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1. Introduction

Minimization problems in the set of convex functions, of the following form:

inf
u∈H1(Ω)
u convex

∫

Ω

g(x, u(x),∇u(x)) dx (1)

arise in several fields of applied mathematics (see [2], [5]). Even for a very simple and well-
behaved g, the convexity constraint raises a number of mathematical difficulties. Even
the simplest case, that is the projection problem:

inf
u∈H1(Ω)
u convex

∫

Ω

|∇u− q0|
2 (2)

(where q0 ∈ L2(Ω)N is given) has yet to be investigated in detail, in particular regarding
regularity issues. When dealing with this type of minimization problems on a closed cone
(here the cone of convex functions), it is natural to try to identify the polar cone in order
to write an Euler-Lagrange equation. A first proposal in this direction has been given in
[7]; unfortunately the corresponding equation is difficult to handle in general.

In the present paper we propose a different representation of the polar cone of the set
of convex functions (more precisely: of the polar cone of the set of gradients of convex
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functions). It makes use of the set S of measure-preserving maps (see the precise defi-
nition and statements in the next section). We prove that every vector field in L2(Ω)N

can be decomposed as the sum of the gradient of a convex function and an element of
the closed cone generated by (S − id) (Section 3). This is to be compared to the well-
kown polar decomposition of Y. Brenier [1], which is a composition instead of a sum.
This result is actually a direct consequence of a result of Y. Brenier (see [1] and Proposi-
tion 2.1). Another way to express the same decomposition is to make use of the so-called
bistochastic measures, a special case of Young measures (Section 4). Some applications to
variational problems of the form (1) are given in Sections 5 (Euler-Lagrange equations)
and 6 (regularity).

2. Representation of the polar cone of gradients of convex functions

In the whole paper, Ω is some bounded open convex subset of RN , N ≥ 1. We denote by
〈·, ·〉 the usual scalar product in the Hilbert space L2(Ω)N . We consider

K := {q ∈ L2(Ω)N : q = ∇u, for some convex function u}.

It is a closed convex cone in L2(Ω)N . Its polar cone is defined as usual:

K− := {p ∈ L2(Ω)N : 〈p, q〉 ≤ 0, ∀q ∈ K}.

We make use of the set of measure-preserving maps:

S := {s measurable : Ω → Ω : s♯dx = dx}.

Here dx denotes Lebesgue’s measure and s♯dx is the measure defined by

∫

Ω

ϕ(x)s♯dx =

∫

Ω

ϕ(s(x))dx

for every bounded continuous function ϕ.

Let us start with a characterization of K:

Proposition 2.1 (Brenier). Let q ∈ L2(Ω)N ; then q ∈ K if and only if

〈q, s− id〉 ≤ 0, for all s ∈ S.

The proof is already given in [1], we recall it here briefly for the sake of completeness.

Proof. Assume first that q ∈ K, q = ∇u with u convex. Let s ∈ S; by convexity, one
has ∇u(x) · (s(x)− x) ≤ u(s(x))− u(x), hence:

〈∇u, s− id〉 ≤

∫

Ω

u(s(x))dx−

∫

Ω

u(x)dx = 0.

Conversely, assume that q satisfies the inequalities of the Proposition and let us prove
that q ∈ K. Let (x0, x1, . . . , xn = x0) ∈ Ωn+1 be a cycle of distinct Lebesgue points of q,
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let ε > 0 be such that the balls B(xi, ε) are disjoint and included in Ω. Define then the
measure preserving map sε by

sε(x) =







x if x ∈ Ω \
n−1
⋃

i=0

B(xi, ε)

x+ (xi+1 − xi) if x ∈ B(xi, ε), i = 0, . . . , n− 1.

We have
〈q, sε − id〉 ≤ 0

by assumption. This yields

n−1
∑

i=0

1

|B(xi, ε)|

∫

B(xi,ε)

q(x) · (xi+1 − xi) dx ≤ 0. (3)

Letting ε go to zero, we get then

n−1
∑

i=0

q(xi) · (xi+1 − xi) ≤ 0.

In other words the set A := {(x, q(x)), x Lebesgue point of q} is cyclically monotone, so
that from Rockafellar [9] there exists a convex function u such that A ⊂ ∂u; in particular
q = ∇u almost everywhere.

As a consequence of Proposition 2.1 one may characterize the polar cone of K:

Corollary 2.2. The polar cone K− is the closure (in L2) of the convex cone generated
by (S − id)

K− = cone(S − id).

Proof. Proposition 2.1 can be stated as:

K = (S − id)− = (cone(S − id))−.

Taking the polar cones of those two closed convex cones gives the desired result.

One may ask what is the difference between the two cones cone(S− id) and R+ co(S− id).
Indeed, the latter is much easier to charaterize, as we shall see in the next sections. It
has also some interesting properties:

Proposition 2.3. Let p ∈ R+ co(S − id), p 6= 0, so that p = λ(τ − id) with λ > 0 and
τ ∈ coS \ {id}. Then, for any convex function u ∈ H1(Ω), one has

∫

Ω

u(τ(x)) dx ≤

∫

Ω

u(x) dx. (4)

Additionnally, for any convex function u ∈ H1(Ω) such that 〈p,∇u〉 = 0, one has:

∫

Ω

u(τ(x)) dx =

∫

Ω

u(x) dx (5)

u(τ(x))− u(x) = ∇u(x) · (τ(x)− x) a.e. x ∈ Ω. (6)
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Notice that (6) means that the convex function u is actually affine on the segment [x, τ(x)].
In particular, p ∈ R+ co(S− id) and 〈p,∇u〉 = 0 for some strictly convex u implies p = 0.

Let us postpone the proof for a while and continue the discussion on the links between
cone(S − id) and R+ co(S − id). One has obviously

R+ co(S − id) ⊂ cone(S − id) = R+ co(S − id), (7)

but it turns out that R+ co(S − id) is not closed and therefore there is no equality in the
inclusion above. Indeed, consider the set

ker div := {p ∈ (L2(Ω))N : 〈p,∇v〉 = 0,∀v ∈ H1(Ω)}.

(That is, divergence-free vector fields and whose normal component at the boundary
vanishes, whenever regular.)

Corollary 2.4. One has

ker div ⊂ cone(S − id)

ker div ∩ R+ co(S − id) = {0}.

In particular, R+ co(S − id) is not closed.

Proof of Proposition 2.3 and Corollary 2.4. Since τ ∈ coS, there exists some se-
quence of the form

∑n
i=1 α

n
i s

n
i with sni ∈ S, αn

i ≥ 0,
∑

i α
n
i = 1, converging in L2 and

almost everywhere to τ .

For any u ∈ H1(Ω) convex, we have u
(
∑

i α
n
i s

n
i (x)

)

≤
∑

i α
n
i u(s

n
i (x)), for almost every

x ∈ Ω. Hence

∫

Ω

[

u
(

n
∑

i=1

αn
i s

n
i (x)

)

− u(x)

]

dx ≤
n

∑

i=1

αn
i

∫

Ω

(u(sni (x))− u(x)) dx = 0,

taking into account that each sni is measure preserving. In the limit we get (4) by Fatou’s
Lemma.

If we assume 〈p,∇u〉 = 0, then we get:

∫

Ω

[

u(τ(x))− u(x)−∇u(x) · (τ(x)− x)
]

dx ≤ 0.

Since u is convex, the integrand is nonnegative. Hence we obtain (5–6).

It is clear that ker div ⊂ cone(S − id), since from the very definitions p ∈ ker div and
q ∈ K implies 〈p, q〉 = 0.

Now assume p ∈ ker div ∩ R+ co(S − id), p 6= 0. Then 〈p,∇u〉 = 0 for all u, so (6) holds
also for any u convex. Since this equation means that u is affine on the segment [x, τ(x)],
there is clearly a contradiction whenever u is strictly convex.

The non-closedeness of R+ co(S − id) makes difficult the manipulation of cone(S − id) in
general. One has to notice the following, however:
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Proposition 2.5. Let p ∈ cone(S − id). Then either p ∈ R+ co(S − id), or, for any
sequences (λn) ⊂ R+, (τn) ⊂ coS such that λn(τn − id) → p strongly in L2(Ω)N , one has
λn → +∞ and τn → id.

Proof. Since p ∈ cone(S− id), the closure of R+ co(S− id), it can be written as the limit
of a sequence (pn) such that pn = λn(τn − id), with λn ∈ R+, τn ∈ coS.

If λn does not converge to +∞, then we may extract a subsequence and assume that
it converges to some limit λ ∈ R+. If λ = 0, then pn → 0 since coS is bounded: so
p = 0 ∈ R+ co(S − id). If λ > 0, then τn = id + λ−1

n pn converges to τ = id + λ−1p, and
τ ∈ co(S) since this is a closed set. Now p = λ(τ − id) ∈ R+ co(S − id).

If λn → +∞ on the other hand, one get τn − id = λ−1
n p+ o(1) → 0 as n→ ∞.

Remark 2.6. We have seen that R+ co(S − id) is dense in K− and that R+ co(S − id) is
not closed in L2, a natural question at this point is then : how big is K− \R+ co(S− id)?
To partially answer this question, let us remark that R+ co(S − id) ⊂ L∞ and that K−

contains many non bounded elements: for instance all the (not necessarily bounded) vector
fields in ker div , but also∇v for every v ∈ H1

0 (Ω) with v ≥ 0, since
∫

∇v ·∇u = −〈∆u, v〉.

One can also construct non bounded elements of K− as follows: let f ≥ 0 be a scalar
function in L2 \ L∞. Denoting by Sf the set of maps σ : Ω → Ω preserving the measure
f(x) dx, one actually has (σ− id)f ∈ L2 and ∈ K− for every σ ∈ Sf . For instance if Ω is
the ball and f is further assumed to be radial then (R− id)f ∈ K− for every rotation R.

Remark 2.7. In view of Corollary 2.4, it is also natural to wonder whether one hasK− =
ker div + R+ co(S − id)? The previous identity is equivalent to ker div + R+ co(S − id)
being closed in L2. Again, the answer is unfortunately negative as the following counter-
example shows. Assume that Ω is the unit ball of R2 and define v(x) := (1 − |x|)2/3,
we already know that ∇v ∈ K−. Now, if ∇v admitted a decomposition of the form
∇v = p + λ(τ − id) with (p, λ, τ) ∈ ker div × R+ × co(S) then for every φ ∈ W 1,1(Ω)
the quantity

∫

Ω
∇v.∇φ would be finite. Taking for instance φ(x) := (1−|x|)1/4 yields the

desired contradiction.

Remark 2.8. One should finally notice that, even for a p ∈ R+ co(S − id), the writing
p = λ(τ − id) is not unique. This is obvious if p = 0, where one can choose λ = 0
and any τ , or τ = id and any λ. But it is also true if p 6= 0. Indeed, for any given
τ ∈ coS \ {id}, let us consider Iτ := {r ≥ 0; τr := rτ + (1 − r)id ∈ coS}. Since coS is
closed, convex, and bounded, Iτ is an interval of the form [0, R], with R ≥ 1. Now we
have p = λ(τ − id) = λ

r
(τr − id) for any r in this interval.

3. Decomposition of vector fields

Given q0 ∈ L2(Ω)N we consider the problem (2), which may also be stated as follows:
given q0 ∈ L2(Ω)N , solve

inf
q∈K

‖q − q0‖
2

L2 . (8)

There exists a unique solution q = ∇u of this projection problem. Moreover the charac-
terization of this solution is given by:
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Theorem 3.1. Let q0 ∈ L2(Ω)N . Then there exist a unique (up to a constant) u ∈ H1,
convex, a unique p ∈ K− = cone(S − id), such that:

q0 = ∇u+ p (9)
〈

∇u, p
〉

= 0. (10)

Here q = ∇u solves (8), while p solves the dual problem (projection on K−).

Moreover, if p 6= 0 ( i.e. q0 /∈ K), then either

p = lim
n
λn(τn − id) where λn ∈ R+ → +∞, τn ∈ co(S) → id, (11)

or p = λ(τ − id) with λ > 0, τ ∈ coS and

∫

Ω

u(τ(x)) dx =

∫

Ω

u(x) dx (12)

u(τ(x))− u(x) = ∇u(x) · (τ(x)− x) a.e. x ∈ Ω. (13)

Proof. The minimization problem (8) can also be written as:

inf
q∈L2(Ω)N

sup
p∈K−

L(p, q) (14)

where L(p, q) := 1
2
‖q − q0‖

2 + 〈p, q〉.

It is well-known that L admits a unique saddle point (q, p) = (∇u, p) in K × K− (see
for instance [6]) where q = ∇u is the solution of (14) and p is the solution of the dual
problem:

sup
p∈K−

inf
q∈L2(Ω)N

L(p, q). (15)

Since

inf
q∈L2(Ω)N

L(p, q) = −
1

2
‖p− q0‖

2 +
1

2
‖q0‖

2,

the solution of (15), that is p, is the projection of q0 on K− = cone(S − id), i.e. the
solution to

inf
p∈cone(S−id)

‖p− q0‖
2. (16)

The saddle-point (q, p) is characterized by (9–10) since K, K− are polar cones.

Conversely if (9-10) hold with u convex and p ∈ K− then ∇u (respectively p) is the
projection of q0 onto K (respectively onto K−).

If p 6= 0, we deduce the remaining properties from Proposition 2.3 and Proposition 2.5.

If, in the previous satetement, p = λ(τ − id) with λ > 0 and τ ∈ coS \ {id}, then u
is affine between x and τ(x) for almost every x; in particular if x is such that (x, u(x))
does not belong to a face of dimension ≥ 1 of the epigraph of u, then p(x) = 0. When
p ∈ cone(S − id) \ R+ co(S − id) (a situation that, as already noted, may unfortunately
occur), we don’t have a tractable representation of p so that we don’t have such a nice
property as (13).
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4. Bistochastic measures

In this section, we investigate a little bit further what elements of coS look like (the closure
is still taken in L2). This can conveniently be done in terms of bistochastic measures.

4.1. Bistochastic measures and coS

Let a sequence of elements of coS of the form τn :=
∑kn

i=1 α
n
i s

n
i (αn

i ≥ 0,
∑

i α
n
i = 1)

converge in L2 to some limit τ . For each n and each x ∈ Ω one may define the probability
measure

µn
x :=

kn
∑

i=1

αn
i δsni (x)

so that for every x one has

τn(x) =

∫

Ω

y dµn
x(y). (17)

One may also define the nonnegative Radon measure γn on Ω× Ω by
∫

Ω

∫

Ω

f(x, y) dγn(x, y) :=

∫

Ω

(
∫

Ω

f(x, y) dµn
x(y)

)

dx, ∀f ∈ C0
0(Ω× Ω).

Since each sni is volume-preserving, one has for every continuous bounded function f on
Ω :

∫

Ω

∫

Ω

f(x) dγn(x, y) =

∫

Ω

∫

Ω

f(y) dγn(x, y) =

∫

Ω

f.

This expresses that the two projections (marginals) of γn equal Lebesgue measure on Ω;
hence γn is a so-called bistochastic measure. Note that bistochastic measures are special
cases of Young measures [11]. It is standard then to prove that the limit τ can also be
represented by the measure given by the weak∗ limit γ of (γn) (or some subsequence if
necessary). More precisely, γ is also a bistochastic measure which therefore admits a
disintegration given by a measurable family of probability measures {µx}x∈Ω:

∫

Ω

∫

Ω

f(x, y)dγ(x, y) :=

∫

Ω

(
∫

Ω

f(x, y) dµx(y)

)

dx, ∀f ∈ C0
0(Ω× Ω),

and

τ(x) =

∫

Ω

y dµx(y), a.e. x ∈ Ω. (18)

Note finally for further use that since γ is bistochastic, one has for every continuous
bounded function f on Ω:

∫

Ω

(
∫

Ω

f(y) dµx(y)

)

dx =

∫

Ω

f(x)dx. (19)

It is also interesting to notice that

∀v convex,

∫

Ω

v(τ(x)) dx ≤

∫

Ω

v(x) dx. (20)

This comes from (18) and Jensen’s inequality. We see in (5) that u saturates the inequality
(20) with respect to τ .
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4.2. The decomposition with bistochastic measures

Let us see now how to use bistochastic measures for the projection problem (8). As
already noticed ∇u is the projection of q0 onto K if and only if q0 can be decomposed as
in (9–10).

We are interested in the nontrivial case q0 /∈ K, denoting by p the projection of q0 on K
−,

we then have p 6= 0. Let us assume that p ∈ R+ co(S − id) (which, unfortunately, is not

the case for any q0 ∈ L2(Ω)N) then p = λ(τ − id) with λ > 0 and τ ∈ coS. In this case,
(12–13) hold.

Using bistochastic measures we see that there exists a measurable family {µx}x∈Ω of
probability measures on Ω, satisfying (19) and such that (18) hold (where τ now is given
by Theorem 3.1). Using (19), (5) and (18), we get

∫

Ω

(
∫

Ω

u(y) dµx(y)

)

dx =

∫

Ω

u =

∫

Ω

u(τ(x))dx =

∫

Ω

u

(
∫

Ω

y dµx(y)

)

dx.

Since u is convex this implies that for a.e. x ∈ Ω:

u

(
∫

Ω

y dµx(y)

)

= u(τ(x)) =

∫

Ω

u(y) dµx(y).

This means that u is essentially affine on Supp(µx). In particular if u is differentiable at
x then Supp(µx) ⊂ ∂u∗(∇u(x)), or equivalently:

u(y) = u(x) +∇u(x) · (y − x), µx-a.e. y ∈ Ω. (21)

Remark 4.1. At least formally, one may characterize u, the solution of (2), in terms
of balayages, a well-known notion in potential theory and probabilities (see Meyer [8]).
Indeed if K is a convex compact subset of Rn, the polar cone of convex functions for
the duality between C0(K,R) functions and Radon measures in K (a duality that is not
adapted to our variational problem) can be represented using Cartier-Fell-Meyer Theorem
[4]. This theorem states that if a signed measure with Jordan decomposition λ− µ is in
the polar cone of C0(K,R) convex functions (so that λ and µ have the same mass and the
same moment), then there exists a measurable family {νx}x∈K of probability measures on
K such that the barycenter of νx is x for all x and for every f ∈ C0(K,R):

∫

K

f(x) dµ(x) =

∫

K

(
∫

K

f(y) dνx(y)

)

dλ(x). (22)

If u ∈ C0(K,R) is convex and
∫

K
u dµ =

∫

K
u dλ then it is easy to see that u is affine on

Supp(νx). Let us also note that if we specify K := Ω, then there is no reason for the mea-
sures λ and µ above to vanish on ∂Ω. Formally one would like to use this representation
to characterize u, solution of (2), by:

∫

Ω

〈∇u− q0,∇v〉 =

∫

Ω

v d(µ− λ), ∀v ∈ H1,

∫

Ω

u d(µ− λ) = 0 (23)

where λ and µ satisfy (22). We refer to Rochet and Choné [5] for the use of balayages in
variational problems subject to a convexity constraint. Even though what one formally
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obtains with balayages and our representation using bistochastic measures look similar,
one has to take the divergence of our representation to obtain Rochet and Choné’s one.
In other words, there is no obvious link with the kernel {µx} we obtain and the kernel
{νx} formally obtained from Cartier-Fell-Meyer Theorem.

5. Euler-Lagrange Equations

We may use now Proposition 2.1 to derive the Euler-Lagrange equation of problems of
the form (1). In the following, we assume that g is differentiable with respect to u and
its third argument q and satisfies some suitable growth conditions. Since we consider a
minimization problem in H1, we can add constant functions to the solutions; we deduce
that any solution u of (1) satisfies:

∫

Ω

∂g

∂u
(x, u,∇u) dx = 0. (24)

This implies in particular that there exists a solution ψ to the Laplace equation with
homogeneous Neumann boundary condition:











∆ψ =
∂g

∂u
(x, u,∇u) in Ω,

∂ψ

∂n
= 0 on ∂Ω.

(25)

The variational inequalities associated to (1) can be written as:
∫

Ω

(

∂g

∂q
(x, u,∇u)−∇ψ

)

· ∇(v − u) dx ≥ 0, for all convex v ∈ H1(Ω),

or equivalently

∇ψ −
∂g

∂q
(x, u,∇u) ∈ cone(S − id),

∫

Ω

(

∇ψ −
∂g

∂q
(x, u,∇u)

)

· ∇u dx = 0.

This yields:
∂g

∂q
(x, u,∇u) = ∇ψ − p (26)

for some p ∈ cone(S − id) with
〈

p,∇u
〉

= 0. This implies in particular:

∂g

∂u
(x, u,∇u)− div

(∂g

∂q
(x, u,∇u) + p

)

= 0. (27)

In the special case where p is of the form p = λ(τ − id) with λ > 0 and τ ∈ coS \ {id}
(again, this is not always true and almost impossible to check a priori), then for almost
every x such that (x, u(x)) does not belong to a face of dimension ≥ 1 of the epigraph
of u, then p(x) = 0. In this case, we get the following alternative (or complementary
slackness condition) for the solutions of (1): for a.e. x ∈ Ω,

• either there is a line segment in the graph of u containing (x, u(x)),

• or
∂g

∂q
(x, u,∇u) = ∇ψ.
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6. Regularity

In this final section, given q0 ∈ L2(Ω)N , we consider the projection problem (2). We recall
that its solution u is characterized by the conditions

q0 = ∇u+ p with p ∈ cone(S − id),
〈

∇u, p
〉

= 0.

Proposition 6.1. Let us assume that p ∈ R+ co(S − id).

1. if q0 is continuous at x0 ∈ Ω then u is differentiable at x0,

2. if q0 ∈ C0(Ω,RN) then u ∈ C1(Ω,R) and if q0 ∈ C0,α(Ω,RN) for some α ∈ (0, 1)
then u ∈ C1,α(Ω,R).

Proof. If p = 0, there is nothing to prove, by assumption we therefore have p = λ(τ − id)
with λ > 0 and τ ∈ coS \ {id}. Using the representation (18) of elements of coS as
moments of bistochastic measures, we deduce that there exists a measurable family of
probability measures {µx}x∈Ω such that:

τ(x) =

∫

Ω

y dµx(y), a.e. x ∈ Ω. (28)

1. Assume by contradiction that q0 is continuous at x0 ∈ Ω and ∂u(x0) is not reduced
to a point. With no loss of generality we may assume that u(x0) = 0 and that 0 belongs
to the relative interior of ∂u(x0). By a standard convex analysis argument, there exist
k ≤ N + 1, (α1, · · · , αk) ∈ (0, 1)k such that

∑k
ı=1 αi = 1, sequences (xin)n ∈ ΩN, for

i = 1, · · · , k such that u is differentiable at every xin, q0(x
i
n) = ∇u(xin) + λ(τ(xin) − xin),

the measure µxi
n
is well-defined at xin and:

lim
n
xin = x0, lim

n
∇u(xin) = γi 6= 0, i = 1, · · · , k, and

k
∑

ı=1

αiγi = 0

We then have:

q0(x
i
n) = ∇u(xin) + λ

(
∫

Ω

ydµxi
n
(y)− xin

)

(29)

hence:

k
∑

i=1

αiγi · q0(x
i
n) =

k
∑

i=1

αiγi · ∇u(x
i
n) + λ

k
∑

i=1

αi

(
∫

Ω

y · γidµxi
n
(y)− γi · x

i
n

)

(30)

Using the fact that q0 is continuous at x0 and passing to the limit yields:

0 > −
k

∑

i=1

αi|γi|
2 = λ lim

n

k
∑

i=1

αi

(
∫

Ω

y · γidµxi
n
(y)

)

(31)

Moreover, Supp(µxi
n
) ⊂ ∂u∗(∇u(xin)) so that for µxi

n
-a.e. y one has:

u(y) = u(xin) +∇u(xin) · (y − xin) (32)
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which can also be written as
γi · y = u(y) + εin(y) (33)

with εin(y) = ∇u(xin) · x
i
n − u(xin) + (γi −∇u(xin)) · y which tends to 0 as n tends to ∞.

Using (33), and the fact that u ≥ u(x0) = 0 we get:

lim
n

∫

Ω

y · γidµxi
n
(y) ≥ 0 for all i = 1, · · · , k

and the latter contradicts (31).

2. The previous argument actually proves that ∇u is continuous on Ω provided q0 is.
This implies that τ is continuous on Ω too and

q0(x) = ∇u(x) + λ(τ(x)− x), ∀x ∈ Ω. (34)

In addition, since u is affine between x and τ(x), we also have:

∇u(x) = ∇u(τ(x)), ∀x ∈ Ω. (35)

Let (x, y) ∈ Ω× Ω, using (34), one gets

|∇u(x)−∇u(y)|2 + λ(τ(x)− τ(y)) · (∇u(x)−∇u(y))

= (q0(x)− q0(y) + λ(x− y)) · (∇u(x)−∇u(y)). (36)

Using (35) yields

(τ(x)− τ(y)) · (∇u(x)−∇u(y)) = (τ(x)− τ(y)) · (∇u(τ(x))−∇u(τ(y)) ≥ 0.

With (36), we thus obtain:

|∇u(x)−∇u(y)| ≤ |q0(x)− q0(y)|+ λ|x− y|

If q0 ∈ C0,α(Ω,RN) for some α ∈ (0, 1), the previous inequality implies that u ∈ C1,α(Ω,R)
and the proof is complete.

Theorem 6.1 states two kinds of regularity results that are of quite different nature: the
first assertion states a pointwise regularity result while the second states a global regularity
result. Both statements are obtained under the assumption that p ∈ R+ co(S − id). This
assumption is not satisfactory, since it is not always satisfied and at least very difficult
to check. Concerning the global regularity result, we have not been able to remove it
although we believe that the result remains true for a general p ∈ cone(S − id). Let us
mention however that the proof above carries over when p is of the form (σ − id)f with

f ∈ C0(Ω,R+) and σ in the closed convex hull of Sf defined in Remark 2.6 (but again
this is a special case). We refer the reader to [3] for other C1 regularity results obtained
with totally different arguments.

The pointwise regularity part is more surprising (from the point of elliptic regularity
theory for instance), and it does not hold in general (i.e. when p /∈ R+ co(S − id)) as the
next counter-example shows. Let Ω := (−3, 3)×(−1, 1) and define for all x = (x1, x2) ∈ Ω:

u0(x) :=











max(|x1 + 2|, |x2|)− 1 if max(|x1 + 2|, |x2|) ≤ 1

max(|x1 − 2|, |x2|)− 1 if max(|x1 − 2|, |x2|) ≤ 1

0 otherwise.
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Define q0 := ∇u0 and u as the largest convex minorant of u0. We then have q0 =
∇u + ∇(u0 − u). Since u0 − u ≥ 0 and u0 = u on ∂Ω, ∇(u0 − u) ∈ K− (see Remark
2.6). On the other hand, it is easy to check that

∫

Ω
∇u · ∇(u0 − u) = 0. This proves

that ∇u is the projection of q0 := ∇u0 on K. Let us remark now that u is singular on
the segment [(−2, 0), (2, 0)] whereas q0 is continuous on this segment except at the points
(−2, 0), (−1, 0), (1, 0) and (2, 0). This proves that the pointwise regularity statement is
not true without additional assumption on the multiplier p.
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