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1. Introduction

The Fermat-Torricelli problem is to find the (unique) point that minimizes the sum of
distances from three given points in R

2. P. de Fermat (1601-1665) posed this problem to
E. Torricelli (1608-1647) who solved it, and his student V. Viviani published the solution
in 1659 (see [3] and Chapter II from [2]). R. Courant and H. Robbins have called this
problem "Steiner problem", since J. Steiner solved it independently from Torricelli and
Viviani in a more elegant and systematic way (see [6] and [8]). Following Y. S. Kupitz
and H. Martini [9] (see also Chapter II of [2]), we will call this point the Fermat-Torricelli
point of the given points, due to the first contributions of Fermat and Torricelli. The
weighted Fermat-Torricelli point of a plane triangle and the inverse weighted Fermat-
Torricelli problem in the plane have been studied in [7], where also a detailed historical
exposition of the subject is given.
In this paper, a direct method is described to find the weighted Fermat-Torricelli point
of a given spherical or hyperbolic triangle ∇A1A2A3 with non-negative weights Bi that
correspond to each vertex Ai, respectively. Concerning the floating and absorbed case
(see below) of the weighted Fermat-Torricelli point in R

N , see [9] and Chapter II of [2].
For the solution of the Fermat-Torricelli problem concerning spherical triangles with unit
weights we refer to [4] and [5]. For the solution of the problem in any regular surface of
R

3 we refer to the indirect method used in [11] by studying the problem in the tangent
plane of the regular surface at the Fermat-Torricelli point. We also show the invariance
property of the weighted Fermat-Torricelli point for a given spherical, hyperbolic and
planar (Euclidean) triangle with non-negative weights that are given at the vertices. This
property is derived by a fundamental condition which is obtained by the inverse weighted
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Figure 2.1.

Fermat-Torricelli problem in the two-dimensional sphere, hyperboloid and in R
2. The

inverse weighted Fermat-Torricelli problem in R
2 was also studied in [7].

2. The weighted Fermat-Torricelli point

We start by stating the problem for the two-dimensional unit sphere S2. For background
material from spherical trigonometry we refer to [1], and the following notations are used
in our paper: By ai we denote the length of the geodesic A0Ai, by aij the length of the
geodesic AiAj, and by αij the spherical angle between the two geodesics AiAk, AkAj for
i, j, k = 1, 2, 3, i 6= j 6= k 6= i. Moreover, ai is seen on the left by the spherical angle αi,
and it is seen on the right by the spherical angle α′

i. Furthermore, let α0 be the spherical
angle between A2A0 and A3A0, β0 be the spherical angle between A1A0 and A3A0, and
γ0 be the spherical angle between A1A0 and A2A0 (see Figure 2.1).

Problem 2.1. Let ∇A1A2A3 be a spherical triangle. Suppose that a weight Bi ∈ R
+ cor-

responds to each vertex Ai for i = 1, 2, 3, respectively. Find the weighted Fermat-Torricelli
point A0 of the spherical triangle ∇A1A2A3 which minimizes the sum of the lengths of the
geodesics that connect every vertex with A0 multiplied by the positive weight Bi:

B1a1 +B2a2 +B3a3 = minimum. (1)

Theorem 2.2. The weighted Fermat-Torricelli pointA0 of the spherical triangle∇A1A2A3

exists and is unique.

(i) If |Bi − Bj|<Bk<Bi + Bj for i, j, k = 1, 2, 3, then the weighted Fermat-Torricelli
point is an interior point of the spherical triangle ∇A1A2A3 (Floating Case).

(ii) If there is some i with Bi ≥ Bj + Bk for i, j, k = 1, 2, 3, then the weighted Fermat-
Torricelli point is the vertex Ai (Absorbed Case).

It is possible to show the existence and uniqueness of the Fermat-Torricelli point by
reduction ad absurdum. We start with the description of the exponential map in [10].
Let D be the set of vectors v that belong to the tangent space T(S2) or T(H2) such
that 1 lies in the domain of βv. The generalized inverse stereographic projection is the
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exponential map
exp : D → X

or
exp(v) = πβv(1).

If x∈ X (S2 or H2) and 0x is the zero vector in Tx, then

exp(0x) = x.

Write expx for the restriction of exp to the tangent space Tx.

Theorem 2.3. Let X be a manifold and ξ a spray on X. Then

expx : Tx → X

induces a local isomorphism at 0x, and

(expx)⋆(0x) = id.

Proof. See [10].

The generalized inverse stereographic projection exp: D → S2, or H2, or any regular
surface X, which is a conformal mapping, transfers the existence and uniqueness result
of Kupitz-Martini in R

d (see Theorem 1.1 (I), pp. 58–61 from [9]) to the differentiable
manifold S2 or H2, or to any differential submanifold of R

d. For the case of S2 we
have the classical inverse stereographic projection from R

2 to S2. If the Fermat-Torricelli
point does not exist for a spherical triangle, then the stereographic projection will not
give any point for the corresponding plane triangle in R

2. This is not true due to [9],
since otherwise the Fermat-Torricelli point for plane triangles would not exist (Existence).
If there were two Fermat-Torricelli points, the 1-1 correspondence of the stereographic
projection would yield such points for the plane triangle, contradicting the uniqueness
result of [9] (Uniqueness).

Proof of (i) of Theorem 2.2. The variables a2, a3 can be expressed as functions of a1
and α3:

a2 = a2(a1, α3), a3 = a3(a1, α3). (2)

From (2) and (1) the following equation is obtained:

B1a1 +B2a2(a1, α3) +B3a3(a1, α3) = minimum. (3)

The “cosine law" regarding the spherical triangle ∇A0A1A3 is given by

cos(a3) = cos(a1) cos(a31) + sin(a1) sin(a31) cos(α3). (4)

Similarly, the “cosine law" concerning the spherical triangle ∇A0A1A2 is given by

cos(a2) = cos(a1) cos(a21) + sin(a1) sin(a21) cos(α23 − α3). (5)

By differentiation of (3) with respect to the variables a1 and α3 we get

B2

∂a2

∂a1
+B3

∂a3

∂a1
= −B1, (6)
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B2

∂a2

∂α3

+B3

∂a3

∂α3

= 0. (7)

Differentiating (4) and (5) with respect to α3, we can replace ∂a2
∂α3

, ∂a3
∂α3

in (7):

B2

B3

=
sin(a31) sin(α3) sin(a2)

sin(a12) sin(α2) sin(a3)
. (8)

Also one can consider the “sine law" for the spherical triangles ∇A0A1A3, ∇A0A1A2:

sin(α3)

sin(a3)
=

sin(β0)

sin(a31)
, (9)

sin(α2)

sin(a2)
=

sin(γ0)

sin(a12)
. (10)

The next equation is derived by combining equations (9) and (10) with (8):

B2

sin(β0)
=

B3

sin(γ0)
= c. (11)

Let a1 and a3 be expressed as functions of a2 and α′

3 (see Figure 2.1):

a1 = a1(a2, α
′

3), a3 = a3(a2, α
′

3). (12)

From (12) and (1) the following equation is obtained:

B1a1(a2, α
′

3) +B2a2 +B3a3(a2, α
′

3) = minimum. (13)

Differentiating (13) with respect to the variable α′

3, we deduce that

B1

∂a1

∂α′

3

+B3

∂a3

∂α′

3

= 0. (14)

The same procedure as described for (7) can be applied to the spherical triangles∇A0A1A2

and ∇A0A2A3, and so we obtain the relation

B1

sin(α0)
=

B3

sin(γ0)
= c. (15)

From (15) and (11) we get

B1

sin(α0)
=

B2

sin(β0)
=

B3

sin(γ0)
= c. (16)

The relationship between the spherical angles α0, β0, γ0 (see Figure 2.1) can be used in
order to clarify the value of c:

α0 + β0 + γ0 = 2π, (17)

sin(α0) = − sin(β0 + γ0). (18)
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From (16) and (18) we obtain that c depends only on B1, B2, B3:

c =
2B1B2B3

√

(B1 +B2 +B3)(B1 +B2 −B3)(B2 +B3 −B1)(B1 +B3 −B2)
. (19)

(16) and (19) give three important formulas:

cos(α0) =
B2

1 −B2
2 −B2

3

2B2B3

, (20)

cos(β0) =
B2

2 −B2
1 −B2

3

2B1B3

, (21)

cos(γ0) =
B2

3 −B2
1 −B2

2

2B1B2

. (22)

From (20), (21), (22), the desired inequalities are obtained, namely

|Bi −Bj| < Bk < Bi +Bj

for i, j, k = 1, 2, 3, i 6= j 6= k. Three additional inequalities are needed to obtain A0 inside
A1A2A3:

α0 > α23, β0 > α31, γ0 > α12

or
B2

1 −B2
2 −B2

3

2B2B3

<
cos(a23)− cos(a31) cos(a12)

sin(a31) sin(a12)
,

B2
2 −B2

1 −B2
3

2B1B3

<
cos(a31)− cos(a23) cos(a12)

sin(a23) sin(a12)
,

B2
3 −B2

1 −B2
2

2B1B2

<
cos(a12)− cos(a31) cos(a23)

sin(a31) sin(a23)
.

A0 is the intersection point of α0 and β0 of ∇A1A2A3. This gives the geometrical con-
struction of A0. Another approach to construct A0 is by calculating the angles α3 and α′

3.
The solutions of the two derived implicit equations referring to α3 and α′

3 , respectively,
are unique.

Proof of (ii) of Theorem 2.2. Suppose that B1 ≥ B2 +B3. Then

B1a1 +B2a2 +B3a3 ≥ (B2 +B3)a1 +B2a2 +B3a3

= B2(a1 + a2) +B3(a1 + a3) ≥ B2a12 +B3a13.

By using the triangle inequality, we deduce that the minimum point is attained at the
vertex A1.

Remark 2.4. The equation (20) can also be obtained by combining the two equations
(6) and (7):

B1 +B2 cos(γ0) +B3 cos(β0) = 0,

B2 sin(γ0)−B3 sin(β0) = 0

or, equivalently,
B1 +B2e

iγ0 +B3e
−iβ0 = 0.

The same process can be applied to (21) and (22).
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Corollary 2.5. Given the weights B1 = B2 = B3, we have α0 = β0 = γ0 = 120◦.

Proposition 2.6. Theorem 2.2 and Corollary 2.5 are also valid for

(a) a hyperbolic triangle ∇A1A2A3,

(b) a triangle ∇A1A2A3 in R
2.

Proof of (a). Similar identities are used for the hyperbolic triangle
∇A1A2A3 referring to (4) and (5):

cosh(a3) = cosh(a1) cosh(a31)− sinh(a1) sinh(a31) cos(α3), (23)

cosh(a2) = cosh(a1) cosh(a21)− sinh(a1) sinh(a21) cos(α23 − α3). (24)

As analogue of the “sine law" for spherical triangles there is a "sine law" for the hyperbolic
triangles ∇A0A1A3 and ∇A0A1A2, respectively:

sin(α3)

sinh(a3)
=

sin(β0)

sinh(a31)
, (25)

sin(α2)

sinh(a2)
=

sin(γ0)

sinh(a12)
. (26)

Differentiating (23) and (24) with respect to the hyperbolic angle α3, the partial deriva-
tives ∂a2

∂α3

, ∂a3
∂α3

are replaced in (7) by taking into account (25) and (26):

B2

sin(β0)
=

B3

sin(γ0)
= c. (27)

The same can be done with the spherical triangle, and the same result is derived for the
hyperbolic angles α0, β0 and γ0. Thus (20), (21) and (22) are obtained.

Proof of (b). Here our analytical approach uses differentiation with respect to the vari-
able of the distance a1 of the plane triangle ∇A1A2A3. We use the same symbols for the
variables as in the case of spherical triangles. We start with the "cosine law" that is valid
for the triangles ∇A0A1A2, and ∇A0A1A3, respectively:

a22 = a21 + a221 − 2a1a21 cos(α23 − α3), (28)

a23 = a21 + a231 − 2a1a31 cos(α3). (29)

Furthermore, we apply the “sine law" to the triangles ∇A0A1A2 and ∇A0A1A3, respec-
tively:

a1

a2
=

sin(α12 + α23 − α3)

sin(α23 − α3)
,
a12

a2
=

sin(α12)

sin(α23 − α3)
, (30)

a1

a3
=

sin(α13 + α3)

sin(α3)
,
a13

a3
=

sin(α13)

sin(α3)
. (31)

We differentiate (28) and (29) with respect to the distance a1, and we replace the new
relations by combining (30) and (6). We square both parts of the derived equation and
both parts of the equation (7) by applying (30) and (31). We add both of them, in order
to obtain (20).
Similarly, by differentiating (1) with respect to a2 and a3 we get the relations (21) and
(22).
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Remark 2.7. The relations (20), (21) and (22) are also obtained, since we derive (16)
by differentiating (28) and (29) with respect to the angle α3 using the same procedure for
a spherical and hyperbolic triangle.

3. The inverse weighted Fermat-Torricelli problem

Problem 3.1. Given the weighted Fermat-Torricelli point A0 of the weighted spherical
or hyperbolic triangle ∇A1A2A3 and the angles α0, β0, γ0, find the ratios between the
non-negative weights Bi

Bj
, i, j = 1, 2, 3, such that

B1 +B2 +B3 = constant.

This is the inverse weighted Fermat-Torricelli problem in the two-
dimensional sphere S2 or two-dimensional hyperboloid H2.

The generalized inverse weighted Fermat-Torricelli problem in R
2 is studied in [12] for

n > 3 and in [7] for n = 3.

Proposition 3.2. Given the angles α0, β0, γ0 and the weighted Fermat-Torricelli point
in S2 or H2 or R

2, the ratio of the three weights B1, B2, B3 is given by

B1 : B2 : B3 = sin(α0) : sin(β0) : sin(γ0).

Proof. The ratio B1 : B2 : B3 is obtained from (16). This equation also holds in H2 and
R

2.

Corollary 3.3. Concerning the spherical, hyperbolic and plane triangle ∇A1A2A3, there
are three common equations in a complex form (Remark 2.4) that provide the location of
the weighted Fermat-Torricelli point:

B1 +B2e
iγ0 +B3e

−iβ0 = 0,

B1e
iγ0 +B2 +B3e

−iα0 = 0,

B1e
iβ0 +B2e

−iα0 +B3 = 0.

Corollary 3.4. The inverse weighted Fermat-Torricelli problem gives the same ratio of
the weights B1 : B2 : B3 for a spherical, hyperbolic or plane triangle.

Proposition 3.5. The weighted Fermat-Torricelli point of a spherical, hyperbolic or plane
triangle ∇A1A2A3 remains the same for any spherical, hyperbolic or plane triangle
∇A′

1A
′

2A
′

3 if the floating case (Theorem 2.2) occurs for constant values of Bi that cor-
respond to any vertex Ai, i = 1, 2, 3.

Proof. The result follows from the fundamental condition

B1 : B2 : B3 = sin(α0) : sin(β0) : sin(γ0)

(see Proposition 3.2).
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Corollary 3.6. The weighted Fermat-Torricelli point of a spherical, hyperbolic or plane
triangle ∇A1A2A3 remains the same for any spherical, hyperbolic or plane triangle
∇A′

1A
′

2A
′

3 with vertices on geodesic cycles that are defined by the segments of the geodesics
A0A1, A0A2, A0A3.

Proof. This corollary is a direct consequence of Proposition 3.2.

In conclusion, we would like to mention that the notion of invariance which possesses
the weighted Fermat-Torricelli point for given three points in the plane, two-dimensional
sphere and two-dimensional hyperboloid, is stronger than the notion of similarity. This
means that the invariance of the weighted Fermat-Torricelli point holds for similar and
non-similar triangles. This fundamental result occurs because the angles α0, β0, γ0 depend
only on the values of the weights B1, B2, B3 and not on the side lengths of the triangles
(see (20), (21), and (22)). Among known points (so-called centers) of Euclidean, spherical
or hyperbolic triangles the weighted Fermat-Torricelli point is the only point that is
connected with this invariance property (Proposition 3.5, Corollary 3.6). The invariance of
the weighted Fermat-Torricelli point in Proposition 3.5 (strong invariance) is stronger than
the invariance of the weighted Fermat-Torricelli point in Corollary 3.6 (weak invariance).
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