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We provide a numerical procedure to compute uniform convex approximations {fr} of the convex envelope

f̂ of a rational fraction f defined on a compact basic semi-algebraic set D. At each point x of the convex
hull K = co(D), computing fr(x) reduces to solving a semidefinite program. We next characterize K

in terms of the projection of a semi-infinite LMI, and provide outer convex approximations {Kr} ↓ K.
Testing whether x /∈ K reduces to solving finitely many semidefinite programs.

1. Introduction

Computing the convex envelope f̂ of a given function f : Rn → R is a difficult problem.
To the best of our knowledge, there is still no efficient algorithm that approximates f̂ by
convex functions (except for the simpler univariate case). For instance, for a function f on
a bounded domain Ω, Brighi and Chipot [4] propose triangulation methods and provide

piecewise degree-1 polynomial approximations fh ≥ f̂ , and derive estimates of fh − f̂
(where h measures the size of the mesh). Another possibility is to view the problem as
a particular instance of the general moment problem, and use geometrical approaches as
described in e.g. Anastassiou [1] or Kemperman [8]; but, as acknowledged in [1, 8], this
approach is only practical for say, the univariate or bivariate cases.

Concerning convex sets, an important issue raised in Ben-Tal and Nemirovski [3], Parrilo
and Sturmfels [14], is to characterize the convex sets that have a LMI (Linear Matrix In-
equalities) or semidefinite representation, and called SDr sets in Ben-Tal and Nemirovski
[3]. For instance, the epigraph of a univariate convex polynomial is a SDr set. So far, and
despite some progress in particular cases (see e.g. the recent proof of the Lax conjecture by
Lewis et al [13]), little is known. However, Helton and Vinnikov [6] have proved recently
that rigid convexity is a necessary condition for a set to be SDr.

∗The second author acknowledges financial support from the french ANR agency under grant NT05-3-
41612.
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In this paper we consider both convex envelopes and convex hulls for certain classes of
functions and sets, namely rational fractions and compact basic semi-algebraic sets. In
both cases, one provides relatively simple numerical uniform approximations via semidef-
inite programming.

Contribution. Our contribution is twofold: Concerning convex envelopes, we consider
the class of rational fractions f on a compact basic semi-algebraic set D ⊂ R

n (and
+∞ outside D). We view the problem as a particular instance of the general moment
problem, and we provide an algorithm for computing convex and uniform approximations
of its convex envelope f̂ . More precisely, with K := co(D) being the convex hull of D:

(a) We provide a sequence of convex functions {fr} that converges to f̂ uniformly on

any compact subset of K where f̂ is continuous, as r increases1.

(b) At each point x ∈ R
n, computing fr(x) reduces to solving a semidefinite program

Qrx.

(c) For every x ∈ intK, the SDP dual Q∗
rx is solvable and any optimal solution provides

an element of the subgradient ∂fr(x) at the point x ∈ intK.

(d) We give a geometric condition on D that ensures that f̂ is continuous on K. This
extends the one introduced in Laraki [11] for the case where D = K.

Concerning sets, we consider the class of compact basic semi-algebraic subsets D ⊂ R
n,

and:

(e) We characterize its convex hull K := co(D) as the projection of a semi-infinite
SDr set S∞, i.e., a set defined by finitely many LMIs involving matrices of infinite
dimension, and countably many variables. Importantly, the LMI representation of
S∞ is simple and given directly in terms of the data defining the original set D.

(f) We provide outer convex approximations of K, namely a monotone nonincreasing
sequence of convex sets {Kr}, with Kr ↓ K. Each set Kr is the projection of a SDr
set Sr, obtained from S∞ by “finite truncation�. Then, checking whether x /∈ K

reduces to solving finitely many SDPs based on SDr sets Sr, until one is unfeasible,
which eventually happens for some r. Importantly again, the LMI representation
of Sr is simple and given directly in terms of the data defining the original set D.
Other outer approximations are of course possible, like e.g. convex polytopes {Ωr}
containing K, but obtaining such polytopes with Ωr ↓ K is far from trivial.

The proof combines known technics (some of them developed by the authors). In partic-
ular, it uses Choquet’s representation of probability measures on the convex compact set
K := co(D), together with its reformulation as an infinite-dimensional linear program Px,
a particular instance of the generalized problem of moments. In case where f = p

q
with

p and q two polynomials and q positive on D, one uses standard arguments to show that
the dual is solvable and there is no duality gap between Px and its dual P∗

x. Assuming
further that D is basic semi-algebraic, one follows the methodology developed in Lasserre
[12] to derive semidefinite programming (SDP) relaxations of Px whose optimal values

form a monotone sequence converging to the optimal value of Px. When f̂ is continuous
on K, by Dini’s theorem the convergence is uniform with respect to x ∈ K. Conditions
for continuity may be obtained using technics from Laraki [11].

1Determining r such that fr approximates f̂ up to some prescribed error ε is an open problem.
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2. Notation definitions and preliminary results

In the sequel, R[y](:= R[y1, . . . , yn]) denotes the ring of real-valued polynomials in the
variable y = (y1, . . . , yn). Let yi ∈ R[y] be the natural projection on the i-variable that is
for every x ∈ R

n, yi(x) = xi. For a real-valued symmetric matrix M , the notation M � 0
stands for M is positive semidefinite.

Let D ⊂ R
n be compact, and denote by:

- K, the convex hull of D. Hence, by a theorem of Caratheodory, K is convex and
compact; see Rockafellar [16].

- C(D), the Banach space of real-valued continuous functions on D, equipped with the
sup-norm ‖f‖ := supx∈D |f(x)|, f ∈ C(D).

- M(D) (≃ C(D)∗), its topological dual, i.e., the Banach space of finite signed Borel
measures on K, equipped with the norm of total variation.

- M+(D) ⊂ M(D), the positive cone, i.e., the set of finite Borel measures on D.

- ∆(D) ⊂ M+(D), the set of Borel probability measures on D.

- f̃ , the natural extension to R
n of f ∈ C(D), that is

x 7→ f̃(x) :=

{
f(x) on D

+∞ on R
n \D.

(1)

Note that f̃ is lower-semicontinuous (l.s.c.), admits a minimum and its effective domain
D is non-empty and compact (in the sequel we denote it by dom f̃).

- f̂ (with f in C(D)), the convex envelope of f̃ , that is, the greatest convex function

majorized by f̃ .

M(D) and C(D) form a dual pair of vector spaces, with duality bracket

〈σ, f〉 :=

∫

D

f dσ, σ ∈ M(D), f ∈ C(D).

Hence, let τ ∗ denote the associated weak ⋆ topology; this is the coarsest topology on
M(D) for which σ → 〈σ, f〉 is continuous for every function f in C(D).

2.1. Preliminaries

In this section some well known results are stated and proved (in our semi-algebraic
context). With f ∈ C(D), and x ∈ K = co(D) fixed, arbitrary, consider the infinite-
dimensional linear program (LP):

LPx :





inf
σ∈M+(D)

〈σ, f〉

s.t. 〈σ, yi〉 = xi, i = 1, . . . , n

〈σ, 1〉 = 1.

(2)

Its optimal value is denoted by inf LPx, and minLPx if the infimum is attained. Notice
that LPx is a particular instance of the general moment problem, as described in e.g.
Kemperman [8, §2.6]. In particular, the set of x ∈ R

n such that LPx has a feasible
solution, is called the moment space.



638 R. Laraki, J. B. Lasserre / Approximation of convex envelopes and convex hulls

Lemma 2.1. Let K = co(D), f ∈ C(D) and f̃ be as in (1). Then the convex envelope f̂

of f̃ is given by:

f̂(x) =

{
minLPx, x ∈ K,

+∞, x ∈ R
n \K,

(3)

and so, K = dom f̂ .

Proof. For x ∈ K, let ∆x(D) be the set of probability measures σ onD, that are centered
at x (that is 〈σ, yi〉 = xi for i = 1, . . . , n). Let ∆∗

x(D) ⊂ ∆x(D) be the subset of those
probability measures that have a finite support. It is well known that

f̂(x) = inf
σ∈∆∗

x(D)
〈σ, f〉, ∀x ∈ K;

see Choquet [5] or Laraki [11]. Next, since ∆∗
x(D) is dense in ∆x(D) with respect to the

weak ⋆ topology, and ∆(D) is metrizable and compact with respect to the same topology
(see Choquet [5]), deduce that for every x ∈ K

f̂(x) = min
σ∈∆x(D)

〈σ, f〉

= minLPx.

If x /∈ K, there is no probability measure on D, with finite support, and centered in x;
therefore f̂(x) = +∞.

Next, let p, q ∈ R[y], with q > 0 on D, and let f ∈ C(D) be defined as

y 7→ f(y) = p(y)/q(y), y ∈ D. (4)

For every x ∈ K, consider the LP,

Px :





inf
σ∈M+(D)

〈σ, p〉

s.t. 〈σ, yiq〉 = xi, i = 1, . . . , n

〈σ, q〉 = 1.

(5)

A dual of Px, is the LP

P∗
x : sup

γ∈R,λ∈Rn

{γ + 〈λ, x〉 : p(y)− q(y)〈λ, y〉 ≥ γq(y), ∀y ∈ D}, (6)

where 〈λ, y〉 :=
∑n

i=1 λiyi stands for the standard inner product in R
n. The optimal value

of P∗
x is denoted by supP∗

x (and maxP∗
x if the supremum is attained). Equivalently, as

q > 0 everywhere on D, and f = p/q on D,

P∗
x : sup

γ∈R,λ∈Rm

{γ + 〈λ, x〉 : f(y)− 〈λ, y〉 ≥ γ, ∀y ∈ D}. (7)

In view of the definition (4) of f , notice that

f(y)− 〈λ, y〉 ≥ γ, ∀y ∈ D ⇔ f̃(y)− 〈λ, y〉 ≥ γ, ∀y ∈ R
n.

Hence P∗
x in (7) is just the dual LP∗

x of LPx, for every x ∈ K, and so supP∗
x = supLP∗

x,
for every x ∈ K. In fact we have the following well known result (that holds of course in
a more general framework).
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Theorem 2.2. Let p, q ∈ R[x] with q > 0 on D, and let f be as in (4). Let x ∈ K =
co(D) be fixed, arbitrary, and let Px and P∗

x be as in (5) and (7), respectively. Then Px

and LPx are solvable and there is no duality gap, i.e.,

supP∗
x = supLP∗

x = minLPx = minPx = f̂(x), x ∈ K. (8)

Proof. This is a consequence of Legendre-Fenchel duality. Observe that Px is equivalent
to LPx. Indeed, with σ an arbitrary feasible solution of Px, the measure dµ := qdσ is
feasible in LPx, with same value. Similarly, with µ an arbitrary feasible solution of LPx,
the measure dσ := q−1dµ, well defined on D because q > 0 on D, is feasible in Px, and
with same value. Finally, it is well known that f̂ is the Legendre-Fenchel biconjugate2 of
f̃ , and so f̂(x) = supP∗

x, for all x ∈ K. Indeed, let f ∗ : Rn → R be the Legendre-Fenchel

conjugate of f̃ , i.e.,
λ 7→ f ∗(λ) := sup

y∈Rn

: {〈λ, y〉 − f̃(y)}.

In view of the definition of f̃ ,

f ∗(λ) = sup
y∈D

: {〈λ, y〉 − f(y)},

and therefore,

supP∗
x = sup

λ

{〈λ, x〉+ inf
y∈D

{f(y)− 〈λ, y〉}}

= sup
λ

{〈λ, x〉 − sup
y∈D

{〈λ, y〉 − f(y)}}

= sup
λ

{〈λ, x〉 − f ∗(λ)} = (f ∗)∗(x) = f̂(x).

We deduce the following.

Corollary 2.3. Let x ∈ K be fixed, arbitrary, and let P∗
x be as in (7).

(a) P∗
x is solvable if and only if ∂f̂(x) 6= ∅3, in which case any optimal solution (λ∗, γ∗)

satisfies:
λ∗ ∈ ∂f̂(x), and γ∗ = −f ∗(λ∗). (9)

(b) If f is a rational fraction on D as in (4), then ∂f̂(x) 6= ∅ for every x in K so that,
in this case P∗

x is solvable and (a) holds for every x in K.

Proof. The first part is standard. Suppose that for some x ∈ K, P∗
x is solvable (that is,

the supremum is achieved, say at λ∗(x) and γ∗(x)). Then, for every y ∈ K,

f̂(x) = 〈λ∗(x), x〉+ γ∗(x)

f̂(y) = sup
λ,γ

{〈λ, y〉+ γ : f(z)− 〈λ, z〉 ≥ γ, ∀z ∈ D}, y ∈ K

≥ 〈λ∗(x), y〉+ γ∗(x),
2See Section 2 in Benoist and Hiriart-Urruty [2]
3∂f̂(x) 6= ∅ at least for every x in the relative interior of K (see Rockafellar [16], Theorem 23.4)
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and in view of (3), the latter inequality also holds for every y in R
n; therefore,

f̂(y)− f̂(x) ≥ 〈λ∗(x), y − x〉, ∀y ∈ R
n.

Hence, λ∗(x) ∈ ∂f̂(x). Finally, from the standard Legendre-Fenchel equality, we deduce

that γ∗(x) = −f ∗(λ∗(x)) where f ∗ is the Legendre-Fenchel conjugate of f̃ . Conversely, if

λ∗(x) ∈ ∂f̂(x) then, by the Legendre-Fenchel equality we have,

f̂(x) = 〈λ∗(x), x〉 − f ∗(λ∗(x)).

Therefore, we have:

supP∗
x = f̂(x) = 〈λ∗(x), x〉 − f ∗(λ∗(x)). (10)

Next, from

f ∗(λ∗(x)) = sup
y∈D

〈λ∗(x), y〉 − f(y),

we have

−f ∗(λ∗(x)) ≤ f(y)− 〈λ∗(x), y〉, ∀y ∈ D,

which shows that the pair (λ∗(x),−f ∗(λ∗(x))) is a feasible solution of P∗
x, and in view of

(10), an optimal solution.

Now, if f is a rational fraction on D, then it is differentiable and Lipschitz on D so that,
from Theorem 3.6 in Benoist and Hiriart-Urruty [2], ∂f̂(x) is uniformly bounded as x

varies on the relative interior of K. Since f̂ is l.s.c. (see below), we deduce that ∂f̂(x) 6= ∅
for every x in K. Actually, let x ∈ K and let xn be a sequence in the relative interior of
K that converges to x and let λn ∈ ∂f̂(xn) such that λn → λ (which is possible (passing

to a subsequence if needed) since ∂f̂(xn) is uniformly bounded). Hence, for every y in
Rn,

f̂(y) ≥ f̂(xn) + 〈λn, y − xn〉 ,

so that,

f̂(y) ≥ lim inf
n→∞

f̂(xn) + 〈λ, y − x〉

≥ f̂(x) + 〈λ, y − x〉

consequently, λ ∈ ∂f̂(x), the desired result.

In other words, any optimal solution of P∗
x provides an element of the subgradient of

f̂ at the point x. Corollary 2.3 should be viewed as a refinement for convex envelopes
of rational fractions, of Theorem 2.20 in Kemperman [8, p. 28] for the general moment
problem, where strong duality results are obtained for the interior of the moment space
(here intK) only.
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2.2. On the preservation of continuity

As we will construct a sequence {fr} that approximates f̂ uniformly on compact sets

where f̂ is continuous, it is natural to investigate conditions on the data which ensure
that f̂ is continuous everywhere on its domain.

In 1969, Kruskal [9] provided an example showing that this is not always true. Kruskal
constructs a compact, convex basic semi-algebraic set K for which the set of extreme
points is not closed. Then he exhibits a polynomial f (of degree 2) on K whose convex

envelope f̂ is discontinuous on K. Therefore, that K is a basic semi-algebraic set does
not guarantee that f̂ is continuous on K whenever f is. This example also shows that
restricting attention to polynomials does not help in getting continuity of f̂ . This issue was
recently addressed in Laraki [11] with a complete answer to the Kruskal’s main observation
in the case where D is convex. It is shown for example that when D is a polytope or is an
euclidean ball (two basic semi-algebraic sets) then continuity is preserved. By adapting
a condition in Laraki [11] we can obtain a necessary and sufficient condition for the
preservation of continuity when D is not convex.

Definition 2.4. The compact set D of Rn is Splitting-Continuous if and only if x 7→
∆x(D) is continuous when ∆(D) is equipped with the weak ⋆ topology.

Lemma 2.5. Let f be a continuous function on a compact D of Rn. Then, f̂ is l.s.c. on
K and is continuous on any compact K that is strictly included in the relative interior of
K. Moreover, D is Splitting-Continuous if and only if f̂ is continuous on K, for every f
which is the restriction on D of some continuous function on K.

Proof. As f̂ is convex, then by Theorem 10.1 in Rockafellar [16], it is continuous on

the relative interior of K. In addition, f̂ is l.s.c. on K because f is continuous and the
correspondence x 7→ ∆x(D) is upper-semicontinuous (u.s.c.); see e.g. Laraki and Sudderth
[10, Theor. 6].

Again, from [10, Theor. 6], x 7→ ∆x(D) is continuous if and only if f̂ is continuous on K,
whenever f is the restriction on D of some continuous function on K.

3. Uniform convex approximations of f̂ by SDP-relaxations

In this section, we assume that f is defined as in (4) for some polynomials p, q ∈ R[x],
with q > 0 on D, where D ⊂ R

n is a compact basic semi-algebraic set defined by

D := {x ∈ R
n : gj(x) ≥ 0, j = 1, . . . ,m}, (11)

for some polynomials {gj} ⊂ R[x]. Depending on its parity, let 2rj − 1 or 2rj be the total
degree of gj, for all j = 1, . . . ,m. Similarly, let 2rp, 2rq or 2rp − 1, 2rq − 1 be the total
degree of p and q respectively.

We next provide a sequence {fr}r of functions such that for every r:

- fr is convex with dom fr = Kr ⊃ K;

- fr ≤ f̂ and for every x ∈ K, fr(x) ↑ f̂(x) as r → ∞. In fact, we even have

lim
r→∞

‖f̂ − fr‖K → 0,
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that is, fr converges to f̂ uniformly on any compact K ⊂ K where f̂ is continuous.
Consequently, if D is Splitting-Continuous and if q > 0 on K, then one obtains uniform
convergence on K. Also, if K is strictly included in the relative interior of K then we
also obtain uniform convergence on K.

To do this we first introduce some additional notation.

3.1. Notation and definitions

Let y = {yα}α∈Nn be a sequence indexed in the canonical basis {zα} of R[z], and let
Ly : R[z] → R be the linear functional defined by

h (:=
∑

α∈Nn

hαz
α) 7→ Ly(h) :=

∑

α∈Nn

hαyα.

Let Pk ⊂ R[z] be the space of polynomials of total degree less than k, and let r0 :=
max[rp, rq + 1, r1, . . . , rm]. Then for r ≥ r0, consider the optimization problem:

Qrx :





infy Ly(p)

s.t. Ly(ziq) = xi, i = 1, . . . , n,

Ly(h
2) ≥ 0, ∀h ∈ Pr,

Ly(h
2gj) ≥ 0, ∀h ∈ Pr−rj , : j = 1, . . . ,m,

Ly(q) = 1.

(12)

Problem Qrx is a convex optimization problem, in fact, a so-called semidefinite program-
ming problem, called a SDP-relaxation of Px. For more details on semidefinite program-
ming and its applications, the reader is referred to Vandenberghe and Boyd [18].

Indeed, given y = {yα}, let Mr(y) be the moment matrix associated with y, that is, the
rows and columns of Mr(y) are indexed in the canonical basis of Pr, and the entry (α, β)
is defined by Mr(y)(α, β) = Ly(z

α+β) = yα+β, for all α, β ∈ N
n, with |α|, |β| ≤ r. Then

Ly(h
2) ≥ 0, ∀h ∈ Pr ⇔ Mr(y) � 0.

Similarly, writing

z 7→ gj(z) :=
∑

γ∈Nn

(gj)γz
γ, j = 1, . . . ,m,

the localizing matrix Mr(gjy) associated with y and gj ∈ R[z], is the matrix also indexed
in the canonical basis of Pr, and whose entry (α, β) is defined by

Mr(gjy)(α, β) = Ly(gj(z)z
α+β) =

∑

γ∈Nn

yα+β+γ(gj)γ,

for all α, β ∈ N, with |α|, |β| ≤ r. Then, for every j = 1, . . . ,m,

Ly(gjh
2) ≥ 0, ∀h ∈ Pr ⇔ Mr(gjy) � 0.

Observe that if y has a representing measure µy, i.e. if

yα =

∫
xα dµy, ∀α ∈ N

n,
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then, with h ∈ Pr, and denoting by h = {hα} ∈ R
s(r) its vector of coefficients in the

canonical basis,

〈h,Mr(gjy)h〉 =

∫
h2gj dµy.

Therefore, if µy has its support contained in the level set {x ∈ R
n : gj(x) ≥ 0}, one has

Mr(gjy) � 0.

One also denotes by M∞(y) and M∞(gjy) the (obvious) respective “infinite� versions of
Mr(y) and Mr(gjy), i.e., moment and localizing matrices with countably many rows and
columns indexed in the canonical basis {zα}, and involving all the moment variables y
(as opposed to finitely many in Mr(y) and Mr(gjy)).

For more details on moment and localizing matrices, the reader is referred to e.g. Lasserre
[12].

3.2. SDP-relaxations

Hence, using the above notation, the optimization problem Qrx defined in (12) is just the
SDP

Qrx :





infy Ly(p)

s.t. Ly(ziq) = xi, i = 1, . . . , n

Mr(y) � 0,

Mr−rj(gjy) � 0, j = 1, . . . ,m,

Ly(q) = 1,

(13)

with optimal value denoted infQrx, and minQrx if the infimum is attained.

Writing Mr(y) =
∑

α Bαyα, and Mr−rj(gjy) =
∑

α C
j
αyα, for appropriate symmetric ma-

trices {Bα, C
j
α}, the dual of Qrx is the SDP

Q∗
rx :





sup
λ,γ,X,Zj

γ + 〈λ, x〉

s.t. 〈Bα, X〉+
m∑

j=1

〈Cj
α, Zj〉+ γqα +

n∑

i=1

λi(ziq)α = pα, |α| ≤ 2r

X,Zj � 0.

(14)

In fact, letting g0 ≡ 1, and using the spectral decompositions X =
∑

l u0lu
t
0l and Zj =∑

l ujlu
t
jl for some vectors {ujl}, j = 0, . . . ,m, one may write Q∗

rx as:

Q∗
rx :





sup
γ,λ,{uj}

γ + 〈λ, x〉

s.t. p− γ q − 〈λ, z〉 q =
m∑

j=0

uj gj

uj s.o.s., deguj gj ≤ 2r, j = 0, . . . ,m

(15)

(where s.o.s. stands for sum of squares); see for instance the derivation in Lasserre [12].
We next make the following assumption on the polynomials {gj} ⊂ R[z] that define the
set D in (11).
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Assumption 3.1. There is a polynomial u ∈ R[z] which can written

u = u0 +
m∑

j=1

uj gj, (16)

for some family of s.o.s. polynomials {uj}
m
j=0 ⊂ R[z], and whose level set {z ∈ R

n : u(z) ≥
0} is compact.

Assumption 3.1 is not very restrictive. For instance, it is satisfied if:

- all the gj’s are linear (and so, D is a convex polytope; see Putinar [15]), or if

- the level set {z ∈ R
n : gj(z) ≥ 0} is compact, for some j ∈ {1, . . . ,m}.

Moreover, if one knows some M ∈ R such that the compact set D is contained in the
ball {z ∈ R

n : ‖z‖ ≤ M}, then it suffices to add the redundant quadratic constraint
M2 − ‖z‖2 ≥ 0 in the definition (11) of D, and Assumption 3.1 holds true. In some
problems, computing such a constant may be costly.

Under Assumption 3.1, every polynomial v ∈ R[x], strictly positive on D, can be written
as

v = v0 +
m∑

j=1

vj gj,

for some family of s.o.s. polynomials {vj}
m
j=0 ⊂ R[x]. This is Putinar’s Positivstellensatz,

a refinement of Schmüdgen’s Positivstellensatz (see Putinar [15] and Jacobi and Prestel
[7]). Then we have the following result:

Theorem 3.2. Let D be as in (11), and let Assumption 3.1 hold. Let f be as in (4) with

p, q ∈ R[z], and with q > 0 on D. Let f̂ be as in (3), and with x ∈ K = co(D) fixed,
consider the SDP-relaxations {Qrx} defined in (12)

(a) The function fr : R
n → R ∪ {+∞} defined by

x 7→ fr(x) := infQrx, x ∈ R
n, (17)

is convex, and as r → ∞, fr(x) ↑ f̂(x) pointwise, for all x ∈ R
n.

(b) If K has a nonempty interior intK, then

supQ∗
rx = maxQ∗

rx = infQrx = fr(x), x ∈ intK, (18)

and for every optimal solution (λ∗
r, γ

∗
r ) of Q

∗
rx,

fr(y)− fr(x) ≥ 〈λ∗
r, y − x〉, ∀ y ∈ R

n,

that is, λ∗
r ∈ ∂fr(x).

Proof. (a) By standard weak duality, supQ∗
rx ≤ infQrx ≤ f̂(x) for all r ∈ N, and all

x ∈ R
n. Next, let x ∈ K be fixed, arbitrary. From Theorem 2.2 and Corollary 2.3, P∗

x is

solvable, and supP∗
x = maxP∗

x = f̂(x) for all x ∈ K. Therefore, from the definition of
P∗

x in (6), there is some (γ∗, λ∗) ∈ R× R
n such that

p(y)− q(y)〈λ∗, y〉 − γ∗q(y) ≥ 0, y ∈ D,
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and γ∗ − 〈λ∗, x〉 = f̂(x).

Hence, with ǫ > 0 fixed, arbitrary, γ∗ − ǫ− 〈λ∗, x〉 = f̂(x)− ǫ, and

p(y)− q(y)〈λ∗, y〉 − (γ∗ − ǫ)q(y) ≥ ǫq(y) > 0, y ∈ D.

Therefore, under Assumption 3.1, the polynomial p− q〈λ∗, y〉− (γ∗− ǫ)q, which is strictly
positive on D, can be written

p(y)− q(y)〈λ∗, y〉 − (γ∗ − ǫ)q(y) =
m∑

j=0

ujgj,

for some s.o.s. polynomials {uj}
m
j=0 ⊂ R[x]. But then, (γ∗−ǫ, λ∗, {uj}) is a feasible solution

of Q∗
rx as soon as r ≥ rǫ := maxj=0,1,...,m deg (ujgj), and with value γ∗ − ǫ − 〈λ∗, x〉 =

f̂(x)− ǫ. Hence, for every ǫ > 0,

f̂(x)− ǫ ≤ supQ∗
rx ≤ infQrx ≤ f̂(x), r ≥ rǫ.

Hence we obtain the convergence fr(x) ↑ f̂(x) for all x ∈ K.

Next, let x /∈ K so that f̂(x) = +∞. From the proof of Theorem 2.2, we have seen that

supP∗
x = f̂(x) for all x ∈ R

n. Therefore, with M > 0 fixed, arbitrarily large, one may
find λ ∈ R

n, γ ∈ R such that

M ≤ 〈λ, x〉+ γ and f(y) + 〈λ, y〉 ≥ γ, ∀y ∈ D.

Hence
f(y) + 〈λ, y〉 − γ + ǫ > 0, ∀y ∈ D.

Therefore, as q > 0 on D, the polynomial g := p+ 〈λ, y〉q− (γ − ǫ)q is positive on D. By
Putinar Positivstellensatz [15], it may be written

g = u0 +
m∑

j=1

uj gj

for some family of s.o.s. polynomials {uj}
m
j=0 ⊂ R[x]. But then, with 2rM ≥ max[degu0,

degujgj], the 3-uplet (λ, γ − ǫ, {uj}) is a feasible solution of Q∗
rx, whenever r ≥ rM , and

with value M − ǫ. And so, as M was arbitrarily large, supP∗
rx → +∞ = f̂(x), as r → ∞.

Hence, we also obtain fr(x) ↑ f̂(x) for x 6∈ K.

Let us prove that fr is convex. It follows from its definition fr(x) = infQrx for all x ∈ R
n,

and the definition (13) of the SDP Qrx. Observe that for all r sufficiently large, say
r ≥ r′0, infQrx > −∞ for all x ∈ R

n, because supQ∗
rx ≥ −1, for all x ∈ R

n. Indeed,
with γ = −1, λ = 0, the polynomial p + q = p − qγ − q〈λ, y〉 is positive on D, and
therefore, by Putinar Positivstellensatz [15], p+q = u0+

∑
j ujgj, for some family of s.o.s.

polynomials {uj}
m
0 . Therefore, (−1, 0, {uj}) is feasible for Q∗

rx with value −1, whenever
2r′0 ≥ max[degu0, degujgj]. Next, let x := αu+ (1−α)v, with u, v ∈ R

n, and 0 ≤ α ≤ 1.
As we want to prove

infQr(αu+(1−α)v) ≤ α infQru + (1− α) infQrv, 0 ≤ α ≤ 1,
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we may restrict to u, v ∈ R
n such that infQru, infQrv < +∞. So, let yu (resp. yv)

be feasible for Qru (resp. Qrv), and with respective values infQru + ǫ, infQrv + ǫ. As
the matrices Mr(y),Mr−rj(gjy) are all linear in y, and y 7→ Ly(•) is linear in y as well,
y := αyu+(1−α)yv is feasible for Qrx, with value α infQru+(1−α) infQrv+ǫ. Therefore,

infQrx = infQr(αu+(1−α)v) ≤ α infQru + (1− α) infQrv + ǫ, ∀ǫ > 0,

and letting ǫ → 0 yields the result.

(b) Let K be with a nonempty interior intK, and let x ∈ intK. Let µ be the probability
measure uniformly distributed on the ball Bx := {y ∈ K : ‖y − x‖ ≤ δ} ⊂ K.

Hence,
∫
zidµ = xi for all i = 1, . . . , n. Next, define the measure ν to be dν = q−1dµ

so that
∫
qdν = 1, and

∫
zidµ =

∫
ziqdν = xi for all i = 1, . . . , n, Take for y = {yα},

the vector of moments of the measure ν. As ν has a density, and is supported on K,
it follows that Mr(y) ≻ 0 and Mr(qjy) ≻ 0, j = 1, . . . ,m, for all r. Therefore, y is a
strictly feasible solution of Qrx, i.e., Slater’s condition holds, which in turn implies the
absence of a duality gap between Qrx and its dual Q∗

rx (supQ∗
rx = infQrx). In addition,

as infQrx > −∞, we get supQ∗
rx = maxQ∗

rx = infQrx, which is (18).

So, as Q∗
rx is solvable, let (γ

∗
r , λ

∗
r, {u

∗
j}) be an optimal solution, that is, fr(x) = γ∗

r −〈λ∗
r, x〉

and

p(z)− γ∗
r q(z)− q(z)〈λ∗

r, y〉 =
m∑

j=0

u∗
j(z)gj(z), ∀ z ∈ R

n.

Therefore, one has

fr(x) = γ∗
r + 〈λ∗

r, x〉

fr(y) = sup
γ,λ,u

{γ + 〈λ, y〉 : p(z)− γq(z)− q(z)〈λ, z〉 =
m∑

j=0

uj(z)gj(z), : ∀z ∈ R
n}

≥ γ∗
r + 〈λ∗

r, y〉, ∀y ∈ R
n,

from which we get

fr(y)− fr(x) ≥ 〈λ∗
r, y − x〉, ∀y ∈ R

n,

that is, λ∗
r ∈ ∂fr(x), the desired result.

As a consequence, we also get:

Corollary 3.3. Let D be as in (11), and let Assumption 3.1 hold. Let f and f̂ be as in
(4) and (3) respectively, and let fr : K → R, be as in Theorem 3.2.

Then fr is l.s.c. Moreover, for every compact K ⊂ K on which f̂ is continuous,

lim
r→∞

sup
x∈K

|f̂(x)− fr(x)| = 0, (19)

that is, the monotone nondecreasing sequence {fr} converges to f̂ , uniformly on every

compact on which f̂ is continuous. If in addition, D is Splitting-continuous and if q > 0
on K, then the convergence is uniform on K.
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Proof. Lower semicontinuity of fr may be obtained using Laraki and Sudderth [10], and
is due to the facts that:

- the objective function of Qrx does not depend on x, and

- the feasible set of Qrx as a multifunction of x, is u.s.c. in the sense of Kuratowski.

By Theorem 3.2, we already have that fr ↑ f̂ on K.

(1) The convergence fr ↑ f̂ onK, (2) that fr is l.s.c., (3) that the limit f̂ is continuous, and
finally (4) that K is compact, imply by Dini’s theorem that the convergence is uniform
on K.

Remark 3.4. If Assumption 3.1 does not hold, then in the SDP-relaxation Qrx in (12),
one replaces the m LMI constraints Ly(gjh

2) ≥ 0 for all h ∈ Pr−rj , with the 2m LMI
constraints

Ly(gJh
2) ≥ 0, ∀h ∈ Pr−rJ , ∀J ⊆ {1, . . . ,m},

where gJ :=
∏

j∈J gj, and rJ = deg gJ , for all J ⊆ {1, . . . ,m} (and g∅ ≡ 1). Indeed,
Theorem 3.2 and Corollary 3.3 remain valid with fr(x) := infQrx, for all x ∈ R

n (with
the newly defined Qrx). In the proof, one now invokes Schmüdgen’s Positivstellensatz
[17] (instead of Putinar’s Positivstellensatz [15]) which states that every polynomial v,
strictly positive on D, can be written as

v =
∑

J⊂{1,...,m}

vJ gJ , [(compare with (16))]

for some family of s.o.s. polynomials {vJ} ⊂ R[x]; see Schmüdgen [17].

Example 3.5. Consider the bivariate rational function f : [−1, 1]2 → R:

(x, y) 7→ f(x, y) :=
(x2 − 1/4)(y2 − 1/4)

1 + x2 + y2
, (x, y) ∈ [−1, 1]2,

displayed in Figure 3.5. The approximation fr(x) was computed using the software Glop-
tiPoly34 at every point x of a 30 × 30 grid of [−1, 1]2. In Figure 3.5 we have displayed
(f3 − f2) whose maximum value is 0.0023 and which is zero at most points, except in a
small region around the four corners of the [−1, 1]2 box. The difference f4 − f3 is also
displayed in one such region and one may see a significant improvement, as the maximum
value is now about 10−5 and many more zeros in that region. Finally, the maximum value
of f5 − f4 on the corner [−0.8,−1]× [0.8, 1] is about 3.10−8. Therefore, f4 is already very

close to the convex envelope f̂ . In other words, a very good approximation is already
obtained at the third relaxation Q4 (and even Q3 or Q2 for most points).

Example 3.6. Next consider the bivariate rational function f : [−1, 1]2 → R:

(x, y) 7→ f(x, y) :=
xy

1 + x2 + y2
, (x, y) ∈ [−1, 1]2,

on [−1, 1]2 displayed in Figure 3.6, with f3 as well. As for Example 3.5, in Figure 3.6

4For solving the SDP-relaxation Qrx in (13), we have used the new version of the Software GloptiPoly3,
dedicated to solving the generalized problem of moments; see www.laas.fr/∼henrion/software/gloptipoly.
The authors wishes to thank D. Henrion for helpful discussions.
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Figure 3.1: Example 3.5, f and f3 on [−1, 1]2
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Figure 3.4: Example 3.5, f3 − f2 and (f − 3− f2)
+ on [−1, 1]2

we have displayed (f3 − f2) which is of the order 10−9. That explains why again for a
few values of x ∈ [−1, 1]2 one may have f3(x) ≤ f2(x) as we are at the limit of machine
precision. It also means that again f2 provides a very good approximation of the convex
envelope f , that is, a very good approximation is already obtained at the first relaxation
(here Q2)!

3.3. The univariate case

In the univariate case, simplifications occur. Let D ⊂ R be the interval [a, b], that is, D
has the representation

D := {x ∈ R : g(x) ≥ 0}, with x 7→ g(x) := (b− x)(x− a), x ∈ R. (20)

Theorem 3.7. Let D be as in (20), p, q ∈ R[x], with q > 0 on D, and let f, f̂ be as in (4)
and (3) respectively. Then, with 2r ≥ max[deg p, 1+deg q], let Qrx be the SDP-relaxation
defined in (12). Then:

f̂(x) = infQrx, x ∈ K. (21)

Proof. Recall that when D is convex and compact, then for every x ∈ D, f̂(x) = supP∗
x,

with P∗
x as defined in (6). Next, in the univariate case, a polynomial h ∈ R[x] of degree

2r or 2r − 1, is nonnegative on K if and only if h = h0 + h1g, for some s.o.s. polynomials
h0, h1 ∈ R[x], and with degh0, h1g ≤ 2r. This is in contrast with the multivariate case,
where the degree in Putinar’s representation (16) is not known in advance. Therefore, let
2r ≥ max[deg p, 1+deg q]. The polynomial p−γq−〈λ, y〉q (of degree ≤ 2r) is nonnegative
on D if and only if

p− γq − 〈λ, y〉q = u0 + u1g,

for some s.o.s. polynomials u0, u1 ∈ R[x], with degu0, u1g ≤ 2r. Therefore, as q > 0 on
K, and recalling the definition of P∗

x in (6),

f(y)− 〈λ, y〉 ≥ γ, ∀ y ∈ K ⇔

p(y)− q(y) 〈λ, y〉 ≥ γ q(y), ∀ y ∈ K ⇔

p(y)− q(y) 〈λ, y〉 − γ q(y) ≥ 0, ∀ y ∈ K ⇔

p− q 〈λ, y〉 − γ q = u0 + u1 g,
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for some s.o.s. polynomials u0, u1 ∈ R[x], with degu0, u1g ≤ 2r. Therefore, Q∗
rx is identical

to P∗
x, from which the result follows.

So, in the univariate case, the SDP-relaxation Qrx is exact, that is, the value at x ∈ K of
the convex envelope f̂ , is easily obtained by solving a single SDP.

4. The convex hull of a compact basic semi-algebraic set

An important question stated in Ben-Tal and Nemirovski [3, §4.2 and §4.10.2], Parrilo
and Sturmfels [14], and not settled yet, is to characterize the convex subsets of Rn that
are semidefinite representable (written SDr), or equivalently, have an LMI representation;
that is, subsets Ω ⊂ R

n of the form

Ω = {x ∈ R
n : M0 +

n∑

i=1

Mixi � 0},

for some family {Mi}
n
i=0 of real symmetric matrices. In other words, a SDr set is the

feasible set of a system of LMI’s (Linear Matrix Inequalities), and powerful techniques are
now available to solve SDPs. For instance, the epigraph of a univariate convex polynomial
is SDr; see [3, p. 292]. Recently, Helton and Vinnikov [6] have proved that rigid convexity
(as defined in [6]) is a necessary condition for a convex set to be SDr.

In this section, we are concerned with a (large) class of convex sets, namely the convex
hull of an arbitrary compact basic semi-algebraic set, i.e., the convex hull K = co(D) of a
compact set D defined by finitely many polynomial inequalities, as in (11). We will show
that:

- K is the projection of a semi-infinite SDr set S∞, that is, S∞ is defined by finitely
many LMIs involving matrices with countably many rows and columns, and involving
countably many variables. Importantly, the LMI representation of the set S∞ is given
directly in terms of the data, i.e., in terms of the polynomials gj’s that define the set
D.

- K can be approximated by a monotone nonincreasing sequence of convex sets {Kr}
(with Kr ⊃ K for all r), that are projections of SDr sets Sr. Each SDr set Sr is a “finite
truncation� of S∞, and therefore, also has a specific LMI representation, directly in
terms of the data defining the set D. In other words, {Kr} is a converging sequence
of outer convex approximations of K, i.e. Kr ↓ K as r → ∞. Detecting whether a
point x ∈ Rn belongs to Kr reduces to solving a single SDP that involves the SDr set
Sr.

With D ⊂ R
n as in (11), define the 2m polynomials

x 7→ gJ(x) :=
∏

j∈J

gj, ∀ J ⊆ {1, . . . ,m}, (22)

of total degree 2rJ or 2rJ − 1, and with the convention that g∅ ≡ 1.

Let Mr(gJy) ∈ R
s(r)×s(r) be the localizing matrix associated with the polynomial gJ , and

a sequence y, for all J ⊆ {1, . . . ,m}, and all r = 0, 1, . . .; see also §3.1 for the definition
of the infinite matrix M∞(gJy).
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Define S∞ ⊂ R
∞ by:

S∞ := { y ∈ R
∞ : y0 = 1; M∞(gJy) � 0, ∀J ⊆ {1, . . . ,m}}, (23)

The set S∞ is a semi-infinite SDr set as it is defined by 2m LMIs whose matrices have
countably many rows and columns, and with countably many variables.

If Assumption 3.1 holds, one may instead use the simpler semi-infinite SDr set

S ′
∞ := { y ∈ R

∞ : y0 = 1; M∞(y) � 0, M∞(gjy) � 0, ∀j = 1, . . . ,m}.

Similarly, define K∞ ⊂ R
n by:

K∞ := {x ∈ R
n : ∃ y ∈ S∞ : s.t. Ly(zi) = xi, i = 1, . . . , n}. (24)

Lemma 4.1. Let D ⊂ R
n be as in (11) and compact, and let K∞ be as in (24). Then

K∞ = K = co(D).

Proof. If x ∈ co(D) = K, then xi =
∫
zi dµ, ∀i = 1, . . . , n, for some probability measure

µ with support contained in D. Let y be the vector of moments of µ, well defined because
µ has compact support. Then we necessarily have y0 = 1, and Mr(gJy) � 0 for all r and
all J ⊆ {1, . . . ,m}; see §3.1. Equivalently, M∞(gJy) � 0, for all J ⊆ {1, . . . ,m}, and
so y ∈ S∞. From,

∫
zi dµ,= Ly(zi), : ∀i = 1, . . . , n, we conclude that x ∈ K∞, and so

K ⊆ K∞.

Conversely, let x ∈ K∞. Then, there exists y ∈ S∞ such that y0 = 1 and Ly(zi) = xi,
for all i = 1, . . . , n. As M∞(gJy) � 0, for all J ⊆ {1, . . . ,m}, then by Schmüdgen
Positivstellensatz [17], y is the vector of moments of some probability measure µy, with
support contained in D. Next,

Ly(zi) = xi, ∀i = 1, . . . , n ⇔ xi =

∫
zi dµy, ∀i = 1, . . . , n,

which proves that x ∈ co(D) = K. Therefore, K∞ ⊆ K, and the result follows.

So, Lemma 4.1 states that the convex hull K of any compact basic semi-algebraic set
D, is the projection on the variables yα with |α| = 1, of the semi-infinite SDr set S∞

(recall that for every α ∈ N
n, |α| =

∑n

i=1 αi). However, the set S∞ is not described by
finite-dimensional LMIs, because we have countably many variables yα, and matrices with
infinitely many rows and columns.

We next provide outer approximations {Kr} of K, which are projections of SDr sets {Sr},
with Sr ⊃ S∞, for all r, and Kr ↓ K, as r → ∞.

With r ≥ r0, let Sr ⊂ R
s(2r) be defined as:

Sr := {y ∈ R
s(2r) : y0 = 1; Mr−rJ (gJy) � 0, ∀J ⊆ {1, . . . ,m}}. (25)

Notice that Sr is a SDr set obtained from S∞ by “finite� truncation. Indeed, Sr contains
finitely many variables yα, namely those with |α| ≤ 2r. And Mr(gJy) is a finite truncation
of the infinite matrix M∞(gjy); see §3.1.
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As for S∞, under Assumption 3.1, Sr in (25) may be replaced with the (simpler) SDr set

S ′
r := {y ∈ R

s(2r) : y0 = 1; Mr(y) � 0,Mr−rj(gjy) � 0, j = 1, . . . ,m}.

Next, let

Kr := {x ∈ R
n : ∃ y ∈ Sr : s.t. Ly(zi) = xi, i = 1, . . . , n}. (26)

Equivalently,

Kr :=




x ∈ R

n : ∃ y ∈ R
s(2r) :





Ly(zi) = xi, i = 1, . . . , n

Mr−rJ (gJy) � 0, J ⊆ {1, . . . ,m}

y0 = 1.





. (27)

In view of the meaning of Ly(zi), Kr is the projection on R
n of the SDr set Sr ⊂ R

s(2r)

defined in (25) (on the n variables yα, with |α| = 1); Obviously, {Kr} forms a nested
sequence of sets, and we have

Kr0 ⊃ Kr0+1 . . . ⊃ Kr . . . ⊃ K. (28)

Let f be the identity on D (f = 1 on D). Then its convex envelope f̂ is given by

f̂(x) =

{
1, x ∈ K,

+∞ x ∈ Rn \K.

Note that f̂ is clearly a continuous function on K.

On D, write f = 1 = p/q with p = q ≡ 1, so that with r ≥ r0 := maxJ rJ , the SDP-
relaxation Qrx defined in (12) and in Remark 3.4, now reads

Qrx : inf
y
{ y0 : y ∈ Sr; Ly(zi) = xi, i = 1, . . . , n}, x ∈ R

n, (29)

and so, for all r ≥ r0,

infQrx =

{
1, if x ∈ Kr

+∞, otherwise.
(30)

Next, let fr : Rn → R ∪ {+∞} be the function x 7→ fr(x) := infQrx, with obvious
domain Kr.

Corollary 4.2. Let D ⊂ R
n be compact and defined as in (11), and let K := co(D).

(a) If x /∈ K, then fr(x) = +∞ whenever r ≥ rx, for some integer rx.

(b) With Kr being as in (27), Kr ↓ K as r → ∞.

Proof. (a) By Theorem 3.2(b) and Remark 3.4, fr is convex and fr(x) ↑ f̂(x), for all
x ∈ R

n. If x ∈ K then fr(x) = 1 for all r. If x /∈ K then fr(x) = 1 if x ∈ Kr, and +∞

outside Kr. But as fr(x) ↑ f̂(x) = +∞, there is some rx such that fr(x) = +∞, for all
r ≥ rx, the desired result.
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(b) As {Kr} is a nonincreasing nested sequence and K ⊂ Kr for all r, one has

Kr ↓ K∗ :=
∞⋂

r=0

Kr ⊃ K.

It suffices to show that K∗ ⊆ K, which we prove by contradiction. Let x ∈ K∗, and
suppose that x /∈ K. By (a), we must have fr(x) = +∞ whenever r ≥ rx, for some
integer rx. In other words, x /∈ Kr whenever r ≥ rx. But then, x /∈ K∗, in contradiction
with our hypothesis.

Corollary 4.2 provides us with a means to test whether x /∈ K. Indeed, it suffices to solve
the SDP-relaxation Qrx defined in (29), until infQrx = +∞ for some r (which means
that x /∈ Kr for all r ≥ rx), which eventually happens if x /∈ K.
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