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1. Introduction

In recent years, there has been an increasing interest in well-posedness for optimization
problems. This concept is relevant to optimal control and stability analysis of problems
arising on calculus of variations and mathematical programming.

Classically, two notions of well-posedness were introduced: continuous dependence of the
optimal control on the desired trajectory (Hadamard well-posedness) and convergence
toward the optimal control of any minimizing sequence (Tykhonov well-posedness).

A more general definition of well-posedness has been introduced in [14], i.e., the notion
of well-posedness by perturbations which incorporates both the ideas of Hadamard and
Tykhonov.

The well-posedness by perturbations has been related to optimal control in [15], [17],
[20] and to stability analysis of problems on calculus of variations in [8] and [19]. This
definition is adopted in [16], [9], [18], [20], and [7].

A similar definition appears in [6], [10], [4], [5], [11] and [12].

In [13] the author proves that the affine structure of the ordinary differential system is
a necessary and sufficient condition for Hadamard and Tykhonov well-posedness for all
desired trajectories.

In this paper we will prove that the results of [13] can be extended to quadratic optimal
control problems in Hilbert spaces considering furthermore the well-posedness by per-
turbations; to this aim, we consider, in the control system, a differential equation with
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linearity on the state because a more general equation doesn’t assure properties and form
of solution.

In [12] optimal control problems in infinite dimensional spaces are considered and the
main result establishes the generic well-posedness for two classes of problems without
linearity assumption in the control system; in this paper, instead, we verify that, for
quadratic problems without constraints in Hilbert spaces, the affinity on the control in
the dynamics is necessary for the well-posedness for all desired trajectories.

Given two Hilbert spacesH and U , in this paper we shall consider Z = L2(H)×L2(U)×H
the space of desired trajectories and X = H × L2(U) the space of controls. Given any
z∗ = (y∗, w∗, ψ∗), we wish to minimize the quadratic functional

∫ T

0

[ < x− y∗, P (x− y∗) >H + < u− w∗, Q (u− w∗) >U ] (t) dt

+ < x(T )− ψ∗, E (x(T )− ψ∗) >H

(1)

on the trajectories (v, u, x) of the inhomogeneous problem

{

�x(t) = Ax(t) + f(t, u(t)) a.e. (0, T )

x(0) = v
(2)

subject to constraints of the general form

v ∈ K1 and (x, u) ∈ K2 (3)

where (v, u) is the control, x is the state, K1 and K2 are subsets of H and L2(H)×L2(U)
respectively.

In Section 2 we extend the previous problem to a global optimization problem and embed
it in a family of perturbed problems, thus requiring the convergence to a global minimizer
of every asymptotically minimizing sequence corresponding to small perturbations of the
parameter which defines the global problem. Furthermore, we give assumptions about
the operators A,P,Q,E and the sets K1, K2.

In Section 3 we obtain preliminary results about the properties of solutions of inhomo-
geneous problem (2), about the convexity and the Gateaux differentiability of quadratic
functional.

Finally, in Section 4 we prove the main result. We show that, under some regularity
assumptions on f , the class of systems (2), such that every problem with cost (1) without
constraints (3) is well-posed for all desired trajectories, is the one with dynamics f which
are affine in the control variable.

2. Notation, statement of the problem and assumptions

Given two Banach spaces W and Y . Let L(W ;Y ) be the Banach space of bounded
linear operators from W into Y , let C([0, T ],W ) be the Banach space of continuous
functions defined on [0, T ] with values in W , let Lp([0, T ];W ) be the space of all (the
equivalence classes of) W -valued Bochner integrable functions f defined on [0, T ] with
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∫

[0,T ]
‖f(t)‖pW dt <∞ (essentially bounded when p = ∞).

Lp([0, T ];W ), 1 ≤ p <∞, is a Banach space under the norm

‖f‖p =

(
∫

[0,T ]

‖f(t)‖pW dt

)1/p

.

If W is a Hilbert space, then L2([0, T ];W ) with the inner product

< x, y >L2(W )=

∫

[0,T ]

< x(t), y(t) >W dt

is a Hilbert space [3, Chap. 4].
To simplify notation, L(W ) and Lp(W ) will be used instead of L(W ;W ) and of Lp([0, T ];
W ).

Denote by → the strong convergence and by ⇀ the weak one; the symbol < ·, · > will be
used for the inner product in any Hilbert space. Furthermore, let graph f be the graph of
a mapping f and DJ(p) the Gateaux derivative of the real-valued function J evaluated
at p.

A mapping f between two real vector spaces is called affine when

f(bp+ (1− b)v) = bf(p) + (1− b)f(v)

for every b ∈ R and every p, v.

Let H and U be two Hilbert spaces; we consider the spaces

Z = L2(H)× L2(U)×H, X = H × L2(U),

which are Hilbert spaces with the inner products

< z1, z2 >Z = < y1, y2 >L2(H) + < w1, w2 >L2(U) + < ψ1, ψ2 >H

< ϕ1, ϕ2 >X = < v1, v2 >H + < u1, u2 >L2(U)

where zi = (yi, wi, ψi), ϕi = (vi, ui), for i = 1, 2.
Furthermore, we shall consider two nonempty sets

K1 ⊂ H and K2 ⊂ L2(H)× L2(U)

and three operators

P ∈ L∞([0, T ];L(H)), Q ∈ L∞([0, T ];L(U)), E ∈ L(H) (4)

such that E , P (t) and Q(t) are self adjoint operators for a.e. t ∈ (0, T ).

Given A, the generator of a strongly continuous semigroup (see [2, Chap. 2]), and a pair
(v, u) ∈ X, denote by x(v,u) the mild solution, if it exists, of the inhomogeneous problem

{

�x(t) = Ax(t) + f(t, u(t)) a.e. (0, T )

x(0) = v
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where f : [0, T ]× U → H.

The problem we shall consider is the following: given the trajectory

z∗ = (y∗, w∗, ψ∗) ∈ Z

we wish to minimize the functional

J̃z∗(v, u) =

∫ T

0

[ < x(v,u)(t)− y∗(t), P (t)(x(v,u)(t)− y∗(t)) >H

+ < u(t)− w∗(t), Q(t)(u(t)− w∗(t)) >U ]dt

+ < x(v,u)(T )− ψ∗, E(x(v,u)(T )− ψ∗) >H

on the admissible set

A =
{

(v, u) ∈ X : v ∈ K1, x
(v,u) solution of (2) and (x(v,u), u) ∈ K2

}

.

In the following, we will assume that A is nonempty.

Consider the global optimization problem (X, Jz∗), where the functional Jz∗ : X →
(−∞,+∞] defined as

Jz∗(v, u) =

{

J̃z∗(v, u) if (v, u) ∈ A

+∞ otherwise
(5)

is to be minimized on (v, u) ∈ X and denote by V (z) the optimal value

V (z) = inf{Jz(q) : q ∈ X}

where z belongs to the set D = {z ∈ Z : ‖z − z∗‖ < δ} with δ > 0.

The global optimization problem (X, Jz∗) is called well-posed, if the following conditions
hold:

• there exists a unique minimizer q∗ = argmin(X, Jz∗); (6)

• the value function V (z) is finite for every z ∈ D; (7)

• for every pair of sequences zn ∈ Z, qn ∈ X such that

zn → z∗ and Jzn(qn)− V (zn) → 0 (8)

we have qn → q∗ and V (zn) → V (z∗).

A sequence qn with the property (8) is called asymptotically minimizing with respect to
zn.

The following assumptions will be used in the next sections.

(A) There exists a > 0 such that for every vector ξ in the appropriate space and a.e.
t ∈ (0, T ) we have

< ξ , P (t) ξ >≥ a ‖ξ‖2, < ξ , Q(t) ξ >≥ a ‖ξ‖2, < ξ , E ξ >≥ 0.

(A1) There exists a > 0 such that for every vector ξ in the appropriate space and a.e.
t ∈ (0, T ) we have

< ξ , P (t) ξ >≥ a ‖ξ‖2, < ξ , Q(t) ξ >≥ a ‖ξ‖2, < ξ , E ξ >≥ a ‖ξ‖2.
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(B) K1 ⊂ H is bounded, closed and convex,
K2 ⊂ L2(H)× L2(U) is closed and convex.

(C) For any (v, u) ∈ X there exists a unique mild solution of (2), x(v,u) ∈ C([0, T ], H),
and if un → u in L2(U) there exists a subsequence unk

such that

‖f(·, unk
(·))− f(·, u(·))‖L1(H) → 0.

(D) Let xn, x be solutions of (2) for same (vn, un), (v, u) ∈ X; if ‖xn − x‖L2(H) → 0
there exists a subsequence such that ‖xnk

(0)− x(0)‖H → 0.

Remark 2.1. The following example proves the importance of hypothesis (D) for the
well posedness of quadratic optimal control problems.

Example 2.2. Let H = U = l2 be the Hilbert space of all sequences φ = (φi)i∈N ∈ RN

such that
∑

∞

i=1 |φ
i|2 <∞ with the inner product < φ, ϕ >l2=

∑

∞

i=1 φ
i ϕi.

Let K1 = {φ ∈ l2 : ‖φ‖l2 ≤ 1} and K2 = L2(l2)× L2(l2) .
Given z∗ = (y∗, w∗, ψ∗) ∈ L2(l2)× L2(l2)× l2, we consider the functional

J̃z∗(v, u) = ‖x(v,u) − y∗‖2L2(l2) + ‖u− w∗‖2L2(l2)

where x(v,u) is the solution of the problem
{

�x(t) = Ax(t) + u(t) a.e. (0, T )

x(0) = v

with
A : D(A) ⊂ l2 → l2 defined A((φi)i∈N) = (−i φi)i∈N.

It is easy to prove that

S : [0,+∞) → L(l2) such that S(t)φ = (e−i t φi)i∈N

is a strongly continuous semigroup and

Aφ = lim
t→0+

1

t
(S(t)− I)φ

for all φ ∈ l2 for which the limit exists, i.e., φ ∈ {φ ∈ l2 : (−i φi)i∈N ∈ l2} = D(A).
Thus, see [2, Chap. 2], A is the infinitesimal generator of the semigroup S.
If u = 0, vn = en ∈ K1 , n ∈ N, i.e., vin = 0 for i 6= n and vii = 1, the mild solutions of
previous problem are, for t ∈ [0, T ],

xn(t) = S(t) vn with xin(t) =

{

e−i t if i = n

0 if i 6= n

and we have
‖xn‖L2(l2) → 0.

Then, (vn, 0) , n ∈ N , is a minimizing sequence for the functional

J0(v, u) =

{

J̃0(v, u) if (v, u) ∈ A

+∞ otherwise

and so the global optimization problem (l2 × L2(l2) , J0) is not well posed.
We remark that in this case is not verified the hypothesis (D).
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3. Preliminary results

Lemma 3.1. If A is the generator of a strongly continuous semigroup, B ∈ L2(L(U,H))
and C ∈ L1(H), then for any (v, u) ∈ X there exists an unique mild solution x(v,u) of the

problem
{

�x(t) = Ax(t) +B(t)u(t) + C(t) a.e. (0, T )

x(0) = v.
(9)

Moreover we have:

(i) if ‖(vn, un)− (v, u)‖X → 0 then ‖x(vn,un) − x(v,u)‖C([0,T ],H) → 0;

(ii) if vn ⇀ v in H and un ⇀ u in L2(U) then x(vn,un) ⇀ x(v,u) in L2(H).

Proof. Since u ∈ L2(U) and B ∈ L2(L(U,H)) it follows that B u ∈ L1(H) and, given
(v, u) ∈ X, the unique mild solution of problem (9) is

x(v,u)(t) = S(t) v +

∫ t

0

S(t− s) [B(s)u(s) + C(s)] ds

for every 0 ≤ t ≤ T , where S : [0,+∞) → L(H), the strongly continuous semigroup
associated with A (see [2, Chap. 2]), is such that

sup
[0,T ]

‖S(t)‖L(H) < +∞ and x(v,u) ∈ C([0, T ];H).

Given {(vn, un)}n∈N ∈ X we write xn = x(vn,un) for every n ∈ N.
If (vn, un) → (v, u) in X it can be easily seen that

‖xn(t)− x(v,u)(t)‖H ≤ const.
(

‖vn − v‖H + ‖B‖L2(L(U,H)) ‖un − u‖L2(U)

)

for every t ∈ [0, T ], from which

sup
t∈[0,T ]

‖xn(t)− x(v,u)(t)‖H → 0.

To prove (ii) consider vn ⇀ v in H, un ⇀ u in L2(U) and g ∈ L2(H). We have

∫ T

0

< g(t) , xn(t)− x(v,u)(t) >H dt

=

∫ T

0

< g(t) , S(t)(vn − v) >H dt+

∫ T

0

< g(t) ,

∫ t

0

S(t− s) B(s)[un(s)− u(s)] ds >H dt.

Now
∫ T

0

< g(t) , S(t)(vn − v) >H dt =

∫ T

0

< S∗(t) g(t) , (vn − v) >H dt

and
∫ T

0

‖S∗(t) g(t) ‖2Hdt ≤ sup
[0,T ]

‖S∗(t)‖2L(H)

∫ T

0

‖g(t)‖2Hdt < +∞

since
‖S∗(t)‖L(H) = ‖S(t)‖L(H)
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for every t ∈ [0, T ].
Thus S∗(·) g(·) ∈ L2(H) and

∫ T

0

< g(t) , S(t)(vn − v) >H dt → 0. (10)

If t ∈ [0, T ] we take

Tg(t) : H → R such that Tg(t)(p) =< g(t), p >H

and

hn(t, s) =

{

S(t− s) B(s)[un(s)− u(s)] if 0 ≤ s ≤ t

0 if t < s ≤ T

for every n ∈ N.
Then, if t ∈ [0, T ], we have Tg(t) ∈ L(H,R),

∫ T

0

‖hn(t, s)‖H ds ≤ sup
[0,T ]

‖S(τ)‖L(H)

∫ T

0

‖B(s) [un(s)− u(s)]‖H ds

≤ const. ‖B‖L2(L(U,H)) ‖un − u‖L2(U) < +∞

(11)

and
∫ T

0

| < g(t), hn(t, s) > | ds ≤

∫ T

0

‖g(t)‖H ‖hn(t, s)‖H ds

≤ ‖g(t)‖H ‖hn(t, ·)‖L1(H)

(12)

for every n ∈ N.
Therefore, from (11), (12) and [3, Theor. 6, Chap. 2], it follows

∫ T

0

< g(t) ,

∫ t

0

S(t− s) B(s) [un(s)− u(s)] ds >H dt

=

∫ T

0

< g(t) ,

∫ T

0

hn(t, s) ds >H dt =

∫ T

0

∫ T

0

< g(t) , hn(t, s) >H ds dt

with
∫ T

0

∫ T

0

| < g(t) , hn(t, s) >H | ds dt

≤ sup
[0,T ]

‖S(τ)‖L(H)

∫ T

0

‖g(t)‖Hdt

∫ T

0

‖B(s)[un(s)− u(s)]‖Hds < +∞.

By Tonelli’s theorem, we have

∫ T

0

∫ T

0

< g(t) , hn(t, s) >H ds dt

=

∫ T

0

∫ T

s

< g(t) , S(t− s) B(s)[un(s)− u(s)] >H dt ds

=

∫ T

0

<

∫ T

s

B∗(s)S∗(t− s) g(t) dt , un(s)− u(s) >U ds (13)
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where (13) follows from [3, Theor. 6, Chap. 2] since, if s ∈ [0, T ] and n ∈ N. The operator

T̃n,s : U → R with T̃n,s(q) =< q , un(s)− u(s) >U

and the function

h̃(t, s) =

{

B∗(s)S∗(t− s) g(t) if s ≤ t ≤ T

0 if 0 ≤ t < s

are such that
T̃n,sh̃(·, s) ∈ L1([0, T ],R) and h̃(·, s) ∈ L1(U).

Thus, if we denote by F (s) the quantity

F (s) =

∫ T

s

B∗(s)S∗(t− s) g(t) dt

we obtain

∫ T

0

‖F (s)‖2U ds ≤

∫ T

0

(
∫ T

s

‖B∗(s)S∗(t− s) g(t)‖U dt

)2

ds

≤ sup
[0,T ]

‖S(τ)‖2L(H) ‖B
∗(s)‖2L2(L(H,U)) ‖g(t)‖

2
L1(H) < +∞

which implies
∫ T

0

< F (s) , un(s)− u(s) >U ds → 0. (14)

Then, (ii) follows from (10) and (14).

The next lemma concerns the properties of the functional J̃z.

Lemma 3.2. Let A be the generator of a strongly continuous semigroup, B ∈ L2(L(U,H))
and C ∈ L1(H). Suppose the hypotheses (A), (B) hold and let f(t, u) = B(t)u+ C(t) in
problem (2).
Then the functional J̃z verifies the following properties:

(i) J̃z(·, ·) is strictly convex for every z ∈ Z.

(ii) If zn → z̄ in Z and (vn, un) → (v̄, ū) in X then

J̃zn(vn, un) → J̃z̄(v̄, ū).

(iii) Let z = (y, w, ψ) ∈ Z; for every (v, u) ∈ X the differential DJ̃z(v, u) exists and is

given by

< DJ̃z(v, u), (ϕ, p) > = 2

∫ T

0

<x(ϕ,p)(t)− xC(t), P (t) (x
(v,u)(t)− y(t))>H dt

+ 2

∫ T

0

< p(t), Q(t)(u(t)− w(t)) >U dt

+ 2 <x(ϕ,p)(T )− xC(T ), E (x(v,u)(T )− ψ)>H ,

where xC(t) =
∫ t

0
S(t− s)C(s) ds.
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Proof. Let (vi, ui), i = 1, 2, be two distinct vectors of X and λ ∈ (0, 1); if we set
xi(t) = x(vi,ui)(t) we have

λx1(t) + (1− λ)x2(t) = x(λ(v1,u1)+(1−λ)(v2,u2))(t)

for every t ∈ [0, T ].
Given z = (y, w, ψ) ∈ Z, through (B) it is easy to prove that

J̃z(λ(v1, u1) + (1− λ)(v2, u2))

≤ λJ̃z(v1, u1) + (1− λ)J̃z(v2, u2)

− λ(1− λ) a
(

‖x1 − x2‖
2
L2(H) + ‖u1 − u2‖

2
L2(U)

)

(15)

which implies the strict convexity of J̃z(·, ·) when u1 6= u2.
On the other hand, if v1 6= v2, take d = ‖x1(0)− x2(0)‖H , there is δ > 0 such that

d

2
< ‖x1(t)− x2(t)‖H for every t ∈ [0, δ]

from which

‖x1 − x2‖
2
L2(H) ≥ ‖x1 − x2‖

2
L2([0,δ],H) >

d2

4
δ.

Therefore, by (15) and by the previous inequality we have again the strict convexity of
J̃z(·, ·) thus completing the proof of (i).
Now we prove (ii).
Take zn = (yn, wn, ψn) → z̄ = (ȳ, w̄, ψ̄) in Z and (vn, un) → (v̄, ū) in X; if we denote by
xn = x(vn,un) and by x̄ = x(v̄,ū) the solutions of problem (2), we obtain ‖xn−x̄‖C([0,T ],H) → 0
by Lemma 3.1.
Thus, from the inequality

| J̃zn(vn, un)− J̃z̄(v̄, ū) |

≤ const. ( ‖xn − yn + x̄− ȳ‖L2(H) ‖xn − yn − x̄+ ȳ‖L2(H)

+ ‖un − wn − ū+ w̄‖L2(U) ‖un − wn + ū− w̄‖L2(U)

+ ‖xn(T )− ψn − x̄(T ) + ψ̄‖H ‖xn(T )− ψn + x̄(T )− ψ̄‖H )

(ii) follows.
Finally, we examine condition (iii).
If z = (y, w, ψ) ∈ Z, (v, u), (ϕ, p) ∈ X and α ∈ R we set xα = x(v,u)+α (ϕ,p); Lemma 3.1
gives

xα(t) = x(v,u)(t) + αx(ϕ,p)(t)− α xC(t) (16)

for every t ∈ [0, T ].
Now, if

J̃ ′

z ((v, u); (ϕ, p)) = lim
α→0

J̃z ((v, u) + α(ϕ, p))− J̃z(v, u)

α



776 E. Muselli / Affinity and Well-Posedness for Optimal Control Problems in ...

(16) leads to

J̃ ′

z( (v, u); (ϕ, p) )

= 2

∫ T

0

< x(ϕ,p)(t)− xC(t), P (t) (x
(v,u)(t)− y(t)) >H dt (17)

+ 2

∫ T

0

< p(t), Q(t) (u(t)− w(t)) >U dt

+ 2 <x(ϕ,p)(T )− xC(T ), E (x(v,u)(T )− ψ)>H .

From the linearity of the mapping

(ϕ, p) 7→ x(ϕ,p) − xC

the linearity of the functional J̃ ′

z((v, u); ·) follows; moreover, if (ϕn, pn) → (ϕ̄, p̄) in X we
have, by Lemma 3.1, x(ϕn,pn) → x(ϕ̄,p̄) in C([0, T ], H) and similar procedure as in (ii) gives
the continuity of the functional J̃ ′

z((v, u); ·).
Then, (17) is the expression of < DJ̃z(v, u), (ϕ, p)> .

The proof of the following simple lemma is omitted.

Lemma 3.3. Let W and Y be real vector spaces and h : W → Y a mapping such that

its graph is convex. Then h is affine.

4. Well-posedness and affinity on the control in inhomogeneous problem

Proposition 4.1. Let A be the generator of a strongly continuous semigroup, B ∈ L2(L(U,
H)) and C ∈ L1(H). Suppose the hypotheses (A), (B), (D) hold and let f(t, u) =
B(t)u+ C(t) in problem (2).
Then the following properties hold:

(i) for any z ∈ Z there exists a unique (vz, uz) = argmin(X, Jz);

(ii) if zn → z∗ in Z, and

(vn, un) = argmin(X, Jzn), (v∗, u∗) = argmin(X, Jz∗)

we have (vn, un) → (v∗, u∗) in X.

Proof. Take z = (y, w, ψ) ∈ Z; since A 6= ∅ and J̃z(v, u) ≥ 0 from (A), it follows that
V (z) ∈ R.
If (vn, un) is a minimizing sequence, we have (vn, un) ∈ A for n large enough and

J̃z(vn, un) ≥ a
(

‖xn − y‖2L2(H) + ‖un − w‖2L2(U)

)

where xn = x(vn,un) for every n ∈ N.
Thus, ‖un‖L2(U) is bounded and, since {vn} ⊂ K1 and (B) hold, there exist v0 ∈ K1 , u0 ∈
L2(U) and a subsequence (vnk

, unk
) such that

vnk
⇀ v0 in H and unk

⇀ u0 in L2(U);
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moreover, from Lemma 3.1 and (B) it follows that

xnk
⇀ x0 in L2(H) and (x0, u0) ∈ K2

with x0 = x(v0,u0).
Consequently, (v0, u0) ∈ A and we have

lim inf
n→∞

Jz(vnk
, unk

) = lim inf
n→∞

J̃z(vnk
, unk

) ≥ J̃z(v0, u0) = Jz(v0, u0)

since J̃z is convex and lower semicontinuous on X, which implies that (v0, u0) is a mini-
mizer. The strict convexity of J̃z allows us to obtain the validity of (i).
Now we prove (ii).
If zn = (yn, wn, ψn) → z∗ = (y∗, w∗, ψ∗) in Z and

(vn, un) = argmin(X, Jzn), (v∗, u∗) = argmin(X, Jz∗)

for every (v, u) ∈ X we have

J̃zn(v, u) ≥ J̃zn(v
n, un) ≥ a

(

‖xn − yn‖
2
L2(H) + ‖un − wn‖

2
L2(U)

)

where xn = x(v
n,un) for every n ∈ N; by Lemma 3.2 we have J̃zn(v, u) → J̃z∗(v, u), thus,

as shown in (i), there exist (ϕ, p) ∈ X , ϕ ∈ K1 , and a subsequence (vnk , unk) ∈ A such
that

vnk ⇀ ϕ in H, unk ⇀ p in L2(U)

and, by Lemma 3.1,
xnk ⇀ x(ϕ,p) in L2(H). (18)

For such k ∈ N we take Tnk
: L2(H) → R such that

Tnk
(m) =

∫ T

0

< m(t), P (t)(x(ϕ,p)(t)− ynk
(t)) >H dt

for every m ∈ L2(H); we have

|Tnk
(m)| ≤ const. ‖m‖L2(H) ‖x(ϕ,p) − ynk

‖L2(H)

from which
Tnk

∈ (L2(H))∗ = L2(H) and Tnk
→ T0

where

T0(m) =

∫ T

0

< m(t), P (t)(x(ϕ,p)(t)− y∗(t)) >H dt.

Thus, from (18) we obtain

∫ T

0

< x(ϕ,p)−(vnk ,unk )(t)− xC(t), P (t)(x
(ϕ,p)(t)− ynk

(t)) >H dt → 0. (19)

A similar procedure gives

∫ T

0

< p(t)− unk(t), Q(t) (p(t)− wnk
(t)) >U dt → 0. (20)
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Moreover, if h ∈ H, from [3, Theor. 6, Chap. 2] we have

lim
k→∞

< h,

∫ T

0

S(T − s)B(s) [unk(s)− p(s)] ds >H

= lim
k→∞

∫ T

0

< B∗(s)S∗(T − s)h , unk(s)− p(s) >U ds = 0

since
∫ T

0

‖B∗(s)S∗(T − s)h ‖2Hds ≤ sup
[0,T ]

‖S(τ)‖2L(H) ‖B
∗‖2L2(L(H,U)) ‖h‖

2
H < +∞.

Then

lim
k→∞

< h, x(ϕ,p)(T )− xnk(T ) >

= lim
k→∞

< h , S(T )(vnk − ϕ) +

∫ T

0

S(T − s)B(s) [unk(s)− p(s)] ds >H= 0

for every h ∈ H, from which

x(ϕ,p)(T )− xnk(T )⇀ 0 in H

and
lim
k→∞

< x(ϕ,p)−(vnk ,unk )(T )− xC , E (x(ϕ,p)(T )− ψnk
) >H = 0. (21)

Whereas (19), (20) and (21) yield

lim
k→∞

< DJ̃znk
(ϕ, p), ((ϕ, p)− (vnk , unk)) >= 0. (22)

Thus, from (vnk , unk) = argmin(X, Jznk
) we have

< DJ̃znk
(ϕ, p), ((ϕ, p)− (vnk , unk)) >

≥ <DJ̃znk
(ϕ, p), ((ϕ, p)− (vnk , unk))> − <DJ̃znk

(vnk , unk), ((ϕ, p)− (vnk , unk))>

= 2

∫ T

0

< x(ϕ,p)(t)− xnk(t), P (t)(x(ϕ,p)(t)− xnk(t)) >H dt

+ 2

∫ T

0

< p(t)− unk(t), Q(t) (p(t)− unk(t)) >U dt

+ 2 < x(ϕ,p)(T )− xnk(T ), E x(ϕ,p)(T )− xnk(T ) >H

≥ 2a
(

‖x(ϕ,p) − xnk‖2L2([0,T ],H) + ‖p− unk‖2L2([0,T ],U)

)

which implies, by (22), that

unk → p in L2(U) and xnk → x(ϕ,p) in L2(H).

From (D), taking an another subsequence, we have ‖vnkj
− ϕ‖H → 0. Now, the assertion

(ii) of Lemma 3.2 gives

Jz∗(v, u) ≥ J̃z∗(v, u) = lim
j→∞

J̃znkj

(v, u) ≥ lim
j→∞

J̃znkj

(vnkj , u
nkj ) = Jz∗(ϕ, p)
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for every (v, u) ∈ X .
Then, since argmin(X, Jz∗) is a singleton, we get

(ϕ, p) = (v∗, u∗) and (vn, un) → (v∗, u∗).

Theorem 4.2. Let A be the generator of a strongly continuous semigroup, B ∈ L2(L(U,
H)) and C ∈ L1(H). Suppose the hypotheses (A), (B), (D) hold and let f(t, u) = B(t)u+
C(t) in problem (2).
Then, the problem (X, Jz∗) defined by (5) is well-posed for every z∗ ∈ Z.

Proof. If z∗ ∈ Z, the condition (6) of well-posedness follows from assertion (i) of Propo-
sition 4.1 whereas assumption (A) ensures that Jz ≥ 0 for every z ∈ Z, therefore (7).
Given z = (y, w, ψ) ∈ Z we set (vz, uz) = argmin(X, Jz) ∈ A, xz = x(v

z ,uz). From part
(iii) of Lemma 3.2 it follows that

Jz(v, u)− V (z) ≥ J̃z(v, u)− V (z)

= < DJ̃z(v
z, uz), (v − vz, u− uz) >

+

∫ T

0

[< x(v,u)(t)− xz(t), P (t)(x(v,u)(t)− xz(t)) >H

+ < u(t)− uz(t), Q(t)(u(t)− uz(t)) >U ]dt

+ < x(v,u)(T )− xz(T ), E(x(v,u)(T )− xz(T )) >H

≥ a ‖u− uz‖2L2(U) + a ‖x(v,u) − xz‖2L2(H). (23)

To prove (8) consider a sequence zn = (yn, wn, ψn) such that zn → z∗ and an asymptot-
ically minimizing sequence (vn, un) corresponding to the sequence zn; then, by (23) we
have

Jzn(vn, un)− V (zn) ≥ a ‖un − uzn‖2L2(U) + a ‖x(vn,un) − xzn‖2L2(H)

which implies

‖un − uzn‖L2(U) → 0 and ‖x(vn,un) − xzn‖L2(H) → 0;

from (ii) of Proposition 4.1 and (i) of Lemma 3.1 we have

‖un − u∗‖L2(U) → 0 and ‖x(vn,un) − x(v
∗,u∗)‖L2(H) → 0.

Since (D) hold, there exists a subsequence vnk
such that vnk

→ v∗ in H; then (vn, un) →
(v∗, u∗) in X and the proof is complete.

In what follows we will see how the well-posedness for any z∗ ∈ Z implies, in problems
without constraints, the affinity of the dynamics with respect to the control variable u in
the system (2).
The following definition will be used henceforth.

Definition 4.3. A set G in a Hilbert space Z is called a C̆ebys̆ev set, if for each point

z ∈ Z there is a unique nearest point p(z) ∈ G, i.e.,

‖z − y‖ > ‖z − p(z)‖ if y ∈ G and y 6= p(z).
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Remark 4.4. If the assumption (A1) holds, then, given zi = (yi, wi, ψi) ∈ Z, i = 1, 2,
the definition

< z1, z2 >1=

∫ T

0

[< y1(t), P (t) y2(t) >H + < w1(t), Q(t)w2(t) >U ] dt + < ψ1, Eψ2 >H

provides an inner product that induces on Z a Hilbert space structure equivalent to the
usual one. We will denote by ‖ · ‖1 the corresponding norm.

Proposition 4.5. Let A be the generator of a strongly continuous semigroup and (X, Jz∗)
be the problem defined by (5) with K1 × K2 = H × L2(H) × L2(U). Suppose that

assumptions (A1) and (C) hold. If the problem defined by (5) is well-posed for every

z∗ ∈ Z then the set

G =
{

(m,u, ψ) ∈ Z : ∃ v ∈ H such that m = x(v,u) and ψ = x(v,u)(T )
}

(24)

is convex.

Proof. By Remark 4.4 (Z, < ·, · >1) is a Hilbert space.
For any z∗ ∈ Z we have by hypotheses

(v∗, u∗) = argmin(X, Jz∗) ⇐⇒ ‖p∗ − z∗‖1 ≤ ‖p− z∗‖1∀ p ∈ G (25)

where p∗ = (x∗, u∗, x∗(T )) and x∗ = x(v
∗,u∗).

The well-posedness of the problem (5) for every z∗ ∈ Z, together with (25), implies that
G is a C̆ebys̆ev set.
If z∗ ∈ Z and (mn, un, sn) ∈ G is such that

‖(mn, un, sn)− z∗‖1 → inf{‖p− z∗‖1 : p ∈ G} (26)

then, by (24), there is vn ∈ H such that sn = x(vn,un)(T ) and (26) is the same as

Jz∗(vn, un) → V (z∗).

Consequently, (vn, un) is asymptotically minimizing with respect to the sequence zn = z∗

for every n ∈ N. From the well-posedness of the problem (5) for every z∗ it follows that
(vn, un) → (v∗, u∗) in X and, by assumption (C), there exists a subsequence unk

such that
‖f(·, unk

(·))− f(·, u∗(·))‖L1(H) → 0.
Then, since

‖x(vnk
,unk

)(T )− x(v
∗,u∗)(T )‖H

≤ sup
[0,T ]

‖S(t)‖L(H)

(

‖(vnk
− v∗)‖H +

∫ T

0

‖f(s, unk
(s))− f(s, u∗(s))‖H ds

)

we have
(mnk

, unk
, snk

) → (x(v
∗,u∗), u∗, x(v

∗,u∗)(T )).

The convexity of the set G follows from Corollary 3 of [1, page 238].

Definition 4.6. Given t0 ∈ [0, T ], let ηt0 : X → C([0, T − t0], H) be defined by

ηt0(v, u)(τ) = x(v,u)(t0 + τ) for every τ ∈ [0, T − t0]. (27)
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Lemma 4.7. Suppose that the same assumptions of Proposition 4.5 hold. Given t0 ∈
[0, T ] the map ηt0 : X → C([0, T − t0], H) of (27) is such that its graph is convex; hence

ηt0 is affine.

Proof. Let hi = (vi, ui, ηt0(vi, ui)) ∈ graph ηt0 with i = 1, 2; if we set mi = x(vi,ui), from
(27) we have

( mi, ui, ηt0(vi, ui)(T − t0) ) = (mi, ui, x
(vi,ui)(T ) ) ∈ G

whereas Proposition 4.5 leads to

(λm1 + (1− λ)m2 , λ u1 + (1− λ)u2 , λ x
(v1,u1)(T ) + (1− λ)x(v2,u2)(T )) ∈ G

for any fixed λ ∈ (0, 1). Then, there is some v ∈ H such that

λm1(t) + (1− λ)m2(t) = λx(v1,u1)(t) + (1− λ)x(v2,u2)(t) = x(v,λu1+(1−λ)u2)(t)

for every t ∈ [0, T ].
In particular, we obtain for t = 0

λ v1 + (1− λ)v2 = v,

and for t = t0 + τ with τ ∈ [0, T − t0]

λx(v1,u1)(t0 + τ) + (1− λ)x(v2,u2)(t0 + τ) = x(v,u)(t0 + τ)

where u = λu1 + (1− λ)u2; hence

λ ηt0(v1, u1)(τ) + (1− λ) ηt0(v2, u2)(τ) = ηt0(v, u)(τ)

for every τ ∈ [0, T − t0]. Then, graph ηt0 is convex and, by Lemma 3.3, ηt0 is affine.

Theorem 4.8. Let A be the generator of a strongly continuous semigroup and (X, Jz∗) be
the problem defined by (5) with K1×K2 = H×L2(H)×L2(U). Suppose that assumptions

(A1), (C) hold and the mapping f in (2) is such that

f(·, u) ∈ C1([0, T ], H) for every u ∈ U.

If the problem defined by (5) is well-posed for every z∗ ∈ Z then there exist

B : [0, T ] → L(U,H) and C : [0, T ] → H

such that f(t, u) = B(t)u+ C(t) for every t ∈ [0, T ] and u ∈ U .

Proof. If (vi, pi) ∈ H × U , let xi = x(vi,pi) be the solution of (2), with i = 1, 2.
Given b ∈ R consider x3 = x(b(v1,p1)+(1−b)(v2,p2)).
If t0 ∈ [0, T ], since the mapping ηt0 is affine, we have

ηt0( b(v1, p1) + (1− b)(v2, p2) )(τ) = b ηt0(v1, p1)(τ) + (1− b) ηt0(v2, p2)(τ)

for every τ ∈ [0, T − t0], from which

x3(t) = b x1(t) + (1− b)x2(t) (28)
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for every t ∈ [t0, T ].
Then, from (28) it follows that

∫ t

0

S(t− s) [f(s, bp1 + (1− b)p2)− bf(s, p1)− (1− b)f(s, p2)] ds = 0 (29)

for t ∈ [t0, T ].
If we set

g(s) = f(s, bp1 + (1− b)p2)− bf(s, p1)− (1− b)f(s, p2)

for every s ∈ [0, T ], then, by Theorem 2.21 of [2], the mapping

β(t) =

∫ t

0

S(t− s) g(s) ds

is continuously differentiable on (0, T ) and

�β(t) = Aβ(t) + g(t) (30)

for almost every t ∈ (0, T ).
Thus, there is Wb,p1,p2 ⊂ [0, T ] such that the Lebesgue measure of the set
[0, T ] \Wb,p1,p2 is zero and the equality in (30) is satisfied for every t ∈Wb,p1,p2 .
By (29) and (30) we have

Ax3(t) + f(t, b p1 + (1− b)p2) = b
[

Ax1(t) + f(t, p1)
]

+ (1− b)
[

Ax2(t) + f(t, p2)
]

for every t ∈ (t0, T ) ∩Wb,p1,p2 , which gives

f(t, b p1 + (1− b)p2)− b f(t, p1)− (1− b) f(t, p2) = 0 (31)

for every t ∈ (t0, T ) ∩Wb,p1,p2 .
Let {tn} ⊂ (t0, T ) ∩Wb,p1,p2 , tn → t0; from (31) and the continuity of the mapping f we
have

f(t0, b p1 + (1− b)p2)− b f(t0, p1)− (1− b) f(t0, p2) = 0.

This allows us to see that f(t, ·) is affine for every t ∈ [0, T ] thus completing the proof.

In the next theorem we will prove the affinity on the control of the dynamics in system
(2) when f is a Hölder mapping and the operator A fulfills a stronger hypothesis than
that in Theorem 4.8.

Theorem 4.9. Let A be the generator of an analytic semigroup and (X, Jz∗) the problem

defined by (5) with K1 × K2 = H × L2(H) × L2(U). Suppose that assumptions (A1),
(C) hold and the mapping f in (2) is such that

‖f(t, p)− f(s, p)‖H ≤ Cp |t− s|k with 0 < k < 1 (32)

for every p ∈ H.

If the problem defined by (5) is well-posed for every z∗ ∈ Z then there are

B : [0, T ] → L(U,H) and C : [0, T ] → H

such that f(t, u) = B(t)u+ C(t) for every t ∈ [0, T ] and u ∈ U .
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Proof. Like in Theorem 4.8 we can obtain

∫ t

0

S(t− s) [f(s, bp1 + (1− b)p2)− bf(s, p1)− (1− b)f(s, p2)] ds = 0

for every t ∈ [t0, T ], and if we set

g(s) = f(s, bp1 + (1− b)p2)− bf(s, p1)− (1− b)f(s, p2)

for every s ∈ [0, T ], from (32) it follows that

‖g(t)− g(s)‖H ≤ ‖f(t, bp1 + (1− b)p2)− f(s, bp1 + (1− b)p2)‖H

+ |b| ‖f(t, p1)− f(s, p1)‖H + |1− b| ‖f(t, p2)− f(s, p2)‖H

≤ (C3 + |b|C1 + |1− b|C2) |t− s|k

with 0 < k < 1; by [2, Theor. 2.29, Chap. 2] the mapping

β(t) =

∫ t

0

S(t− s) g(s) ds

is differentiable almost everywhere in (0, T ) and we have

�β(t) = Aβ(t) + g(t)

for almost every t ∈ (0, T ).
Then, we complete the proof as in Theorem 4.8.
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