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1. Introduction

In convex duality the Legendre-Fenchel transform, which associates with a convex exten-
ded-valued function f : Rd → R ∪ {+∞} its Legendre-Fenchel conjugate

f ∗(s) = sup
x∈Rd

〈s, x〉 − f(x)

allows to relate primal optimization problems of the type

p = inf
x∈Rd

f(x) + g(Ax)

where A ∈ R
n×d and f, g are extended-valued proper lower semi-continuous (lsc) convex

functions, with the dual problem

d = sup
x∈Rm

−f ∗(−AT z)− g∗(−z),
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(where AT denotes the transpose of A) by Fenchel’s duality theorem [5, Theorem 3.3.5].
Convex duality encompasses linear programming duality, the Min-Max Theorem from
game theory, and also allows to state duality results for semi-definite optimization prob-
lems. Earlier work on duality used the notion of Legendre transform as detailed in [21,
Section 26].

Recent work has focused on the numerical computation of the Legendre-Fenchel conjugate.
Symbolic computation was explored in [3, 2, 10] where a specific class of functions was
identified. It relies on inverting the gradient mapping with recent advances focusing on
extension to multidimensional functions. When symbolic computation fails, or when the
function is only known through a black box or at specific points, numerical algorithms
still allow the computation of an approximation of the conjugate. Work in that area
started with the Fast Legendre Algorithm (FLT) [6, 16], and was later improved with the
Linear-time Legendre Transform (LLT) algorithm [17]. Recent work [18] noticed the close
relationship between the Fenchel conjugate and the Moreau envelope

Mλ(s) = inf
x∈Rd

f(x) +
‖s− x‖2

2λ
,

resulting in several linear-time algorithms for both transforms.

While the FLT and LLT algorithms initially focused on solving numerically partial differ-
ential equations, namely the Hamilton-Jacobi equation, more specialized algorithms have
been developed in image processing to compute the so-called square Euclidean distance
transform

DT 2(p) = ‖p‖2 − g∗(p)

of a binary image p 7→ f(p) ∈ {0, 1}, where g(q) = ‖q‖2/2 + I(q) and I is the indicator
function of the background: I(q) = 0 if f(q) = 1, +∞ otherwise. Algorithms from image
processing take additional advantage of the simplified grid {1, . . . , n1} × {1, . . . n2} on
which the function is defined, and of the integer value of f to speed up the computation
by using integer arithmetic instead of floating point operations. See [14, 15, 8, 9, 7, 1, 11,
20, 23, 18] for the latest Euclidean distance transform algorithms.

The framework of the present work is slightly different. We assume f : R → R∪{+∞} is
a one-variable function with f and f ′ available through a black box. In that context, we
investigate a parameterization of the Fenchel conjugate in Section 2, which allows us to
define the PLT algorithms in Section 3. Section 4 focuses on the approximation error and
the convergence, while Section 5 extends the approach to the computation of the Moreau
envelope. Numerical comparison is performed in Section 6, and Section 7 concludes the
paper.

2. Theoretical preliminaries

Note Γ(R) = {f : R → R ∪ {+∞}| f is convex, lower-semicontinuous, proper }, where
f proper means that dom f = {x ∈ R|f(x) < +∞} is nonempty. Additionally, we note
Γ̃(R) the set of functions f ∈ Γ(R) whose domain is not a singleton. Among the set of all
lsc convex functions, Γ disregards the special case f ≡ +∞, and Γ̃ the case f is a needle
function i.e. f = I{x0} for some x0 ∈ R. Define

G = {(s, z) ∈ R
2 | ∃x ∈ R, f differentiable at x, s = f ′(x), and z = sx− f(x)}.
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We first prove that the parameterization that describes G allows us to recover the graph
of the conjugate.

Lemma 2.1. If f ∈ Γ̃(R), then G 6= ∅.

Proof. By definition of Γ̃, there are x1, x2 ∈ dom f with x1 6= x2. Since f is convex, dom f
is also convex, so the segment [x1, x2] is contained in dom f . Applying [21, Theorem 25.3],
f is differentiable almost everywhere in the open interval (x1, x2). So there is x ∈ (x1, x2)
with f differentiable at x, and G is nonempty since it contains the point (f ′(x), f ′(x)x−
f(x)).

Remark 2.2. The assumption that there are two distinct points in dom f is needed since
G = ∅ when f = I{x0} is a needle function. It is equivalent in our context to the function
f ∗ being lower-bounded by two affine functions with different slopes. See the so-called
class of epi-pointed functions introduced in [4] for a generalization to higher dimension.

Proposition 2.3. For any f ∈ Γ̃(R), coG = epi f ∗, where coG denotes the closed convex
hull of G.

Proof. We invoke [21, Corollary 25.12] which states that G is the set of exposed points
of epi f ∗. Since the lemma above ensures G 6= ∅, taking the closed convex hull gives the
result.

Hence the graph of the conjugate is described by the set G up to some affine parts.

To better understand the parameterization, we now recall the relationship between the
conjugate and the closed perspective function f̃ (also called epi-multiplication, see [22,
Section 1.H] or dilation) defined by [13, Section 2.2 and Example IV.3.2.4]:

f̃(x, t) =











tf(x
t
) for t > 0,

f ′
∞(x) for t = 0,

+∞ otherwise;

(1)

where f ′
∞ denotes the asymptotic function, or recession function [13, Section IV.3.2] (also

called the horizon function [22, Section 3.C]) of f , and is defined by:

f ′
∞(d) = sup

t>0

f(x0 + td)− f(x0)

t
= lim

t→+∞

f(x0 + td)− f(x0)

t
,

where x0 is any point in dom f .

Since f̃ is a positively homogeneous lower-semicontinuous (lsc) convex function, it is the
support function of a closed convex set in R

2. We note ∂f(x) the (convex) subdifferential
of a function f at a point x ∈ R:

∂f(x) = {s ∈ R | ∀y ∈ R, f(y) ≥ f(x) + 〈s, y − x〉}.

For simplicity we state the next proposition for functions defined on R, although it is
valid on R

d.

Proposition 2.4. Assume f is a proper lsc convex function on R. Then
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(i) the closed perspective function f̃ is the support function of the set

Cf = {(x,−r)|(x, r) ∈ epi f ∗}

the symmetric of epi f ∗ with respect to the x-axis.

(ii) the set Cf is the subdifferential of f̃ at the origin and

Cf = ∂f̃(0, 0) = co∇
→
f̃(0, 0) +Ndom f̃ (0, 0)

where Ndom f̃ (0, 0) is the normal cone at the origin to dom f̃ , the domain of the

function f̃ , and co∇
→
f̃(0, 0) is the closed convex hull of the upper limit set, i.e. it is

the set of all the limits of sequences ∇f̃(xn, tn), where f̃ is differentiable at (xn, tn)
and (xn, tn) → (0, 0).

Proof. (i) See [21, Corollary 13.5.1].

(ii) Since f̃ is the support function of Cf , we have Cf = ∂f̃(0, 0). The remaining part is
[21, Theorem 25.6].

While co∇
→
f̃(0, 0) is difficult to compute as a general rule, in our case it is constant along

the half-lines (x, t) with t > 0 (since f̃ is positively homogeneous). We deduce

∇f̃(x, t) = (f ′(
x

t
), f(

x

t
)−

x

t
f ′(

x

t
))

as soon as f̃ is differentiable at (x, t) with t > 0. Consequently, a parameterization of the
border of Cf , except for some affine parts, is given by

{

x = f ′(s),

y = f(s)− sf ′(s).
(2)

For functions of one variable, the subdifferential of f , a lsc proper convex function, is
either empty, a single point, or a segment where the endpoints are the left- and right-
derivative (see Section 4 below). So handling nondifferentiable points is not too difficult
and the parameterization can be fully captured (at differentiable and nondifferentiable
points) by the formula:

{

s ∈ ∂f(x),

f ∗(s) = sx− f(x).

3. The Parametric Legendre Transform algorithm

Assume f ∈ Γ̃(R). Given a ∈ dom f , a simple binary search allows the computation of
dom f , so we can always assume our input consists of a, b ∈ dom f , a < b, and a black
box returning f , and f ′ (wherever it is defined).

The PLT algorithm returns a set S of slopes in dom f ∗ and the values of f ∗ on S. It can
be stated as follows.

(i) Build an uniform grid xi = a+ i(b− a)/(n− 1) between a and b.
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(ii) Compute si = f ′(xi) and f ∗(si) = xisi − f(xi). Remove duplicate values to obtain a
(non-uniform) grid si. Note that since f is convex, (si)i is a nondecreasing sequence.

(iii) Interpolate as needed between [si, si+1] (See Section 4).

(iv) Extrapolate outside [s1, sm].

The extrapolation can be performed either by

• assuming that dom f is bounded; in other words, we only consider our input to be
valid on a compact set, which amounts to replacing the function f with f+I[a,b] i.e. f
is +∞ outside [a, b]. The resulting computation returns f ∗

�σ[a,b]: the inf-convolution
of f ∗ with the support function of [a, b]. Then we use [12] to obtain a very strong
convergence result when a → +∞ and b → +∞. This is the approach used by fast
algorithms [16, 17].

• computing f ′
∞(−1) (resp. f ′

∞(1)). If it is finite, extrapolate by +∞ at slopes s ∈
(−∞, f ′

∞(−1)] ∪ [f ′
∞(1),+∞), otherwise perform a linear extrapolation. We can use

the estimates

f ′
∞(−1) ≃

f(a− t)− f(a)

t
and f ′

∞(1) ≃
f(b+ t)− f(b)

t
,

for a large value of t > 0. Then we approximate by assuming that the supremum
is attained at the boundary of dom f i.e. at b when s > f ′

∞(1), and at a when
s < f ′

∞(−1).

4. Approximation error and convergence results

We will say that a numerical approximation of f ∗ at a slope s is exact if it equals f ∗(s)
up to the usual errors occurring when using floating point operations. These errors are
much smaller than the errors due to sampling and extrapolation, so we will ignore them.

The PLT algorithm returns a set of slopes S = {si|i = 1, . . . n} and (an approximation
of) the value of f ∗ at these slopes f ∗

n(si). Assume s ∈ R, and consider the following four
possible cases.

(i) The slope s is outside f ′([a, b]) i.e. s > f ′
∞(1) or s < f ′

∞(−1). Then we approximate
f ∗(s) by performing an extrapolation using one of the two possibilities explained
previously.

(ii) The slope s equals si for some index i. Since (si, f
∗(si)) ∈ G, the computation is

exact.

(iii) The slope s is between two given slopes: si ≤ s < si+1 for some index i. We consider
two subcases:
(a) (s, f∗(s)) ∈ G. We need to interpolate between the point (si, f

∗(si)) with deriva-
tive xi, and (si+1, f

∗(si+1)) with derivative xi+1. There are several possibilities:
Using the line segment and disregarding the first-order information, building a
polyhedral function using the first-order information, using Hermite interpolation
polynomials (but we must ensure the resulting polynomial is convex between si
and si+1), or using other shape-preserving interpolation scheme. We choose to
build a polyhedral function using the first-order information, i.e.

f ∗
n(s) = max(xi(s− si) + f ∗(si), xi+1(s− si+1) + f ∗(si+1)).



662 J.-B. Hiriart-Urruty, Y. Lucet / Parametric Legendre Transform

(b) (s, f∗(s)) /∈ G. Proposition 2.3 ensures that f ∗ is affine between si and si+1. So
we interpolate linearly to obtain an exact computation.

In practice, we may have a black box to compute f at any point x, but the computation
of f ′ may not be available. However, using finite differences and [21, Theorem 24.1], we
can compute

f ′
+(x) = lim

t→0+

f(x+ t)− f(x)

t
and f ′

−(x) = lim
t→0+

f(x− t)− f(x)

t

and detect points x ∈ int dom f where f is not differentiable. They are the points were
∂f(x) = [f ′

−(x), f
′
+(x)] is not a singleton. So we can easily distinguish between case (iii)(a)

and case (iii)(b) above.

The convergence of the PLT algorithm results directly from convergence results in [17] for
both the extrapolation (when a → −∞ and b → +∞) and the interpolation parts (when
n → +∞ i.e. a thinner grid is used).

5. Parametric Moreau Envelope

By expanding the squared norm in the definition of the Moreau envelope, we can relate
it to the conjugacy operation

Mλ(s) =
‖s‖2

2λ
−

1

λ
g∗λ(s), with gλ(y) = λf(y) +

‖y‖2

2
. (3)

Hence we obtain immediately a parameterization of the Moreau envelope.

Proposition 5.1. Assume f is a proper lsc convex function on R
d. Then the Moreau

envelope can be parameterized by

{

z = x+ λ∇f(x),

Mλ(z) = f(x) + λ
2
‖∇f(x)‖2,

where x ∈ R
d is a point where f is differentiable. Missing parts of the graph of Mλ are

recovered by piecewise quadratic interpolation (knowing that Mλ is C1).

Proof. Apply Formula (3) with the conjugate parameterization of Formula (2).

Alternatively, apply [22, Example 10.2] to evaluate the proximal mapping

x = Pλ(z) = (I + λ∂f)−1(z)

(the proximal mapping is the set of points where the infimum in the definition of the
Moreau envelope is attained; when f is lsc proper convex, the infimum is always attained).
So z = x + λ∂f(x), and when f is differentiable at x we obtain the first part of the
parameterization. The second part follows from substituting x = Pλ(z) into the definition
of Mλ(z).

Finally, to recover the full graph of Mλ let us see how to operate at any point x. If
f is differentiable at x, the corresponding point on the graph of Mλ is recovered by the
parameterization process. Assume f is not differentiable at x. Then gλ is not differentiable
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at x either. Hence the point (s, g∗λ(s)) with s = ∇gλ(x) belongs to the boundary of
epi g∗λ but is not an exposed point (by Proposition 2.3 and its proof). So it is a convex
combination of exposed points, which means that g∗λ is affine around s = ∇gλ(x). Then by
Formula (3) Mλ is quadratic around x. So we can recover the graph of Mλ by performing
a piecewise quadratic interpolation.

Example 5.2. Consider the function

f(x) =











−x− 1 when x ≤ −1,

0 when −1 ≤ x ≤ 1,

x− 1 when 1 < x.

The function f is the convex envelope of x 7→ ||x| − 1|. Its Moreau envelope is

Mλ(x) =































−x− 1− λ
2

when x ≤ −λ− 1,
(x+1)2

2λ
when −λ− 1 ≤ x ≤ −1,

0 when −1 ≤ x ≤ 1,
(x−1)2

2λ
when 1 ≤ x ≤ λ+ 1,

x− 1− λ
2

when 1 + λ < x.

The parameterization formula gives











z = x− λ and Mλ(z) = −x− 1 + λ
2

when x < −1,

z = x and Mλ(z) = 0 when −1 < x < 1,

z = x+ λ and Mλ(z) = x− 1 + λ
2

when 1 < x.

So we deduce

Mλ(z) =











−z − λ
2
− 1 when z < −λ− 1,

0 when −1 < z < 1,

z − λ
2
− 1 when λ+ 1 < z.

The two remaining segments, [−λ − 1,−1] and [1, λ + 1], are recovered by quadratic
interpolation.

Like for the conjugate, if one wants to deal with nondifferentiable points of f , there is no
need to recover quadratic parts. The complete parameterization formula is then

{

z ∈ x+ λ∂f(x),

Mλ(z) = f(x) + ‖z−x‖2

2λ
.

6. Numerical comparisons

While the PLT algorithm has clearly a linear-time complexity, we compare it with sim-
ilar algorithms [19, 18, 8] for computing the Moreau envelope. All the algorithms have
a linear worst-case time complexity. The Parabolic Envelope (PE) algorithm computes
the lower envelope of quadratic functions. It relies on the fact that computing the inter-
section of two quadratic functions can be done in constant time O(1). The Linear-time
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Legendre Transform (LLT) algorithm reduces the computation of the Moreau envelope
to the computation of the Legendre-Fenchel transform, and then uses the LLT algorithm,
which takes advantage of convexity to run in linear time. Finally, the Non-Expansive
Prox (NEP) algorithm uses the non-expansiveness of the proximal mapping to reduce its
complexity. Note that the proximal mapping is nonexpansive for convex functions (and
is Lipschitz for slightly more general functions like prox-regular functions [22]).

n PE LLT NEP PLT
1,000 0.3 0.43 0.16 0.01
3,000 0.99 1.37 0.54 0.
5,000 1.75 2.41 0.98 0.
7,000 2.59 3.57 1.5 0.01
9,000 3.51 4.84 2.11 0.
11,000 4.51 6.21 2.8 0.
13,000 5.57 7.69 3.55 0.01
15,000 6.73 9.28 4.42 0.01
17,000 7.97 10.99 5.35 0.01
19,000 9.3 12.82 6.33 0.02
21,000 10.67 14.72 7.44 0.02
23,000 12.16 16.72 8.58 0.01
25,000 13.82 18.92 9.87 0.02
27,000 15.35 21.33 11.25 0.01
29,000 17.39 23.72 12.77 0.01

Table 6.1: Numerical comparison of the PLT, NEP, LLT, and PE algorithms for the
function f(x) = x2/2 on the interval [−n/2, n/2].

Table 6.1 shows the result. The computation was run on a Pentium IV 2.8 GHz processor
using Scilab v3.1.1 under Linux Mandriva 2005 LE.

The PLT algorithm is the simplest to code and takes naturally advantage of the optimized
vectorized operations of Scilab to achieve a speed improvement by a factor of more than
400. The typical slopes of the least-squares approximation are shown in Table 6.2. They
correspond to the multiplicative constant factor associated with each algorithm (each
algorithm runs in Cn+ o(n) and Table 6.2 shows an approximation of the constant C).

While the NEP and PLT algorithms are restricted to convex functions, the PLT algorithm
additionally only computes a parameterization of the graph of the Moreau envelope (in-
stead of an evaluation of the Moreau envelope on a given grid). As such, it relies on more
restrictive assumptions to achieve a much faster computation.

If the function is convex but a parameterization is not suitable, the NEP algorithm is

Algorithm Least-squares slope
PLT 0.000000
NEP 0.000447
LLT 0.000603
PE 0.000835

Table 6.2: Slopes of the least-squares approximation for the data on Table 6.1.
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the fastest. When the function is not convex, the PE and LLT algorithms are applicable.
While they both share a linear-time complexity, the asymptotic multiplicative constant
in the O(n) notation depends mostly on the convexity of the input data.

7. Conclusion

We have presented and proven the correctness of a new algorithm to compute the Legen-
dre-Fenchel conjugate and the Moreau envelope. The algorithm is the simplest to imple-
ment and naturally takes advantage of optimized vector operations occurring in Scilab to
achieve a more than 400 fold speed improvement. However, the algorithm does not output
the value of the transform on a grid but only a parameterization. It is also restricted to
convex data.

The PLT algorithm could be extended to nonconvex functions by first computing the
convex envelope as the LLT algorithm does, and then computing the parameterization
of the conjugate of the piecewise linear function going through the vertices of the convex
envelope. However, the computation would not be significantly faster than the LLT
algorithm, since most of the computation cost occurs in computing the vertices of the
convex hull.

Acknowledgements. The algorithms were implemented on Scilab v3.1.1. Some examples

were investigated using the Computational Convex Analysis Toolkit (SCAT) [10].
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Proceedings of IEEE Visualization (Zürich, 2003), IEEE Computer Society Press (2003)
83–90.


