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We study nondifferentiability points for a class of continuous functions f : RN → R whose epigraph satis-
fies a kind of external sphere condition with uniform radius (called ϕ-convexity or proximal smoothness).
The functions belonging to this class are not necessarily Lipschitz. However, they enjoy some properties
analogous to semiconvex functions; in particular they are twice LN -a.e. differentiable (see [11]). In partial
analogy with the study of singularities of semiconcave functions (see [7]), under suitable conditions we
give estimates from below of the nondifferentiability set, which consists of points where the subdiffer-
ential is not a singleton, as well as (differently from semiconvex functions) of points where it is empty.
Furthermore, we show that if a function in this class is an a.e. solution of a Hamilton-Jacobi equation,
then under suitable assumptions it is actually a viscosity solution. Methods of nonsmooth analysis and
geometric measure theory are used, including a representation of Clarke’s generalized gradient as the
closed convex hull of limits of Fréchet derivatives.
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1. Introduction

Let g(ρ) = sign(ρ− 1) ·
√

|ρ− 1|, ρ ∈ R, and set

f(x, y) = g(|x|+ |y|). (1)

The function f is nonsmooth, because: a) there are points where the epigraph epi(f) has
corners (the set {xy = 0}); and b) there are points where epi(f) has vertical tangent
plane (the set {|x| + |y| = 1, xy 6= 0}), i.e., both its subdifferential and superdifferential
are empty. Consider also the following minimum time problem: reach the target

S = {(x, y) ∈ R
2 : y ≥ sign(x)x2},

subject to the dynamics
{

�x = u ∈ [−1, 1]

�y = 0.
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The minimum time function, for (x, y) 6∈ S, is

T (x, y) = x− sign(y)
√

|y|, (2)

which is not differentiable at all points of the positive x-axis, where both subdifferential
and superdifferential are empty.

The functions f and T in the above example feature a common property. Indeed, their
epigraphs satisfy a kind of uniform external sphere condition (see Definition 3.1 below),
which is known in the literature under different names: positive reach (see [15, §4]),
proximal smoothness (see [10] and references therein), or ϕ-convexity (see, e.g., [11] and
references therein). Convex and semiconvex functions satisfy this condition, but, as the
above examples show, there exist other cases as well, which may be relevant in applica-
tions. In particular, it was shown in [12] that the minimum time function, for a class of
linear control problems with a convex target, has ϕ-convex epigraph.

This property is close to semiconvexity. In particular – among locally Lipschitz functions
– semiconvexity is characterized exactly by the ϕ-convexity of the epigraph. However, as
the above examples show, functions with ϕ-convex epigraph need not be locally Lipschitz.
Nevertheless, it turns out that such functions enjoy rather strong regularity properties,
including a.e. differentiability (see [11]) and second order Taylor expansion around a.e.
point of the domain. In this paper we perform a study of singularities (i.e., of nondif-
ferentiability points) of functions with ϕ-convex epigraph, in analogy to previous results
valid for semiconvexity/semiconcavity which are described, e.g., in Chapter 4 of the book
[7] (see also [1]). In particular, we are concerned with propagation of singularities, namely
with finding sufficient conditions in order that at least a Lipschitz curve all made of sin-
gularities emanates from a point of nondifferentiability. Differently from the semiconvex
case, due to the lack of Lipschitz continuity, singularities may be of two different natures,
i.e., either corners or “vertical spots� (i.e., points where both the sub and the superdiffer-
ential are empty) in the epigraph. Therefore, both the type of results and the techniques
appearing in [7] need adaptations. In particular, we prove new representation formulas
for the normal cone and the Clarke generalized gradient as convex hull of limiting cones,
in analogy with the well known equality between the generalized gradient of a Lipschitz
function and the convex hull of limits of Fréchet derivatives. This result requires the
assumption that a normal cone contains no lines, and the necessity of this requirement
is discussed with an example. The representation formula is not entirely straightforward,
because, due to the lack of Lipschitz continuity, sequences of Fréchet derivatives may be
unbounded. As an application, using these representations we prove that a continuous
function with ϕ-convex hypograph and no cusps, which satisfies a.e. a Hamilton-Jacobi
equation of the type

H(x, u,Du) = 0,

is actually a viscosity solution, provided H is convex in Du and continuous. As a con-
sequence, a generalization of the classical uniqueness result for semiconcave solutions by
Kruzhkov (see [18]) is obtained. The propagation of singularities is divided into two parts.
In the first one we deal with points where the normal cone has dimension > 1, and the
result is similar to the case of semiconcave functions (see [7, §4.2]). The second one is
concerned with points of the epigraph where the tangent cone is vertical. We study the
propagation for the particular case of a C1,1-graph, and then we apply our analysis to gen-
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eral functions with ϕ-convex epigraph, exploiting the fact that r-level sets of the distance
from the epigraph are locally the graph of a C1,1-function, provided r is sufficiently small.

Sects. 2 and 3 are concerned with a brief survey of some concepts in nonsmooth anal-
ysis and of properties of ϕ-convexity. Sect. 4 contains results of nonsmooth analysis,
including the representation formula for the normal cone, while Sect. 5 is concerned with
viscosity solutions. The last section contains results on the propagation of both types of
singularities, i.e., corners and vertical spots.

2. Preliminaries

Throughout this paper our main tools are some concepts from nonsmooth analysis.

Let K ⊆ R
N be closed. We denote by bdryK the topological boundary of K, and, for

x ∈ R
N ,

dK(x) = min{|y − x| : y ∈ K} (the distance of x from K)
πK(x) = {y ∈ K : |y − x| = dK(x)} (the projections of x onto K).

Moreover, we set

Unp(K) = {x ∈ R
N : πK(x) is a singleton}

Kρ = {x ∈ R
N : dK(x) ≤ ρ}

For a convex set C, its relative boundary is denoted by relbdC. If f : R
n → R is

differentiable at x, we denote by Df(x) its gradient at x.
The following concepts of normals and tangents will be used (see [9, Ch. 1] and [23, Ch.
6]). Let x ∈ K and v ∈ R

N . We say that:

1. v is a proximal normal to K at x (and will be denoted by v ∈ NP
K(x)) if there exists

σ = σ(v, x) ≥ 0 such that:

〈v, y − x〉 ≤ σ|y − x|2 for all y ∈ K; (3)

equivalently v ∈ NP
K(x) iff there exists λ > 0 such that πK(x+ λv) = {x};

2. v is a Fréchet normal (or Bouligand normal) to K at x (v ∈ NF
K(x)) if

lim sup
K∋y→x

〈v, y − x

|y − x|〉 ≤ 0;

3. v is a limiting normal to K at x (v ∈ NL
K(x)) if

v ∈ {w : w = limwn, wn ∈ NP
K(xn), xn → x}

and is a Clarke normal (v ∈ NC
K(x)) if v ∈ coNL

K(x);

4. v is a Fréchet tangent (or Bouligand tangent) to K at x (v ∈ T F
K (x)) if

lim inf
h→0+

dK(x+ hv)

h
= 0;

equivalently, 0 6= v ∈ T F
K (x) iff there exists a sequence {yn}n∈N ⊂ K such that

lim
n→∞

yn − x

|yn − x| =
v

|v| .
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It can be proved (see [2, Prop. 4.4.1]) that

NF
K(x) = {v ∈ R

N : 〈v, w〉 ≤ 0 for all w ∈ T F
K (x)} := (T F

K (x))0. (4)

Let f : RN → R∪{+∞} be a lower semicontinuous function. By using epi(f) := {(x, ξ) :
ξ ≥ f(x)} and hypo(f) := {(x, ξ) : ξ ≤ f(x)} one can define generalized gradient concepts
for f at x ∈ dom(f) = {x ∈ R

N : f(x) < +∞}. Let x ∈ dom(f), v ∈ R
N . We say that:

1. v is a proximal subgradient of f at x (v ∈ ∂Pf(x)) if (v,−1) ∈ NP
epi(f)(x, f(x));

equivalently (see [9, Theorem 1.2.5]), v ∈ ∂Pf(x) iff there exist σ, η > 0 such that

f(y) ≥ f(x) + 〈v, y − x〉 − σ|y − x|2 for all y ∈ B(x, η) ∩ dom (f); (5)

2. v is a proximal supergradient of f at x (v ∈ ∂Pf(x)) if (−v, 1) ∈ NP
hypo(f)(x, f(x));

equivalently v ∈ ∂Pf(x) iff −v ∈ ∂P (−f)(x), i.e., iff there exist σ, η > 0 such that

f(y) ≤ f(x) + 〈v, y − x〉+ σ|y − x|2 for all y ∈ B(x, η) ∩ dom (f); (6)

3. v is a Fréchet subgradient of f at x (v ∈ ∂Ff(x)) if (v,−1) ∈ NF
epi(f)(x, f(x)), i.e.,

lim inf
y→x

f(y)− f(x)− 〈v, y − x〉
|y − x| ≥ 0;

4. v is a Fréchet supergradient of f at x (v ∈ ∂Ff(x)) if (−v, 1) ∈ NF
hypo(f)(x, f(x));

5. v is a limiting subgradient of f at x (v ∈ ∂Lf(x)) if (v,−1) ∈ NL
epi(f)(x, f(x)).

6. v is a limiting supergradient of f at x (v ∈ ∂Lf(x)) if (−v, 1) ∈ NL
hypo(f)(x, f(x)).

7. v is a Clarke generalized gradient of f at x (v ∈ ∂f(x)) if (v,−1) ∈ NC
epi(f)(x, f(x)).

We recall that if f is Lipschitz continuous in a neighborhood of x, then v ∈ ∂f(x)
if and only if v ∈ co{ζ : ζ = limDf(xi), xi ∈ dom(Df), xi → x} (see [9, Theorem
8.1]).

3. Review of ϕ-convex sets and functions

We introduce now the class of sets which is analyzed in the present paper (see also [11]
and references therein).

Definition 3.1. Let K ⊂ R
N be closed and let ϕ : K → [0,+∞) be continuous. We say

that K is ϕ-convex if for all x, y ∈ K, v ∈ NP
K(x), the inequality

〈v, y − x〉 ≤ ϕ(x)|v| |y − x|2 (7)

holds. By ϕ0-convexity we mean ϕ-convexity with ϕ ≡ ϕ0, a constant.

Of course, the case ϕ0 = 0 is equivalent to convexity.

The distance from a ϕ-convex set K and the metric projection onto K enjoy remarkable
properties, which are fundamental for our analysis.

Theorem 3.2. Let K ⊂ R
N be a ϕ-convex set. Then there exists an open set U ⊃ K

such that
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(1) dK ∈ C1,1(U \K) and DdK(y) =
y−πK(y)
dK(y)

for every y ∈ U \K;

(2) Unp(K) ⊃ U and πK : U → K is locally Lipschitz. Moreover, πK : U \K → bdryK
is onto.

In particular, if K is ϕ0-convex (with ϕ0 > 0), then U ⊃ K 1

4ϕ0

and πK : K 1

4ϕ0

→ K is

Lipschitz with Lipschitz ratio 2.

Proof. The proof can be found in [6, Proposition 2.6, 2.9, Remark 2.10] or in [15, §4].

Remark 3.3. Conditions (1) and (2) in Theorem 3.2 are actually equivalent to ϕ-convexi-
ty, as it is proved, e.g., in [15, §4].

Corollary 3.4. Let K ⊂ R
N be ϕ-convex. Let

Kϕ = {x : 4dK(x)ϕ(πK(x)) < 1}.

Assume that ϕ(x) > 0 for all x ∈ K. Then the set

bdryKϕ = {x ∈ R
N : 4dK(x)ϕ(πK(x)) = 1}

is a C1,1-manifold. Moreover, for all x ∈ bdryKϕ,

NP
Kϕ

(x) = R
+(x− πK(x)) ⊆ NP

K(πK(x)). (8)

Proof. bdryKϕ is a C1,1-manifold because |DdK | ≡ 1 on bdryKϕ. Formula (8) is Corol-
lary 4.15(2) in [10].

The concept introduced above has other consequences, among which we mention:

Proposition 3.5. Let K ⊂ R
N be ϕ-convex. Then:

(1) for all x ∈ K, NP
K(x) = NF

K(x) = NC
K(x) (and therefore it never reduces to {0})

and the set-valued map NP
K from K into R

N has closed graph; moreover, T F
K (x) =

(NC
K(x))

0;

(2) for all xi ∈ K, vi ∈ NP
K(xi), i = 1, 2, it holds:

〈v2 − v1, x2 − x1〉 ≥ −(ϕ(x1)|v1|+ ϕ(x2)|v2|)|x2 − x1|2;

(3) for HN−1-a.e. x ∈ bdryK there exists vx ∈ R
N , |vx| = 1, such that

NP
K(x) ⊆ Rvx

(here Hd denotes the d-dimensional Hausdorff measure);

(4) bdryK is countably HN−1-rectifiable and K has locally finite perimeter in R
N .

Proof. The proof of (1) can be found, e.g., in [13, Propositions 6.2 and 4.2] and [15,
Theorem 4.8 (12)]. Statement (2) is an immediate consequence of the definition of ϕ-
convex sets, while (3 ) can be found in [15, §4] or [11, Corollary 4.1]. Finally, (4) is
Theorem 4.2 in [11].

As examples show (see Example 4.1 in [11]), it may occur that NP
K(x) = Rv for a subset

of bdryK of positive HN−1-measure. In order to avoid such problems, we introduce the
following definition (see [11, Definition 4.1]).
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Definition 3.6. Let K ⊂ R
N be ϕ-convex. We say that K is nondegenerate if

HN−1
{

x ∈ bdryK : NP
K(x) contains a line

}

= 0.

Remark 3.7. If K is ϕ-convex and nondegenerate, then for HN−1-a.e. x ∈ bdryK there
exists vx, |vx| = 1 such that

NP
K(x) = R

+vx. (9)

Observe also that, recalling Proposition 3.5(3 ), the nondegeneracy condition can be sub-
stituted by

HN−1
{

x ∈ bdryK : NP
K(x) is a line

}

= 0.

Let now Ω ⊆ R
N be open and let f : Ω → R be continuous. In the following we will

mostly consider functions f with the further assumption that

epi(f) is ϕ-convex.

Of course, if f is convex then epi(f) is ϕ-convex. An important class of nonsmooth and
nonconvex functions with ϕ-convex epigraph is that of semiconvex functions.

Definition 3.8. Let Ω be an open and convex subset of RN . A function f : Ω → R is
semiconvex in Ω if there exists a constant C ≥ 0 such that for all x1, x2 ∈ Ω, λ ∈ [0, 1] it
holds

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) + Cλ(1− λ)|x1 − x2|2. (10)

It can be proved that every semiconvex function has ϕ0-convex epigraph, see, e.g., [7,
§3.6], where the symmetric class of semiconcave functions is thoroughly studied. More-
over, among locally Lipschitz functions semiconvexity is characterized exactly by the
ϕ-convexity of the epigraph.

Functions with ϕ-convex epigraph were studied in [11], which in particular contains exam-
ples and some regularity properties, and in [4, 19]. Observe that the ϕ-convexity of epi(f)
does not imply that f is locally Lipschitz. Actually, the epigraph of the functions f in
(1) and T in (2) is ϕ0-convex for a suitable ϕ0, but neither f nor T are locally Lipschitz.

Concerning the regularity of functions with ϕ-convex epigraph, we observe first that
∂Pf(x) = ∂f(x) for all x ∈ Ω, both sets being possibly empty. The main result on
the regularity of functions with ϕ-convex epigraph is (see [11, Theorem 5.1, Corollary
6.1])

Theorem 3.9. Let Ω ⊂ R
N be open, and let f : Ω → R ∪ {+∞} be proper, lower

semicontinuous, and such that epi(f) is ϕ-convex. Then there exists a sequence of sets
Ωh ⊆ Ω such that Ωh is compact in dom(f) and

(1) the union of Ωh covers LN -almost all dom(f), i.e.,

LN

(

dom(f) \
⋃

h

Ωh

)

= 0; (11)

(2) for all x ∈ ⋃h Ωh there exist δ = δ(x) > 0, L = L(x) > 0 such that

f is Lipschitz on B(x, δ) with ratio L; (12)
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(3) for all x ∈ ⋃h Ωh

f is (strictly) Fréchet differentiable at x; (13)

in particular, for HN−1-a.e. x ∈ Ω there exists vx ∈ R
N+1, |vx| = 1, such that

〈vx, eN+1〉 < 0 and
NP

epi(f)(x, f(x)) = {λvx : λ ≥ 0}; (14)

(4) f is a.e. twice differentiable in
⋃

h Ωh.

Remark 3.10. The differentiability result goes through showing that at every point x
in
⋃

h Ωh the proximal subgradient ∂f(x) is a singleton, and next that this fact implies
that f is differentiable at x. The set Σ of nondifferentiability points can therefore be
expressed as the union of the sets Σk where ∂Pf has dimension ≥ k, k = 1, . . . , N ,
together with Σ∞ = {x : ∂Pf(x) = ∅}. It can be shown (see [15, Remark 4.15]) that
Σk is countably N − k-rectifiable, k = 1, . . . N , while the set Σ∞, although being of N -
dimensional Lebesgue measure zero, does not admit lower dimensional estimates (see [11,
Example 5.2]).

The next result of this section will be used in Sect. 5.

Proposition 3.11. Let f : Ω → R be a continuous function with ϕ-convex epigraph. Let
x ∈ Ω such that ∂Ff(x) 6= ∅. Then f is (strictly) differentiable at x and there exists a
neighborhood of x where f is semiconvex.

Proof. We prove the differentiability of f at x. The strict differentiability and the semi-
convexity follow from [11, Claim 4 in the proof of Theorem 5.1 and Theorem 6.1]. It
is sufficient, according to [7, Proposition 3.1.5], to show that NP

epi(f)(x, f(x)) contains

a vector ζ such that 〈ζ, en+1〉 < 0, i.e., ∂Pf(x) 6= ∅. By contradiction, assume that
NP

epi(f)(x, f(x)) ⊆ R
N ×{0}, and let z ∈ R

N , |z| = 1, be such that (z, 0) ∈ NP
epi(f)(x, f(x)).

Let v ∈ ∂Ff(x) and Φ be a C1 function in a neighborhood of x such that DΦ(x) = v and
Φ touches f from above at (x, f(x)) (cp. [7, Definition 3.1.6, Proposition 3.1.7]). In par-
ticular, for all y sufficiently near to x, we have f(y) ≤ Φ(y). According to the properties
of (z, 0), there exists r > 0 such that

epi(f) ∩B((x, f(x)) + r(z, 0), r) = ∅.

However, for h > 0 sufficiently small we have that

(x+ hz,Φ(x+ hz)) ∈ epi(f) ∩B((x, f(x)) + r(z, 0), r),

which leads to a contradiction.

Finally, we show that the epigraph of f is nondegenerate, provided f is continuous.

Proposition 3.12. Let Ω ⊆ R
N be open and let f : Ω → R be continuous with ϕ-convex

epigraph. Then epi(f) is nondegenerate.

Proof. We want to show that the set

E := {(x, f(x)) ∈ graph(f) : Nepi(f)(x, f(x)) contains a line}
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has HN -measure zero. To this aim, observe first that it is easy to see that if f : Ω → R

is continuous, then
graph(f) = bdry epi(f).

Recalling Proposition 3.5, part (4), we obtain that graph(f) := G is countably HN -
rectifiable and hence also E is countably HN -rectifiable. By Theorem 3.9, for HN -a.e.
x ∈ Ω the classical tangent hyperplane to G at (x, f(x)), Tangraph(f)(x), exists and is
not vertical. Moreover, for HN -a.e. x ∈ Ω, Tangraph(f)(x) coincides with the approximate
tangent space to G at (x, f(x)) (see [16, Theorem 3.2.19]). Consider now the Lipschitz
map π : RN+1 → R

N , π(x, y) = x. By Theorem [16, 3.2.19], for HN -a.e. x ∈ Ω the
restriction of π to the N -dimensional affine space x + Tangraph(f)(x) is differentiable at
x. Denote by ∇Gπ(x) the corresponding matrix and observe that it has HN -a.e. rank N ,
since the tangent hyperplane Tangraph(f)(x) is not vertical. Therefore the N -dimensional
area element

JG
Nπ(x) =

√

det∇Gπ(x)(∇Gπ(x))T

is HN -a.e. not zero. By the area formula (see, e.g., [16, 3.2.22]), observing that the
restriction of π to graph(f) is 1− 1, we have

HN(π(E)) =

∫

E

JG
Nπ(x) dHN(x).

By Theorem 3.9, the lefthand side of the above expression is zero. Since JG
Nπ(x) isHN -a.e.

not zero, then HN(E) = 0. The proof is concluded.

4. Representation of normal cone and subdifferential

We start our analysis of the set of the points on the boundary of a ϕ-convex set where
the dimension of the normal cone NP

K is strictly greater than 1. Our aim is giving a
characterization in terms of the closure of the convex hull of limits of normals at nearby
points where NP

K has dimension 1. In all this section K will be a ϕ-convex subset of RN ,
mostly nondegenerate.

Proposition 3.5, part (3 ) allows to give the following definition, which is in the spirit of
[7, Definition 3.1.10] (see also [9, Theorem 8.1]).

Definition 4.1. We say that p ∈ R
N , p 6= 0, is a reachable normal of K at x ∈ K if

there exists a sequence {(xn, vn)}n∈RN ∈ K × bdryB(0, 1) such that xn → x, xn 6= x,
vn → p/|p| and NP

K(xn) = {λvn : λ ≥ 0}. In this case, we will write p ∈ NR
K(x) and we

will say that the sequence {(xn, vn) : n ∈ N} reaches (x, p).

By Proposition 3.5, p ∈ NP
K(x). The following Proposition provides a finer result, in the

spirit of [7, Proposition 3.3.4].

Proposition 4.2. Let x ∈ K. Then NR
K(x) ⊆ bdryNP

K(x).

Proof. Let p ∈ NR
K(x), |p| = 1. Let {(xn, vn)}n∈N be a sequence reaching (x, p). Up to

passing to a subsequence, there exists w ∈ R
N with |w| = 1 such that

lim
n→∞

xn − x

|xn − x| = w.
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By definition, w ∈ T F
K (x). We claim that for all t > 0, p+ tw /∈ NP

K(x).
Indeed, we have:

〈p+ tw, w〉 = lim
n→∞

〈p+ tw,
xn − x

|xn − x|〉

= lim
n→∞

〈p− vn,
xn − x

|xn − x|〉+ 〈vn,
xn − x

|xn − x|〉+ t〈w, xn − x

|xn − x|〉

= lim
n→∞

−〈vn,
x− xn
|x− xn|

〉+ t〈w, xn − x

|xn − x|〉

≥ lim
n→∞

−ϕ(xn)|x− xn|+ t〈w, xn − x

|xn − x|〉 = t > 0.

Recalling (4) and (1) in Proposition 3.5, we obtain that p+ tw /∈ NF
K(x) = NP

K(x) for all
t > 0, which concludes the proof.

The following result provides an alternative definition of NR
K(x).

Proposition 4.3. Let K ⊂ R
N be ϕ-convex and nondegenerate, and let x ∈ bdryK.

Then:

NR
K(x) =

{

λp : λ ≥ 0, p = lim pi, |pi| = 1, pi ∈ NP
K(xi),

xi → x, diam
(

NP
K(xi) ∩ bdryB(0, 1)

)

→ 0
}

(15)

Proof. Denote by N ♯ the right hand side of (15). Clearly NR
K(x) ⊆ N ♯. Conversely, let

p ∈ N ♯, p = lim pi, pi ∈ NP
K(xi), |pi| = 1, xi → x. Since NR

K(y) 6= ∅ for all y ∈ bdryK,
choose p∗i ∈ NR

K(xi), |p∗i | = 1, and let yi ∈ K and qi ∈ R
N be such that

|yi − xi| <
1

i
, NP

K(yi) = R
+qi, |qi| = 1, |qi − p∗i | <

1

i
.

Then yi → x and

|qi − p| ≤ |qi − p∗i |+ |p∗i − pi|+ |pi − p|

≤ 1

i
+ diam(NP

K(xi) ∩ brdyB(0, 1)) + |pi − p| → 0.

This concludes the proof.

In the sequel, we will need to represent the tangent cone by limits along special directions.

Lemma 4.4. Let Q be a dense subset of K, and let w ∈ T F
K (x), |w| = 1. Then there

exists a sequence {yn}n∈N in Q such that yn 6= x, yn → x and

lim
n→∞

yn − x

|yn − x| = w.

Proof. By assumption, there exists a sequence xn → x in K \ {x} such that

lim
n→∞

xn − x

|xn − x| = w.
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By the density of Q, for all n ∈ N there exists yn ∈ Q such that

|yn − xn| ≤ |xn − x|2.

Obviously yn → x. Moreover,
|yn − x|
|xn − x| → 1. (16)

In fact,
|xn − x| − |xn − yn|

|xn − x| ≤ |yn − x|
|xn − x| ≤

|yn − xn|+ |x− xn|
|x− xn|

.

Moreover,

∣

∣

∣

∣

yn − x

|yn − x| − w

∣

∣

∣

∣

≤ |yn − xn|
|yn − x| +

∣

∣

∣

∣

xn − x

|yn − x| − w

∣

∣

∣

∣

≤ |yn − xn|
|yn − x| +

∣

∣

∣

∣

xn − x

|xn − x| ·
|xn − x|
|yn − x| − w · |xn − x|

|yn − x| − w

(

1− |xn − x|
|yn − x|

)
∣

∣

∣

∣

≤ |yn − xn|
|yn − x| +

|xn − x|
|yn − x|

∣

∣

∣

∣

xn − x

|xn − x| − w

∣

∣

∣

∣

+

∣

∣

∣

∣

1− |xn − x|
|yn − x|

∣

∣

∣

∣

.

By (16) the proof is concluded, since all summands in the above expression tend to 0.

In order to state our representation formula for the normal cone, we need to introduce a
nondegeneracy condition at a point x of K, namely that NP

K(x) contains no lines, i.e., x is
not the tip of a cusp. This assumption has a first consequence on the Hausdorff measure
of the boundary of K around x.

Proposition 4.5. Let K ⊂ R
N be compact and ϕ-convex. Let x ∈ bdryK be such that

NP
K(x) contains no lines. Then the (N−1)-density of x with respect to bdryK is positive,

i.e.,

lim
ε→0+

HN−1(bdryK ∩B(x, ε))

ωN−1εN−1
> 0,

where ωN−1 is the LN−1-measure of the unit ball in R
N−1. In particular, for every ε > 0,

HN−1(∂K ∩B(x, ε)) > 0.

Proof. By our assumption, the Hausdorff dimension of the convex set T F
K (x) is N . In

fact, otherwise there exists a vector v 6= 0 such that 〈v, w〉 = 0 for all w ∈ T F
K (x), which

implies Rv ⊆ NF
K(x) = NP

K(x). We now compute the N -dimensional density of x with
respect to K. By [15, Remark 4.15 (ii)] we have:

lim
r→0+

LN(K ∩B(x, r))

LN(B(x, r))
=

LN(K ∩B(x, r))

LN(T F
K (x) ∩B(x, r))

LN(T F
K (x) ∩B(x, r))

LN(B(x, r))
> 0.

By the isoperimetric inequality (see [14, Theorem 2, p. 190]), recalling that K and hence
K ∩B(x, ε) for a.e. ε > 0 have finite perimeter in R

N (see (4) in Proposition 3.5 above),
and De Giorgi’s structure theorem (see [14, Theorem 2, (iii), p. 205]), we have that

HN−1(bdryK ∩B(x, ε)) ≥ P (K,B(x, ε)) ≥ const ·
(

LN(K ∩B(x, ε))
)1− 1

N .
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Hence

lim
ε→0

HN−1(bdryK ∩B(x, ε))

ωN−1εN−1
≥ const lim

ε→0

(LN(K ∩B(x, ε))

ωNεN

)1− 1

N

> 0.

The proof is concluded.

The following is our representation theorem.

Theorem 4.6. Let K be ϕ-convex, let x ∈ bdryK and assume that NP
K(x) contains no

lines. Then
NP

K(x) = co(NR
K(x)). (17)

Proof. Since NP
K(x) is closed and convex, it is sufficient to prove that if w ∈ R

N , |w| = 1,
generates an exposed ray of NP

K(x), then there exists a sequence (xn, vn) reaching (x,w).
In fact, by [21, Corollary 18.7.1, p. 169], NP

K(x) is the closed convex hull of its exposed
rays. We recall (see [21, p. 163]) that an exposed ray R

+v of a convex cone C is defined
by the property that there exists a linear functional h which is zero on it and if h(p) = 0
and p ∈ C then p ∈ R

+v.
Let π be a support hyperplane for NP

K(x) at w and let θ ∈ R
N , |θ| = 1, be such that

π = {v : 〈θ, v − w〉 = 〈θ, v〉 = 0}, 〈θ, z〉 ≤ 0 for all z ∈ NP
K(x), and R

+w = π ∩ NP
K(x).

Hence θ ∈ (NP
K(x))

0 = T F
K (x) (recall Proposition 3.5, part (1)). By Proposition 4.5,

Lemma 4.4 and Proposition 3.5, part (3 ), there exists a sequence xn → x, such that
NP

K(xn) ⊆ Rvn, |vn| = 1, such that vn converges to some p0 ∈ NP
K(x) and

xn − x

|xn − x| → θ.

By ϕ-convexity, we have:

〈p0,−θ〉 = lim
n→∞

〈vn,
x− xn
|x− xn|

〉 ≤ lim
n→∞

ϕ(xn)|x− xn| = 0.

Furthermore, since p0 ∈ NP
K(x), we have that 〈p0, θ〉 ≤ 0. Hence 〈p0, θ〉 = 0, and so

p0 ∈ π ∩NP
K(x). Thus, according to the definition of exposed ray, we have p0 = w.

In order to apply the previous results to functions, we focus our attention on normals to
epigraphs. In the remainder of this section, f : Ω → R will denote a continuous function,
with ϕ-convex epigraph, from an open subset Ω of RN .

Lemma 4.7. Let x ∈ Ω such that NP
epi(f)(x, f(x)) = R

+v, v ∈ R
N+1, |v| = 1. Then there

exists a sequence {xn}n∈N in Ω such that xn → x, f is differentiable at xn and

(Df(xn),−1)

|(Df(xn),−1)| → v.

Proof. Since f is differentiable almost everywhere, there exists a sequence {xn}n∈N in Ω
such that xn → x and f is differentiable at x. We may assume

(Df(xn),−1)

|(Df(xn),−1)| → w ∈ R
N ,
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with |w| = 1. By the closedness of the graph of the map x 7→ NP
epi(f)(x, f(x)), we have

that w ∈ NP
epi(f)(x, f(x)), hence w = v.

Definition 4.8. We define the cone NG
epi(f)(x, f(x)) of normal vectors reachable by gra-

dients of f at x ∈ Ω by setting

NG
epi(f)(x, f(x)) := {λv : v ∈ R

N+1, |v| = 1, λ ∈ R
+,∃xn → x, {xn}n∈N ⊂ Ω \ {x}

such that ∃Df(xn) and
(Df(xn),−1)

|(Df(xn),−1)| → v}.

Observe that, in particular, if NP
epi(f)(x, f(x)) = R

+v, then NP
epi(f)(x, f(x)) = NG

epi(f)(x,

f(x)), see Lemma 4.7. Moreover, this is true for LN -a.e. x ∈ Ω, by Theorem 3.9.

We are now ready to state the representation formula for the generalized gradient (we
recall that under our assumptions the generalized gradient equals the proximal subgradi-
ent).

Theorem 4.9. Let x ∈ Ω, and assume that

NP
epi(f)(x, f(x)) contains no lines. (18)

Then
NP

epi(f)(x, f(x)) = coNG
epi(f)(x, f(x)). (19)

Moreover, let v ∈ ∂Pf(x). Then there exist sequences (xhi )h∈N and (γhi )h∈N, i = 1, . . . , N+
1, such that

(i) xhi ∈ Ω for all h ∈ N and i = 1, . . . , N+1, limh→∞ xhi = x for every i = 1, . . . , N+1,
and f is differentiable at xhi for all h ∈ N and i = 1, . . . , N + 1;

(ii) γhi ∈ [0, 1] for all h ∈ N and i = 1, . . . , N + 1 and
∑N+1

i=1 γhi = 1 for all h ∈ N;

(iii) v = limh→∞

∑N+1
i=1 γhi Df(x

h
i ) and, for all i = 1, . . . , N + 1, the sequence

{γhi Df(xhi )}h∈N is bounded.

Proof. In order to prove (19) it is sufficient to show that every exposed ray R
+w of

NP
epi(f)(x, f(x)) belongs to NG

epi(f)(x, f(x)). According to Theorem 4.6 and (14), there

exists a sequence yj → x of points with NP
epi(f)(yj, f(yj)) = R

+vj, |vj| = 1 such that

vj → w. According to Lemma 4.7, there exists a sequence {xj,k}k∈RN of differentiability
points for f such that:

xj,k → yj,
(Df(xj,k),−1)

|(Df(xj,k),−1)| → vj as k → ∞.

We set now xn = xn,n: f is differentiable at xn and

xn → x,
(Df(xn),−1)

|(Df(xn),−1)| → w.

To show (i), (ii) and (iii), let d = dimNP
epi(f)(x, f(x)) and fix v ∈ ∂Pf(x). By (19), there

exist λ > 0 and sequences (xhi )h∈N, (λ
h
i )h∈N, λ

h
i ∈ [0, 1], i = 1, . . . , d+ 1,

∑d+1
i=1 λ

h
i = 1 for

all h ∈ N such that:
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- f is differentiable at xhi and limh→∞ xhi = x for every i = 1, . . . , d+ 1;

- it holds

(v,−1)

|(v,−1)| = λ lim
h→∞

d+1
∑

i=1

λhi
(Df(xhi ),−1)

|(Df(xhi ),−1)| . (20)

We claim now that there necessarily exist k ∈ {1, . . . , d+ 1} and M > 0 such that, up to
rearranging indexes,

- suph |Df(xhi )| ≤M for all i = 1, ..., k;

- suph |Df(xhi )| = +∞ for all i ∈ {k + 1, ..., d+ 1}, where we mean that the last set is
empty if k = d+ 1.

In fact, if for all i = 1, . . . , d + 1 it holds that suph |Df(xhi )| = +∞, then the N + 1-
component of the limit in (20) vanishes.
According to the definition of the index k, we then have

lim
h→∞

λhi
|(Df(xhi ),−1)| = 0, for i = k + 1, ..., d+ 1,

lim
h→∞

k
∑

i=1

λλhi |(v,−1)|
|(Df(xhi ),−1)| = 1, for i = 1, ..., k.

We set, for i = 1, . . . , d+ 1,

αh
i =

λλhi |(v,−1)|
|(Df(xhi ),−1)|

and

γhi =



































αh
i

1−
d+1
∑

j=k+1

αh
j

k
∑

j=1

αh
j

for i = 1, ..., k

αh
i for i = k + 1, ..., d+ 1.

We have, for every i, h ∈ N that γhi ≥ 0, γhi − αh
i → 0 as h→ ∞ for i = 1, ..., k and

d+1
∑

i=1

γhi = 1.

Now we observe that

(v,−1) = lim
h→∞

d+1
∑

i=1

γhi (Df(x
h
i ),−1)

and, by construction, the sequences {γhi Df(xhi ) : h ∈ N}, i = 1, . . . , d + 1 are bounded.
The proof is concluded.

Remark 4.10. Recalling that a set K is epi-Lipschitz at x if and only if the normal cone
NC

K(x) contains no lines (see Theorem 3 in [22]), Theorem 4.9 is not surprising. Moreover,
let K be the epigraph of f(x) =

√

|x|, x ∈ R. Then NP
epi(f)(0, 0) = R× (−∞, 0] contains
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the line R × {0}, and the representation formulas (17) and (19) do not hold. However,
parts (i), (ii), and (iii) for ∂Pf(0) = R in the statement of Theorem 4.9 do hold. In
fact, let α ≥ 0. By setting for h ∈ N, xh1 = −1/h, xh2 = 1/h, γh1 = (1 − 2α/

√
h)/2, and

γh2 = 1 − γh1 , properties (i) to (iii) are satisfied for v = α ∈ ∂Pf(0). The case α < 0
is symmetric. Actually, we conjecture that the restriction (18) in Theorem 4.9 is not
necessary for (i)–(iii).

5. Viscosity solutions

For the theory of viscosity solutions and its application to Optimal Control we refer to
[3].

In all this section, Ω will be an open subset of RN and

H : Ω× R× R
N → R

will be a continuous function. We are interested in the following general nonlinear first
order equation:

H(x, u,Du) = 0, x ∈ Ω (21)

in the unknown u : Ω → R.

Definition 5.1. A continuous function u : Ω → R is called a viscosity subsolution of
equation (21) if for any x ∈ Ω it satisfies:

H(x, u(x), p) ≤ 0, ∀p ∈ ∂Fu(x).

In the same way, a continuous function u : Ω → R is called a viscosity supersolution of
equation (21) if for any x ∈ Ω it satisfies:

H(x, u(x), q) ≥ 0, ∀q ∈ ∂Fu(x).

A function u which is both sub- and supersolution is called a viscosity solution of equation
(21).

In this section we switch to statements of “concave type�, in order to simplify the com-
parison with the existing literature. We focus our attention on noncoercive Hamiltonians,
i.e., we do not require that lim|p|→+∞H(x, u, p) = +∞. Consequently we allow nonLips-
chitz solutions. The following result permits to estimate the Hamiltonian at limit points
of sequences of gradients.

Lemma 5.2. Let ϕ : Ω → [0,+∞[ be continuous, and let u : Ω → R be continuous, with
ϕ-convex hypograph. Let α : Ω → R and H : Ω×R×R

N → R be continuous and assume
that H(x, u, ·) is convex for all (x, u) ∈ Ω× R and

H(y, u(y), Du(y)) ≤ α(y)

for all y ∈ dom(Du). Let x̄ ∈ dom(∂Pu) and v ∈ ∂Pu(x̄) be such that there exist sequences
(xhi )h∈N, x

h
i ∈ Ω, and (γhi )h∈N such that (i)–(iii) of the statement of Theorem 4.9 hold (with

f replaced by u).
Then, if either
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(a) (x, u) 7→ H(x, u, p) is continuous uniformly with respect to p ∈ {Du(x) : x ∈
dom(Du)},

or

(b) H(x, u, λp) = λH(x, u, p) for all (x, u, p) ∈ Ω× R× R
N and all λ ≥ 0,

then

H(x̄, u(x̄), v) ≤ α(x̄).

Proof. Let (xhi )h∈N, x
h
i ∈ Ω, and (γhi )h∈N satisfy the assumptions. Then

H(x̄, u(x̄), v) = lim
h→∞

H
(

x̄, u(x̄),
d+1
∑

i=1

γhi Du(x
h
i )
)

≤ lim sup
h→∞

d+1
∑

i=1

γhi H(x̄, u(x̄), Du(xhi ))

= lim sup
h→∞

(

d+1
∑

i=1

γhi H(xhi , u(x
h
i ), Du(x

h
i ))+

+
d+1
∑

i=1

γhi

(

H(x̄, u(x̄), Du(xhi ))−H(xhi , u(x
h
i ), Du(x

h
i ))
)

)

. (22)

The first summand in the above expression is ≤ α(x̄) by assumption.
The second summand tends obviously to zero, as h→ ∞, if (a) is valid.
Let now (b) hold. Then the second summand equals

d+1
∑

i=1

(

H(x̄, u(x̄), γhi Du(x
h
i ))−H(xhi , u(x

h
i ), γ

h
i Du(x

h
i ))
)

.

Since the sequences {γhi Du(xhi )} are bounded, the above expression tends to zero as well,
for h→ ∞. The proof is concluded.

Theorem 5.3. Let Ω be an open subset of RN , u : Ω → R be a continuous function with
ϕ-convex hypograph, and assume that, for all x ∈ Ω, u satisfies the statements (i), (ii),
(iii) of Theorem 4.9. Let H : Ω × R × R

N → R and α : Ω → R be continuous. Assume
furthermore that H(x, u, ·) is convex for all (x, u) ∈ Ω × R and either (a) or (b) in the
statement of Lemma 5.2 hold. Suppose finally that

H(x, u(x), Du(x)) = α(x) for a.e. x ∈ Ω.

Then u(·) is a viscosity solution of the equation H(x, u,Du) = α.

Proof. The proof is divided into three claims, and follows the lines of the proof of [7,
Proposition 5.3.1].

Claim 1: u(·) satisfies the equation at all points of differentiability.
Indeed, let x ∈ Ω be such that there exists Du(x) and let (xk)k∈N be a sequence such that
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xk → x, Du(xk) exists and H(xk, u(xk), Du(xk)) = α(xk). We show that the sequence of
gradients (Du(xk))k∈N is bounded in R

N . By asssumption,

ζk :=
(−Du(xk), 1)
|(−Du(xk), 1)|

∈ NP
hypo(u)(xk, u(xk));

and if there exists a subsequence (xkm)m∈N such that |Du(xkm)| → +∞, then (we can as-
sume ζkm → ζ ∈ R

N) we have ζ = (v, 0) ∈ NP
hypo(u)(x, u(x)) according to part (1) of Propo-

sition 3.5. But u is differentiable at x, hence ∂Pu(x) ⊆ {Du(x)}. However, (−Du(x), 1) ∈
NF

hypo(u)(x, u(x)) = NP
hypo(u)(x, u(x)) = R

+(−Du(x), 1). By convexity of NP
hypo(u)(x, u(x)),

it follows that ∂Pu(x) contains infinitely many elements, which leads to a contradiction.
Hence there exists a subsequence (still denoted by (xk)k∈N) such that Du(xk) converges,
say Du(xk) → v. By regularity, we have (−v, 1) ∈ NP

hypo(u)(x, u(x)) = R
+(−Du(x), 1),

hence v = Du(x). By continuity of H and α, it follows H(x, u(x), Du(x)) = α(x). This
concludes the proof of Claim 1.

Claim 2: Let x ∈ Ω, v ∈ ∂Fu(x). Then H(x, u(x), v) ≤ α(x).
To show this claim, apply Lemma 5.2.

Claim 3: Let x ∈ Ω, v ∈ ∂Fu(x). Then H(x, u(x), v) ≥ α(x).
By Proposition 3.11, u(·) is differentiable at x. From Claim 1 it follows that actually

H(x, u(x), Du(x)) = α(x).

The proof is concluded.

Corollary 5.4. Let Ω ⊆ R
N be open and u : Ω → R be continuous with ϕ-convex

hypograph and assume that, for all x ∈ Ω, Nhypo(u)(x, u(x)) contains no lines. Let
H : Ω× R× R

N → R and α : Ω → R be continuous. Assume furthermore that H(x, u, ·)
is convex for all (x, u) ∈ Ω×R and either (a) or (b) in the statement of Lemma 5.2 hold.
Suppose finally that

H(x, u(x), Du(x)) = α(x) for a.e. x ∈ Ω.

Then u(·) is a viscosity solution of the equation H(x, u,Du) = α.

Proof. By Theorem 4.9, Theorem 5.3 can be applied.

Corollary 5.5. Let Ω ⊂ R
N be bounded and open and let H : Ω×R

N → R and α : Ω → R

be satisfying the assumptions of Theorem 5.3, together with the following:
there exists ω : [0,+∞) → R continuous, such that ω(0) = 0 and

|H(x, p)−H(y, p)| ≤ ω
(

|x− y|(1 + |p|)
)

for all x, y ∈ Ω and p ∈ R
N . Let u1, u2 : Ω̄ → R be continuous, with ϕ-convex hypograph,

and satisfying the statements (i)–(iii) of Theorem 4.9. Assume furthermore that

(a) u1 = u2 on bdryΩ;

(b) H(x,Du1(x)) = H(x,Du2(x)) = α(x) a.e. on Ω;

(c) there exists ψ : Ω̄ → R continuous, continuously differentiable on Ω such that ψ ≤ u1
on Ω̄ and

sup
x∈Ω′

{

H(x,Dψ(x))− α(x)
}

< 0 ∀Ω′ ⊂⊂ Ω.
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Then u1 = u2 on Ω.

Proof. Since u1 and u2 are viscosity solutions of the equation H(x,Du(x)) = α(x), the
result is a consequence of Theorem 5.9, p. 82, in [3].

The last result of the section concerns viscosity solutions of equations with a convex
Hamiltonian which are continuous and have ϕ-convex epigraph. We recall (see [12]) that
such solutions may arise in some minimal time problem. By Theorem 3.9, a function with
ϕ-convex epigraph is a.e. differentiable. By adding the information that it is a viscosity
solution of a Hamilton-Jacobi equation, one obtains that it is of class C1 on an open set
with full measure.

Proposition 5.6. Let u : Ω → R be a continuous function with ϕ-convex epigraph such
that u is a viscosity solution of H(x, u,Du) = 0. Assume that H is convex in the third
variables and is such that for every (x, u) ∈ Ω × R the zero level of H(x, u, ·) does not
contain line segments. Then there exists an open subset Ω′ ⊂ Ω such that LN(Ω\Ω′) = 0,
u ∈ C1(Ω′) and H(x, u(x), Du(x)) = 0 for all x ∈ Ω′.

Proof. There exists an open set Ω′ with full measure in Ω where u(·) is locally semiconvex
by [11, Theorem 5.1, Theorem 6.1]. Then apply [7, Proposition 5.3.4].

Example 5.7. Define

H(x, u, p) = e
1

1+|u|
−p − eg(x), g(x) =

√

|x| − 1

2(|x|+
√

|x|)
.

The function
u(x) = sign(x)

√

|x|.
is a viscosity solution of H(x, u,Du) = 0 by Theorem 5.3.

Example 5.8. The Hamiltonians

H1(x, p) =

{

0 x < 0, p ∈ R

x|p| x ≥ 0, p ∈ R.

and

H2((x1, x2), (p1, p2)) = −
〈

(p1, p2), (|x1|,
sign(x1)

√

|x1|
2

)
〉

satisfy (b) of Lemma 5.2, together with the other assumptions of continuity and convexity.
The functions

u1(x) =

{

−
√

|x| x < 0

0 x ≥ 0
and u2(x1, x2) = x2 −

√

|x1|

satisfy the assumptions of Theorem 5.3, and therefore are viscosity solutions of the equa-
tions

H1(x,Du(x)) = 0 and H2((x1, x2), Du(x1, x2)) = 0

respectively.
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Finally, we reconsider the function defined in (2).

Example 5.9. The function defined in (2) is a viscosity solution of the Hamilton-Jacobi
equation

H((x, y), (Tx, Ty)) = 1,

where H((x, y), (p, q)) = |p|, by Proposition 2.3, p. 240, in [3]. The same result could be
recovered by our Theorem 5.3 above.

6. Propagation of singularities

This section is devoted to the study of the singular set of a continuous function f with
ϕ-convex epigraph. The first subsection is concerned with sufficient conditions in order
the subdifferential of f be not a singleton on a Lipschitz arc. Our argument is based on
a study of the normal cone to the epigraph, and so the first result of the subsection is
devoted to the propagation of singularities at boundary point of ϕ-convex sets. Then we
apply this result to functions. The main source for this subsection is Chapter 4 in [7] (see
also [1]). The second subsection is concerned with sufficient conditions in order both the
subdifferential and the superdifferential of f be empty on a Lipschitz arc.

6.1. Propagation of nonsmoothness

Proposition 6.1. Let K be ϕ-convex and nondegenerate, and let x0 ∈ K and p0 ∈ R
N

be such that
p0 ∈ bdryNP

K(x0) \NR
K(x0).

Then there exist ρ > 0, δ > 0 and a Lipschitz arc x : [0, ρ] → bdryK such that:

x(0) = x0, (23)

lim
s→0+

x(s)− x0
s

6= 0, (24)

diam{v ∈ NP
K(x(s) : |v| = 1} ≥ δ for all s ∈ [0, ρ]. (25)

Proof. The proof is divided into two claims, and it is inspired by [7, §4.2].

Claim 1: Let p0 ∈ bdryNP
K(x0), q ∈ R

N \ {0} be such that:

〈q, p− p0〉 ≤ 0, ∀p ∈ NP
K(x0). (26)

Then there exist ρ > 0 and a Lipschitz arc x : [0, ρ] → bdryK satisfying (23), (24) and

lim
s→0+

x(s)− x0
s

= q, (27)

p(s) := p0 + q − x(s)− x0
s

∈ NP
K(x(s)) for all s ∈ [0, ρ]. (28)

Moreover,
Lip(x(·)) ≤ 2|p0 + q|. (29)

Proof of Claim 1. Let r > 0 be so small that 4rϕ(y) ≤ 1 for all y ∈ B(x0, r). Set
ρ = r/(2|p0 + q|). Then, recalling Proposition 3.2, for all s ∈ [0, ρ] the projection x(s) :=
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πK(x0+s(p0+q)) is unique and is Lipschitz with respect to s with ratio 2|p0+q|. Observe
that p0 + q /∈ NP

K(x0), because q 6= 0 is normal to NP
K(x0) at p0. As a consequence,

x(s) 6= x0 for all s ∈ [0, ρ].
By construction, x0 + s(p0 + q) − x(s) ∈ NP

K(x(s)), whence p(s) ∈ NP
K(x(s)). Moreover

|p(s)| ≤ 2|p0 + q| for all s ∈ [0, ρ]. By definition of p(s) and Proposition 3.5, we have

〈p(s)− p0, p(s)− (p0 + q)〉 = 〈p(s)− p0,
x0 − x(s)

s
〉

≤ 1

s
(ϕ(x0)|p0|+ ϕ(x(s))|p(s)|)|x(s)− x0|2. (30)

Let sk → 0 be such that p(sk) → p̄ ∈ NP
K(x0). Then by passing to the limit in (30) and

recalling that x(·) is Lipschitz, we obtain:

|p̄− p0|2 − 〈q, p̄− p0〉 ≤ 0.

By (26) we obtain that p̄ = p0. As a consequence we obtain (27). �

Claim 2: Let p0 ∈ bdryNP
K(x0) \ NR

K(x0), and let q 6= 0 be such that 〈q, p − p0〉 ≤ 0 for
all p ∈ NP

K(x0). Let x : [0, ρ] → K be the arc constructed in Claim 1, corresponding to
p0, q. Then that there exists δ > 0 such that diam{v ∈ NP

K(x(s) : |v| = 1} ≥ δ for all
s ∈ [0, ρ].

Proof of Claim 2. If there exists a sequence sk → 0 such that diam{v ∈ NP
K(x(sk) : |v| =

1} → 0, then by Proposition 4.3

p0 = lim
k→∞

p(sk) ∈ NR
K(x0),

a contradiction.

Corollary 6.2. Let Ω ⊂ R
N be open and let f : Ω → R be continuous with ϕ-convex

epigraph. Let x0 ∈ Ω be such that:

bdryNP
epi(f)(x0, f(x0)) \NR

epi(f)(x0, f(x0)) 6= ∅. (31)

Then there exists ρ > 0, δ > 0 and a Lipschitz arc y : [0, ρ] → Ω such that:

lims→0+
y(s)−x0

s
6= 0,

f is not differentiable at y(s) for all s ∈ [0, ρ],

f(y(s)) is Lipschitz continuous,

and y(s) 6= x0 for all s ∈ (0, δ].

Proof. By Proposition 3.12, epi(f) is nondgenerate. By Proposition 6.1, there exists
a Lipschitz arc x(s) : [0, ρ] → bdry epi(u) satisfying (23), (24), (25). Then x(s) =
(y(s), f(y(s))) and both y(·) and f(y(·)) are Lipschitz. The proof is concluded.

Remark 6.3. If ∂Pf(x0) is nonempty and bounded, then (31) reads as:

bdry ∂Pf(x0) \ {v ∈ R
N : v = lim

h→∞
Df(xh), xh → x, ∃Df(xh)} 6= ∅.

Recalling Proposition 3.5, part (1), there exists a neighborhood U of x0 where ∂Pf
is nonempty and bounded. Hence f|U is semiconvex, and one can apply [7, Theorem
4.2.2], which yields numbers ρ, δ > 0 and a Lipschitz arc x(·) such that x(0) = x0,
diam(∂Pf(x(s))) ≥ δ for all s ∈ [0, ρ] and x(s) 6= x0 for all s ∈ [0, ρ].
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Example 6.4. Consider the function

f(x, y) = (x2 + y2)1/4.

Then f has ϕ0-convex epigraph, with ϕ0 = 1/2, and the only singular point is (0, 0).
Actually, bdryNP

epi(f)(0, 0) = R
2 × {0}, and condition (31) is not satisfied.

6.2. Propagation of non-sub/superdifferentiability

In this subsection we are first concerned with continuous functions with smooth graph,
and study the propagation of “vertical tangents� to the graph. Then we apply this result
to a suitable neighborhood of a ϕ-convex epigraph, obtaining propagation of vertical
tangents for general continuous functions with ϕ-convex epigraph.

Let Ω ⊆ R
N be open and let f : Ω → R be continuous and such that its graph is a

C1,1-manifold, i.e., for all x ∈ Ω there exists a neighborhood Ux ⊂ R
N+1 of (x, f(x)) and

a C1,1-function g : Ux → R such that

graph(f) ∩ Ux =
{

(x, ξ) ∈ R
N × R : g(x, ξ) = 0

}

, Dg(x, ξ) 6= 0 ∀(x, ξ) ∈ Ux.

Let x0 ∈ Ω be such that the normal cone to epi(f) at (x, f(x)) is horizontal, i.e.,

∂g

∂ξ
(x0, f(x0)) = 0.

We seek for sufficient conditions in order that there exists (at least) a Lipschitz curve
γ : [−a, a] → Ω such that

γ(0) = x0, g(γ(t), f(γ(t))) = 0, and
∂g

∂ξ
(γ(t), f(γ(t))) = 0 for all t ∈ (−a, a).

This amounts to saying that the system of two equations in N + 1 variables

{

g(x, ξ) = 0
∂g
∂ξ
(x, ξ) = 0

(32)

can be solved in a neighborhood of (x0, f(x0)). To this aim, we observe first that the
Lipschitz version of the classical implicit function theorem (see, e.g., [8, Sect. 7.1]) cannot
be used. More precisely, recall that the generalized Jacobian matrix ∂G of the R2-valued
Lipschitz map G := (g, ∂g/∂ξ) is defined by (see [9, p. 133])

∂G(x, ξ) = co
{

lim
i→∞

JG(xi, ξi) : JG(xi, ξi) exists and xi → x, ξi → ξ
}

,

where JG denotes the classical Jacobian matrix. We have:

Proposition 6.5. Let Ω ⊆ R
N be open and let f : Ω → R be continuous and such that

graph(f) = {(x, ξ) ∈ R
N+1 : g(x, ξ) = 0}, where g : Ω × R → R is of class C1,1. Let the

map G : Ω×R → R
2 be defined by G(x, ξ) = (g(x, ξ), ∂g(x, ξ)/∂ξ) and let x0 ∈ Ω be such

that G(x0, f(x0)) = (0, 0). Then there exists a matrix M ∈ ∂G(x0, f(x0)) such that

rk(M) < 2.
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Proof. Set Γ = graph(f). Without loss of generality we can assume thatDg(x0, f(x0)) 6=
0 (otherwise the proof is concluded) and that g(x, ξ) is positive on {(x, ξ) : ξ > f(x)} and
negative on {(x, ξ) : ξ < f(x)}. Hence ∂g/∂ξ(x, f(x)) ≥ 0 for all x ∈ Ω, which implies
that (x0, f(x0)) is a minimum point for ∂g/∂ξ(x, ξ) under the constraint (x, ξ) ∈ Γ. By
the nonsmooth version of the Lagrange multipliers rule, (see, e.g., [9, Theorem 3.1.3])
there exists a matrix M ∈ ∂G(x0, f(x0)) such that rk(M) < 2.

However, a slightly more general version of the classical implicit function theorem can be
used in order to solve (32), at least in some examples. We state this theorem, due to
Hildebrandt and Graves [17], in a particular version, directly applicable to (32).

Theorem 6.6. Let D ⊆ R
N−1 × R

2 be open and let G : D → R
2 be Lipschitz. Let

(y0, z0) ∈ D be such that G(y0, z0) = 0 and let ρ0, σ0 > 0 be such that B̄(y0, ρ0) ×
B̄(z0, σ0) ⊂ D. Assume furthermore that there exists a linear invertible operator A :
R

2 → R
2 and 0 < ρ ≤ ρ0, α0 ≥ 0 such that

(i) |G(y, z2)−G(y, z1)−A(z2−z1)| ≤ α0|z2−z1| < ‖A−1‖−1|z2−z1| for all y ∈ B̄(y0, ρ0),
for all z1, z2 ∈ B̄(z0, σ0);

(ii) |G(y, z0)| ≤ (‖A−1‖−1 − α0)σ0 for all y ∈ B̄(y0, ρ).

Then for each y ∈ B̄(y0, ρ) the system G(y, ·) = 0 has a solution z(y) which is unique
in that ball. Moreover, the function y 7→ z(y) is Lipschitz, the Lipschitz constant being
dependent only on the Lipschitz constant of G.

Proof. The above statement is a particular case of Theorem 3 in [17]. The Lipschitz
continuity of z(·) is not stated there; it is however easy to obtain by the successive
approximation method (see, e.g., [5, Theorem 2.1]).

Here a simple case is presented, where the propagation occurs and Theorem 6.6 can be
applied.

Example 6.7. Let f(x, y) = sign(x)
√

|x|. The graph of f is a C1,1-manifold, globally
represented by the C1,1-constraint g(x, y, ξ) = 0, g(x, y, ξ) = x− sign(ξ)ξ2. Of course, the
system (32) can be readily solved by setting x(y) = ξ(y) ≡ 0. However, we wish to show
that Theorem 6.6 can be applied. So, we are going to use Theorem 6.6 for the system
G(x, y, ξ) := (x− ξ2,−2ξ)− (0,−2η) = (0, 0) in a neighborhood of the point (η2, 0, η), for
0 < η < 1/6. To this aim, let ρ0 be arbitrary and σ0 = η/2. Let N = 2, D = R

2×(0,+∞)
and set

A =
∂G

∂(x, ξ)
(η2, 0, η) =

(

1 −2η
0 −2

)

z0 = (η2, η), y0 = 0 (the space R
2 in Theorem 6.6 is meant to be generated by the (x, ξ)-

variables, while R is meant to be generated by the y-variable). For ξ, ξ′ ∈ B̄(η, η/2),
x, x′ ∈ R, y ∈ R one has

∣

∣

∣

∣

G(x′, y, ξ′)−G(x, y, ξ)− A

(

x′ − x
ξ′ − ξ

)
∣

∣

∣

∣

= |((ξ′ − ξ)(2η − (ξ + ξ′)), 0)|

≤ 3η |(x′ − x, ξ′ − ξ)| < 1

2
|(x′ − x, ξ′ − ξ)| .
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Moreover, ‖A−1‖−1 = 1, so that condition (i) of Theorem 6.6 is satisfied. Condition (ii)
holds trivially. Thus, Theorem 6.6 yields, for each η, Lipschitz functions xη(y), ξη(y) such
that

G(xη(y), y, ξη(y)) = (0,−2η) for all y

(of course xη(y), ξη(y) are readily computable). Since the Lipschitz constants are inde-
pendent of η, by letting η ↓ 0 one obtains Lipschitz functions x(·), ξ(·) such that

G(x(y), y, ξ(y)) = (0, 0) for all y.

More in general, Theorem 6.6 may be used according to a similar pattern. In fact, let
NP

epi(f)(x, f(x)) = R
+(v, 0). Recalling Theorem 4.9, there exists a sequence xn → x0 such

that NP
epi(f)(xn, f(xn)) = R

+vn, vn → (v, 0), vn 6= (v, 0). This fact can be rewritten as

ηn := ∂g(xn, f(xn))/∂ξ → 0; if the system

{

g(x, ξ) = 0
∂g
∂ξ
(x, ξ) = ηn

can be solved around (xn, f(xn)) by Lipschitz functions, with domains and Lipschitz
constants independent of n, then by passing to the limit a Lipschitz solution of (32) is
obtained.

In the following example we provide a function where no propagation occurs.

Example 6.8. Let

f(x, y) =

{

4
√

x+ y8 − y2 for x ≥ 0

y2 − 4
√

y8 − x for x < 0.

The graph of f is a C1,1-manifold. The only point with horizontal normal cone is (0, 0, 0).

Let now f be a function with ϕ-convex epigraph. We recall (see Theorem 3.2) that every
sufficiently small ε-neighborhood of epi(f) is a C1,1-manifold. The point of the last result
of this section is showing that this neighborhood is actually the graph of a function fε,
to which one may try to apply Theorem 6.6. Then a Lipschitz curve in graph(f) with
horizontal normals can be obtained by projecting a Lipschitz singular curve in graph(fε).

Proposition 6.9. Let Ω ⊂ R
N be open, and let f : Ω̄ → R ∪ {+∞} be continuous in Ω̄.

Let ϕ : epi(f) → [0,+∞[ be continuous and assume that epi(f) is ϕ-convex. Then, for
all open set Ω′ ⊂ Ω, with Ω̄′ compact and contained in Ω, and for all ε > 0 there exists a
continuous function fε,Ω′ : Ω′ → R with the properties:

a) there exists 0 < η < ε such that graph(fε,Ω′) = bdryB(epi(f), η)∩ (Ω′ ×R), so that
graph(fε,Ω′) is a C1,1-manifold;

b) for all x ∈ Ω′, fε,Ω′(x) ≤ f(x);

c) for every x ∈ Ω′,

NP
epi(fε,Ω′ )(x, fε,Ω′(x)) ⊆ NP

epi(f)(πepi(f)(x, fε,Ω′(x))).
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In particular, if γ : [a, b] → graph(fε,Ω′) is a Lipschitz curve such that for all s ∈ [a, b]
one has

〈v, eN+1〉 = 0 for all v ∈ Nepi(fε,Ω′ )(γ(s))

then, for all s ∈ [a, b] the normal cone NP
epi(f)(πepi(f)(γ(s))) contains a vector w(s) such

that 〈w(s), eN+1〉 = 0. Moreover, w(·) is Lipschitz.

Proof. Let Ω′ ⊂ Ω be such that Ω̄′ ⊂ Ω is compact, and fix ε > 0. Let 0 < η̄ < ε be so
small that B̄(Ω′, η̄) ⊂ Ω, and set

ϕη̄ := max{(ϕ(x, f(x)) : x ∈ B̄(Ω′, η̄)} < +∞.

Let 0 < η < η̄ be so small that 4ηϕη̄ < 1. Fix x ∈ Ω′ and define

fε,Ω′(x) := inf{y ∈ R : (x, y) ∈ epiη(f)},

where epiη(f) denotes the closed η-neighborhood of epi(f). Observe that fε,Ω′(x) is finite,
and is actually a minimum. Indeed, if a sequence yn → −∞ exists, together with a
sequence {xn} ⊂ B̄(x, η) such that |(xn, f(xn))− (x, yn)| ≤ η, then, up to a subsequence,
xn → x̄, f(xn) → f(x̄) = −∞, a contradiction. Choose (x, f(x)) ∈ πepi(f)(x, fε,Ω′(x)),
and observe that (x, fε,Ω′(x)) ∈ Unp(epi(f)). Moreover, by construction, fε,Ω′(x) ≤ f(x)
and graph(fε,Ω′) ⊆ bdry epiη(f)∩ (Ω′ ×R). We wish to show that actually graph(fε,Ω′) =
(bdry epiη(f)) ∩ (Ω′ × R). To this aim, assume by contradiction that there exist x̄ ∈ Ω′

and ȳ ∈ R such that (x̄, ȳ) ∈ bdry epiη(f) ∩ (Ω′ × R), but ȳ > fε,Ω′(x̄). Set (x̃, f(x̃)) =
πepi(f)(x̄, fε,Ω′(x̄)), v̄ = (x̄, fε,Ω′(x̄)) − (x̃, f(x̃)), and (x̃, ỹ) = (x̄, ȳ) − v̄. Observe that, by
construction, ỹ > f(x̃). However, since |v̄| = η, by the uniqueness of the projection it
follows that (x̃, ỹ) ∈ bdry epi(f). Thus ỹ = f(x̃), a contradiction. Hence property a)
follows. Property b) holds by construction, while c) follows from Corollary 3.4 above.
Let now γ(·) be a Lipschitz curve in graph(fε,Ω′) such that Nepi(fε,Ω′ )(γ(s)) is horizontal.
Recalling a), the unit external normal to epi(fε,Ω′) at γ(s) can be computed as v(s) :=
Ddepi(f)(γ(s)) which is Lipschitz continuous w.r.t. s. Recalling Corollary 3.4, we have
that w(s) = v(s). The proof is concluded.

Remark 6.10. The Moreau regularization of f , i.e., for a given λ > 0 the function

eλ(x) := min
x′∈RN

{

f(x′) +
1

λ
|x′ − x|2

}

,

does not satisfy the property c) in the above statement, as it is always locally Lipschitz.
The same happens with a regularization by convolution.

As a conclusion, we go back to the examples presented in the Introduction, and show that
the structure of their singular sets is covered by our results.

Example 6.11. Let f be the function defined in (1). All points of nonsmoothness, i.e.,
the points of the set A := {xy = 0}, satisfy the assumptions of Corollary 6.2. All
points not in A where both sub and superdifferential of f are empty can be treated as
in Example 6.7. Now consider the points (0,±1) and (±1, 0): the same method can be
applied to the function fε,Ω′ constructed in Proposition 6.9, for ε > 0 sufficiently small, in
a neighborhood of points in the boundary of epi(f) which project onto (0,±1) or (±1, 0).
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Example 6.12. The minimal time function T described in (2) satisfies the assumptions
of Proposition 6.7 at all points (x, 0), x > 0.

Finally, we consider another minimum time function, arising in a classical linear problem:
the rocket railroad car (see, e.g., [3, p. 242] and [11]).

Example 6.13. Set R− = {(x1, x2) : x1 > −1
2
x2|x2|}, R+ = {(x1, x2) : x1 < −1

2
x2|x2|}

and

f(x1, x2) =







x2 + 2

√

x2
2

2
+ x1, (x1, x2) ∈ R−

−x2 + 2

√

x2
2

2
− x1, (x1, x2) ∈ R+

The function f is actually the minimum time to reach the origin for the control system:

{

�ξ1 = ξ2, ξ1(0) = x1
�ξ2 ∈ [−1, 1], ξ2(0) = x2

Assumptions of Corollary 6.2 are satisfied at all points of {(x1, x2) : x1 = −1
2
x2|x2|},

which are exactly the nondifferentiability points for f .

Acknowledgements. The authors are indebted with Prof. G. De Marco, who suggested the

proof of Proposition 6.5.
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