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In the present paper we use the celebrated heat flow method of Eells and Sampson to the question of
deformation of a smooth loop M ∈ R

2 on a Finsler manifold (N,h) to a closed geodesic in N . This leads
to the investigation of the corresponding heat equation which is the parabolic initial value problem

∂ui

∂t
−

∂2ui

∂x2
= Γi

hk

(

u,
∂u

∂x

)

∂uh

∂x

∂uk

∂x
in M × [0, T ),

u (x, 0) = f (x) ;

i = 1, . . . , n. The existence of a global in time solution u (x, t) and its subsequent convergence to a closed
geodesic u∞ : M → N as t → ∞, are dealt with. Appropriate concepts arising from the Finslerian nature
of the problem are introduced.

1. Introduction

Let (M, g) and (N, h) be some smooth compact Finsler (or Riemannian) manifolds with
the metrics g and h respectively; dimM = m, dimN = n. Given a C1-map f : M → N ,
an important question in geometric analysis is to determine whether or not f can be
deformed into a harmonic map u : M → N . For Riemannian manifolds this question has
been successfully settled in the pioneering work of Eells and Sampson [14]. However the
corresponding issue in the framework of Finsler geometry seems to be far more complicated
when m ≥ 2. While the powerful tools developed in the Riemannian case have a potential
of being suitable devices in order to solve the problem, an appropriate notion of energy
functional for the purpose is still to be found; we refer to [13] and [25] for some attempts;
in fact Mo considers the case of a Riemannian target which through a suitable change of
metric reduces to [14].

In the present paper we consider the case when the source manifold M is one-dimensional
(the circle S1 ⊂ R2 for instance) but the target is a genuine multi-dimensional Finsler
manifold; this is related to the very rich area of closed geodesics. The problem is a classical
one in global differential geometry and has been extensively dealt with in the Riemannian
case via the direct method of Calculus of Variations (see for instance [26], p. 74-75) as well
as through the celebrated heat flow method of Eells and Sampson ([4], [14], [16], [17]).
Closed geodesic on Finsler manifolds have also been the object of interesting research
since the deep work of Fet [15] in the fifties. Important contributions were later made by
Anosov [5], Katok [19] (this paper has now become a milestone in Finsler geometry), [23]
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and [24]. The papers mainly derive the existence of closed geodesics through the method
of critical points.

The aim of the present paper is to study the existence, uniqueness and large time behavior
of the solution of the Cauchy problem for a semi-linear parabolic system which arises from
the use of the celebrated Eells and Sampson’s heat flow method in the corresponding
Finslerian setting.

After a dormant period, Finsler geometry is generating a lot of interest in recent years.
While purely geometric questions are being vigorously tackled, results in Finslerian ge-
ometric analysis are scarced; notable among the few contributions in this direction are
works by members of the famous Italian School of Calculus of Variations [1], [10], [11],
[6], [8], [9]; the first three papers for instance establish that Finsler metrics can arise as
Γ-limits of some Riemannian metrics. This is a very powerful statement which can deeply
influence the study of Finsler manifolds in years to come, in a way similar to the revolu-
tion brought by Gromov’s groundbreaking result on convergence of Riemannian manifolds
which gave rise to deep studies of Alexandrov spaces, graph manifolds, and many other
geometries.

The paper is structured as follows. In Section 2, we introduce some definitions and formu-
late our main results. Section 3 is devoted to the short-time existence of the heat flow. In
Section 4, we introduce some kind of "normal coordinates" in which a contraction of the
Finslerian Christofell’s symbols vanish (normal coordinates in which the Christofell’s sym-
bols vanish can be introduced only on Berwald spaces), we obtain a Weitzenboch-Bochner
type estimate for the energy density and subsequently use it to derive appropriate a priori
estimates that enable us to establish the theorem on the global existence of the heat flow.
The closing Section 5 is devoted to the proof the Corollary 2.4 on the existence of closed
geodesics.

In the sequel Einstein’s summation rule is used throughout.

2. Finslerian geodesics and the heat flow

Basic informations about Finsler manifolds can be found in [7], [12] or [29].

On the tangent bundle TN of the smooth compact n-dimensional (n ≥ 1) manifold N
with local coordinates (v, w), we consider the function H : TN → [0,∞), satisfying the
following conditions:

(i) H ∈ C∞ (TN\0), 0 being the zero section.

(ii)
H (v, λw) = |λ|H (v, w) , ∀λ ∈ R, ∀ (v, w) ∈ TN (1)

(iii) the (n× n) hessian matrix

hij =

([

1

2
H2

]

wiwj

)

, i, j = 1, . . . , n (2)

is positive definite at every point of TN\0. We have H2 (v, w) = hij (v, w)w
iwj. The

matrix h = (hij) is called the fundamental matrix.

A function H satisfying the conditions (i)-(iii) is called a Finsler structure and the pair
(N, h) a Finsler manifold.
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Let

Aijk (v, w) =
∂hij (v, w)

∂wk
, i, j, k = 1, . . . , n. (3)

(Aijk) is known as the Cartan Tensor. The homogeneity condition (1) leads to the relations

Aijkw
k = Aijkw

i = Aijkw
j = 0, (4)

known as Euler’s formulae. Christofell symbols for the metric h are defined by

Γi
jk =

1

2

n
∑

l=1

hil

(

∂hlj

∂vk
+

∂hlk

∂vj
−

∂hjk

∂vl

)

, (5)

where (hij) is the inverse matrix of h.

Let M be a the one dimensional unit sphere S1 in R2 parametrized by the central angle
that we denote by x ∈ [0, 2π], or any smooth loop in R2. We consider the map u : M →
N , u (x) = (u1 (x) , . . . , un (x)) which describes a closed curve in N . The density energy
of u is given by

e (u) =
1

2
hij

(

u1, . . . , un,
du1

dx
, . . . ,

dun

dx

)

dui

dx

dui

dx
(6)

and the energy reads

E (u) =

∫ 2π

0

e (u) dx. (7)

We shall for simplicity write the integral as

E (u) =

∫

M

e (u) dx, (8)

where x ∈ M will mean x ∈ [0, 2π].

Remark 2.1. The energy E arises also as the Gamma-Limit of some sequences of Rie-
mannian energies (see [1], [10], [11]). We also refer to [27] for the corresponding complex
variables version.

We assume that there exists a constant C independent of v, w such that

hij (v, w)w
iwj ≥ C |w|2 , (9)

∣

∣Γi
hk (v, w)

∣

∣+

∣

∣

∣

∣

∂

∂vl
Γi
hk (v, w)

∣

∣

∣

∣

+
∂

∂wl
Γi
hk (v, w) ≤ C, (10)

for all v, w ∈ Rn and l = 1, . . . , n.

The Euler-Lagrange equations for E obtained by evaluating the quantity dE(u+εϕ)
dε

|ε=0, for
any test function ϕ : M → N , are

d2ui

dx2
= Γi

hk

(

u,
du

dx

)

duh

dx

duk

dx
, i = 1, . . . , n. (11)

These are the differential equations governing the geodesics on (N, h).
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As previously mentioned we make use of the celebrated heat flow method of Eells and
Sampson. It consists at looking for a map u (x, t) : M × [0, T ) → N which is a solution
of the initial value problem for the system of quasilinear parabolic equations

∂ui

∂t
−

∂2ui

∂x2
= Γi

hk

(

u,
∂u

∂x

)

∂uh

∂x

∂uk

∂x
, (x, t) ∈ M × [0, T ), (12)

u (x, 0) = f (x) ; (13)

here T > 0, and f : M → N is a smooth loop playing the role of initial condition.

The following issues are to be dealt with.

1) For any initial value f , does the problem (12)-(13) have a unique solution in M ×
[0, T )?

2) Set ut (x) = u (x, t). As t → ∞, does ut converge to a closed geodesic u∞ : M → N
which is free-homotopic to f = u0?

Remark 2.2. It is worth mentioning that unlike the Riemannian case the Christofell
symbols Γi

hk have a dependence on ∂u/∂x; this makes the study of the system (12) more
involved.

(12) is a local system of equations since it is expressed in local coordinates. It needs to be
replaced by a more convenient global system in global coordinates. In the Riemannian case
this is achieved generally by isometrically embedding the target manifold in a Euclidean
manifold, through the celebrated Nash’s embedding theorem. A similar result for Finsler
manifolds is still out of reach and its quest is one of the most outstanding open problems
in Finsler geometry. Lukily an approach due originally to Eells and Sampson [14] and
Hamilton [16] which uses instead Whitney’s embedding theorem is adaptable to our needs.

N being a differentiable manifold, Whitney’s theorem enables us to embed it in a Eu-
clidean space Rk. Let i : N → Rk be such an embedding. Its differential induces
an embedding i∗ : TN → TRk =: Rq. We construct in Rq a tubular neighbourhood
U2δ = {x ∈ Rq : dist (x, TN) < 2δ}, dist denotes the usual Euclidean distance and ex-
tend the metric h on N to a metric h′ =

(

h′
ij

)

i,j=1,...,q
on U2δ by keeping h on TN

and by taking the induced Euclidean metric on the normal bundle of TN in U2δ. Locally
h′
ij = (hij)⊗(δij) on TN×Bq−n

2δ where Bq−n
2δ is the ball in Rq−n of radius 2δ with center on

TN , δij denotes the Kroneker symbols. We extend h′ smoothly toRq by h′′ =
(

h′′
ij

)

i,j=1,...,q

with h′′
ij = ϕh′

ij + (1− ϕ) δij where ϕ ∈ C∞
0 (Rq,R), ϕ = 1 on Uδ and ϕ = 0 outside U2δ.

It is clear that h′ and h′′ are both Finsler metrics. This embedding induces an involutive
isometry π from the tubular neighbourhood Uδ (N) of N into itself having N as its fixed
points.

Arguing as in [16], we get that a deformation ut : M → N satisfies the problem (12)-(13)
if and only if the function Wt = π ◦ ut : M → Rk satisfies the problem

∂W c
t

∂t
−

∂2W c
t

∂x2
= Γc

ab

(

Wt,
∂Wt

∂x

)

∂W a
t

∂x

∂W b
t

∂x
, (x, t) ∈ M × [0, T ), (14)

W0 (x) = f (x) , x ∈ M. (15)
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Here Γc
ab are the Christofell symbols induced by h′′ in Rq. This problem is the needed

globalized version of (12)-(13). Since W0 maps M into N any solution Wt of (14)-(15) for
t ∈ [0, T ) maps M into N .

From now on, we assume that all conditions stated above are always valid. We are now
in the position to state our main results. The first deals with the existence of a global in
time solution of (14)-(15).

Theorem 2.3. For any f ∈ C2+α (M,N), there exists a solution

W ∈ C2+α,1+α/2 (M × [0,∞), N) (16)

of problem (14)-(15) in M × [0,∞).

As a consequence of this theorem we recover the well-known result on the existence of
closed geodesic on Finsler manifolds

Corollary 2.4. Let f ∈ C2+α (M,N) and let

u ∈ C2+α,1+α/2 (M × [0,∞), N) (17)

be the global in time solution of (12)-(13). Then there exists a sequence {tm} → ∞ such

that u (x, tm) converges to a closed geodesic u∞ (x) ∈ C2+α (M,N) free homotopic to f .

Remark 2.5. f and u∞ are free homotopic if there exists a continuous map u (x, t) :
M × [0, T ] → N satisfying the relations: u (x, 0) = f (x) and u (x, T ) = u∞ (x) for all
x ∈ M .

Remark 2.6. The result of the corollary can be improved by showing that the conver-
gence holds for all t → ∞. This can be done by adapting the arguments of Hartman [17]
to our case.

3. Short-time existence

We start with some notations. Given T > 0, set Q = M × [0, T ], 0 < α < 1. For
u : Q → Rq, set

|u|Q = sup
(x,t)∈Q

|u (x, t)| , (18)

〈u〉(α)x = sup

{

|u (x, t)− u (x′, t)|

|x− x′|α
; (x, t) , (x′, t) ∈ Q, x 6= x′

}

, (19)

〈u〉(α)t =

{

sup
|u (x, t)− u (x′, t)|

|t− t′|α
; (x, t) , (x′, t) ∈ Q, t 6= t′

}

; (20)

| | stands for the Euclidean norm.

|u|
(α,α/2)
Q = |u|Q + 〈u〉(α)x + 〈u〉(α/2)t , (21)
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|u|
(2+α,1+α/2)
Q

= |u|Q +

∣

∣

∣

∣

∂u

∂t

∣

∣

∣

∣

Q

+

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

Q

+

∣

∣

∣

∣

∂2u

∂x2

∣

∣

∣

∣

Q

+

〈

∂u

∂t

〉(α/2)

t

+

〈

∂u

∂x

〉(1/2+α/2)

t

+

〈

∂2u

∂x2

〉(α/2)

t

+

〈

∂u

∂x

〉(α)

x

+

〈

∂2u

∂x2

〉(α)

x

.

We introduce Hölder’s spaces

C2+α (M,N) =

{

u ∈ C2 (M) :

〈

∂2u

∂x2

〉(α)

x

< ∞

}

, (22)

C2+α,1+α/2 (Q,N) =
{

u ∈ C2,1 (Q) : |u|
(2+α,1+α/2)
Q < ∞

}

, (23)

Cα,α/2 (Q,N) =
{

u ∈ C0 (Q) : |u|
(α,α/2)
Q < ∞

}

. (24)

We have

Theorem 3.1. For any map f ∈ C2+α (M,N), there exists a positive number ε =
ε (M,N, f, α) and a map W ∈ C2+α,1+α/2 (M × [0, ε] ,Rq) such that W is a solution of

(14)-(15) in M × [0, ε].

Proof. We use the method of linearization. Let us denote the right-hand side of (14) by
Hc
(

W, ∂W
∂x

)

. Let k ∈ C2+α,1+α/2 (M × [0, ε] ,Rq). We have

lim
θ→0

Hc
(

W + θk, ∂(W+θk)
∂x

)

−Hc
(

W, ∂W
∂x

)

θ

=
∂Γc

ab

∂zα
∂W a

∂x

∂W b

∂x
kα +

∂Γc
ab

∂Zα

∂W a

∂x

∂W b

∂x

∂kα

∂x
+ 2Γc

ab

∂W a

∂x

∂kb

∂x
,

and

lim
θ→0

(

∂(W c+θkc)
∂t

− ∂2(W c+θkc)
∂x2

)

−
(

∂W c

∂t
− ∂2W c

∂x2

)

θ
=

∂kc

∂t
−

∂2kc

∂x2
.

Thus k satisfies a system of linear parabolic equations of the form

∂kc

∂t
−

∂2kc

∂x2
= Ac

αk
α +Bc

α

∂kα

∂x
. (25)

The local existence of a solution for (14)-(15) follows from well-known arguments involving
the regularity theory of linear parabolic systems [21] and the inverse function theorem in
Banach spaces [22].
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4. Global existence

We shall need on N some kind of "normal coordinates" which can be introduced on Finsler
manifolds using the results of [3] or [28]. It can be shown that there exist some coordinates
(z, Z) such that

Γc
ab (z, Z)Z

aZb = 0 (26)

along the geodesic emanating from a point z0 ∈ N and this relation is valid at the point
z0 for all Z. This implies ([3], p. 42, equation (10.5)) after differentiation with respect to
Za that

Γc
ab (z0, Z)Z

b = 0, ∀Z. (27)

By "normal coordinates" we shall mean the pairs (z0, Z) such that the above equations
hold. Though we do not have the vanishing of the Γc

ab, the relations (27) will suffice for
our purposes.

We now derive a Weitzenboch-Bochner’s type formula in the following

Lemma 4.1. Let W be a solution of (14)-(15). Then the energy density

e (W ) =
1

2
h′′
ab

(

W 1, . . . ,W q,
∂W 1

∂x
, . . . ,

∂W q

∂x

)

∂W a

∂x

∂W b

∂x
(28)

satisfies the parabolic equation

∂e (W )

∂t
−

∂2e (W )

∂x2
= −h′′

ab

∂2W a

∂x2

∂2W b

∂x2
. (29)

Proof. We have

∂e (W )

∂t
=

1

2

[

∂h′′
ab

∂zk
∂W k

∂t
+

∂h′′
ab

∂Zk

∂2W k

∂t∂x

]

∂W a

∂x

∂W b

∂x
+ h′′

ab

∂W a

∂x

∂2W b

∂t∂x
. (30)

Since h′′ is a Finsler metric, by (4), we get

∂h′′
ab

∂Zk

∂W a

∂x
= 0. (31)

In view of (14), we have

∂2W b

∂t∂x
=

∂3W b

∂x3
+

∂Γb
de

∂zl
∂W l

∂x

∂W d

∂x

∂W e

∂x
(32)

+
∂Γb

de

∂Z l

∂2W l

∂x2

∂W d

∂x

∂W e

∂x
+ 2Γb

de

∂2W d

∂x2

∂W e

∂x
.

Thanks to (27), (31), (30), (32) and the relation

∂h′′
ab

∂zk
= h′′

sbΓ
s
ak + h′′

asΓ
s
bk (33)

we get in normal coordinates

∂e (W )

∂t
= h′′

ab

(

∂3W b

∂x3
+

∂Γb
pk

∂zl
∂W l

∂x

∂W p

∂x

∂W k

∂x

)

∂W a

∂x
. (34)
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Similarly we have

∂2e (W )

∂x2
= h′′

ab

(

∂3W b

∂x3
+

∂Γb
pk

∂zl
∂W l

∂x

∂W p

∂x

∂W k

∂x

)

∂W a

∂x
+ h′′

ab

∂2W a

∂x2

∂2W b

∂x2
.

(29) readily follows from these last two relations.

Remark 4.2. Unlike the multidimensional case (dimM > 1), the curvature term is miss-
ing in (29). Hence no curvature sign condition is needed.

Lemma 4.3. Let W be a solution of (14)-(15). Then the energy density e (W ) satisfies

e (W ) (x) ≤ max
x∈M

e (f) (x) . (35)

Proof. Since h′′ is positive definite we have by (29),

∂e (W )

∂t
−

∂2e (W )

∂x2
≤ 0, (x, t) ∈ M × (0, T ). (36)

Then by the Maximum Principle [21] for the Heat equation we get

max
M×[0,T ]

e (W ) (x) = max
M×{0}

e (W ) (x) = max
M

e (f) . (37)

Next we have

Lemma 4.4. Let W be a sufficiently smooth solution of (14)-(15). Then there exists a

constant C = C (M,N, f) > 0, such that

∣

∣

∣

∣

∂W

∂t

∣

∣

∣

∣

L∞(M,N)

+ |W |L∞(M,N) ≤ C. (38)

Proof. We differentiate the system (14) with respect to t (this a formal process which
can be made rigorous by considering the difference quotient of (14) with respect to t) and
get

∂

∂t

(

∂W c

∂t

)

−
∂2

∂x2

∂W c

∂t
=

∂

∂zl
Γc
ab

∂W l

∂t

∂W a

∂x

∂W b

∂x
+ 2Γc

ab

∂

∂x

(

∂W a

∂t

)

∂W b

∂x
,

where we have used (4).

By (9), (35) and the compactness of M , it follows that

∣

∣

∣

∣

∂W

∂x

∣

∣

∣

∣

L∞(M,N)

≤ C (39)

Thus the function vt = ∂W/∂t satisfies the equation

∂vct
∂t

−
∂2vct
∂x2

= Ac
αv

α +Bc
α

∂vα

∂x
, ∀ (x, t) ∈ M × [0, T ) (40)
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with bounded coefficients thanks to (10); also vt (x, 0) = 0 in M . Applying the results of
[21](Chap. III, § 7) on the bounds for maximum of solutions of linear parabolic equations,
we get that

∣

∣

∣

∣

∂W

∂t

∣

∣

∣

∣

L∞(M,N)

≤ C. (41)

Since N is compact we have that the image of Wt is contained in a bounded set. Thus

|Wt|L∞(M,N) ≤ C. (42)

The lemma is proved.

Thanks to the estimates in Lemmas 4.3 and 4.4 and the Schauder’s estimates for linear
elliptic and parabolic equations [20], [21], we obtain

Lemma 4.5. Let W ∈ C2,1 (M × [0, T ] , N) be a solution of (14)-(15). Then there for

any α ∈ (0, 1)

|W (, t)|C2+α(M,N) +

∣

∣

∣

∣

∂W

∂t

∣

∣

∣

∣

Cα(M,N)

≤ C (43)

for any t ∈ [0, T ); where C = C (M,N, f, α).

Now we are in the position to prove the existence of global in time solution.

Proof of Theorem 2.3. By Theorem 3.1 there exists a ε = ε (M,N, f, α) such that a
solution

W ∈ C2+α,1+α/2 (M × [0,∞), N) (44)

of (14)-(15) exists in M × [0, ǫ]. Let us show that this solution can be extended to
M × [0,∞). Set

T0 = sup {t ∈ [0,∞) : (14)-(15) has a solution in [0, t]} . (45)

We show that T0 = ∞. Indeed assume the contrary, that is T0 < ∞ and let {tm} be a
sequence converging to T0. Let 1 > α′ > α > 0. We have by Lemma 4.5, that

|W (., tm)|C2+α′
(M,N) ,

∣

∣

∣

∣

∂W (., tm)

∂t

∣

∣

∣

∣

Cα′
(M,N)

(46)

are uniformly bounded. Thus sinceC2+α′

(M,N) is compactly embedded intoC2+α (M,N)
(see for instance [2, p. 11], modulo the extraction of a subsequence from {tm} it follows

W (., tm) → W (., T0) ,
∂W (., tm)

∂t
→

∂W (., T0)

∂t
(47)

uniformly, W (., T0) ∈ C2+α (M,N), ∂W (.,T0)
∂t

∈ Cα (M,N) and (14)-(15) is satisfied on
[0, T0]. Applying Theorem 3.1 to (14)-(15) with initial condition W (x, T0) we get the
existence of a solution

W ∈ C2+α,1+α/2 (M × [T0, T0 + ε], N) (48)
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of an ε′ = ε′ (M,N,W (x, T0) , α). Since W
(

x, T−
0

)

= W
(

x, T+
0

)

, we have thus obtained
a solution

W ∈ C2+α,1+α/2 (M × [0, T0 + ε′], N) . (49)

A bootstrap argument yields a solution in M × [0,∞).

We embark now on the proof of the uniqueness of the solution. Let

W1,W2 ∈ C2+α,1+α/2 (M × [0,∞), N) (50)

be solutions of (14)-(15). Set Ψ = W1 −W2. We have

∂Ψ

∂t
−

∂2Ψ

∂x2
= Φ(W1,W2) , (51)

with

Φ (W1,W2) = Γc
ab

(

W1,
∂W1

∂x

)

∂W a
1

∂x

∂W b
1

∂x
− Γc

ab

(

W2,
∂W2

∂x

)

∂W a
2

∂x

∂W b
2

∂x
.

We write Φ (W1,W2) as

Φ = 2

[

Γc
ab

(

W1,
∂W1

∂x

)

− Γc
ab

(

W2,
∂W2

∂x

)]

×
∂W a

1

∂x

∂W b
1

∂x

+Γc
ab

(

W2,
∂W2

∂x

)

∂Ψa

∂x

∂W b
1

∂x
+ Γc

ab

(

W2,
∂W2

∂x

)

∂W a
2

∂x

∂Ψb

∂x
.

We have

Γc
ab

(

W2,
∂W2

∂x

)

− Γc
ab

(

W1,
∂W1

∂x

)

= Γc
ab

(

W2,
∂W2

∂x

)

− Γc
ab

(

W1,
∂W2

∂x

)

+ Γc
ab

(

W1,
∂W2

∂x

)

− Γc
ab

(

W1,
∂W1

∂x

)

.

Applying the mean value theorem we get

Γc
ab

(

W2,
∂W2

∂x

)

− Γc
ab

(

W1,
∂W1

∂x

)

=
∂Γc

ab

∂zl

(

ω,
∂W2

∂x

)

Ψl +
∂Γc

ab

∂Z l
(W1,Ω)

∂Ψl

∂x
,

with ω, Ω ∈ Rn. Thus thanks to (10) and Cauchy-Schwarz’s inequality we get

Φ ≤ C

(
∣

∣

∣

∣

∂Ψ

∂x

∣

∣

∣

∣

Rn

+ |Ψ|
Rn

)

. (52)

Taking the inner product of (51) with Ψ, and integrating the resulting equation over
M × [0, t] and making use of (52) and Young’s inequality we get

∫

M

|Ψ(x, t)|2
Rn dx ≤ C

∫ t

0

∫

M

|Ψ(x, τ)|2
Rn dxdτ, ∀t > 0. (53)

This implies that Ψ ≡ 0 on [0, t], by Gronwall’s inequality. The uniqueness is proved.

Remark 4.6. It can further be proved that the global solution

W ∈ C∞ (M × (0,∞), N) . (54)
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5. Proof of Corollary 2.4

From Lemma 4.5 and Theorem 2.3 u (x, t) and ∂u (x, t) /∂t are uniformly bounded in
C2+α (M,N) and Cα (M,N) respectively for any t > 0. Thus there exists a sequence
{tm} → ∞ and a function u∞ ∈ C2+α (M,N) such that

u (x, t) → u∞ (55)

uniformly.

We have

d

dt
E (u(x, t)) =

∫

M

hij
∂

∂x

(

∂ui

∂t

)

∂uj

∂x
dx+

1

2

∫

M

∂hij

∂zk
∂uk

∂t

∂uj

∂x

∂ui

∂x
dx;

the term containing ∂hij/∂Z
k vanished in account of (4). After integration by parts and

using the relation ∂hij/∂z
k = hsjΓ

s
ik + hisΓ

s
jk together with the symmetry of hij we get

d

dt
E (u(x, t)) =

∫

M

hij
∂ui

∂t

(

∂2uj

∂x2
+ Γj

hk

(

u,
∂u

∂x

)

∂uh

∂x

∂uk

∂x

)

. (56)

Thanks to (12), it follows that

d

dt
E (u(x, t)) = −

∫

M

hij
∂ui

∂t

∂uj

∂t
dx. (57)

This shows that E (u(x, t)) is decreasing. Integrating this relation over [τ, T ], we get

E (u (x, T ))− E (u (x, τ)) = −

∫ T

τ

∫

M

hij
∂ui

∂t

∂uj

∂t
dx. (58)

As τ → ∞, T → ∞ the left-hand side approaches zero. Therefore from the uniform
boundedness of ∂u/∂t we get

∫

M

hij
∂ui

∂t

∂uj

∂t
dx → 0 as t → ∞. (59)

Thus by (9), we get that ∂u (x, tm) /∂t → 0 as tm → ∞. Passing to the limit in

∂ui (x, tm)

∂t
−

∂2ui (x, tm)

∂x2

= Γi
hk

(

u (x, tm) ,
∂u (x, tm)

∂x

)

∂uh (x, tm)

∂x

∂uk (x, tm)

∂x
,

and arguing as we did in the proof of the uniqueness of the solution we get that

∂2ui
∞

∂x2
= Γi

hk

(

u∞,
∂u∞

∂x

)

∂uh
∞

∂x

∂uk
∞

∂x
. (60)

Thus u∞ is a closed geodesic.

Clearly f (x) = u (0, x) and u (x, t) are free homotopic in view of the continuity of u.
Further u (x, t) → u∞ (x) uniformly. Hence f and u∞ are free homotopic.
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