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1. Introduction

Working in the framework of convex-valued multifunctions one expects that an appro-
priate notion of an upper semicontinuous hull generates a convex-valued multifunction
being upper semicontinuous. This cannot be ensured by upper semicontinuity in the
sense of Painlevé and Kuratowski, in [18] called outer semicontinuity, as the following
examples show. We denote by Lim supx′→x f(x

′) the Painlevé–Kuratowski upper limit of
a set-valued map f at x and by (Usc f)(x) = Lim supx′→x f(x

′) the corresponding upper
semicontinuous hull, see Section 2 for the precise definitions.

Example 1.1. Let f : R ⇉ R, f(x) := {sgnx}, where sgnx = x / |x| if x 6= 0 and sgn 0 =
0. Then the upper semicontinuous hull of f , namely (Usc f) : R ⇉ R, (Usc f)(x) = f(x)
if x 6= 0 and (Usc f)(0) = {−1, 0, 1}, is not convex-valued.

This could inspire us to redefine the Painlevé–Kuratowski upper semicontinuous hull in
the framework of convex-valued multifunctions as follows:

(Ũsc f)(x) := cl conv Lim sup
x′→x

f(x′).

However, (Ũsc f) is not necessarily upper semicontinuous as the following example shows.
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Example 1.2. Let f : R ⇉ R,

f(x) :=





{
1
x

}
if ∃n ∈ N : x ∈

[
2−2n, 2−2n+1

)
{
− 1

x

}
if ∃n ∈ N : x ∈

[
2−2n+1, 2−2n+2

)

∅ else.

The modified upper semicontinuous hull (Ũsc f) of f is obtained as

(Ũsc f)(x) =





{
1
x

}
if ∃n ∈ N : x ∈

(
2−2n, 2−2n+1

)
{
− 1

x

}
if ∃n ∈ N : x ∈

(
2−2n+1, 2−2n+2

)
[
− 1

x
, 1
x

]
if ∃n ∈ N : x = 2−n

∅ else.

The graph of (Ũsc f) is not closed. Indeed, the members of the sequence ((2−n, 0)) belong

to the graph of (Ũsc f), but the limit (0, 0) does not. Hence (Ũsc f) is not Painlevé–
Kuratowski upper semicontinuous.

Let us illuminate another aspect. An important idea of Convex Analysis is the relationship
between a convex set A ⊂ R

p and its support function σA : Rp → R. In particular,
for closed convex sets A,B ⊂ R

p and α ∈ R+ we have the following relationships (in
particular, we set −∞+∞ = −∞, 0 · (+∞) = 0 · (−∞) = 0, 0 · ∅ = {0}):

(
A ⊂ B ⇔ σA ≤ σB

)
, σA + σB = σA+B, ασA = σαA.

This implies that a set-valued map f : Rn
⇉ R

p is concave (i.e. graph-convex) if and
only if the functions σf( · )(y

∗) : Rn → R have the same property for all y∗ ∈ R
p. But,

what can we say about a corresponding relationship for continuity properties? The usual
Painlevé–Kuratowski upper and lower semicontinuities don’t yield a positive result, as
the following example shows.

Example 1.3. Let f : R ⇉ R, f(x) :=
{

1
x

}
if x 6= 0 and f(0) := {0}. Then f is

Painlevé–Kuratowski upper semicontinuous (in particular at x = 0), but σf( · )(y
∗) is not

upper semicontinuous at x = 0 for all y∗ 6= 0.

Motivated by these examples we look for an alternative semicontinuity concept for multi-
functions having better properties in this framework. In this article we show that Cesari’s
property (Q), which plays an important role in Optimal Control and is well-known in this
field, fits all our requirements. Property (Q) was investigated by Cesari [3, 4], Cesari and
Suryanarayana [5], Goodman [9], Denkowski [6], Suryanarayana [20], Papageorgiou [15]
and others. As a main result we give here a characterization of Cesari’s property (Q) in
terms of scalarizations by the support function. Our investigations are based on some
results on C-convergence (in connection to property (Q) usually called Q-convergence),
which were recently obtained by C. Zălinescu and the author [13, 14]1. For other notions
of convergence of convex sets see e.g. [1, 2, 7, 19] and the references given there.
1After a discussion with J.-P. Penot we realized that the convergence introduced in [13, 14] is related to
Cesari’s property (Q) introduced in [3] and studied in several articles. By Proposition 3.1 below, it is
clear that this convergence coincides with the Q-convergence considered in [9, 6]. For the origin of this
convergence see the remarks in [9, 6].
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This article is organized as follows. In the next section we shortly recall some facts on the
two types of semicontinuity, Painlevé–Kuratowski semicontinuity and Cesari’s property
(Q), and we propose our main tools. In Section 3 we present our main result and draw
some conclusions. Section 4 is devoted to a comparison of Cesari’s property (Q) and the
Painlevé–Kuratowski semicontinuity. We show their coincidence under certain assump-
tions. Finally, in Section 5 we discuss the special case of concave (i.e. graph-convex)
maps.

2. Preliminaries

Throughout the paper let Y be a finite dimensional normed vector space with dimension
p ≥ 1. For the standard concepts of Convex Analysis we mainly use the notation of
Rockafellar’s “Convex Analysis� [17].

We denote by F := F(Y ) the family of closed subsets of Y and by C := C(Y ) the
family of closed convex subsets of Y . It is well-known that (F ,⊂) and (C,⊂) provide
complete lattices, i.e., every nonempty subset of F (resp. of C) has a supremum and
an infimum, denoted by SupA (supA) and InfA (infA). Of course, for nonempty sets
A ⊂ F and B ⊂ C we have SupA = cl

⋃
{A| A ∈ A}, InfA =

⋂
{A| A ∈ A}, supB =

cl conv
⋃

{B| B ∈ B} and infB =
⋂
{B| B ∈ B}. Further, we set Inf ∅ = SupF = Y ,

Sup ∅ = InfF = ∅, inf ∅ = sup C = Y and sup ∅ = inf C = ∅.

We frequently use the following notation of [18] (but omitting the index ∞):

N := {N ⊂ N| N \N finite} and N# := {N ⊂ N| N infinite} .

For a sequence (An) in F the upper and lower F-limits are defined, respectively, by

Lim sup
n→∞

An = Inf
N∈N

Sup
n∈N

An, Lim inf
n→∞

An = Inf
N∈N#

Sup
n∈N

An.

Of course, the upper and lower F-limits coincide with the upper and lower limits in the
sense of Painlevé–Kuratowski (in [18] called outer and inner limits). See for instance [18]
for alternative definitions.

In the following, all concepts related to upper and lower F -limits are indicated by the
prefix F , because F is the underlying lattice. In formulas we don’t use this prefix, instead
a term begins with a capital letter.

A sequence (An) in F is F-convergent to some A ∈ F if A = Lim supn→∞An =

Lim infn→∞An. Then we write A = Limn→∞An or (An)
F

−→ A.

We proceed analogously in the complete lattice C. The upper and lower C-limits of a
sequence (An) in C are defined, respectively, by

lim sup
n→∞

An := inf
N∈N

sup
n∈N

An and lim inf
n→∞

An := inf
N∈N#

sup
n∈N

An.

Upper and lower C-limits and related concepts were used in the field of Optimal Control,
see e.g. [3, 4, 5, 6, 9, 15, 20]. In this area, one speaks about (upper and lower) Q-limits,
Q-convergence and so on, because these concepts are related to Cesari’s property (Q)
(the definition is given in the next section). Also, what in [15] is called Cesari’s limit of
a sequence of subsets An is nothing else but the upper C-limit (in our finite dimensional
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setting), see [15, Proposition 2.1]. In the present article we use the prefix C instead of Q,
because C is the underlying lattice. In formulas we consequently use small letters.

We say a sequence (An) in C is C-convergent to some A ∈ C if A = lim supn→∞An =

lim infn→∞An and we write A = limn→∞An or (An)
C

−→ A.

We next summarize some results related to C-limits. The following initial result is an
immediate consequence of [17, Cor. 16.5.1]. By σA : Y → R, we denote the support
function of a set A ⊂ Y .

Proposition 2.1. Let A ⊂ C. Then σinfA ≤ infA∈A σA and σsupA = supA∈A σA.

As an easy consequence, for any sequence (An) in C one has

σlim supn An ≤ lim sup
n

σAn and σlim infn An ≤ lim inf
n

σAn . (1)

The next two theorems give us sufficient conditions for the coincidence of F - and C-con-
vergence. Our condition here is weaker than the one in [15], but the underlying space is
a Banach space there. Let K ⊂ Y be a nonempty closed convex cone. By CK we denote
the family of all members A of C0 := C \ {∅} satisfying 0+A = K, where 0+A denotes the
recession cone of a convex set A ⊂ Y .

Theorem 2.2 ([14]). Let (An) be a sequence in CK such that supn∈N An ∈ CK. Then,
lim supn→∞An = cl conv Lim supn→∞An.

Theorem 2.3 ([14]). Let (An) be a sequence in C such that for all N̄ ∈ N# there exists

some Ñ ∈ N# with Ñ ⊂ N̄ and some nonempty closed convex cone K ⊂ Y such that An ∈
CK for all n ∈ Ñ and supn∈Ñ An ∈ CK. Then it holds lim infn→∞An = Lim infn→∞An.

The following lemmas provide the main tools in our investigations.

Lemma 2.4 ([14]). Let A,B ⊂ Y be nonempty closed and convex. Then,

A ⊂ B ⇔ ∀y∗ ∈ ri (0+B)◦, σA(y
∗) ≤ σB(y

∗).

Lemma 2.5 ([14]). For any sequence (An) in C with A := lim supn→∞An 6= ∅ it holds

∀y∗ ∈ ri (0+A)◦, lim sup
n→∞

σAn(y
∗) = σA(y

∗).

We next turn to upper and lower F -limits for set-valued maps and collect some well-
known results. Analogous concepts and results for the lattice C are discussed in the next
section. Let (X, d) be a metric space. The upper and lower F-limits of f : X → F at
x̄ ∈ X are defined, respectively, by

Lim sup
x→x̄

f(x) :=
⋃

xn→x̄

Lim sup
n→∞

f(xn) and Lim inf
x→x̄

f(x) :=
⋂

xn→x̄

Lim inf
n→∞

f(xn).

where the index “xn → x̄� stands for the union and intersection over all sequences in X
converging to x̄, respectively. The limit of f : X → F at x̄ exists if the upper and lower
F -limits coincide. Then we write

Lim
x→x̄

f(x) = Lim sup
x→x̄

f(x) = Lim inf
x→x̄

f(x).
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The function f is said to be upper F-semicontinuous (F-usc), lower F-semicontinuous
(F-lsc), F-continuous at x̄ ∈ X if f(x̄) ⊃ Lim supx→x̄ f(x), f(x̄) ⊂ Lim infx→x̄ f(x),
f(x̄) = Limx→x̄ f(x), respectively. If f is F -usc, F -lsc, F -continuous at every x̄ ∈ X we
just say f is F -usc, F -lsc, F -continuous, respectively. The epigraph and the hypograph of
f : X → F are defined, respectively, by

Epi f := {(x,A) ∈ X ×F| A ⊃ f(x)} , Hyp f := {(x,A) ∈ X ×F| A ⊂ f(x)} .

Note that for all x ∈ X we have (x, ∅) ∈ Hyp f and (x, Y ) ∈ Epi f . For a characterization
of F -semicontinuity we need to know what is meant by closedness of the epigraph and
hypograph. A subset A ⊂ X × F is said to be (sequentially) F -closed if for every

sequence ((xn, Fn)) in A with (xn) → x̄ ∈ X and (Fn)
F

−→ F̄ ∈ F it is true that
(x̄, F̄ ) ∈ A. The (sequential) F-closure of a set A ⊂ X × F , denoted by ClA, is the set
of all such limits (x̄, F̄ ) ∈ X × F of sequences ((xn, Fn)) in A. In the following we omit
the term “sequential�, because the whole article is written in this context.

We have the following characterization of F -upper semicontinuity

Hyp f is F -closed ⇔ f is F -usc ⇔ gr f ⊂ X × Y is closed. (2)

The first equivalence is a consequence of the cluster point description of upper F -limits,
see e.g. [18, Proposition 4.19], the second one is easy to show.

Likewise (compare [18, Exercise 5.6 (d)]), lower F -semicontinuity of f is equivalent to the
F -closedness of the epigraph. Note that the description by the graph fails in this case,
i.e., a function f : X → F that is F -lsc has not necessarily a closed graph, see [18, Fig.
5–3 (b)].

Let us collect some basic properties of the upper F-semicontinuous hull of f , defined by
(Usc f) : X → F , (Usc f)(x) := Lim supx′→x f(x

′).

Proposition 2.6. Let f : X → F . Then it holds

(i) gr (Usc f) = cl (gr f),

(ii) Hyp (Usc f) ⊃ Cl (Hyp f),

(iii) (Usc f) is F-usc,

(iv) ∀x ∈ X : (Usc f)(x) ⊃ f(x),

(v) f is F-usc at x̄ ∈ X ⇔ (Usc f)(x̄) = f(x̄),

(vi) gr f convex ⇒ gr (Usc f) convex,

where X is assumed to be a normed space in (vi).

Proof. (i) Let (x̄, ȳ) ∈ gr (Usc f), i.e., there exists a sequence (xn) → x̄ such that
ȳ ∈ Lim supn→∞ f(xn). Recall that y ∈ Lim supn→∞ f(xn) if and only if y is a cluster
point of some sequence (yn) with yn ∈ f(xn) for all n ∈ N, see e.g. [12, page 243]. Hence,
(x̄, ȳ) ∈ gr (Usc f) is equivalent to (x̄, ȳ) ∈ cl (gr f).

(ii) Let (x̄, Ā) ∈ Cl (Hyp f). Then there exist sequences (xn) → x̄ and (An)
F
→ Ā such that

An ⊂ f(xn) for all n ∈ N. Hence, (Usc f)(x̄) = Lim supx→x̄ f(x) ⊃ Lim supn→∞ f(xn) ⊃
Lim supn→∞An = Limn→∞An = Ā, i.e., (x̄, Ā) ∈ Hyp (Usc f).

(iii) By (i), gr (Usc f) is closed. Thus (Usc f) is F -usc, by (2).
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(iv) Choosing the special sequence (xn) with xn = x for all n ∈ N, we obtain (Usc f)(x) =
Lim supx′→x f(x

′) ⊃ Lim supn→∞ f(xn) = Lim supn→∞ f(x) = f(x).

(v) By definition, f is F -usc at x̄ if and only if f(x̄) ⊃ (Usc f)(x̄). By (iv) we obtain
equality.

(vi) Since gr f is convex, cl (gr f) is convex, too. Hence, the convexity of gr (Usc f) follows
from (i).

The next example shows that the opposite inclusion in assertion (ii) of the previous
proposition is not true, in general.

Example 2.7. Let f : R → F(R), f(x) := {x / |x|} if x 6= 0, f(0) := ∅. Then,
(0, {−1, 1}) belongs to Hyp (Usc f) but it does not belong to Cl (Hyp f).

Remark 2.8. As noticed in [18], an analogous definition of the F -lower semicontinuous
hull, namely by (Lsc f)(x) := Lim infx′→x f(x

′), is not constructive in the sense that
(Lsc f) is not necessarily F -lsc. In the framework of C-valued functions we will have
similar problems, see Example 3.9 below.

3. Upper and lower C-Semicontinuity

In this section we deal with upper and lower limits for functions with values in C. The
upper and lower C-limits (compare [3, 4, 6, 9, 20]) of a function f : X → C at x̄ ∈ X are
defined, respectively, by

lim sup
x→x̄

f(x) :=
⋃

xn→x̄

lim sup
n→∞

f(xn) and lim inf
x→x̄

f(x) :=
⋂

xn→x̄

lim inf
n→∞

f(xn).

The C-limit of f at x̄ exists if the upper and lower limits coincide. Then we write

lim
x→x̄

f(x) = lim sup
x→x̄

f(x) = lim inf
x→x̄

f(x).

In case of upper F -limits it is well-known that

Lim sup
x→x̄

f(x) = Sup
xn→x̄

Lim sup
n→∞

f(xn) =
⋂

δ>0

cl
⋃

x∈Bδ(x̄)

f(x), (3)

where Bδ(x̄) := {x ∈ X| d(x, x̄) < δ}; see e.g. [10, Proposition 2.3.5 (ii)] (with a slightly
different definition of Limsup) or modify the proof of Proposition 3.1 below. An analogous
result is valid for upper C-limits.

Proposition 3.1. Let f : X → C and x̄ ∈ X. Then it holds

lim sup
x→x̄

f(x) = sup
xn→x̄

lim sup
n→∞

f(xn) =
⋂

δ>0

cl conv
⋃

x∈Bδ(x̄)

f(x).

Proof. Since A :=
⋂

δ>0 cl conv
⋃

x∈Bδ(x̄)
f(x) is closed and convex, it remains to prove

A = lim supx→x̄ f(x) =: B.
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(i) A ⊂ B. Letting y ∈ A, for all n ∈ N we have y ∈ conv
⋃

x∈B1/n(x̄)
f(x) + B̄1/n, where

B̄1/n :=
{
y ∈ Y | ‖y‖ < 1

n

}
. Hence

∀n ∈ N,∃bn ∈ B̄1/n,∃kn ∈ N,∀i ∈ {1, 2, . . . , kn} ,∃λ
i
n ≥ 0,∃xi

n ∈ B1/n(x̄),

y − bn ∈
kn∑

j=1

λj
nf(x

j
n),

kn∑

j=1

λj
n = 1.

Consider the sequence (xn) → x̄ defined as

(xn)n∈N := (x1
1, x

2
1, . . . , x

k1
1 , x1

2, x
2
2, . . . , x

k2
2 , . . . , x1

m, x
2
m . . . , xkm

m , . . .).

We conclude that
∀n ∈ N,∀m ≥ n : y − bm ∈ conv

⋃

k≥n

f(xk),

hence for all n ∈ N we have y ∈ cl conv
⋃

k≥n f(xk). That means we have found a sequence
(xn) → x̄ such that y ∈ cl conv

⋃
n∈N f(xn) for all N ∈ N , i.e., y ∈ B.

(ii) B ⊂ A. For arbitrary y ∈ B there is a sequence (xn) → x̄ in X such that y ∈
cl conv

⋃
n∈N f(xn) for allN ∈ N . For all δ > 0 there existsNδ ∈ N such that

⋃
n∈Nδ

xn ⊂
Bδ(x̄). Thus for all δ > 0 we have y ∈ cl conv

⋃
n∈Nδ

f(xn) ⊂ cl conv
⋃

x∈Bδ(x̄)
f(x), i.e.,

y ∈ A.

As an easy consequence of the definition we have the following relationship between up-
per and lower F - and C-limits: lim supx→x̄ f(x) ⊃ Lim supx→x̄ f(x), lim infx→x̄ f(x) ⊃
Lim infx→x̄ f(x).

A function f :X→C is said to be upper C-semicontinuous (C-usc), lower C-semicontinuous
(C-lsc), C-continuous at x̄ ∈ X if f(x̄) ⊃ lim supx→x̄ f(x), f(x̄) ⊂ lim infx→x̄ f(x), f(x̄) =
limx→x̄ f(x), respectively. If f is C-lsc, C-usc, C-continuous at every x̄ ∈ X we just say
f is C-lsc, C-usc, C-continuous, respectively. It is easy to see that C-usc implies F -usc
and F -lsc implies C-lsc. By Proposition 3.1 it is clear that upper C-semicontinuity is the
same as Cesari’s property (Q) (A multifunction f : X ⇉ Y satisfies property (Q) at x̄ if⋂

δ>0 cl conv
⋃

x∈Bδ(x̄)
f(x) = f(x̄)).

Remark 3.2. Of course, C-semicontinuity can also be defined for arbitrary set-valued
maps rather than C-valued functions, and the following results can be easily rewritten
in this case. We prefer to suppose C-valued functions, because this makes the notation
easier and underlines the role of the complete lattice C.

With the aid of Lemmas 2.4 and 2.5 we obtain our main result, a characterization of
upper C-semicontinuity or in other words a characterization of Cesari’s property (Q).

Theorem 3.3. Let f : X → C and x̄ ∈ dom f . Then the following statements are
equivalent:

(i) f is C-usc at x̄,

(ii) For all y∗ ∈ ri
(
0+f(x̄)

)◦
the function σf( · )(y

∗) : X → R is usc at x̄.

Proof. Let be given an arbitrary sequence (xn) → x̄ in X.
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(i) ⇒ (ii). Let the sequence (x̃n) → x̄ be defined by x̃2n := xn and x̃2n+1 := x̄. From
(i) and by the special choice of the sequence, we deduce that f(x̄) = lim supn→∞ f(x̃n).
Lemma 2.5 implies

∀y∗ ∈ ri
(
0+f(x̄)

)◦
, σf(x̄)(y

∗) = lim sup
n→∞

σf(x̃n)(y
∗) ≥ lim sup

n→∞

σf(xn)(y
∗).

(ii) ⇒ (i). We have

∀y∗ ∈ ri
(
0+f(x̄)

)◦
, σf(x̄)(y

∗) ≥ lim sup
n→∞

σf(xn)(y
∗)

(1)

≥ σlim supn f(xn)(y
∗).

Lemma 2.4 yields f(x̄) ⊃ lim supn→∞ f(xn).

Remark 3.4. By standard arguments one can show: If σf(·)(y
∗) : X → R is upper

semicontinuous at x̄ for all y∗ ∈ Y ∗, then f is upper C-semicontinuous at x̄. A result of
this type, even for Y being an arbitrary Banach space, can be found in [15, Proposition
2.1]. The proof of the above result, however, is based on additional arguments, see the
proof of Lemma 2.4 and Lemma 2.5, which can be found in [14]. Therefore we restrict
ourselves to a finite dimensional space Y .

The following example shows the importance of the the restriction y∗ ∈ ri
(
0+f(x̄)

)◦
in

statement (ii) of the previous theorem.

Example 3.5. Let f : R → C(R2), f(x) :=
{
λ · (x, 1)T | λ ≥ 0

}
. Then, f is C-usc at 0,

but for ȳ∗ := (1, 0) 6∈ ri
(
0+f(0)

)◦
we have σf(x)(ȳ

∗) = ∞ if x > 0 and σf(x)(ȳ
∗) = 0 else,

i.e., x 7−→ σf(x)(ȳ
∗) is not usc at 0.

The next assertion about nested upper C-limits is essential for an expedient definition of
the upper C-semicontinuous hull. An analogous assertion for the lower C-limit is not true,
see Example 3.9 below.

Proposition 3.6. Let f : X → C and x̄ ∈ X. Then it holds

lim sup
x→x̄

f(x) = lim sup
x→x̄

lim sup
w→x

f(w).

Proof. Clearly we have f(x) ⊂ lim supw→x f(w) for all x ∈ X. This implies the inclusion
“⊂�. It remains to show that for an arbitrarily given sequence (xn) → x̄, one has A :=
lim supn→∞ lim supw→xn

f(w) ⊂ lim supn→∞ f(xn) =: B. For all y∗ ∈ ri
(
0+B

)◦
it holds

σA(y
∗)

(1)

≤ lim sup
n→∞

lim sup
w→xn

σf(w)(y
∗) = lim sup

n→∞

σf(xn)(y
∗)

Lem. 2.5
= σB(y

∗).

Lemma 2.4 yields that A ⊂ B.

The upper C-semicontinuous hull of a function f : X → C is defined by

(usc f) : X → C, (usc f)(x) := lim sup
x′→x

f(x′).
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The hypograph of a function f : X → C is the set hyp f := {(x,A) ∈ X × C| A ⊂ f(x)}.
A subset A ⊂ X × C is said to be (sequentially) closed if for every sequence ((xn, An))

in A with (xn) → x̄ ∈ X and (An)
C

−→ Ā ∈ C one has (x̄, Ā) ∈ A. The (sequential)
C-closure of a set A ⊂ X ×C, denoted by clA, is the set of all such limits (x̄, Ā) ∈ X ×C
of sequences ((xn, An)) in A. For the notion of C-closure compare the remarks in Section
6.

Let us collect some properties of the upper C-semicontinuous hull.

Proposition 3.7. For f : X → C the following statements hold true:

(i) gr (usc f) ⊃ cl (gr f),

(ii) hyp (usc f) ⊃ cl (hyp f),

(iii) (usc f) is C-usc,

(iv) ∀x ∈ X, (usc f)(x) ⊃ f(x),

(v) f is C-usc at x̄ ∈ X ⇔ (usc f)(x̄) = f(x̄),

(vi) gr (usc f) is C-closed,

(vii) hyp (usc f) is C-closed.

Proof. (i) Let (x̄, ȳ) ∈ cl (gr f). Then there exists a sequence ((xn, yn)) → (x̄, ȳ) in gr f .
For all n ∈ N, we have {yn} ⊂ f(xn). Hence

{ȳ} = lim
n→∞

{yn} = lim sup
n→∞

{yn} ⊂ lim sup
n→∞

f(xn) ⊂ lim sup
x→x̄

f(x) = (usc f)(x̄),

i.e., (x̄, ȳ) ∈ gr (usc f).

The proof of (ii) is similar.

Statement (iii) follows from Proposition 3.6.

The proofs of (iv) and (v) are analogous to those of Proposition 2.6 (iv) and (v).

(vi) Let ((xn, yn)) → (x̄, ȳ) ∈ X × Y be sequence in gr (usc f). Proceeding as in (i), but
replacing f by (usc f), we obtain {ȳ} ⊂ (usc (usc f))(x̄). From (iii) and (v) we conclude
that (usc (usc f))(x̄) = (usc f)(x̄). Hence (x̄, ȳ) ∈ gr (usc f).

The proof of (vii) is similar to that of (iv).

The next example shows that neither C-closedness of hyp f nor closedness of gr f implies
that f is C-usc.

Example 3.8. Let f : R → C(R) be defined by f(x) := {1/x} if x 6= 0 and f(0) := ∅.
Then, gr f ⊂ R× R is closed and hyp f ⊂ R× C(R) is C-closed, but f is not C-usc.

In Remark 2.8 (due to [18]) we noticed that the lowerF -semicontinuous hull that is defined
analogously to the upper F -semicontinuous hull is not necessarily lower F -semicontinuous.
There are analogous problems with the lower C-semicontinuous hull. This is due to the
fact that there is no assertion analogous to Proposition 3.6 for lower C-limits, as the
following example shows.

Example 3.9. For functions f : X → C, in general, we have

lim inf
x→x̄

f(x) 6= lim inf
x→x̄

lim inf
w→x

f(w).
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Indeed, consider the function f : R2 → C(R) defined by

f(x) :=

{
{‖x‖} if x1 ≥ 0

{−‖x‖} if x1 < 0.

Then it holds

lim inf
w→x

f(w) :=





{‖x‖} if x1 > 0

{−‖x‖} if x1 < 0

∅ if x1 = 0 and x2 6= 0

{0} if x1 = 0 and x2 = 0.

Hence we obtain {0} = lim infx→0 f(x) 6= lim infx→0 lim infw→x f(w) = ∅.

4. A generalization of local boundedness

The concept of local boundedness of a set-valued map plays an important role in Vari-
ational Analysis, see [18]. It turns out that a generalization of this concept provides a
sufficient condition for the coincidence of F -limits and C-limits.

A function f : X → C is said to be recessively constant on U ⊂ dom f if x 7−→ 0+f(x)
is constant on U . A function f : X → C is called recessively rigid at x̄ ∈ dom f if there
exists a neighborhood V of x̄ such that f is recessively constant on V ∩ dom f and

0+ sup
x∈V

f(x) = 0+f(x̄). (4)

If f is recessively constant (rigid) on its whole domain, we just say f is recessively constant
(rigid). In the case where ∅ 6= f(x̄) ⊂ Y is bounded, f is recessively rigid at x̄ if and
only if f is locally bounded at x̄. In this case, the condition that f is recessively constant
around x̄ is superfluous, because it follows from (4).

Theorem 4.1. Let f : X → C be recessively rigid at x̄ ∈ dom f . Then,

lim sup
x→x̄

f(x) = cl conv Lim sup
x→x̄

f(x).

Proof. Clearly we have lim supx→x̄ f(x) ⊃ cl conv Lim supx→x̄ f(x). To show the opposite
inclusion let y ∈ lim supx→x̄ f(x) be given. Then there exists a sequence (xn) → x̄ such
that y ∈ lim supn→∞ f(xn). Without loss of generality we can assume that (xn) is a
sequence in dom f . The function f being recessively rigid at x̄, we find some n0 ∈ N such
that f(xn) ∈ CK for all n ≥ n0 and supn≥n0

f(xn) ∈ CK , where K := 0+f(x̄). Theorem
2.2 yields y ∈ cl conv Lim supn→∞ f(xn) ⊂ cl conv Lim supx→x̄ f(x).

The following examples show that the assertion of the preceding theorem may fail if one
of the two conditions on f is not satisfied.

Example 4.2. Let f : R → C(R) be defined by f(x) :=
{

1
x

}
if x 6= 0 and f(0) := {0},

i.e., f is recessively constant on R, but not recessively rigid at 0, because (4) is violated.
Then, R = lim supx→0 f(x) 6= cl conv Lim supx→0 f(x) = {0}.
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Example 4.3. Let f : R → C(R2) be defined by f(x) =
{
y ∈ R

2| y1 =
1
x
, y2 = 1

}
if

x 6= 0 and f(0) := {y ∈ R
2| y2 = 0}, i.e., (4) is satisfied, but f is not recessively con-

stant around 0. It is easy to check that {y ∈ R
2| 0 ≤ y2 ≤ 1} = lim supx→0 f(x) 6=

cl conv Lim supx→0 f(x) = {y ∈ R
2| y2 = 0}.

The assumption that f : X → C being recessively rigid at x̄ ∈ dom f also implies that
the lower F -limit and lower C-limit coincide (see Corollary 4.6 below). As shown in the
following theorem, a weaker assumption is already sufficient.

Theorem 4.4. Let f : X → C and x̄ ∈ dom f be such that for all sequences (xn) → x̄
in X there exists a subsequence (xkn) and a nonempty closed convex cone K ⊂ Y with
f(xkn) ∈ CK for all n ∈ N and supn∈N f(xkn) ∈ CK. Then it holds lim infx→x̄ f(x) =
Lim infx→x̄ f(x).

Proof. Of course, lim infx→x̄ f(x) ⊃ Lim infx→x̄ f(x). In order to show the opposite
inclusion let y ∈ Y \ Lim infx→x̄ f(x) be given (the case Lim infx→x̄ f(x) = Y is obvious).
Hence there exists a sequence (xn) → x̄ such that y 6∈ Lim infn→∞ f(xn). Our assumption
ensures that Theorem 2.3 is applicable. Hence y 6∈ lim infn→∞ f(xn), and so y ∈ Y \
lim infx→x̄ f(x).

In the next example the conclusion of the previous theorem fails, because the assumption
is not satisfied.

Example 4.5. Let f : R → C(R2) be defined by f(x) := conv
{(

− 1
x
,−1

)
,
(
1
x
, 1
)}

if x >
0 and f(x) := R

2 if x ≤ 0, i.e., the condition in the previous theorem is not satisfied. Then
we have {y ∈ R

2| − 1 ≤ y2 ≤ 1} = lim infx→0 f(x) 6= Lim infx→0 f(x) = {y ∈ R
2| y2 = 0}.

Corollary 4.6. Let f : X → C be recessively rigid at x̄ ∈ dom f . Then,

lim inf
x→x̄

f(x) = Lim inf
x→x̄

f(x).

Proof. We can assume that x̄ ∈ int dom f , otherwise both lower limits equal the empty
set. Since f is recessively rigid at x̄, for every sequence (xn) → x̄ there exists some
n0 ∈ N such that f(xn) ∈ CK for all n ≥ n0 and supn≥n0

f(xn) ∈ CK , where K := 0+f(x̄).
Theorem 4.4 yields the desired assertion.

Corollary 4.7. Suppose f : X → C is recessively rigid. Then it holds

hyp f is C-closed ⇔ f is C-usc ⇔ gr f ⊂ X × Y is closed.

Proof. By Theorem 4.1 and Corollary 4.6, f is F -usc if and only if f is C-usc and
F -convergence coincides with C-convergence. Hence the result follows from (2).

5. Graph-convex set-valued maps

Let (X, ‖·‖) be a normed space. It is well-known that the graph of a function f : X → C
is convex if and only if

∀λ ∈ [0, 1], ∀x1, x2 ∈ X, f(λ · x1 + (1− λ) · x2) ⊃ λ f(x1) + (1− λ) f(x2).
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Since the relation ⊃ has the meaning of “greater or equal� throughout the paper, a
function f : X → C satisfying the latter condition is said to be concave, even though the
term “convex� is mostly used in the literature. The reason is that the usage of the term
“concave� entails more analogies between the following results and the corresponding
results for real-valued functions. For instance, it is easy to see that a function f : X → C
is concave if and only if hyp f ⊂ X × C is convex.

We show that F -semicontinuity and C-semicontinuity coincide in the concave case (at
least for X = R

d, see Corollary 5.9 and the remark in Section 6).

Theorem 5.1. Let f : X → C be concave. Then, for all x̄ ∈ X it holds

lim sup
x→x̄

f(x) = Lim sup
x→x̄

f(x).

Proof. By Proposition 3.1 we have lim supx→x̄ f(x) =
⋂

δ>0 cl conv
⋃

x∈Bδ(x̄)
f(x). Since f

is concave, the sets
⋃

x∈Bδ(x̄)
f(x) are convex. The statement now follows from (3).

Corollary 5.2. Let f : X → C be concave. Then the following statements hold true:

(i) (usc f) = (Usc f),

(ii) (usc f) is concave.

Proof. (i) follows from Theorem 5.1 and (ii) follows from (i) and Proposition 2.6 (vi).

Corollary 5.3. For any concave function f : X → C the following assertion holds true:

hyp f is C-closed ⇔ f is C-usc ⇔ gr f ⊂ X × Y is closed.

Proof. The second equivalence follows from (2) and the fact that f is F -usc if and only
if f is C-usc. If hyp f is C-closed, then gr f is obviously closed. On the other hand, if f
is C-usc, Proposition 3.7 (v), (vii) yields that hyp f is closed.

In the next statement, riU denotes the relative algebraic interior of a subset U of X. If
U is convex, it holds (see [21, (1.1)])

x̄ ∈ riU ⇐⇒ ∀x ∈ U, ∃λ > 0 : (1 + λ)x̄− λx ∈ U.

If X = R
d this concept coincides with the relative interior as defined in [17].

Proposition 5.4. Any concave function f : X → C is recessively constant on ri (dom f).

Proof. Of course, dom f is convex. Letting x̄ ∈ ri (dom f) and x ∈ ri (dom f), there
exists λ > 0 such that x := (1 + λ)x̄ − λx ∈ dom f . The concavity of f yields f(x̄) ⊃
1

1+λ
f(x) + λ

1+λ
f(x). Since x ∈ dom f , it follows 0+f(x̄) ⊃ 0+f(x). Analogously, we get

the opposite inclusion.

Proposition 5.5. Let f : X → C concave. Then, (usc f) : X → C is recessively constant.

Proof. Since g := (usc f) is F -usc and concave, its graph is closed and convex. For any
closed convex set A of a topological vector space it holds

∀a ∈ A : 0+A =
⋂

t>0

t(A− a), (5)
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see e.g. [21, (1.3)]. Consequently, for arbitrary x ∈ dom g we have

k ∈ 0+g(x) ⇐⇒ ∀y ∈ g(x),∀t > 0 : k ∈ t(g(x)− y)

⇐⇒ ∀y ∈ g(x),∀t > 0 : (0, k) ∈ t(gr g − (x, y))

⇐⇒ (0, k) ∈ 0+gr g

This proves that x 7−→ 0+g(x) is constant on dom g.

Theorem 5.6. Let f : X → C. Then the following statements are equivalent:

(i) f is concave and C-usc,

(ii) f is recessively constant with recession cone K and for all y∗ ∈ riK◦ the function
σf( · )(y

∗) : X → R is concave and usc.

Proof. Follows from Theorem 3.3 and Proposition 5.5.

For finite dimensional spaces we obtain the following continuity properties for concave
functions. Since in the present case F -semicontinuity and C-semicontinuity coincide (see
also Corollary 5.9 below), the following statements are just reformulations of well-known
results, see e.g. [18].

Corollary 5.7. Let f : Rd → C be concave. Then the following assertions hold true:

(i) f is C-usc on ri (dom f),

(ii) f is C-continuous on int (dom f).

Proof. (i) Let x̄ ∈ ri (dom f) be given and let K := 0+f(x̄). By Theorem 3.3, it remains
to show that for all y∗ ∈ riK◦, σf( · )(y

∗) is usc at x̄. By Proposition 5.4, f is recessively
constant on ri (dom f). Hence for all y∗ ∈ riK◦ it is true that x̄ ∈ ri

(
domσf( · )(y

∗)
)
.

Thus (see e.g. [17, Theorem 7.4]), σf( · )(y
∗) is usc at x̄.

(ii) By [18, Theorem 5.9 (b)], f is F -lsc at x̄ ∈ int (dom f). Hence f is C-lsc at x̄. Now
the assertion follows from (i).

Next we show that a concave function is recessively rigid on the relative interior of its
domain, in case of being C-usc even on the whole domain. These assertions can be
regarded as generalization of well-known statements concerning local boundedness of both
real-valued functions and set-valued maps.

Theorem 5.8. Any concave function f : Rd → C is recessively rigid on ri (dom f). The
function f being additionally C-usc is recessively rigid (on its whole domain).

Proof. Set g := (usc f). Let x̄ ∈ dom g, V :=
{
x ∈ R

d| ‖x− x̄‖ ≤ 1
}
and K := 0+g(x̄).

By Proposition 5.5, g is recessively constant.

We next show that 0+ supx∈V g(x) = K. Indeed, let k ∈ 0+ supx∈V g(x) be given. Since
V is convex and compact and gr g is convex and closed, the set A :=

⋃
x∈V g(x) is convex

and closed; thus k ∈ 0+A. By [17, Theorem 8.2], k is the limit of a sequence (λnyn) where
(λn) ↓ 0 and yn ∈ A. Clearly, for all n ∈ N there exists xn ∈ V such that yn ∈ g(xn).
Since V is bounded, we have ((λnxn, λnyn)) → (0, k). Applying [17, Theorem 8.2] to the
set gr g ⊂ R

d ×Y , we obtain (0, k) ∈ 0+gr g. As in the proof of Proposition 5.5 we obtain
k ∈ 0+g(x̄) = K. Thus we have 0+ supx∈V g(x) ⊂ K. Since K = 0+g(x̄) we have equality
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in the latter inclusion. We have shown that g is recessively rigid. If f is C-usc, we have
f = g, i.e., f is recessively rigid.

The first assertion now follows from Corollary 5.7 (i).

Corollary 5.9. Let f : Rd → C be concave. Then for all x̄ ∈ X it holds

lim inf
x→x̄

f(x) = Lim inf
x→x̄

f(x).

Proof. If x̄ ∈ int (dom f), this follows from Theorem 5.8 and Corollary 4.6. Otherwise,
we have lim infx→x̄ f(x) = Lim infx→x̄ f(x) = ∅.

6. Some remarks and open questions

In [14] is is shown that C0 = C \ {∅} equipped with (sequential) C-convergence is an
L∗-space (see e.g. [11, 12]). As a consequence (see Kisynski [11]), C-convergence in C0 is
induced by a T1-topology τ . This means, each sequentially open subset of C0 is τ -open (A
subset A of C0 is sequentially open iff each sequence in C0, C-converging to a point in A is
eventually in A). Such spaces are called sequential spaces in [8]. Franklin [8] has shown
that there are sequential spaces that are neither first countable nor Fréchet-spaces (A
topological space X is called a Fréchet-space iff the closure of any subset A of X is the set
of limits of sequences in A). It is an open question whether (C0, τ) is a Fréchet-space or
even first countable. We thus do not know whether the (sequential) C-closure as defined
in Section 3 coincides with the τ -closure.

Penot and Thera [16] defined the following very general semicontinuity notion for functions
from a topological space (X , τX ) into a preordered topological space (Y , τY ,≤). A function
f : X → Y is said to be upper semicontinuous at x̄ ∈ X if for any τY-neighborhood V of
f(x̄), there exists a τX -neighborhood U of x̄ with

f(U) ⊂ {Y ∈ Y| ∃V ∈ V : V ≥ Y } .

In our setting, namely for functions from a metric space (X, d) into the ordered topological
space (C, τ,⊂), a function f : X → C is upper semicontinuous at x̄ ∈ dom f in the sense
of Penot and Thera (shortly PT-usc) if

∀V ∈ N (f(x̄)), ∃ δ > 0,∀x ∈ Bδ(x̄),∃V ∈ V : f(x) ⊂ V, (6)

where N (f(x̄)) is the family of all τ -neighborhoods of some f(x̄). Let us show that f
being upper C-usc implies that f is PT-usc.

Proposition 6.1. Let f : X → C be C-usc at x̄ ∈ dom f . Then f is PT-usc at x̄.

Proof. We have f(x̄) =
⋂

δ>0 cl conv
⋃

x∈Bδ(x̄)
f(x). The sequence (An) defined by An :=

cl conv
⋃

x∈B1/n(x̄)
f(x) 6= ∅ is monotone decreasing with respect to set inclusion. Thus

(An) C-converges to f(x̄), see e.g. [14, Proposition 2.3]. Consequently, for all V ∈ N (f(x̄))
there exists n ∈ N such that An ∈ V. Hence for all V ∈ N (f(x̄)) there exists δ := 1/n > 0
such that for all x ∈ Bδ(x̄) there is V ∈ V with f(x) ⊂ V .
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We didn’t succeed in showing that f being PT-usc at x̄ ∈ dom f implies that f is C-usc
at x̄. In case we would know that (C0, τ) is first countable (and hence a Fréchet-space),
this could be proved as follows:

Let f be PT-usc at x̄ ∈ dom f , i.e., (6) is satisfied. For an arbitrary sequence (xn) → x̄
and a countable neighborhood base (Vn)n∈N of f(x̄) we obtain

∀n ∈ N, ∃ kn ≥ n, ∃Vn ∈ Vn : f(xkn) ⊂ Vn.

Since (xkn) → x̄ and (Vn)
C
→ f(x̄), it follows (x̄, f(x̄)) ∈ cl (hyp f) ⊂ hyp (usc f), i.e., f is

C-usc at x̄.

Another open questions is whether Corollary 5.9 remains valid if the origin space of f is
not supposed to be finite dimensional.
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[14] A. Löhne, C. Zălinescu: On convergence of closed convex sets, J. Math. Anal. Appl. 319(2)
(2006) 617–634.

[15] N. S. Papageorgiou: On Cesari’s Property (Q), J. Optimization Theory Appl. 53(2) (1987)
259–268.

[16] J.-P. Penot, M. Thera: Semi-continuous mappings in general topology, Arch. Math. 38
(1982) 158–166.

[17] R. T. Rockafellar: Convex Analysis, Princeton University Press, Princeton (1970).

[18] R. T. Rockafellar, R. J.-B. Wets: Variational Analysis, Springer, Berlin (1998).
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