN. Indeed, for instance, the definition of

the ε-enlargement, Aε(x), of the monotone operator A, introduced by [10], namely

Aε(x) := {v ∈ H; 〈u− v, y − x〉 ≥ −ε ∀y, u ∈ A(y)},

where ε ≥ 0, directly yields that |JA
εk

λk
(z)− JA

λk
(z)|2 ≤ λkεk.

To conclude, we think that the results obtained in this paper may inspire and pave the
way for future research in this field, especially in developing new hybrid algorithms which
admit less stringent requirements on solving the proximal subproblems in the spirit of
Solodov and Svaiter [17] who showed that the tolerance requirements for solving the
subproblems can be significantly relaxed if the solving of each subproblem is followed
by a projection onto a certain hyperplane which separates the current iterate from the
solution set of the problem.

Acknowledgements. The authors thank the anonymous referees for their careful reading of

the paper.

References

[1] F. Alvarez: On the minimizing property of a second order dissipative dynamical system in
Hilbert spaces, SIAM J. Control Optimization 38(4) (2000) 1102–1119.

[2] F. Alvarez, H. Attouch: An inertial proximal method for monotone operators via discretiza-
tion of a nonlinear oscillator with damping, Set-Valued Anal. 9 (2001) 3–11.

[3] F. Alvarez, H. Attouch, J. Bolte, P. Redont: A second-order gradient-like dissipative dy-
namical system with Hessian driven damping. Application to optimization and mechanics,
J. Math. Pures Appl., IX. Sér. 81(8) (2002) 747–779.

[4] F. Alvarez, J. M. Pérez: A dynamical system associated with Newton’s method for paramet-
ric approximations of convex minimization problems, Appl. Math. Optimization 38 (1998)
193–217.

[5] Ph. N. Anh, L. D. Muu, V. H. Nguyen, J.-J. Strodiot: Contraction principle to implement
the proximal point method for multivalued monotone variational inequalities, J. Optimiza-
tion Theory Appl. 124(2) (2005) 285–306.

[6] H. Attouch, X. Goudon, P. Redont: The heavy ball system with friction method. I: The
continuous dynamical system, Commun. Contemp. Math. 2(1) (2000) 1–34.

[7] H. Attouch, P. Redont: The second-order in time continuous Newton method, in: Approxi-
mation Optimization and Mathematical Economics, M. Lassonde (ed.), Physica, Heidelberg
(2001) 25–36.
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