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1. Introduction

More than thirty years ago, Rockafellar [14, Theorem A, p. 210] proved that the subdif-
ferential of a proper convex lower semicontinuous function is maximal monotone, followed
by the following sum rule

Theorem ([15, Theorem 1, p. 76]). Let X be reflexive, and let A and B be maximal

monotone operators from X to X∗. Suppose that

D(A) ∩ intD(B) 6= ∅. (1)

Then A+B is maximal monotone.

Since a sum formula for the subdifferential holds in a general Banach space under similar
qualification constraints (see e.g. [19, Theorem 28.2]), and this could be seen as a maxi-
mality result for the sum of subdifferentials, a question was raised whether the previous
theorem remains true without the reflexivity assumption on the Banach space X.

While the reflexivity of the Banach space remained unchanged, in time, the qualification
constraint (1) evolved to the weaker forms

0 ∈ int(D(A)−D(B)), Attouch [2], (2)

coD(A)− coD(B) is absorbing, Penot [11], (3)

coD(A)− coD(B) is a neighborhood of 0 in lin(D(A)−D(B)), (4)

Simons [17, 18], Chu [4], Attouch, Riahi & Théra [3], Zălinescu [27]. Here “co�, “lin�
stand for the convex, linear hull while the bar denotes the closure.

In the non-reflexive Banach space settings, the maximality of the sum problem continues
to remain open. Progress has been made by Phelps & Simons [13] in the linear case, by
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Heisler for full-space domain operators (see e.g. [19]), and recently by Voisei [24, 25] for
closed convex domain or linear operators.

Our aim in this article is to improve the best known results for basic sum and chain rules
of maximal monotone operators.

Several approaches have been used in the attempt of solving this problem completely. We
mention among others the saddle function approach of Krauss & Tiba [8], Krauss [9],
Rockafellar [16], Gossez [6], the decomposition method of Asplund [1], and the study of
monotonicity using tools of convex analysis (see e.g. Simons [19], Verona & Verona [22]).

A breakthrough in the study of maximal monotone operators was represented by the
introduction of the Fitzpatrick function [5] and later, by its rediscovery in Martinez-
Legaz & Théra [10]. Basically, the Fitzpatrick function characterizes maximal monotone
operators in any Banach space possibly non-reflexive. Contrary to the general belief,
the Fitzpatrick function is very useful for monotone operators which are not necessarily
maximal and this is part of the goal of the present note. As a consequence, one of our
main results, Proposition 3.2 contains more applicable characterizations of monotonicity
and maximality in terms of the Fitzpatrick function and its convex conjugate.

The main difficulty in the study of monotone operators in a non-reflexive Banach space
X is represented by the fact that X ×X∗ forms two distinct dual systems with X∗ ×X
and X∗ × X∗∗. A monotone operator A in X × X∗ can be seen via its inverse A−1 as
monotone in X∗ ×X∗∗, while the maximal monotonicity of A from X ×X∗ to X∗ ×X∗∗

does not follow even if we consider closures.

This has led to several classification of maximal monotone operators in terms of their
properties that resemble subdifferential features, such as the D-operators Gossez [7], lo-
cally maximal monotone and maximal monotone locally classes, and other classes (see e.g.
Simons [19, 20, 21], Verona & Verona [23]). Subdifferentials and linear maximal monotone
operators belong to all these classes.

Another difficulty is related to the fact that, for non-reflexive X, no topology on X ×X∗

compatible with the duality (X × X∗, X∗ × X) has good properties such as the lower
semicontinuity of the dual product in X×X∗. Some trials were attempted by Rockafellar
[14], Gossez [7], Penot [12], Simons [20] in the introduction of a topology on X ×X∗ with
better qualities.

It is worth mentioning that several useful properties such as the convexity of the closure
of the domain of a maximal monotone operator are consequences of the maximality of the
sum problem.

The plan of the paper is as follows. In Section 2 basic notions and notations are pre-
sented, while Section 3 deals with special properties of the Fitzpatrick function related to
monotonicity and maximality. In Section 4 a chain and a sum rule for representable and
maximal monotone operators are discussed together with some of their consequences.

This paper concludes with a result which gives a complete answer to Rockafellar’s con-
jecture in the linear case.
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2. Preliminaries

Let X be a real Banach space with topological dual X∗ and bi-dual X∗∗. A multi-valued
operator A : X ⇉ X∗ is monotone if for every x∗

1 ∈ Ax1, x
∗
2 ∈ Ax2,

〈x1 − x2, x
∗
1 − x∗

2〉 ≥ 0. (5)

Here
p(x, x∗) = 〈x, x∗〉 = x∗(x), (x, x∗) ∈ X ×X∗,

denotes the dual product in X ×X∗.

Standard notations for a multi-valued operator A domain, range, and graph are

D(A) = {x ∈ X; x∗ ∈ Ax for some x∗ ∈ X∗},

R(A) = {x∗ ∈ X∗; x∗ ∈ Ax for some x ∈ D(A)},

GraphA = {(x, x∗) ∈ X ×X∗; x ∈ D(A), x∗ ∈ Ax}.

We identify operators with their graphs for the sake of notation simplicity. A monotone
operator is called maximal monotone if it is maximal in the sense of inclusion in X ×X∗.

For a pair of linear spaces Z,W in duality, the convex conjugate of f : Z → R is defined
by

f ∗(w) = sup{w · z − f(z); z ∈ Z}, w ∈ W, (6)

where w · z denotes the dual product in Z ×W .

Let Z = X × X∗. For z = (x, x∗) ∈ Z, A ⊂ Z, and f : Z → R̄ define the transpose
operations

zT = (x∗, x) ∈ X∗ ×X,

AT = {zT ; z ∈ A} ⊂ X∗ ×X,

fT : ZT → R̄, fT (zT ) = f(z), z ∈ Z.

Similar transpose operations are considered in ZT .

The set Z forms two possible different dual systems with ZT and Z∗ = X∗ ×X∗∗. Corre-
spondingly, for f : Z → R̄ we have two convex conjugates f ∗ : Z∗ → R̄ given by (6) and
f ∗
/ZT : ZT → R̄. In addition, we consider the transformation f� : Z → R̄ given by

f� = (f ∗
/ZT )

T , (7)

or in expanded form

f�(x, x∗) = sup{〈x, a∗〉+ 〈a, x∗〉 − f(a, a∗); (a, a∗) ∈ Z}. (8)

On Z we fix a topology compatible with the simple duality (Z,ZT ) such as the strong
topology τ in X times the weakly star topology w∗ in X∗.

A function f : Z → R ∪ {∞} is called proper if f is not identically equal to +∞ or
equivalently its effective domain

D(f) = {z ∈ Z; f(z) < ∞}, (9)



76 M. D. Voisei / Calculus Rules for Maximal Monotone Operators in General ...

is non-empty.

We denote by Γ(Z) the set of all proper convex functions f : Z → R ∪ {∞} which are
lower semicontinuous with respect to the established topology on Z. By the Biconjugate
Theorem every proper convex lower semicontinuous function f : Z → R̄ satisfies f�� = f .

The following is a direct consequence of [26, Theorem 2.8.6 (v), p. 125].

Proposition 2.1. If X, Y are Banach spaces, g : Y → R is proper convex lower semi-

continuous, C : X ⇉ Y is a closed convex cone in X × Y , and

0 ∈ic (D(g)−R(C)), (10)

then the convex conjugate of h : X → R defined by

h(x) = inf{g(y); y ∈ Cx}, x ∈ X,

is given by

h∗(x∗) = min{g∗(y∗); x∗ ∈ C∗y∗}, x∗ ∈ X∗. (11)

Moreover, if x ∈ D(h) = C−1(D(g)), and y ∈ Cx is such that h(x) = g(y), then

∂h(x) ⊂ C∗∂g(y), (12)

with equality when C is a linear subspace.

Here icS stands for the relative algebraic interior of S when the affine hull of S is closed,

while icS is considered empty otherwise, “min� means that the infimum is attained when

it is finite, and C∗ : Y ∗
⇉ X∗ is the negative polar cone of C. By convention an infimum

taken over an empty set is considered +∞.

For other convex analysis notions used in this article we refer to the book of Zălinescu
[26] and the references therein.

3. The Fitzpatrick function

Let ∅ 6= A ⊂ X ×X∗. Define

pA(z) = p(z), if z ∈ A, pA(z) = +∞, otherwise. (13)

The Fitzpatrick function of A is given by hA = p�A, or in extended form hA : X×X∗ → R,

hA(x, x
∗) = sup{〈x, a∗〉+ 〈a, x∗〉 − 〈a, a∗〉; (a, a∗) ∈ A}, (x, x∗) ∈ X ×X∗. (14)

The convex conjugate of the Fitzpatrick function, denoted by

ϕA = h�

A = cl co pA, (15)

is the greatest convex lower semicontinuous function majorized by pA.
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For f : Z → R the following set notation will be frequently used

{f ≤ p} = {z ∈ Z; f(z) ≤ p(z)},

{f = p} = {z ∈ Z; f(z) = p(z)},

{f ≥ p} = {z ∈ Z; f(z) ≥ p(z)}.

Definition 3.1. A ⊂ Z is called representable if there exists h ∈ Γ(Z) such that h ≥ p
in Z and A = {h = p}. A function h with these properties is called a representative of
A. It is easily checked that every representative h of A satisfies

hA ≤ h, h� ≤ ϕA in Z. (16)

and every representable operator is monotone (see e.g. [11]).

Consider the mapping,

E : P(Z) → P(Z), E(A) := {hA ≤ p}.

Here P(Z) stands for the class of subsets of Z. When A is monotone, E(A) represents
the union of all maximal monotone extensions of A.

Proposition 3.2.

(i) For every A ⊂ X ×X∗

A ⊂ D(A)×X∗ ∪X ×R(A) ⊂ {hA ≥ p}. (17)

(ii) A is monotone iff A ⊂ {hA = p}.

(iii) A is maximal monotone iff A = {hA = p} and hA ≥ p in Z.

(iv) A is maximal monotone iff A = E(A).

(v) A is monotone iff ϕA ≥ p in Z.

(vi) If A is monotone then A ⊂ {ϕA = p}.

(vii) If A is monotone then

pA ≥ ϕA ≥ max{hA, p} in Z. (18)

(viii) If A is monotone then

A ⊂ {ϕA = p} ⊂ {hA = p}. (19)

(ix) If A is monotone then

coD(A) ⊂ PXD(hA), (20)

where PX : X × X∗ → X, PX(x, x
∗) = x, (x, x∗) ∈ X × X∗ and “co� denotes the

convex hull.

(x) A is representable iff A is monotone and A = {ϕA = p}.

(xi) A is maximal monotone iff A is representable and hA ≥ p in Z.

(xii) If A is maximal monotone and D(A) is closed convex then

PXD(hA) = D(A).

Proof. (i) Let (x, x∗) ∈ D(A)×X∗. Take a = x, a∗ ∈ Aa in the definition of hA to get

hA(x, x
∗) ≥ 〈x− a, a∗〉+ 〈a, x∗〉 = 〈x, x∗〉, (21)
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that is (x, x∗) ∈ {hA ≥ p}. Hence D(A) × X∗ ⊂ {hA ≥ p}. We proceed similarly for
X ×R(A) ⊂ {hA ≥ p}.

(ii) If A is monotone then for every (x, x∗), (a, a∗) ∈ A, 〈x − a, x∗ − a∗〉 ≥ 0, that is
〈x−a, a∗〉+〈a, x∗〉 ≤ 〈x, x∗〉. Pass to supremum over (a, a∗) ∈ A to get (x, x∗) ∈ {hA ≤ p},
i.e, A ⊂ {hA ≤ p}. Combined with (i) this implies A ⊂ {hA = p} and hA ≤ pA in Z.

Conversely, if A ⊂ {hA = p} then every (x, x∗) ∈ A satisfies

inf
(a,a∗)∈A

〈x− a, x∗ − a∗〉 = (p− hA)(x, x
∗) = 0, (22)

that is, A is monotone.

(iii)&(iv) If A is maximal monotone then for every (x, x∗) /∈ A there exists (a, a∗) ∈ A
such that 〈x− a, x∗ − a∗〉 < 0. This yields that (x, x∗) ∈ {hA > p} or Z rA ⊂ {hA > p},
or E(A) = {hA ≤ p} ⊂ A.

Taking (ii) into account we get hA ≥ p in Z, A = {hA = p}, and E(A) = A.

For the converse implications, if hA ≥ p in Z and A = {hA = p} then A = {hA ≤ p}, A
is monotone by (i) and (ii) and maximal since every (x, x∗) with 〈x− a, x∗ − a∗〉 ≥ 0 for
all (a, a∗) ∈ A belongs to {hA ≤ p} = A.

(v) For every A monotone we have hA ≤ ϕA in Z, because hA is proper convex lower
semicontinuous and hA ≤ pA in Z. Let Ã be a maximal monotone extension of A. Since
A ⊂ Ã we have pA ≥ pÃ in Z and subsequently we find, from (iii), that

ϕA ≥ ϕÃ ≥ hÃ ≥ p in Z. (23)

Conversely in (v), if ϕA ≥ p in Z, then from pA ≥ ϕA in Z, we get A ⊂ {ϕA = p}.
But {ϕA = p} is monotone because it is representable. The previous inclusion makes A
monotone.

Implicitly we have proved (vi) and (vii).

For (viii) it is sufficient to show {ϕA = p} ⊂ {hA = p}. To this end let z = (x, x∗) ∈
{ϕA = p}. Then zT ∈ ∂ϕA(z), where the subdifferential “∂� is taken with respect to the
dual system (Z,ZT ), because for arbitrary v = (u, u∗) ∈ Z, the directional derivative of
ϕA at z in the direction of v satisfies

ϕ′
A(z; v) = lim

t↓0

ϕA(z + tv)− ϕA(z)

t

≥ lim
t↓0

p(z + tv)− p(z)

t
= 〈x, u∗〉+ 〈u, x∗〉 = zT · v. (24)

Relation zT ∈ ∂ϕA(z) is equivalent to

hA(z) + ϕA(z) = 2p(z), (25)

and implies hA(z) = p(z) because ϕA(z) = p(z), that is {ϕA = p} ⊂ {hA = p}.

(ix) Let x ∈ coD(A), i.e., x =
n∑

i=1

λiai, for some λi ≥ 0, (ai, a
∗
i ) ∈ A, i = 1, n with

n∑
i=1

λi = 1. Then (x, x∗) ∈ D(hA), where x∗ =
n∑

i=1

λia
∗
i .
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Indeed, we have

hA(x, x
∗) = hA(

n∑

i=1

λi(ai, a
∗
i )) ≤

n∑

i=1

λihA(ai, a
∗
i ) =

n∑

i=1

λip(ai, a
∗
i ) < ∞. (26)

Another argument could be performed as follows. Since A ⊂ {hA = p} we get D(A) ⊂
PXD(hA) and PXD(hA) is convex. Therefore, coD(A) ⊂ PXD(hA).

For the direct implication in (x) let A be representable, that is, A = {h = p} for some
h ∈ Γ(Z) with h ≥ p in Z. Subsequently, A is monotone, h ≤ pA in Z, and p ≤ h ≤ ϕA

in Z. Therefore {ϕA = p} ⊂ {h = p} = A. Taking (vi) into account, we get the desired
set equality. The converse in (x) is straightforward because ϕA is a representative of A
with all the required properties (see (v)).

The direct implication in (xi) is plain since, according to (iii), for a maximal monotone
A we can take hA as a representative. For the converse in (xi), if A is representable we
know from (x) that A is monotone and A = {ϕA = p}.

According to (iii) and (viii), it suffices to prove that {hA = p} ⊂ {ϕA = p}. We repeat
the argument in (viii), namely, if z = (x, x∗) ∈ {hA = p} then zT ∈ ∂hA(z), because for
every v = (u, u∗) ∈ Z, the directional derivative of hA at z in the direction of v satisfies

h′
A(z; v) = lim

t↓0

hA(z + tv)− hA(z)

t

≥ lim
t↓0

p(z + tv)− p(z)

t
= 〈x, u∗〉+ 〈u, x∗〉 = zT · v. (27)

This is again equivalent to hA(z) + ϕA(z) = 2p(z), and implies ϕA(z) = p(z) because
hA(z) = p(z), i.e. {hA = p} ⊂ {ϕA = p}.

(xii) For K ⊂ X, by NK = ∂iK we understand the normal cone to K defined as the
convex subdifferential of the indicator function of K, iK(x) = 0, if x ∈ K, iK(x) = +∞,
otherwise.

From (ix) we know D(A) ⊂ PXD(hA). For the converse inclusion, let x ∈ PXD(hA), i.e.,
there is x∗ ∈ X∗, such that (x, x∗) ∈ D(hA). Hence

〈x− a, a∗〉+ 〈a, x∗〉 ≤ L < +∞, for every (a, a∗) ∈ A.

We have A = A +ND(A) because ND(A) is monotone, 0 ∈ ND(A)(x), for every x ∈ D(A),
and A is maximal monotone. From this equality and previous inequality we get

λ〈x− a, n∗〉+ 〈x− a, a∗〉+ 〈a, x∗〉 ≤ L < +∞, (28)

for every λ > 0, a ∈ D(A), a∗ ∈ Aa, n∗ ∈ ND(A)(a), because ND(A)(a) is a cone for every
a ∈ D(A).

Relation (28) implies 〈x − a, n∗〉 ≤ 0, for every a ∈ D(A), n∗ ∈ ND(A)(a), i.e., (x, 0) is
monotonically related to the graph of ND(A). Since D(A) is closed convex, iD(A) is convex
lower semicontinuous and ND(A) is maximal monotone. This yields that (x, 0) ∈ ND(A),
that is x ∈ D(A). Therefore, PXD(hA) ⊂ D(A). The proof is complete.
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4. Sum and chain rules

Theorem 4.1. Let X, Y be two Banach spaces.

(a) If L : X → Y is linear bounded, M : Y ⇉ Y ∗ is representable, D(M) ∩ R(L) 6= ∅,
and

0 ∈ic (PYD(hM)−R(L)), (29)

then T := L∗ML : X ⇉ X∗ is representable. Here hM denotes the Fitzpatrick

function of M , L∗ denotes the adjoint of L, and PY : Y × Y ∗ → Y , PY (y, y
∗) = y,

(y, y∗) ∈ Y × Y ∗.

(b) If A,B : X ⇉ X∗ are representable with D(A) ∩D(B) 6= ∅ and

0 ∈ic (PXD(hA)− PXD(hB)), (30)

then A + B is representable. Here hA, hB stand for the Fitzpatrick functions of A,
B.

Proof. (a) Consider h : X ×X∗ → R,

h(x, x∗) = inf{hM(Lx, y∗); L∗y∗ = x∗}, (x, x∗) ∈ X ×X∗. (31)

Apply Proposition 2.1 for the Banach spaces X × X∗, Y × Y ∗, g = hM , and C ⊂ X ×
X∗ × Y × Y ∗ given by

(x, x∗, y, y∗) ∈ C iff y = Lx, x∗ = L∗y∗. (32)

We have h(x, x∗) = inf{g(y, y∗); (y, y∗) ∈ C(x, x∗)} and

(y∗, y∗∗, x∗, x∗∗) ∈ C∗ iff y∗∗ = L∗∗x∗∗, x∗ = L∗y∗. (33)

Since 0 ∈ic (PYD(hM)−R(L)), R(C) = R(L)× Y ∗, and

aff (D(hM)−R(C)) = aff (PYD(hM)−R(L))× Y ∗,

where “aff� denotes the affine hull, we know that 0 ∈ic (D(hM)−R(C)).

According to Proposition 2.1 we get

h∗(x∗, x∗∗) = min{h∗
M(y∗, y∗∗); (x∗, x∗∗) ∈ C∗(y∗, y∗∗)}, (x∗, x∗∗) ∈ X∗ ×X∗∗.

For x∗∗ = x ∈ X this reduces to

h�(x, x∗) = min{ϕM(Lx, y∗); L∗y∗ = x∗}, (x, x∗) ∈ X ×X∗. (34)

Since M is representable we know that M is monotone, ϕM ≥ p in Y × Y ∗, and M =
{ϕM = p}. This yields h� ≥ p in X ×X∗.

If (x, x∗) ∈ {h� = p} then there exists y∗ ∈ Y ∗ such that L∗y∗ = x∗ and ϕM(Lx, y∗) =
p(x, x∗) = p(Lx, y∗), that is, (Lx, y∗) ∈ {ϕM = p} = M . Therefore (x, x∗) ∈ T and this
shows that {h� = p} ⊂ T . Conversely, if (x, x∗) ∈ T then there exists y∗ ∈ Y ∗ such that
L∗y∗ = x∗ and (Lx, y∗) ∈ M . Hence ϕM(Lx, y∗) = p(Lx, y∗), h�(x, x∗) ≤ p(Lx, y∗) =
p(x, x∗), and (x, x∗) ∈ {h� = p}, i.e., T ⊂ {h� = p}.
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We proved that T = {h� = p} and h� ≥ p in X ×X∗.

Clearly, h� is convex lower semicontinuous and a representative of T .

(b) Take Y = X ×X, Y ∗ = X∗ ×X∗, L : X → Y , Lx = (x, x), x ∈ X, L∗ : Y ∗ → X∗,
L∗(x∗

1, x
∗
2) = x∗

1 + x∗
2, x

∗
1, x

∗
2 ∈ X∗, M : Y ⇉ Y ∗, M(x1, x2) = Ax1 × Bx2, (x1, x2) ∈ Y .

Then L∗ML = A+B.

Moreover,

hM(x1, x2, x
∗
1, x

∗
2) = hA(x1, x

∗
1) + hB(x2, x

∗
2), x1, x2 ∈ X, x∗

1, x
∗
2 ∈ X∗, (35)

PYD(hM) = PXD(hA)× PXD(hB), and

F := aff (PYD(hM)−R(L)) = aff PXD(hA)× aff PXD(hB)−R(L).

Consider D : X ×X → X,

D(x1, x2) = x1 − x2, x1, x2 ∈ X. (36)

We know that Ker D = R(L) and

D(F ) = aff (PXD(hA)− PXD(hB)) is closed.

This is equivalent to F = F+Ker D is closed (see e.g. [26, Corollary 1.3.15, p. 26]). From,
0 ∈ PXD(hA) − PXD(hB) we get 0 ∈ PYD(hM) − R(L) and because R+(PYD(hM) −
R(L)) = F is a closed subspace, we have 0 ∈ic (PYD(hM) − R(L)) (see [26, (1.1), p.
3]). All the assumptions are verified and the conclusion follows from (a). The proof is
complete.

Remark 4.2. The conclusions of Theorem 4.1 hold if we replace hM in (29) by any
function fM whose conjugate f�

M is a representative of M and hA, hB in (30) by any
functions fA, fB whose conjugates f�

A , f
�

B are representatives of A,B. (We use fM instead
of hM in the previous proof).

Corollary 4.3. Let X, Y be two Banach spaces.

(a) If L : X → Y is linear bounded, M : Y ⇉ Y ∗ is representable, D(M) ∩ R(L) 6= ∅
and

coD(M)−R(L) is absorbing in Y,

then T := L∗ML : X ⇉ X∗ is representable.

(b) If A,B : X ⇉ X∗ are representable with D(A) ∩D(B) 6= ∅ and

coD(A)− coD(B) is absorbing in X,

then A+B is representable.

Proof. Since coD(M) ⊂ PYD(hM) (see Proposition 3.2(ix)), the condition coD(M) −
R(L) is absorbing in X implies PYD(hM)−R(L) absorbing and (29) follows . Similarly,
from coD(A) ⊂ PXD(hA), coD(B) ⊂ PXD(hB) the condition coD(A) − coD(B) is
absorbing in X is stronger than (30) and can be used instead of (30).
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Theorem 4.4. If A,B are maximal monotone operators in a general Banach space X
such that D(A), D(B) are closed convex, and

0 ∈ic (D(A)−D(B)), (37)

then A+B is maximal monotone.

Proof. Under the given assumptions we know from Proposition 3.2(xii) and Theorem
4.1(b) that A + B is representable. According to Proposition 3.2(xi) it suffices to show
that hA+B ≥ p in X ×X∗. We have,

A = A+ ∂iD(A), B = B + ∂iD(B),

since A,B are maximal monotone ∂iD(A), ∂iD(B) are monotone and 0 ∈ ∂iK(x), for every
K ⊂ X, x ∈ K.

This implies

A+B = A+B + ∂iD(A) + ∂iD(B) = A+B +ND(A)∩D(B), (38)

since from (37) we have ∂iD(A)+∂iD(B) = ∂(iD(A)+iD(B)) = ND(A)∩D(B) (see [26, Theorem
2.8.7 (vii), p. 126]).

Let (x, x∗) ∈ D(hA+B), that is

sup{〈x− k, k∗〉+ 〈k, x∗〉; (k, k∗) ∈ A+B} ≤ C < +∞.

From (38) we obtain that, for every k ∈ D(A)∩D(B), k∗ ∈ (A+B)k, n∗ ∈ ND(A)∩D(B)(k)

〈x− k, k∗ + n∗〉+ 〈k, x∗〉 ≤ C.

ButND(A)∩D(B)(k) is a cone, i.e., for every n
∗ ∈ND(A)∩D(B)(k), λ > 0, λn∗ ∈ND(A)∩D(B)(k).

We find
λ〈x− k, n∗〉+ 〈x− k, k∗〉+ 〈k, x∗〉 ≤ C < +∞,

for every λ > 0, k ∈ D(A) ∩D(B), k∗ ∈ (A+B)k, n∗ ∈ ND(A)∩D(B)(k). Therefore

〈x− k, n∗〉 ≤ 0, (39)

for every k ∈ D(A) ∩D(B), n∗ ∈ ND(A)∩D(B)(k).

Relation (39) shows that (x, 0) is monotonically related to the graph of ND(A)∩D(B) and
since ND(A)∩D(B) is maximal monotone we get that (x, 0) ∈ ND(A)∩D(B), that is x ∈
D(A) ∩ D(B). According to Proposition 3.2(i) we conclude that (x, x∗) ∈ {hA+B ≥ p}
or in other words D(hA+B) ⊂ {hA+B ≥ p}. This proves that hA+B ≥ p in X ×X∗. The
proof is complete.

Corollary 4.5. If A,B are maximal monotone operators in a general Banach space X
such that D(A), D(B) are closed convex, and

D(A)−D(B) is absorbing in X,

then A+B is maximal monotone.
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Theorem 4.6. Let X, Y be two Banach spaces. If L : X → Y is linear bounded, M :
Y ⇉ Y ∗ is maximal monotone with D(M) closed convex and

0 ∈ic (D(M)−R(L)), (40)

then T := L∗ML : X ⇉ X∗ is maximal monotone.

Proof. From Proposition 3.2(xii) and Theorem 4.1(a) we get that T is representable.
Therefore, it is sufficient to show that hT ≥ p in X ×X∗. We know

D(T ) = {x ∈ X; Lx ∈ D(M)}

is closed convex because so is D(M) and L is linear bounded. We write

iD(T )(x) = inf{iD(M)(y); y = Lx}, (41)

and apply the second part in Proposition 2.1 to get, for every x ∈ D(T )

ND(T )(x) = L∗ND(M)(Lx). (42)

From M = M +ND(M) we find M(Lx) = M(Lx) +ND(M)(Lx) and

Tx = Tx+ND(T )(x), (43)

for every x ∈ D(T ). As previously seen, (43) implies hT ≥ p in X ×X∗ and the proof is
complete.

Corollary 4.7. If X, Y are two Banach spaces, L : X → Y is linear bounded, M : Y ⇉

Y ∗ is maximal monotone with D(M) closed convex and

D(M)−R(L) is absorbing in Y,

then T := L∗ML : X ⇉ X∗ is maximal monotone.

We conclude this section with a surprising result which proves that, in the linear case,
Rockafellar’s conjecture holds.

Theorem 4.8. Let X, Y be two Banach spaces.

(a) If L : X → Y is linear bounded, M : Y ⇉ Y ∗ is linear maximal monotone, and

D(M)−R(L) is a closed subspace of Y , then T := L∗ML is maximal monotone.

(b) If A,B are linear maximal monotone operators in X such that D(A) − D(B) is a

closed subspace of X, then A+B is maximal monotone.

Proof. (a) Notice that for every (x, x∗) ∈ X ×X∗

pT (x, x
∗) = inf{pM(Lx, y∗); L∗y∗ = x∗}

= inf{pM(y, y∗); (y, y∗) ∈ C(x, x∗)}, (44)

where C is defined in (32).

We verify the conditions of the chain rule contained in Proposition 2.1. First, pM is convex
lower semicontinuous, since M is linear monotone and strongly closed, while condition
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D(M)−R(L) closed is equivalent to M −R(C) = (D(M)−R(L))× Y ∗ closed. Because
we are dealing with subspaces this yields 0 ∈ic (D(pM)−R(C)). Therefore, by the chain
rule, we find

hT (x, x
∗) = p�T (x, x

∗) = min{hM(Lx, y∗); L∗y∗ = x∗}. (45)

This is sufficient in order to conclude that T is maximal monotone.

Subpoint (b) follows from (a) for Y = X×X, Y ∗ = X∗×X∗, L : X → Y , Lx = (x, x), x ∈
X, L∗ : Y ∗ → X∗, L∗(x∗

1, x
∗
2) = x∗

1+x∗
2, x

∗
1, x

∗
2 ∈ X∗, M : Y ⇉ Y ∗, M(x1, x2) = Ax1×Bx2,

(x1, x2) ∈ D(M) = D(A)×D(B), L∗ML = A+B while D(D(M)) = D(A)−D(B) closed
is equivalent to D(M) − R(L) is closed, where D is defined in (36). For an alternative
proof of (b) see [25].

Remark 4.9. In the linear case, conditions (40), (37) are sharp in the sense that there is
a counter-example with A,B linear maximal monotone such that D(A)−D(B) is dense
and A+B is not maximal monotone (see e.g. [19, Problem 34.2] or [13, Remark 7.3]).
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