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1. Introduction

In recent years, there has been an increasing interest in well-posedness for optimization
problems. This concept is relevant to optimal control and stability analysis of problems
arising on calculus of variations and mathematical programming.

Classically, two notions of well-posedness were introduced: continuous dependence of the
optimal control on the desired trajectory (Hadamard well-posedness) and convergence
toward the optimal control of any minimizing sequence (Tykhonov well-posedness).

A more general definition of well-posedness has been introduced in [14], i.e., the notion
of well-posedness by perturbations which incorporates both the ideas of Hadamard and
Tykhonov.

The well-posedness by perturbations has been related to optimal control in [15], [17],
[20] and to stability analysis of problems on calculus of variations in [8] and [19]. This
definition is adopted in [16], [9], [18], [20], and [7].

A similar definition appears in [6], [10], [4], [5], [11] and [12].

In [13] the author proves that the affine structure of the ordinary differential system is
a necessary and sufficient condition for Hadamard and Tykhonov well-posedness for all
desired trajectories.

In this paper we will prove that the results of [13] can be extended to quadratic optimal
control problems in Hilbert spaces considering furthermore the well-posedness by per-
turbations; to this aim, we consider, in the control system, a differential equation with
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linearity on the state because a more general equation doesn’t assure properties and form
of solution.

In [12] optimal control problems in infinite dimensional spaces are considered and the
main result establishes the generic well-posedness for two classes of problems without
linearity assumption in the control system; in this paper, instead, we verify that, for
quadratic problems without constraints in Hilbert spaces, the affinity on the control in
the dynamics is necessary for the well-posedness for all desired trajectories.

Given two Hilbert spaces H and U, in this paper we shall consider Z = L?(H)x L*(U) x H
the space of desired trajectories and X = H x L?(U) the space of controls. Given any
z2* = (y*,w*, 1), we wish to minimize the quadratic functional

/0[<x—y*,P(x—y*) >y + <u—w,Q(u—w") >y | (t)dt
+ <a(T) —¢" E(@(T) —¢") >u

on the trajectories (v, u,x) of the inhomogeneous problem

{:’c(t) Az(t) + f(t,u(t) ae. (0,T)
z(0)=wv

subject to constraints of the general form
veK; and (z,u)€ Ko (3)

where (v, u) is the control, z is the state, K; and K are subsets of H and L*(H) x L*(U)
respectively.

In Section 2 we extend the previous problem to a global optimization problem and embed
it in a family of perturbed problems, thus requiring the convergence to a global minimizer
of every asymptotically minimizing sequence corresponding to small perturbations of the
parameter which defines the global problem. Furthermore, we give assumptions about
the operators A, P,(Q), E and the sets K;, Ks.

In Section 3 we obtain preliminary results about the properties of solutions of inhomo-
geneous problem (2), about the convexity and the Gateaux differentiability of quadratic
functional.

Finally, in Section 4 we prove the main result. We show that, under some regularity
assumptions on f, the class of systems (2), such that every problem with cost (1) without
constraints (3) is well-posed for all desired trajectories, is the one with dynamics f which
are affine in the control variable.

2. Notation, statement of the problem and assumptions

Given two Banach spaces W and Y. Let L(W;Y) be the Banach space of bounded
linear operators from W into Y, let C([0,7],W) be the Banach space of continuous
functions defined on [0,7] with values in W, let LP([0,T]; W) be the space of all (the
equivalence classes of) W-valued Bochner integrable functions f defined on [0,7] with
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f[o T | f(®)]13) dt < oo (essentially bounded when p = o).
LP([0, T); W), 1 < p < o0, is a Banach space under the norm

1/p
£l = ( /[ e dt) .

If T is a Hilbert space, then L([0,T]; W) with the inner product
< T,y >rew)= / <x(t),y(t) >w dt
(0,77

is a Hilbert space [3, Chap. 4].
To simplify notation, L(W) and LP(W) will be used instead of L(W; W) and of LP([0,T7;

Denote by — the strong convergence and by — the weak one; the symbol < -, - > will be
used for the inner product in any Hilbert space. Furthermore, let graph f be the graph of
a mapping f and DJ(p) the Gateaux derivative of the real-valued function J evaluated
at p.

A mapping f between two real vector spaces is called affine when

f(op + (1 =b)v) = bf(p) + (1 =) f(v)

for every b € R and every p, v.

Let H and U be two Hilbert spaces; we consider the spaces
Z=IL*H)x L*(U)x H X =H x L*(U),
which are Hilbert spaces with the inner products
< 21,22 >z = <Y1, Y2 >r2m) + < w,we >y + < Y, >g

< P12 >x = < U, V2 >+ < U, U >2(0)

where z; = (y;, wi, Vi), @i = (vi,u;), for i = 1,2.
Furthermore, we shall consider two nonempty sets

KiCH and K, C L*(H)x L*(U)
and three operators
Pe1=(0, T} L(H)), Qe L™(0,7];L(U), FeL(H) (4)

such that ', P(t) and Q(t) are self adjoint operators for a.e. t € (0,7T).

Given A, the generator of a strongly continuous semigroup (see [2, Chap. 2]), and a pair
(v,u) € X, denote by 2% the mild solution, if it exists, of the inhomogeneous problem

{:fc(t) Az(t) + f(t,u(t) ae. (0,7)
z(0) = v
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where f:[0,T] x U — H.
The problem we shall consider is the following: given the trajectory
= (g, W) € Z
we wish to minimize the functional

S (v,u) = /OT[ <a(t) —y* (1), P() (2 (8) — y*(t) >n
+ <ut) —w' (), Q) (u(t) — w*(t)) >uldt
+ < a"(T) —v* B@"N(T) —¢") >
on the admissible set
A={(v,u) € X :ve Ky, 2" solution of (2) and (2", u) € K} .
In the following, we will assume that A4 is nonempty.

Consider the global optimization problem (X, J,«), where the functional J,- : X —
(—00, +00] defined as

Jo(v,u) = {Jz*(v,u) if (v,u) € A (5)

+00 otherwise
is to be minimized on (v,u) € X and denote by V(z) the optimal value
V(z) =inf{J].(q) : ¢ € X}
where z belongs to the set D ={z¢€ Z: ||z — 2*|| <} with 6 > 0.

The global optimization problem (X, .J,-) is called well-posed, if the following conditions
hold:

e there exists a unique minimizer ¢* = argmin(X, J,-); (6)
e the value function V(2) is finite for every z € D; (7)
e for every pair of sequences z, € Z, ¢, € X such that
zn — 2" and J,, () — V(z,) — 0 (8)
we have ¢, — ¢" and V (z,) — V(z").
A sequence g, with the property (8) is called asymptotically minimizing with respect to
Zn-
The following assumptions will be used in the next sections.

(A) There exists a > 0 such that for every vector £ in the appropriate space and a.e.
t € (0,T) we have

<& PHE>>alll’, <€ QM)E>>all’, <E EE>20.

(A1) There exists a > 0 such that for every vector £ in the appropriate space and a.e.
t € (0,T) we have

<&, P)E>>allEl?, <&, QME>>alll?, <& EE>>alll
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(B) K; C H is bounded, closed and convex,
K, C L*(H) x L*(U) is closed and convex.
(C) For any (v,u) € X there exists a unique mild solution of (2), z(*% € C([0,T], H),
and if u,, — u in L?(U) there exists a subsequence u,, such that
1 (st (4) = G ul ) oy — 0.
(D) Let w,, z be solutions of (2) for same (v, uy), (v,u) € X; if ||z, — 2|/ z2(ay — O
there exists a subsequence such that ||z, (0) — z(0)||z — O.

Remark 2.1. The following example proves the importance of hypothesis (D) for the
well posedness of quadratic optimal control problems.

Example 2.2. Let H = U = [? be the Hilbert space of all sequences ¢ = (¢');en € RN
such that > 7, [¢'|* < co with the inner product < ¢, >p=>"7, ¢' .

Let Ky ={p€l®>: ||g|;2 <1} and Ky = L2(I?) x L*(I?) .

Given z* = (y*,w*,v*) € L*(I?) x L?(I?) x [?, we consider the functional

Jor (v, ) = [ — ?J*H?ﬁ(m + fJu — W*||2L2(z2)
where (" is the solution of the problem

(t) = Az(t) +u(t) ae. (0,7)
z(0) =v

with

A: D(A) C l2 — l2 defined A<<¢2)2€N) = (—Z (bi)iEN-
It is easy to prove that

S :]0,4+00) — L(I*) such that S(t)¢ = (e7"" ¢")ien
is a strongly continuous semigroup and

1
Ap=lim —(S(t)—1)¢

t—0+ ¢

for all ¢ € [? for which the limit exists, i.e., ¢ € {¢ € I*: (—i¢")ien € I*} = D(A).

Thus, see [2, Chap. 2|, A is the infinitesimal generator of the semigroup S.
Ifu=0v,=¢e,€ K, neN,ie, v, =0fori#nand v! =1, the mild solutions of
previous problem are, for t € [0, T,

. —it f ) —
wa(t) = S(t)v, withai(y=4° "7
0 ifi#n
and we have
Hxn”LQ(ZQ) — 0.
Then, (v,,0), n € N, is a minimizing sequence for the functional

Jolv,u) = {JO(U’U) if (v,u) € A

400 otherwise

and so the global optimization problem (12 x L?(I?), Jy) is not well posed.
We remark that in this case is not verified the hypothesis (D).
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3. Preliminary results

Lemma 3.1. If A is the generator of a strongly continuous semigroup, B € L2(L(U H))
and C € L'(H), then for any (v,u) € X there exists an unique mild solution ") of the
problem

{j:(t) = Axz(t) + B(tyu(t) + C(t) a.e. (0,T) 9)

Moreover we have:

() if (v, un) — (v,u)|lx — O then [t — 29| oo 7y, 1y — 0;
(ii) if v, — v in H and u, — u in L*(U) then x(»un) — p(00) in L2(H).

Proof. Since u € L*(U) and B € L*(L(U, H)) it follows that Bu € L'(H) and, given
(v,u) € X, the unique mild solution of problem (9) is

t
() = S(t) v +/ S(t—s) [B(s)u(s) + C(s)] ds
0
for every 0 < t < T, where S : [0,400) — L(H), the strongly continuous semigroup

associated with A (see [2, Chap. 2]), is such that

sup ||S(t)||ny < +oo and 2™ € C([0,T); H).
[0,T]

Given {(vn, Un) }nex € X we write z,, = 2(») for every n € N.
If (v, u,) — (v,u) in X it can be easily seen that

lza(t) = 2Ol < const. (v —vlla + 1Bl lwn — ullrzw))
for every t € [0, T, from which

sup ||z, (t) — x(”’“)(t)HH — 0.
t€[0,T]

To prove (i) consider v,, — v in H, u, — v in L*(U) and g € L*(H). We have

T
< g(t), wa(t) = (1) >y dt

/OT
|

<g(t), S(t)(v, —v) >g dt+/0 <g(t),/O S(t —s) B(s)[un(s) —u(s)]ds >g dt.

/0 <g(t), S(t)(v, —v) >y dt :/0 < S*()g(t), (v, —v) >g dt
and

/ 15°(6) 906 e < sup 15" (0 / Lot < +oo

since

1S* @Oy = 1SN
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for every t € [0, T7.
Thus S*(+) g(-) € L*(H) and

/T <g(t), S{t)(v, —v) >y dt — 0.

If t € [0,T] we take
Ty,w : H— R such that Ty (p) =< g(t),p >u

and

hot.s) = | SE=9) BO)ua(s) —u(s)] if0<s <t
o 0 ift<s<T

for every n € N.
Then, if t € [0,T7], we have Ty € L(H,R),

T

/ [ (L, 8) |1 ds < SHPHS(T)HL(H)/ 1B(s) [un(s) = u(s)][lu ds
0 (0,7 0

< const. HBHL2(L(U7H)) |wn — UHL2(U) < 400
and
T T
/ < gt), hult,s) > |ds < / MO Van(t, )11 ds
0 0

< Ng@®lla hnt, )L

for every n € N.
Therefore, from (11), (12) and [3, Theor. 6, Chap. 2], it follows

/ / S(t—s) B(s) [un(s) —u(s)|ds >y dt

0

T

/ /hntsds>Hdt //<g hn(t,s) >g dsdt
0

//|<g ho(t,s) > |dsdt

< sup 157 / lg(®)]| et / 1B(5)[tn(s) — u(s)]|ds < +oo.

with

By Tonelli’s theorem, we have

//<g ho(t,s) >g dsdt

_ /0 / < g(t), S(t — ) B(s)[un(s) — uls)] > dt ds
= /0 < / B*(s)S*(t —s)g(t)dt , u,(s)—u(s) >y ds

773

(10)

(11)

(12)

(13)
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where (13) follows from [3, Theor. 6, Chap. 2] since, if s € [0,7] and n € N. The operator
The:U—R with T, .(q) =< q, un(s) —u(s) >u

and the function

- B*(s)S*(t—s)g(t) ifs<t<T
0 ifo<t<s

are such that o )
T,.sh(-,s) € LY([0,T],R) and h(-,s) € L'(U).

Thus, if we denote by F'(s) the quantity

F(s) = / B(s) S*(t — s) g(t) dt

we obtain

2

[ wreizas< [ 1Bes i) s

< [SOUIP]HS(T)H%(H) HB*<S)H%2(L(H,U)) Hg(t)H%l(H) < +00

which implies
T
/ < F(s), uy(s) —u(s) >y ds — 0. (14)
0
Then, (i7) follows from (10) and (14).

The next lemma concerns the properties of the functional J,.

Lemma 3.2. Let A be the generator of a strongly continuous semigroup, B € L*(L(U, H))
and C' € L'(H). Suppose the hypotheses (A), (B) hold and let f(t,u) = B(t)u+ C(t) in
problem (2).

Then the functional J, verifies the following properties:

(i) J.(-,-) is strictly convex for every z € Z.
(it) If z, — Z in Z and (v,,u,) — (0,a) in X then

S, (Un, Uy) — jg('l_),ﬂ).

(ii1) Let z = (y,w,p) € Z; for every (v,u) € X the differential D.J,(v,u) exists and is
given by

< DJ.(v,u), (p,p) > = 2 /O <a ¥V ()= dc(t), P(t) (2 () y(t)>n dt

o / < p(1), Q1) (u(t) — w(t)) >¢ dt
+2 <z PPNT)= &e(T), E (9 (T)— ) >p,

where To(t) = ft

o St —s)C(s)ds.
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Proof. Let (v;,u;),i = 1,2, be two distinct vectors of X and A € (0,1); if we set
2;(t) = %) (t) we have

)\x1(t) -+ (1 — )\)%2@) = ;L’()‘(vl’ul)Jr(l*/\)(”?»UQ))(t)

for every t € [0,T].
Given z = (y,w, ) € Z, through (B) it is easy to prove that

J.(A(v1,u1) + (1 = A)(v2, u2))

< )\jz(vl,ul) + (1= N)J,(v2, u2)

—AM1=))a (Hxl — Zoll72y + llua — U2||%2(U)> (15)

which implies the strict convexity of .J,(-,-) when wu; # us.
On the other hand, if v; # vy, take d = ||z1(0) — 22(0)|| g, there is § > 0 such that

d
3 < |z1(t) — 22(t)||  for every t € [0, 6]

from which
2

o1 = wallZag) = a1 = @allEagoa.m > 0

Therefore, by (15) and by the previous inequality we have again the strict convexity of
J.(-,-) thus completing the proof of (i).

Now we prove (i7).

Take z, = (Yn, Wn, V) — 2z = (§,w,%) in Z and (v,,u,) — (v, %) in X; if we denote by
z" = (") and by # = ™% the solutions of problem (2), we obtain ||z"—Z||¢((o,r},zr) — 0
by Lemma 3.1.

Thus, from the inequality

| jzn<vnv Up) — J;(@, u) |
< const. ( |lzn —yn + T — Yllr2@n |00 — Yo — T + Yl 2(m)
+ |ty — wy, — U + || L2y ||t — Wy + T — W] L2007
+|2n(T) = ¢ = (T) + Pl 2n(T) = ¢ +2(T) = |l )

(7) follows.
Finally, we examine condition (7).
If 2 = (y,w,v) € Z, (v,u), (p,p) € X and a € R we set z, = 2»W+*®P); Lemma 3.1
gives
To(t) = 20 (1) + a 2P (t) — ado(t) (16)

for every t € [0, 7.
Now, if

j/ ((v,u), (So’p)) — lim JZ ((’U,U) + a(907p)) — Z(U,U)

a—0 «
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(16) leads to

= 2/0 < a®P(t) —dc(t), P(t) (@ (t) - y(t) >u dt (17)

T
+ 2/ < p(t), Qt) (u(t) —w(t)) >y dt
0
+2 <2 @P(T)= ic(T), B (2N(T)— ) >y .
From the linearity of the mapping

(¢,p) — 2¥P — i

the linearity of the functional J/ ((v u) -) follows; moreover, if (¢,,p,) — (¢,p) in X we
have, by Lemma 3.1, (¥7Pn) — (®P) in C([0,T], H) and similar procedure as in (i7) gives
the continuity of the functional .J!((v,u);-).

Then, (17) is the expression of < D.J,(v,u), (¢, p)>

The proof of the following simple lemma is omitted.

Lemma 3.3. Let W and Y be real vector spaces and h : W — Y a mapping such that
its graph is convex. Then h is affine.

4. Well-posedness and affinity on the control in inhomogeneous problem

Proposition 4.1. Let A be the generator of a strongly continuous semigroup, B € L*(L(U,
H)) and C € L'(H). Suppose the hypotheses (A), (B), (D) hold and let f(t,u) =
B(t)u+ C(t) in problem (2).

Then the following properties hold:

(i)  for any z € Z there exists a unique (v*,u*) = argmin(X, J,);

(i) if zn — 2" in Z, and

(v",u") = argmin(X, J,, ), (v, u*) = argmin(X, J,«)
we have (™, u™) — (v, u*) in X.
Proof. Take z = (y,w,) € Z; since A # () and J.(v,u) > 0 from (A), it follows that
V(z) € R.

If (v, u,) is a minimizing sequence, we have (v, u,) € A for n large enough and
J(vnsun) = a (llew = ylEaan + lun = wlFae )

where z,, = £ for every n € N.

Thus, ||t z2(y is bounded and, since {v,} C K; and (B) hold, there exist vy € K, uy €
L*(U) and a subsequence (Uny s Un,,) such that

— o in H and wu,, — ugin L*(U);

Un,,
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moreover, from Lemma 3.1 and (B) it follows that
Tn, — xo in L*(H) and (xg,up) € Ko

with o = z(vou0),
Consequently, (vg,up) € A and we have

liminf J, (v, , tp, ) = lim inf jz(vnk,unk) > jz(vo, ug) = J,(vo, up)

n—oo n—oo

since J, is convex and lower semicontinuous on X, which implies that (v, up) is a mini-
mizer. The strict convexity of J, allows us to obtain the validity of (7).

Now we prove (i7).

If 2, = (Yn, Wn, ¥n) — 2° = (y*,w*,¢*) in Z and

(v, u") = argmin(X, J,,), (v*,u") = argmin(X, J,«)

for every (v,u) € X we have

Jo(o,0) 2 T (0", 0) 2 @ (" = gl 32 + 10" = a0

where 2" = 2*"*") for every n € N; by Lemma 3.2 we have .J, (v,u) — J,-(v,u), thus,
as shown in (i), there exist (p,p) € X, ¢ € Ky, and a subsequence (v™, u™) € A such
that

v — pin H, u™ — pin L*(U)

and, by Lemma 3.1,
2" — 2P in L2(H). (18)

For such k € N we take T, : L?(H) — R such that

T(m) = [ <m0 POGE ) =, (1) >0

for every m € L?(H); we have
(T (m)] < const. [ml| 2y 297 =y, || 2y

from which
T,, € (L*(H))* = L*(H) and T, — Ty

where
T
Tym) = [ < ml) PO -y (0) >a de.
0
Thus, from (18) we obtain

T
/ < PP () — 3o (t), P(8) (@9 () =y, (8) >u dt — 0. (19)
0

A similar procedure gives

A<MﬂﬂWWQ®@®—%NDmdwﬁ0 (20)
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Moreover, if h € H, from [3, Theor. 6, Chap. 2| we have

lim <h/S — ) B(s) [u™(s) — p(s)] ds >

= lim B*(s)S*(T — s)h, u™(s) —p(s) >y ds =0

k—oo  Jg

since

T
1B 08T = s < sup 1Sy 1B Wnay Ihls <400
0 )

Then
lim < h, £$P)(T) — 2™(T) >

k—o0

= lim < h, S(T)(v" —(,0)—1—/0 S(T — s) B(s) [u™(s) —p(s)]ds >g=10

k—o0
for every h € H, from which
2 PPNT) — 2"(T) — 0 in H
and

lim < z®P=C" Ty g0 B (29$P(T) — ) >u = 0. (21)

k—oo

Whereas (19), (20) and (21) yield

lim < D.J., (¢,p), ((#,p) — (0™, u"™)) >=0. (22)

k—o0

Thus, from (v, u"™) = argmin(X, J,, ) we have

< DL, (o). ((pp) — (0™, u™)) >

> <D, (p.0), ((,p) — (W™, w™)) > — <D, (0", u™), (¢, p) — (o, u")) >

=2 / ' < 2@P(t) — 2™ (t), P(t)(x P (t) — 2™ (1)) >p dt

#2 [ <plt) ~ w0, Q) 0l0) ~ @) 2u
+2 < 2 @P(T) — 2"(T), E2@P)(T) — 2™ (T) >y
> 2a <||9U((’D’p) — 2" |22y + I — unkH%Q([O,T],U))
which implies, by (22), that
u™ — pin L2(U) and 2™ — 2P in L?(H).

From (D), taking an another subsequence, we have ||v,, — ¢|lg — 0. Now, the assertion
J

(1) of Lemma 3.2 gives

S (v,u) > T (v,u) = lim Jzn ( u) > lim J,, (v Mou) = T (@, p)

.]*)OO ‘]*)OO
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for every (v,u) € X .
Then, since argmin(X, J.+) is a singleton, we get

(p,p) = (v*,u*) and (v, u") — (v, u").

Theorem 4.2. Let A be the generator of a strongly continuous semigroup, B € L*(L(U,
H)) and C € L*(H). Suppose the hypotheses (A), (B), (D) hold and let f(t,u) = B(t) u+
C(t) in problem (2).

Then, the problem (X, J.-) defined by (5) is well-posed for every z* € Z.

Proof. If z* € Z, the condition (6) of well-posedness follows from assertion (i) of Propo-
sition 4.1 whereas assumption (A) ensures that J, > 0 for every z € Z, therefore (7).
Given z = (y,w,v) € Z we set (v*,u?) = argmin(X, J,) € A, 2* = z*"*). From part
(7i) of Lemma 3.2 it follows that

JZ<U7 U) - V(Z) = jZ(Ua U) - V(Z)

= < DJ.(v*,u?), (v — v*,u—u?) >

+ /O [< 29 (t) — 2%(t), P(t) (W (t) — 2°(t)) >u

+ <u(t) —ui(t), Q) (u(t) — u*(t)) >uldt
+ < 2(T) — 23(T), E(z"")N(T) — 2*(T)) >u
> alu—|faqy + a =) — || T2y (23)
To prove (8) consider a sequence z, = (Yn, Wy, 1,) such that z, — z* and an asymptot-
ically minimizing sequence (v,,u,) corresponding to the sequence z,; then, by (23) we

have
T (Uns ) = V(20) > aln, — v |32 + alla®m) — 2|32

which implies
[t — u™|| 2@y — 0 and ||z — 27| 2y — 0
from (i7) of Proposition 4.1 and (i) of Lemma 3.1 we have

ot — 0|2y — 0 and flatmm) — ")

L2(H) — 0.

Since (D) hold, there exists a subsequence v,, such that v,, — v* in H; then (v, u,) —
(v*,u*) in X and the proof is complete.

In what follows we will see how the well-posedness for any z* € Z implies, in problems
without constraints, the affinity of the dynamics with respect to the control variable u in
the system (2).

The following definition will be used henceforth.

Definition 4.3. A set GG in a Hilbert space Z is called a éebyéev set, if for each point
z € Z there is a unique nearest point p(z) € G, i.e.,

Iz =yl > lz = p(2)[| ify € G andy # p(2).
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Remark 4.4. If the assumption (A;) holds, then, given z; = (y;, w;, ;) € Z, i = 1,2,
the definition

T
< 21,29 >1= / [< yl(t),P(t) yg(t) >g+ < U)1<t),Q<t> ’wg(t) >U] dt + < wl,EwQ >
0

provides an inner product that induces on Z a Hilbert space structure equivalent to the
usual one. We will denote by || - ||; the corresponding norm.

Proposition 4.5. Let A be the generator of a strongly continuous semigroup and (X, J,+)
be the problem defined by (5) with K; x Ky = H x L*(H) x L*(U). Suppose that
assumptions (A1) and (C) hold. If the problem defined by (5) is well-posed for every
2" € Z then the set

G = {(m,u,v) € Z:3v € H such that m = 2 and o) = I(”’“)(T)} (24)

18 convez.

Proof. By Remark 4.4 (Z, < -,- >1) is a Hilbert space.
For any z* € Z we have by hypotheses

(v, u*) = argmin(X, J,«) <<= |p"—=2" |1 <|p—2|[VpeG (25)
where p* = (2*,u*, 2*(T)) and z* = (""",
The well-posedness of the problem (5) for every 2* € Z, together with (25), implies that
G is a Cebysev set.
If z* € Z and (my,, u,, s,) € G is such that

[(172; i, 80) = 2"[[x = inf{llp = 2|l - p € G} (26)
then, by (24), there is v, € H such that s, = 2(""%")(T) and (26) is the same as
S (U un) — V(27).

Consequently, (v,,u,) is asymptotically minimizing with respect to the sequence z, = z*
for every n € N. From the well-posedness of the problem (5) for every z* it follows that
(Un, ) — (v*,u*) in X and, by assumption (C), there exists a subsequence u,, such that

Then, since

om0 (T) = 20T
T
< sup 180lzan om0+ [ 1561, (5) = S50l
[0,7] 0

we have
(Monger Unyr Sn) — (@7, (T,

The convexity of the set G follows from Corollary 3 of [1, page 238].
Definition 4.6. Given t; € [0,T7], let 1, : X — C([0,T — t], H) be defined by

e (0, u) (1) = 2@ (tg + 1) for every 7 € [0,T — to]. (27)
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Lemma 4.7. Suppose that the same assumptions of Proposition 4.5 hold. Given ty €
[0, 7] the map my, : X — C([0,T —to], H) of (27) is such that its graph is convex; hence
My, 95 affine.

Proof. Let h; = (v, us, ny, (vi, 1)) € graphm, with i = 1,2; if we set m; = x»%) from
(27) we have

(s s, Mo (03, ) (T — 1) ) = (Mg, ug, 29T ) € G
whereas Proposition 4.5 leads to
(Amy 4+ (1 =X mg, Augp + (1= N ug, AzP)(T) + (1 — N\)z2)(T)) € G
for any fixed A € (0,1). Then, there is some v € H such that
Amy(t) + (1= Nmg(t) = Az (t) 4 (1 — X) 2292 () = gEAmF=Nu2) ()

for every t € [0, T7.
In particular, we obtain for t =0

Avp + (1= ANwvg =,
and for t =ty + 7 with 7 € [0, T — ¢
A zvruen) (o 4 )+ (1—=X) zv22) (g 4 1) = g (to +7)
where u = Auy + (1 — \)ug; hence
A (01, ur)(T) + (1= A) 1o (v2, u2)(7) = 1y (v, w)(7)

for every 7 € [0,T — to]. Then, graphn,, is convex and, by Lemma 3.3, 1, is affine.

Theorem 4.8. Let A be the generator of a strongly continuous semigroup and (X, J,«) be
the problem defined by (5) with Ky x Ky = H x L*(H) x L*(U). Suppose that assumptions
(A1), (C) hold and the mapping f in (2) is such that

fG,u) € CH[0,T),H) for every u € U.
If the problem defined by (5) is well-posed for every z* € Z then there exist
B :[0,T)— L(U,H) and C :[0,T] — H
such that f(t,u) = B(t)u+ C(t) for every t € [0,T] and v e U.

Proof. If (v;,p;) € H x U, let 2 = 2(*7:) be the solution of (2), with i = 1, 2.
Given b € R consider 23 = p((1:p)+(1=b)(v2.p2)),
If ¢ty € [0, 7], since the mapping 7, is affine, we have

Mo (D(v1, p1) + (1= b)(v2,p2) )(T) = by (1, p1)(7) + (1 = b) 11y (02, p2) ()

for every 7 € [0,T — to], from which

2?(t) = ba'(t) + (1 —b)a*(t) (28)
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for every t € [to, T).
Then, from (28) it follows that

/05(25 —8) [f(s,0p1 + (1 = b)pa) — bf (5,p1) — (1 = b) f(s,p2)]ds = 0 (29)

for ¢t € [to, 1.
If we set
g9(s) = f(s,bp1 + (L = b)pa) — bf (s,p1) — (1 = b) f(s,p2)

for every s € [0, T], then, by Theorem 2.21 of [2], the mapping

5(6) = [ (=) g(s)ds

is continuously differentiable on (0,7") and

B(t) = AB(t) + g(t) (30)

for almost every ¢ € (0,7).

Thus, there is W, », C [0, 7] such that the Lebesgue measure of the set

[0, 7] \ Whp, o 18 zero and the equality in (30) is satisfied for every t € Wi, p,-
By (29) and (30) we have

AZ?(t) + ft,bpr+ (1= b)p) =b [Az'(t) + f(t,p1)] + (1 —b) [A2*(t) + f(t,p2)]

for every t € (to,T) N Wiy p, pp» Which gives

f@0p1+ (1 =b)p2) = b f(t,p1) — (1 =0) f(t,p2) =0 (31)

for every t € (to, 1) N Wi, po-
Let {t,} C (to,T) N Whpy.ps» tn — to; from (31) and the continuity of the mapping f we
have

f(to, bp1 + (1 = b)pa) — b f(to, p1) — (1 = b) f(to, p2) = 0.
This allows us to see that f(t,-) is affine for every ¢ € [0, T] thus completing the proof.

In the next theorem we will prove the affinity on the control of the dynamics in system
(2) when f is a Holder mapping and the operator A fulfills a stronger hypothesis than
that in Theorem 4.8.

Theorem 4.9. Let A be the generator of an analytic semigroup and (X, J,-) the problem
defined by (5) with K, x Ky = H x L*(H) x L*(U). Suppose that assumptions (A;),
(C) hold and the mapping f in (2) is such that

1F(tp) = f(s:p)llu < Cplt —s|* with 0 <k <1 (32)

for every p € H.
If the problem defined by (5) is well-posed for every z* € Z then there are

B :[0,T)— L(U,H) and C :[0,T] — H

such that f(t,u) = B(t)u+ C(t) for every t €[0,T) and u e U.
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Proof. Like in Theorem 4.8 we can obtain
t
/ S(t—s)[f(s,bpr + (1 —=0b)p2) —bf(s,p1) — (1 = b)f(s,p2)]ds =0
0

for every t € [to, T|, and if we set

g(s) = f(s,0p1 + (1 = b)pa) — bf(s,p1) — (1 = b) f(s,p2)

for every s € [0,77, from (32) it follows that

lg(t) = g(s)lla < I1F(t bpr + (1 = b)p2) — f(s,bpr + (1 = b)pa) ||
+ |b| ||f(t7p1) - f(svpl)HH + |1 - b| ||f(t7p2) - f(sva)HH
< (Cs+ b|Cy + |1 = b|Cy) |t — s|F

with 0 < k < 1; by [2, Theor. 2.29, Chap. 2] the mapping

B(t) = / S(t — 5) g(s) ds

is differentiable almost everywhere in (0,7") and we have

Bt) = ApB(t) + g(t)

for almost every t € (0,7).
Then, we complete the proof as in Theorem 4.8.
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