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strictly pseudoconvex domain Ω with the boundary of class C2. Next we use this construction to solve
Radon inversion problem and describe exceptional sets for square integrals of holomorphic functions along
complex directions.
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1. Introduction

In the papers [1, 10, 11], the authors constructed an inner function on the domain with
a holomorphic support function. In this paper we use a similar holomorphic support
function as in [11] but we give a new construction of inner function. In fact we describe
our inner function in terms of a given Borel probability measure. As an application we
solve Radon inversion problem for holomorphic functions integrable with square along
complex directions. We also describe exceptional sets in terms of any Borel probability
measure. For more information about exceptional sets see [3, 4, 5, 6, 7, 8].

1.1. Geometric notions

Assume that Ω ⊂ C
d is a bounded domain with the diameter 2R := supz,w∈∂Ω ‖z − w‖.

Let σ be a Borel probability measure on ∂Ω.

First, we define so called holomorphic support functions (see also similar definition in
[11]).

Let S be a Borel subset of ∂Ω. We shall say that Φ : Ω×S → C is a holomorphic support
function on S if:

(1) Φ(·, z) is holomorphic on Ω and continuous on Ω.

(2) There exist constants c1, c2 > 0 such that for (z, w) ∈ ∂Ω× S we have

exp
(
−c2 ‖z − w‖2

)
≤ |Φ(z, w)| ≤ exp

(
−c1 ‖z − w‖2

)
;

(3) If T is a compact subset of Ω then sup(z,w)∈T×S |Φ(z, w)| < 1.
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We say that Ω admits holomorphic support function on S if there exists a sequence
{Si}i∈N of Borel subsets of ∂Ω such that S =

⋃
i∈N Si and for a given i ∈ N there exists a

holomorphic support function on Si.

For I := {1, .., k} and ξ ∈ ⋃k

i=1 Si, let pk(ξ) = min{i ∈ I : ξ ∈ Si}. Let us observe that if
Φi : Ω× Si → C is a holomorphic support function on Si for i = 1, ..., k then

Φ : Ω×
k⋃

i=1

Si ∋ (z, ξ) → Φpk(ξ)(z, ξ)

is a holomorphic support function on
⋃k

i=1 Si.

Let z ∈ ∂Ω and γ : [0, 1] ∋ t → γ(t) ∈ Ω be a continuous curve such that γ(1) = z. We
say that γ crosses ∂Ω transversally at z if γ([0, 1)) ⊂ Ω and there exists 1 ≥ α > 0 such
that for all t ∈ [0, 1] we have

dist(∂Ω, γ(t)) := inf
w∈∂Ω

‖γ(t)− w‖ > α ‖γ(t)− z‖ .

The set of all such continuous curves is denoted by ΓΩ(z). Moreover, we denote B(x, r) ={
y ∈ R

2d : ‖x− y‖ < r
}
for x ∈ R

2d.

Let πd ∈ R be such that L
2d(B(z, r)) = πdr

2d where L
m is the m-dimensional Lebesgue

measure.

We say that A ⊂ C
d is α-separated set if ‖z − w‖ > α for z, w ∈ A and z 6= w.

2. Preliminary calculations

In this section we begin with a natural example of domain Ω which has a holomorphic
support function on ∂Ω.

Example 2.1. Let Ω be a bounded strictly pseudoconvex domain with the boundary of
class C2. Then Ω has a holomorphic support function on ∂Ω.

Proof. By Fornaess’ embedding [2] theorem, there exists a neighbourhood U of Ω, a

strictly convex, bounded domain Ω̃ ⊂ C
d̃ with the boundary of class C2 and a holomor-

phic mapping ψ : U → C
d̃ such that ψ maps U biholomorphically onto some complex

submanifold ψ(U) of Cd̃ and

(1) ψ(Ω) ⊂ Ω̃,

(2) ψ(∂Ω) ⊂ ∂Ω̃,

(3) ψ(U \ Ω) ⊂ C
N \ Ω̃,

(4) ψ(U) intersects ∂Ω̃ transversally.

Due to [9, Lemma 3.1.6] there exists a defining function ρ of class C2 for Ω̃ and constants
c3, c4 > 0 such that for ξ ∈ ∂Ω and w ∈ C

d we have

c3 ‖w‖2 ≤ Hρ(ξ, w) ≤ c4 ‖w‖2

where Hρ(ξ, w) :=
1
2

∑d
j,k=1

∂2ρ(ξ)
∂zj∂zk

wjwk + 1
2

∑d
j,k=1

∂2ρ(ξ)
∂zj∂zk

wjwk +
∑d

j,k=1
∂2ρ(ξ)
∂zj∂zk

wjwk.

Assume that we have proved the following fact: there exist c1, c2 > 0 such that for
z, ξ ∈ ∂Ω̃ we have the following inequality:

−c2 ‖z − ξ‖2 ≤ ℜ〈z − ξ, ρξ〉 ≤ −c1 ‖z − ξ‖2 (1)
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where ρξ =
(
∂ρ

∂z1
(ξ), ..., ∂ρ

∂z
d̃

(ξ)
)
. Let us observe that g(z, ξ) := exp (〈z − ξ, ρξ〉) is now

a holomorphic support function on ∂Ω̃ and due to Fornaess’ embedding [2] theorem the
following function Ω×∂Ω ∋ (z, w) → g(ψ(z), ψ(w)) is a holomorphic support function on
∂Ω.

So it suffices to prove (1). Let

φ(ξ, h) := 〈h, ρξ〉+ 〈h, ρξ〉 − ρξ(ξ + h).

Since ρξ is of class C
2 therefore we have ρξ(ξ + h) = ρξ(ξ) + 〈h, ρξ〉+ 〈h, ρξ〉+Hρ(ξ, h) +

f(ξ, h) ‖h‖2, where f is a continuous function such that f(ξ, 0) = 0. Observe that
2ℜ 〈z − ξ, ρξ〉 = φ(ξ, z − ξ) for z ∈ ∂Ω̃ and ξ ∈ ∂Ω̃. In particular we may estimate

2ℜ 〈z − ξ, ρξ〉
‖z − ξ‖2

=
−Hρ(ξ, z − ξ)− f(ξ, z − ξ) ‖z − ξ‖2

‖z − ξ‖2
≤ −c3 − f(ξ, z − ξ)

and
2ℜ 〈z − ξ, ρξ〉

‖z − ξ‖2
≥ −c4 − f(ξ, z − ξ).

The above inequalities imply that there exist constants c1, c2 > 0 such that (1) holds.

In order to control values of the constructed functions we need some information about
α-separated sets,

Lemma 2.2. Suppose that A = {ξ1, .., ξs} is a 2α-separated subset of ∂Ω. For z ∈ ∂Ω let

Ak(z) := {ξ ∈ A : αk ≤ ‖z − ξ‖ ≤ α(k + 1)} .

Then the set Ak(z) has at most (k + 2)2d elements i.e. #Ak(z) ≤ (k + 2)2d. The set A0

has at most 1 element and s ≤ max
{
1,
(
2R
α

)2d}
.

Proof. Observe that B(ξ1;α) ∩B(ξ1;α) = ∅ for ξ1 6= ξ2 ∈ A. Moreover
⋃

ξ∈Ak(z)

B(ξ;α) ⊂ B(z;α(k + 2)).

Let dk be a number of elements of Ak(z). In particular

dkπdα
2d =

∑

ξ∈Ak(z)

L
2d (B(ξ;α)) ≤ L

2d (B(z;α(k + 2))) = πd(α(k + 2))2d.

We conclude that dk ≤ (k + 2)2d. Moreover, if ξj,, ξk ∈ A0(z) then ρ(ξj, ξk) ≤ ρ(z, ξj) +
ρ(z, ξk) < 2α so ξj = ξk and d0 ≤ 1.

Since Ω ⊂ B(0, R) therefore if α > R then s ≤ 1 so we may assume that α ≤ R. In
particular ⋃

ξ∈Ak(z)

B(ξ;α) ⊂ B(0; 2R)

and we may estimate

sπdα
2d ≤

∑

ξ∈A
L
2d (B(ξ;α)) ≤ L

2d (B(0; 2R)) ≤ πd(2R)
2d.
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Lemma 2.3. Let β > α > 0. There exists an integer N = N(α, β) such that: if t > 0
and A ⊂ ∂Ω is αt-separated set then A can be partitioned into N disjoint βt-separated
sets.

Proof. Let us select from A a maximal βt-separated subset A1. Next from A \ A1 we
select a maximal βt-separated subset A2. We proceed this way till we exhaust A. Let As
be the last non-empty set in this procedure. Let ξ ∈ As. Observe that B(ξ, βt) ∩ Ak 6= ∅
for k = 1, ..., s− 1. In particular B(ξ, βt) contains at least s different elements {ξ1, ..., ξs}
from A. Since B(ξj, αt)∩B(ξk, αt) = ∅ for j 6= k and B(ξj;αt) ⊂ B(ξ; (β+α)t) therefore

sπd(αt)
2d ≤

s∑

j=1

L
2d (B(ξj;αt)) ≤ L

2d (B(ξ; (β + α)t)) ≤ πd((β + α)t)2d.

We can conclude that s ≤
(
β

α
+ 1
)2d

. Now it suffices to choose a natural number N so

that
(
β

α
+ 1
)2d ≤ N .

3. Inner function

In this section we construct an inner function for a domain Ω.

We prove the following fact.

Lemma 3.1. Let S be a Borel subset of ∂Ω and Φ : Ω×S → C be a holomorphic support
function on S. Let θ ∈ (0, 1). There exist constants C > c > 0 and n ∈ N (C, c,
n dependent only on θ, S) such that, if ε ∈ (0, 1), T is a compact subset of Ω, H is a
continuous strictly positive function on ∂Ω and g is a complex continuous function on ∂Ω,
then we can choose m0 ∈ N such that for m ≥ m0 and each C√

m
-separated subset A of S

the functions1 fA,m,k(z) :=
∑

ξ∈AH(ξ)Φm(z, ξ) exp
((

2kπ
n

+ arg g(ξ)
)
i
)
have the following

properties:

(1) ‖fA,m,k‖T ≤ ε;

(2) |(fA,m,k + g) (z)| − |g(z)| ≤ |fA,m,k(z)| < (1 + 2θ)H(z) for all z ∈ ∂Ω;

(3) maxk=0,...n−1 |(fA,m,k + g) (z)| − |g(z)| > (1 − 2θ)H(z) for each z ∈ ∂Ω such that
‖z − ξ‖ ≤ c√

m
for some ξ ∈ A.

Proof. There exist constants c2 ≥ c1 > 0 such that for (z, w) ∈ ∂Ω× S we have

exp
(
−c2 ‖z − w‖2

)
≤ |Φ(z, w)| ≤ exp

(
−c1 ‖z − w‖2

)
.

There exists n ∈ N such that cos
(
π
n

)
> 1− θ. Observe that for ψ ∈ R we have

max
k=0,...,n−1

cos

(
2kπ

n
+ ψ

)
> 1− θ.

Let 0 < δ < 1 be such that (1− δ)(1 − θ) − 5δ > 1 − 2θ and 2δ < θ. Let c > 0 be such
that e−cc2 > 1− θ. There exists C > c such that for k ∈ N \ {0} we have

(k + 2)2de−
c1C

2k2

4 ≤ δ2−k.

1arg 0 = 0
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Due to Lemma 2.2 the set A has at most
(

4R
√
m

C

)2d
elements i.e. #A ≤

(
4R

√
m

C

)2d
.

Let t := sup(z,w)∈T×S |Φ(z, w)|. Since 0 < t < 1, for w ∈ T , m0 high enough and m ≥ m0

we may estimate

|fA,m,k(w)| ≤
∑

ξ∈A
‖H‖ tm ≤

(
4R

√
m

C

)2d

‖H‖ tm ≤ ε

and conclude the property (1 ).

Let us denote for z ∈ ∂Ω

Ak(z) :=

{
ξ ∈ A :

Ck

2
√
m

≤ ‖z − ξ‖ ≤ C(k + 1)

2
√
m

}
.

Let now s > 0 be so small that ‖η − ξ‖ ≤ Cs =⇒ (1 − δ)H(η) ≤ H(ξ) ≤ (1 + δ)H(η)
and |g(η)− g(ξ)| < δH(ξ). We may assume that m0 is so large that s ≥ C

2
√
m
+ c√

m
for

m ≥ m0. Observe that we may estimate
∑

k≥[2s
√
m]+1

(k + 2)2de−
c1C

2k2

4 ≤
∑

k≥[2s
√
m]+1

2−k ≤ 1

22s
√
m−1

.

Let m0 be so large that ‖H‖ ≤ δ22s
√
m−1H(z) for m ≥ m0 and z ∈ ∂Ω.

Let now z ∈ ∂Ω. First assume that A0(z) = ∅. In particular due to Lemma 2.2 for
m ≥ m0 we may estimate

|(fA,m,k + g) (z)| − |g(z)| ≤ |fA,m,k(z)| ≤
∞∑

k=1

∑

ξ∈Ak(z)

H(ξ) |Φ(z, ξ)|m

≤
∞∑

k=1

∑

ξ∈Ak(z)

H(ξ)e−mc1‖z−ξ‖
2

≤ (1 + δ)H(z)

[2s
√
m]∑

k=1

(k + 2)2de−
c1C

2k2

4 +
‖H‖

22s
√
m−1

≤ (1 + δ)δH(z) + δH(z) ≤ 3δH(z).

Now assume that A0(z) 6= ∅. Due to Lemma 2.2 we have A0(z) = {ξ0} for some ξ0 ∈ A
where ‖z − ξ0‖ ≤ C

2
√
m

≤ Cs. In particular we can obtain the property (2 ):

|(fA,m,k + g) (z)| − |g(z)| ≤ |fA,m,k(z)| ≤ H(ξ0) + 3δH(z)

≤ (1 + δ)H(z) + 3δH(z) < (1 + 2θ)H(z)

for z ∈ ∂Ω and m ≥ N .

Let now ξ ∈ A be such that ‖z − ξ‖ ≤ c√
m

≤ Cs. Let r = |Φ(z, ξ)|m and ψk := 2πk
n

+

argΦm(z, ξ)+arg g(ξ), ψ̃k :=
2πk
n

+argΦm(z, ξ). We have r ≥ e−mc2‖z−ξ‖
2 ≥ e−cc2 > 1−θ.

Moreover, there exists k0 ∈ {0, 1, ..., n− 1} such that cos ψ̃k0 ≥ 1− θ. In particular
∣∣H(ξ)reiψk0 + g(ξ)

∣∣2 =
∣∣∣H(ξ)reiψ̃k0 + |g(ξ)|

∣∣∣
2

= r2H(ξ)2 + 2H(ξ) |g(ξ)| cos ψ̃k0 + |g(ξ)|2

≥ (1− θ)2H(ξ)2 + 2 (1− θ)H(ξ) |g(ξ)|+ |g(ξ)|2

≥ ((1− θ)H(ξ) + |g(ξ)|)2 .
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Now we may conclude the property (3 ):

|(fA,m,k0 + g) (z)| ≥ |fA,m,k0(z) + g(ξ)| − |g(z)− g(ξ)|
≥

∣∣H(ξ)reiψk0 + g(ξ)
∣∣− 3δH(z)− |g(z)− g(ξ)|

≥ (1− θ)H(ξ) + |g(ξ)| − 4δH(z)

≥ (1− θ) (1− δ)H(z) + |g(z)| − 5δH(z)

> (1− 2θ)H(z) + |g(z)| .
Theorem 3.2. Let S be a Borel subset of ∂Ω. Assume that there exists a holomorphic
support function on S. Let a ∈ (0, 1). There exists a natural number N = N(a, S) such
that, if ε ∈ (0, 1), T is a compact subset of Ω, H is a continuous, strictly positive function
on ∂Ω, g is a complex continuous function on ∂Ω, then there exists a relatively open
neighbourhood U of S in ∂Ω and there exist holomorphic functions f1, ..., fN on Ω and
continuous on Ω such that ‖fj‖T ≤ ε and:

(1) |(fj + g) (z)| − |g(z)| ≤ |fj(z)| < H(z) for j = 1, ..., N and z ∈ ∂Ω;

(2) aH(z) < maxj=1,...,N |(fj + g) (z)| − |g(z)| for z ∈ U .

Proof. Let Φ : Ω × S → C be a holomorphic support function on S. Let θ ∈ (0, 1) be
such that 1−2θ

1+2θ
= a. Now constants C > c > 0 and n ∈ N can be chosen from Lemma 3.1.

Due to Lemma 2.3 there exists a natural number N0 such that each c√
m
-separated subset

of ∂Ω can be partitioned into N0 disjoint C√
m
-separated sets. Let us define N = nN0.

Let A be a maximal c√
m
-separated subset of S. It can be partitioned into A1, ..., AN0

disjoint C√
m
-separated sets. Now due to Lemma 3.1 there exists m and holomorphic

functions fj on Ω and continuous on Ω such that ‖fj‖T ≤ ε and

(1) |(fj + g) (z)| − |g(z)| ≤ |fj(z)| < 1+2θ
1+2θ

H(z) for z ∈ ∂Ω, j = 1, ..., N ;

(2) maxk=0,1,...,n−1 |(fnj+k + g) (z)| − |g(z)| > 1−2θ
1+2θ

H(z) for each z ∈ ∂Ω such that
‖z − ξ‖ ≤ c√

m
for some ξ ∈ Aj and j = 1, ..., N0.

Let K =
⋃N0

j=1

⋃
ξ∈Aj

B(ξ, c√
m
). Since A is a maximal c√

m
-separated subset of S, one has

S ⊂ K. Moreover, if z ∈ K then there exist j0 ∈ {1, ..., N0} and ξj0 ∈ Aj0 such that
‖z − ξj0‖ ≤ c√

m
. In particular

aH(z) < max
k=0,1,...,n−1

|(fnj0+k + g) (z)| − |g(z)| ≤ max
j=1,...,N

|(fj + g) (z)| − |g(z)|

for z ∈ K. Since K is a compact set and functions fj, g are continuous on ∂Ω, there exists
U , an open neighbourhood of K, such that inequality (2) is fulfilled.

Recall that σ is a Borel probability measure on ∂Ω.

Proposition 3.3. Assume that U is a relatively open subset of ∂Ω and K is a compact
subset of U . There exists a relatively open subset V of ∂Ω such that K ⊂ V ⊂ V ⊂ U
and σ(V ) = σ(V ).

Proof. Let us denote Vε := {z ∈ U : infw∈K ‖z − w‖ < ε}. We may observe that there
exists ε0 > 0 such that Vε0 ⊂ U . In particular K ⊂ Vε ⊂ V ε ⊂ U for 0 < ε < ε0.
Let Ak :=

{
t ∈ (0, ε0) : σ(V t \ Vt) ≥ 1

k

}
. Since Ak has at most k elements,

⋃∞
k=1Ak is

a countable set and we may conclude that there exists r ∈ (0, ε0) \
⋃
k∈NAk. Now it is

enough to observe that σ(Vr) = σ(V r) and set V := Vr.
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Lemma 3.4. Let S be a Borel subset of ∂Ω such that σ(S) = 1 and Ω admits holomorphic
support function on S. Let ε, θ ∈ (0, 1), T be a compact subset of Ω. If H is a continuous
strictly positive function on ∂Ω and g is a complex continuous function on ∂Ω then there
exists V , a relatively open subset of ∂Ω, f holomorphic on Ω and continuous on Ω such
that:

(1) ‖f‖T ≤ ε.

(2) |(f + g) (z)| − |g(z)| < H(z) for z ∈ ∂Ω.

(3) |(f + g) (z)| − |g(z)| > θH(z) for z ∈ V .

(4) σ(V ) = σ(V ) > 1− 2ε.

Proof. Let a, δ ∈ (0, 1) be such that a− 2δ = θ and (1−a)|g(z)| ≤ δH(z) for all z ∈ ∂Ω.

There exists a sequence {Si}i∈N of Borel sets so that S =
⋃
i∈N Si and for a given i ∈ N

there exists a holomorphic support function on Si. Moreover, we can choose m0 ∈ N such
that σ (

⋃m0

i=1 Si) > 1 − ε. Since there exists a holomorphic support function on
⋃m0

i=1 Si,
let us choose a natural number N = N (a,

⋃m0

i=1 Si) given by Theorem 3.2.

Moreover let us define a new Borel probability measure on ∂Ω in the following way σ̃(W ) =
σ(W ∩⋃m0

i=1 Si)/σ(
⋃m0

i=1 Si).

Now we construct {Vk}k∈N, a sequence of relatively open subsets in ∂Ω and {fk}k∈N, a
sequence of holomorphic functions on Ω and continuous on Ω such that

(a) |fk(z)| ≤ ε
2k

for z ∈ T ;

(b) ωk+1(z)− ωk(z) ≤ |fk(z)| < δ
2k
Hk(z) for z ∈

⋃k−1
j=1 V j;

(c) ωk+1(z)− ωk(z) ≤ |fk(z)| < Hk(z) for z ∈ ∂Ω;

(d) ωk+1(z)− ωk(z) > aHk(z) for z ∈ Vk;

(e) V k ⊂ ∂Ω \⋃k−1
j=1 V j and σ̃(V k) = σ̃(Vk) >

1−
∑k−1

j=1
σ̃(Vj)

N+1
.

where ω1(z) = |g(z)|, ωm+1(z) =
∣∣∣
(
g +

∑m

j=1 fj

)
(z)
∣∣∣, H1 = H and Hm+1(z) = Hm(z) −

ωm+1(z) + ωm(z).

Let k = 1. Due to Theorem 3.2 there exist f1, V1 such that (a)-(d) hold and σ̃(V1) ≥ 1
N
.

Due to Proposition 3.3 we can decrease V1 so that (e) is also fulfilled.

Now assume that f1, ..., fk−1, V1, ..., Vk−1 are already constructed. There exists an open

set U such that U ⊂ ∂Ω \ ⋃k−1
j=1 V j and σ̃(U) = σ̃(U) > N

1−
∑k−1

j=1
σ̃(Vj)

N+1
. There exists G,

a continuous function on ∂Ω such that G(z) ≤ H(z) for z ∈ ∂Ω, G(z) ≤ δ
2k
H(z) for

z ∈ ⋃k−1
j=1 V j and G(z) = H(z) for z ∈ U . Now due to Theorem 3.2 there exist fk, Vk such

that (a)-(d) hold and Vk ⊂ U , σ̃(Vk) ≥ 1
N
σ̃(U) >

1−
∑k−1

j=1
σ̃(Vj)

N+1
. If σ̃(Vk) = σ̃(Vk) then (e)

also holds. Now suppose that σ̃(Vk) > σ̃(Vk). There exists K a compact subset of Vk such

that σ̃(K) >
1−
∑k−1

j=1
σ̃(Vj)

N+1
. Due to Propositin 3.3 there exists an open set Ṽk such that

K ⊂ Ṽk ⊂ Vk and σ̃(Ṽk) = σ̃(Ṽk). We can redefine Vk := Ṽk and observe that conditions
(a)-(e) are fulfilled.

Now we use the constructed functions {fk}k∈N and relatively open sets {Vk}k∈N.

Since
∑∞

j=1 σ̃(Vj) ≤ 1, we may obtain limk→∞
1−
∑k−1

j=1
σ̃(Vj)

N+1
≤ 0. In particular there exists

m ∈ N large enough such that 1 − ε <
∑m

j=1 σ̃(Vj). Let now define V =
⋃m

j=1 Vj and
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f =
∑m

j=1 fj.

First we prove the properties (1 ), (4):

σ(V ) ≥
m∑

j=1

σ(Vj) ≥
m∑

j=1

σ̃(Vj)σ(

m0⋃

i=1

Si) > (1− ε)2 > 1− 2ε

and |f(z)| ≤∑m

j=1 |fj(z)| ≤
∑m

j=1 εj < ε for z ∈ T . If σ(V ) > σ(V ) then we can slightly
decrease all Vj so that (4) is now fulfilled.

Observe that Hm−H1 = Hm−H = −ωm+ω1. In particular the property (2) is obvious:
ωm+1(z)− ω1(z) < Hm(z) + ωm(z)− ω1(z) = H(z) for z ∈ ∂Ω.

If k < j and z ∈ Vk then we may estimate

ωj+1(z)− ωj(z) ≥
∣∣∣∣∣

(
g +

j∑

i=1

fi

)
(z)

∣∣∣∣∣−
∣∣∣∣∣

(
g +

j−1∑

i=1

fi

)
(z)

∣∣∣∣∣ ≥ − |fj(z)| > −δH(z)

2j
.

Now let z ∈ V . There exists k ∈ {1, ...,m} such that z ∈ Vk. Since Hk = H − ωk + ω1

therefore we may obtain the property (3):

ωn+1(z)− ω1(z) =
n∑

j=k+1

(ωj+1(z)− ωj(z)) + ωk(z)− ω1(z) + ωk+1(z)− ωk(z)

> −
∞∑

j=k+1

−δH(z)

2j
+ ωk(z)− ω1(z) + aHk(z)

≥ −δH(z) + (1− a) (ωk(z)− ω1(z)) + aH(z)

≥ −δH(z)− (1− a)|g(z)|+ aH(z) ≥ (a− 2δ)H(z) ≥ θH(z).

Theorem 3.5. Let S be a Borel subset of ∂Ω such that σ(S) = 1 and such that Ω admits
a holomorphic support function on S. Assume that G is a lower semicontinuous, strictly
positive function on ∂Ω. Then there exists S̃ a Borel subset of ∂Ω and a non constant
holomorphic function f on Ω with the following properties:

• There exists {gn}n∈N, a sequence of holomorphic functions on Ω and continuous on
Ω such that gn converges uniformly to f on compact subsets of Ω, |gn(z)| < G(z)
for z ∈ ∂Ω, limn→∞ |gn(z)| = G(z);

• σ(S̃) = σ(S) = 1;

• If γ : [0, 1] ∋ t → γ(t) ∈ Ω is a continuous curve crossing ∂Ω transversally at
γ(1) = z ∈ S̃, then there exists a sequence {tn}n∈N ⊂ (0, 1) such that limn→∞ tn = 1
and limn→∞ |f(γ(tn))| = G(z).

Proof. There exists {Gm}m∈N, a sequence of strictly positive continuous functions on ∂Ω
such that G(z) =

∑∞
m=1Gm(z).

For a given α ∈ (0, 1) and U , a relatively open subset of ∂Ω let us denote

Γε(U) := {γ : γ ∈ ΓΩ(z), z ∈ U, dist(∂Ω, γ(0)) > ε, dist(∂Ω, γ(t)) > ε ‖γ(t)− z‖} .

We construct a sequence {εm}m∈N of positive numbers, a sequence {fm}m∈N of holomor-
phic functions on Ω, and a sequence {Vm}m∈N of relatively open subsets of ∂Ω such that
the following properties are fulfilled:
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(1) 0 < 4mεm+1 ≤ εm ≤ 1,

(2) If z, w ∈ Ω and ‖z − w‖ ≤ mεm+1 then |ωm(z)− ωm(w)| ≤ εm,

(3) εm+1Hm ≤ Gm,

(4) ‖fm‖Tm ≤ εm+1 where Tm :=
{
z ∈ Ω : dist(∂Ω, z) ≥ εm+1

}
,

(5) ωm+1(z)− ωm(z) < Hm(z) for z ∈ ∂Ω,

(6) ωm+1(z)− ωm(z) > (1− εm+1)Hm(z) for z ∈ Vm,

(7) σ(V m) = σ(Vm) > 1− 2εm+1,

where ω1 = 0, ωm+1 =
∣∣∣
∑m

j=1 fj

∣∣∣, H1 = G1 and

Hm+1 := Hm − ωm+1 + ωm +Gm+1 > Gm+1.

If m = 1 then we can set ε1 = 1 and ε2 ∈ (0, 1
4
) so that (3) is fulfilled. Now due to Lemma

3.4 there exist f1, V1 so that the properties (4)-(7) are fulfilled. Since ω1 = 0, we can
observe that properties (1)-(7) are fulfilled. Assume that (εj, εj+1, fj, Vj) are constructed
for j = 1, ...,m so that (1)-(7) are fulfilled. Since ωm+1 is continuous and depends only
on f1, ..., fm, there exists εm+2 > 0 such that: (1)-(3) are fulfilled. Now we use again
Lemma 3.4 to construct fm+1 and Vm+1 so that (4)-(7) are fulfilled, which finishes the
construction of (εm+1, εm+2, fm+1, Vm+1).

Let Dk :=
⋂∞
m=k Vm and D =

⋃
k∈NDk. Observe that σ(Dk) > 1−∑∞

m=k 2εm+1 ≥ 1− εk.
In particular σ(D) = 1.

Let us observe that

Hm+1 −H1 =
m∑

k=1

(Hk+1 −Hk) =
m∑

k=1

(ωk − ωk+1 +Gk+1) = −ωm+1 +
m∑

k=1

Gk+1

In particular

ωm+1 = −Hm+1 +
m∑

k=0

Gk+1 <
∞∑

k=0

Gk+1 = G. (2)

Let now z ∈ D. There exists mz ∈ N such that z ∈ Vm for m ≥ mz.

We may estimate

Hm+1(z) = Hm(z)− ωm+1(z) + ωm(z) +Gm+1(z) ≤ εm+1Hm(z) +Gm+1(z)

≤ Gm(z) +Gm+1(z).

Due to (2) we can conclude that
∑m−2

k=0 Gk+1(z) ≤ ωm+1(z) ≤
∑∞

k=0Gk+1(z) = G(z) and
therefore

lim
m→∞

ωm(z) = G(z) (3)

for z ∈ D. In particular we can choose gm :=
∑m

k=1 fk.

Let f =
∑∞

m=1 fm. Now we prove that the holomorphic function f has the required
properties.

Assume that γ : [0, 1] ∋ t → γ(t) ∈ Ω is a continuous curve crossing ∂Ω transversally at
γ(1) = z ∈ D. There exists α > 0 such that γ ∈ Γα(Vm) for m ≥ mz. We can additionally
assume that α > 1

m
for m ≥ mz. In particular γ(0) ∈ Tm for m ≥ mz.
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Now we can define tm := sup {t ∈ [0, 1] : γ(t) ∈ Tm} and zm := γ(tm). In particular
limm→∞ tm = 1 and dist(∂Ω, zm) = εm+1. Since zm ∈ Tj for j ≥ m ≥ mz, we have
|fj(zm)| ≤ εj+1 for j ≥ m. Now we may estimate

||f(zm)| − ωm(zm)| ≤
∞∑

j=m

|fj(zm)| ≤
∞∑

j=m

εj+1 ≤ εm.

Since γ ∈ Γα(Vm) therefore εm+1 = dist(∂Ω, zm) ≥ α ‖z − zm‖. Observe that ‖z − zm‖ ≤
εm+1

α
≤ mεm+1 form ≥ mz. In particular due to property (2) we have |ωm(z)− ωm(zm)| ≤

εm and ||f(zm)| − ωm(z)| ≤ 2εm. Now due to (3) we may conclude that

lim
m→∞

|f(zm)| = lim
m→∞

ωm(z) = G(z).

Since σ(D) = σ(S) = 1, we can define S̃ := D, which finishes the proof.

It is known (see [9, Theorem 8.4.1]) that a bounded holomorphic function f on a bounded
domain Ω with the boundary of class C2 has non tangent limits f ∗(z) for almost all
z ∈ ∂Ω. In particular we can obtain a classical result about inner function:

Theorem 3.6. Let Ω ⊂⊂ C
n be a domain with the boundary of class C2 and G be a

bounded, strictly positive and lower semicontinuous function on ∂Ω. Let η denote (2n−1)-
dimensional Hausdorff measure on ∂Ω. Assume that Ω admits a holomorphic support
function on a Borel set S with full η measure. Then there exists f , a holomorphic bounded
function on Ω such that ‖f‖Ω ≤ ‖G‖∂Ω and |f ∗(z)| = G(z) for η-almost all z ∈ ∂Ω.

Proof. We can define a Borel probability measure σ := 1
η(∂Ω)

η. Let f be a holomorphic

function from Theorem 3.5. In particular we have ‖f‖Ω ≤ ‖G‖∂Ω. Moreover, since f has
f ∗(z) for almost all z ∈ ∂Ω, therefore the last part of Theorem 3.5 gives us the following
equality: |f ∗(z)| = G(z) for η-almost all z ∈ ∂Ω.

4. Applications for Radon inversion problem and exceptional sets.

Assume that Ω ⊂ C
n is a circular bounded domain such that γ : [0, 1] ∋ t → tz ∈ Ω

crosses Ω transversally at z ∈ ∂Ω. We can define a projective (n − 1)-dimensional space
P
n−1 = P(∂Ω) := {[z] : z ∈ ∂Ω} where [z] := ∂Dz and D := {λ ∈ C : |λ| < 1}. In

particular, we can identify ∂Ω = ∂DPn−1. Now we can consider the following Radon
inversion problem:

Assume thatG is a lower semicontinuous function on P
n−1. Let us construct a holomorphic

function f on Ω such that

G(z) =

∫

D

|f(λz)|2 dL2(λ).

We solve this problem in terms of a given Borel probability measure:

Theorem 4.1. Let η be a Borel probability measure on P
n−1 and G be a strictly positive

and lower semicontinuous function on P
n−1. Assume that Ω admits a holomorphic support

function on ∂Ω. Then there exists h a holomorphic function on Ω such that G(z) =∫
D
|h(λz)|2 L

2(λ) for η-almost all z ∈ P
n−1 and

∫
D
|h(λz)|2 L

2(λ) ≤ G(z) for all z ∈ ∂Ω.
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Proof. For a given set A ⊂ ∂Ω we can define [A] := {[z] : z ∈ A} and A(z) := {t ∈
[0, 1] : e2πitz ∈ A} for z ∈ ∂Ω. Now we define a Borel probability measure σ on ∂Ω by
putting σ(A) =

∫
[A]

∫
A(z)

dtdη(z).

Let G̃(λz) =
√
G(z). Observe that G̃ is a strictly positive and lower semicontinuous

function on ∂Ω. Due to Theorem 3.5 there exists S a Borel subset of ∂Ω and a holomorphic
function f on Ω with the following properties:

• There exists {gn}n∈N, a sequence of holomorphic functions on Ω and continuous on

Ω such that gn converges uniformly to f on compact subsets of Ω, |gn(z)| < G̃(z)
for z ∈ ∂Ω, limn→∞ |gn(z)| = G̃(z);

• σ(S) = σ(∂Ω) = 1,

• If z ∈ S then there exists a sequence {rn}n∈N ⊂ (0, 1) such that limn→∞ rn = 1 and

limn→∞ |f(rnz)| = G̃(z).

Since σ(S) = 1, there exists a Borel set S2 ⊂ S such that η([S2]) = 1 and
∫
S2(z)

dt = 1 for

z ∈ S2. In particular σ(S2) = 1.

Using the maximum property for the holomorphic function D ∋ λ → f(λz) we may
conclude that lim supr→1− |f(rz)| = G̃(z) for z ∈ S2 and lim supr→1− |f(rz)| ≤ G̃(z) for
z ∈ ∂Ω.

Now there exists a sequence {pm}m∈N of homogeneous polynomials such that f(w) =∑
m∈N pm(w) for w ∈ Ω. Let am be such that

∫
D
|ampm(λz)|2 dL2(λ) = |pm(z)|2. Now we

can define a holomorphic function h :=
∑

m∈N ampm.

In particular we may estimate for z ∈ S2:

∫

D

|h(λz)|2 dL2(λ) =
∑

m∈N
|pm(z)|2 = lim sup

r→1−

∑

m∈N
|pm(rz)|2

= lim sup
r→1−

∫ 1

0

∣∣f(re2πisz)
∣∣2 ds

=

∫ 1

0

lim sup
r→1−

∣∣f(re2πisz)
∣∣2 ds =

(
G̃(z)

)2
= G(z).

In the similar way we may obtain for z ∈ ∂Ω the following inequality:

∫

D

|h(λz)|2 dL2(λ) =

∫ 1

0

lim sup
r→1−

∣∣f(re2πisz)
∣∣2 ds ≤ G(z).

Using the above theorem we can describe exceptional sets:

Theorem 4.2. Let E be a set of type Gδ in P
n−1 and η be a probability measure on E.

Then there exists a holomorphic function f such that
∫
Ω\DE |f |2 dL2n <∞ and E2

Ω(f) ⊂ E,

η(E) = η(E2
Ω(f)) where

E2
Ω(f) :=

{
z ∈ P

n−1 :

∫

D

|f(λz)|2 dL2(λ) = ∞
}
.

Proof. We can assume that η is a Borel probability measure on P
n−1. Let ν be (2n− 1)-

dimensional Hausdorff measure on ∂Ω. There exists a sequence {Um}m∈N in ∂Ω of open,
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circular sets such that ∑

m∈N
ν (Um \ E) ≤ 1

and ∂DE =
⋂
m∈N Um. Let

χm(z) :=

{
1 for z ∈ Um

0 for z ∈ ∂Ω \ Um.
Obviously χm is a lower semicontinuous function. Let G = 1 +

∑
m∈N χm. The function

G is also a lower semicontinuous function such that G(λz) = G(z) > 0 for |λ| = 1 and
z ∈ ∂Ω so we can assume that G is defined on P

n−1. On the basis of Theorem 4.1 there
exists a holomorphic function f ∈ O(Ω) such that

(1) G(z) =
∫
D
|f(λz)|2 L

2(λ) for η-almost all z ∈ P
n−1.

(2)
∫
D
|f(λz)|2 L

2(λ) ≤ G(z) for all z ∈ ∂Ω.

Observe now that ∫

∂Ω\∂DE
Gdν = 1 +

∑

m∈N
ν (Um \ E) ≤ 2.

There exists a constant C > 0 such that

C

∫

Ω\DE
|f |2 dL2n ≤

∫

∂Ω\∂DE

∫

|λ|≤1

|f(λz)|2 dL2(λ)dν(z) ≤
∫

∂Ω\∂DE
Gdν ≤ 2.

Moreover, since E = G−1(∞) therefore E2
Ω(f) ⊂ E and η(E) = η(E2

Ω(f)) which finishes
the proof.
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