
Journal of Convex Analysis

Volume 15 (2008), No. 1, 1–15

Differentiability of Approximately Convex,

Semiconcave and Strongly Paraconvex Functions
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1. Introduction

A number of notions of generalized convex functions (surfaces, sets) was considered (fre-
quently independently) in the literature.

Functions f defined on Rn (or corresponding surfaces in Rn+1) which are locally repre-
sentable in the form f(x) = g(x) + c‖x‖2, where g is concave and c > 0, were treated
in the literature many times under different names and different (equivalent) definitions
(see e.g. [25]). Now these functions f are most frequently called semiconcave functions
(with linear modulus, see [4]), and the functions −f are called semiconvex or lower-C2

functions (see [24]).

More general are locally (γ)-paraconvex functions considered in Banach spaces in 1979 by
Rolewicz [26].

On Rn, a more general class of lower-C1 functions was considered in 1981 by Spingarn
[31].

A class of “uniformly almost superdifferentiable� functions (defined on an open subset of
a Banach space) was introduced and applied in the abstract approximation theory [38] in
1984. It is not difficult to show (but we will not use this fact) that this class of functions
coincides with the class of continuous (general) semiconcave functions considered [2] in
1992 in Rn and in general Banach spaces [1] in 1998.

The corresponding class of continuous (general) semiconvex functions (i.e. those, for
which −f is semiconcave) essentially coincides with the class of continuous strongly α(·)-
paraconvex functions (with limt→0+ α(t)/t = 0) defined [27] in 2000. Note that strongly
tγ-paraconvex functions (1 < γ ≤ 2) coincide [27] with (γ)-paraconvex functions, and also

ISSN 0944-6532 / $ 2.50 c© Heldermann Verlag
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[6] with lower-C1,γ−1 functions.

The class of approximately convex functions on a Banach space was considered [19] in
2000. Continuous approximately convex functions on Rn coincide with lower-C1 func-
tions [5], and also with continuous locally (general) semiconvex functions (see Remark
2.6). Each locally semiconvex function (or each locally strongly α(·)-paraconvex func-
tion) is approximately convex. (Indeed, strongly α(·)-paraconvex functions coincide with
uniformly approximately convex functions [28].)

In Section 3 we show that an approximately convex function which is Fréchet differentiable
at a point is even strictly differentiable at this point.

The differentiability properties of some non-convex functions were infered from generalized
monotonicity of its subdifferential in [38] and [16]. We show in Sections 4 and 5 that
this method easily gives that continuous approximately convex functions (and so also
continuous general semiconcave functions and continuous strongly paraconvex functions)
have almost all known differentiability properties (of the first order) of continuous convex
functions (but not all; see Section 6). In particular, the result of [1] is generalized and
the results of [29] and [30] are generalized and refined.

Note that we work only with functions which are finite and continuous on an open subset
of a Banach space. Approximately convex functions which generalize extended real valued
convex functions f : X → R ∪ {∞} are not considered.

2. Preliminaries

2.1. Basic notation

In the following, X will be always a (real) Banach space and B(x, r) will denote the open
ball with center x and radius r.

In the following definitions, f is a real function defined on an open subset G of X.

Recall that A ∈ X∗ is called a (Fréchet; uniform) strict derivative of f at a ∈ X if

lim
x,y→a,x 6=y

f(y)− f(x)− 〈A, y − x〉

‖y − x‖
= 0,

(where we allow that x = a or y = a).

The one-sided directional derivative of f at x in the direction v is defined by

f ′
+(x, v) := lim

t→0+

f(x+ tv)− f(x)

t
.

The Fréchet subdifferential of f at a is defined by

∂Ff(a) := {x∗ ∈ X∗ : lim inf
h→0

f(a+ h)− f(a)− 〈x∗, h〉

‖h‖
≥ 0}.

If f is locally Lipschitz on G, then

f 0(a, v) := lim sup
z→a,t→0+

f(z + tv)− f(z)

t
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is the Clarke derivative of f at a in the direction v and

∂Cf(a) := {x∗ ∈ X∗ : 〈x∗, v〉 ≤ f 0(a, v) for all v ∈ X}

is the Clarke subdifferential of f at a (which is always non-empty). We say that f is
(Clarke) regular if f 0(x, v) = f ′

+(x, v) for each x ∈ G and v ∈ X.

Recall that (see e.g. [11], p. 5)

f is Gateaux differentiable at a whenever ∂Cf(a) is a singleton. (1)

(Note that, in [11], strict differentiability is called “uniform strict differentiability�, and
“strict differentiability� is a weaker notion; see [11, pp. 5, 7].)

We will denote by NF (f) (resp. NG(f)) the set of points of G at which f is not Fréchet
(resp. Gateaux) differentiable.

Now we recall the notion of a submonotone mapping (operator) which is basic for this
article.

Definition 2.1. Let T : X → X∗ be a multivalued mapping (operator). We will say that
T is submonotone at a ∈ X if for each ε > 0 there exists δ > 0 such that

〈x∗1 − x∗2, x1 − x2〉 ≥ −ε‖x1 − x2‖,

whenever x1, x2 ∈ B(a, δ), x∗1 ∈ T (x1) and x
∗
2 ∈ T (x2).

We say that T is submonotone on G ⊂ X if it is submonotone at each a ∈ G.

This definition is taken from [5]. The notion was introduced by Spingarn [31] in Rn

under the name “strictly submonotone mapping�. (An essentially same notion was used
in a Banach space in [38] and [16], where the notion of “locally almost nonincreasing�
mappings was defined.)

2.2. Three classes of generalized convex functions

We will give definitions only for the case of real functions defined on open (convex) sets,
since we will work with such functions only.

Denote by M the set of all functions ω : [0,∞) → [0,∞) with ω(0) = 0 which are
non-decreasing and right continuous at 0.

The following definition is taken from [4]; the definitions in [2] and [1] are slightly different
but essentially equivalent.

Definition 2.2. A continuous real function f on an open convex set Ω ⊂ X is called
semiconcave with modulus ω ∈ M if

λf(x) + (1− λ)f(y)− f(λx+ (1− λ)y) ≤ λ(1− λ)ω(‖x− y‖)‖x− y‖ (2)

whenever λ ∈ [0, 1] and x, y ∈ Ω.

A function is called semiconcave on Ω if it is semiconcave on Ω with some modulus ω ∈ M.
A function f is called semiconvex if −f is semiconcave.
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Definition 2.3 ([27], [29]). Let α ∈ M be such that limt→0+ α(t)/t = 0 and Ω ⊂ X be
a convex open set. A function f : Ω → R is called strongly α(·)-paraconvex if there exists
C > 0 such that

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) + Cmin(λ, 1− λ)α(‖x− y‖) (3)

whenever λ ∈ [0, 1] and x, y ∈ Ω.

We will say that f is strongly paraconvex if it is strongly α(·)-paraconvex for some α ∈ M
with limt→0+ α(t)/t = 0.

Definition 2.4 ([19]). A real function f on an open set Ω ⊂ X is called approximately
convex at x0 ∈ Ω if for every ε > 0 there exists δ > 0 such that

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) + ελ(1− λ)‖x− y‖ (4)

whenever λ ∈ [0, 1] and x, y ∈ B(x0, δ).

We say that f is approximately convex on Ω if it is approximately convex at each x0 ∈ Ω.
We say that f is uniformly approximately convex on Ω if for every ε > 0 there exists
δ > 0 such that (4) holds whenever λ ∈ [0, 1], x, y ∈ Ω, and ‖x− y‖ < δ.

(Note that the term “approximately convex functions� is used for a long time for another
type of functions, namely for ε-convex functions in the sense of Hyers and Ulam.)

It is easy to see that f is semiconvex on an open convex Ω ⊂ X if and only if f is
continuous and strongly paraconvex on Ω. (It is sufficient to observe that λ(1 − λ) ≤
min(λ, 1 − λ) ≤ 2λ(1 − λ) for λ ∈ [0, 1] and that for each ω∗ : [0,∞) → [0,∞) with
ω(0) = 0 which is right continuous at 0 there exists ω ∈ M such that ω∗ ≤ ω.)

However, for us it is sufficient to observe that each semiconvex function on Ω is approx-
imately convex on Ω and that each strongly paraconvex function on Ω is approximately
convex on Ω. Indeed, all results below hold for the (largest) class of approximately convex
functions.

We will need the following well-known properties of approximately convex functions.

Lemma 2.5. Let f be a lower semicontinuous real approximately convex function on an
open subset G of a Banach space X. Then the following hold.

(i) f is locally Lipschitz on G and the one-sided directional derivative f ′
+(x, v) exists

for each x ∈ G and v ∈ X.

(ii) ∂Ff(x) = ∂Cf(x) for each x ∈ G.

(iii) The multi-valued mapping T (x) := ∂Cf(x) is submonotone on G.

(iv) f is (Clarke) regular.

Proof. The property (i) is proved in [19, Proposition 3.2 and Corollary 3.5]. The prop-
erty (ii) follows from [19, Theorem 3.6], because f is locally Lipschitz and so ∂Cf(x) =
∂C−Rf(x) for x ∈ G. The property (iii) follows from [5, Theorem 2]. The property (iv)
follows from [19, Corollary 3.5. and Theorem 3.6] (see also [5, Remark 6]).

The following remark was added in the revised version as a response to a question formu-
lated by an anonymous referee.
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Remark 2.6. It is natural to ask whether results on differentiability of approximately
convex functions are essential generalizations of corresponding results about strongly para-
convex (equivalently: general semiconcave, or locally uniformly approximately convex)
functions.

It is not the case if we deal with functions on Rn (which is locally compact), since each
approximately convex function f on an open Ω ⊂ Rn is locally uniformly approximately
convex. It follows easily from results of [31] and [5] (via [5, Theorem 2] and [31, Proposition
3.8]; local compactness of Rn is used in [31, Lemma 3.6]).

However, the following simple direct proof is preferable:

Let a ∈ Ω, ω > 0 and B := B(a, ω) ⊂ Ω be given. Choose an arbitrary ε > 0. For
each x0 ∈ B, choose δ = δx0

by Definition 2.4. Let L > 0 be the Lebesgue number of
the covering {B(x0, δx0

) ∩ B : x0 ∈ B} of the compact B. Let now x, y ∈ B(a, ω) with
|x − y| < L be given. Then, for each λ ∈ [0, 1], the inequality (4) holds, since (by the
definition of the Lebesgue number) there is x0 ∈ B with x, y ∈ B(x0, δx0

).

On the other hand, it is not difficult to construct an approximately convex function f
on ℓ2, which is uniformly approximately convex on no ball. Since this example does
not concern directly the topic of the present article, and the detailed proof is not short, I
present here only a construction of a weaker example of an approximately convex function
f which is uniformly approximately convex on no neighbourhood of 0 ∈ ℓ2. I will publish
the complete example elsewhere, if I will not find it in the literature.

For each n ∈ N, let ϕn : [−1, 1] → R be an even concave continuous function such that
ϕn(−1) = 0, ϕn(0) = 1−1/2n, ϕn is C2 on (−1, 1), and ϕn(x) = x+1 for x ∈ [−1,−1/n].

For k, l ∈ N, let Bk,l := B(2−lek, 2
−(l+4)), where ek is the k-th member of the canonical

basis of ℓ2. Obviously, the family {Bk,l} is disjoint. Now set f(x) := 2−2lϕk(2
l+4 ‖x −

2−lek‖) if x ∈ Bk,l and f(x) := 0 for x ∈ ℓ2 \
⋃

Bk,l. It is not difficult to prove that f is
an approximately convex function on ℓ2, but f is uniformly approximately convex on no
neighbourhood of 0 ∈ ℓ2. (Note that, after estimating Lipschitz constants of f on balls
Bk,l, it is easy to show that f is strictly differentiable at 0.)

2.3. Definitions of some systems of small sets

We recall here definitions of some systems of small sets in Banach spaces. For more
information see [42].

Definition 2.7. Let M ⊂ X, x ∈ X and R > 0. Then we define γ(x,R,M) as the
supremum of all r ≥ 0 for which there exists z ∈ X such that B(z, r) ⊂ B(x,R) \M .
Further define the upper porosity of M at x as

p(M,x) := 2 lim sup
R→0+

γ(x,R,M)

R

and the lower porosity of M at x as

p(M,x) := 2 lim inf
R→0+

γ(x,R,M)

R
.

We say that M is upper porous (lower porous) at x if p(M,x) > 0 (p(M,x) > 0).
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We say that M is upper porous (lower porous) if M is upper porous (lower porous) at
each point y ∈M . We say that M is σ-upper porous (σ-lower porous) if it is a countable
union of upper porous (lower porous) sets.

It is clear that each σ-lower porous set is σ-upper porous and each σ-upper porous set is
a first category set.

Definition 2.8. LetX be a Banach space. We say that A ⊂ X is a Lipschitz hypersurface
(or a Lipschitz surface of codimension 1) if we can write A = {x+ϕ(x)v : x ∈ E}, where
X = E ⊕Rv and ϕ is a real Lipschitz function on E.

Recall the important fact that, in a separable Banach space X, each Lipschitz hyper-
surface (and so also each Borel set which can be covered by countably many Lipschitz
hypersurfaces) is Gaussian null (and therefore also Haar null) and Γ-null. (For information
on Gaussian and Haar null sets see [3], the notion of Γ-null sets was defined in [14].)

Definition 2.9. If X is a Banach space, v ∈ X, ‖v‖ = 1 and 0 < c < 1, then we define
the cone A(v, c) :=

⋃

λ>0 λ · B(v, c). We say that M ⊂ X is cone supported if for each
x ∈ M there exist r > 0 and a cone A(v, c) such that M ∩ (x + A(v, c)) ∩ B(x, r) = ∅.
The notion of a σ-cone supported set is defined in the usual way.

If X is separable, it is easy to show (see Lemma 1 of [34]) that the system of all σ-cone
supported sets coincides with sets which can be covered by countably many Lipschitz
hypersurfaces. Each σ-cone supported set is clearly σ-lower porous.

Definition 2.10. Let X be a Banach space. If x∗ ∈ X∗, x∗ 6= 0 and 0 ≤ α < 1, define
(the α-cone)

C(x∗, α) := {x ∈ X : α‖x‖ · ‖x∗‖ < (x, x∗)}.

A set M ⊂ X is said to be α-cone porous at x ∈ X if there exists R > 0 such that for
each ε > 0 there exists z ∈ B(x, ε) and 0 6= x∗ ∈ X∗ such that

M ∩B(x,R) ∩ (z + C(x∗, α)) = ∅. (5)

A subset of X is said to be α-cone porous if it is α-cone porous at all its points; σ-α-cone
porous sets are defined in the obvious way. A set is said to be cone-small if it is σ-α-cone
porous for each 0 < α < 1.

If we write in (5) M ∩ (z +C(x∗, α)) = ∅ then we obtain (instead of the notion of a cone
small set) the notion of an angle small set (cf. [23], [22]). If X is separable then it is easy
to see that the notions of cone smallness and angle smallness coincide. It is not true in
non-separable Hilbert spaces ([13]). Clearly each cone small set is σ-lower porous.

3. Connections between approximate convexity and strict differentiability

The following proposition is an immediate consequence of [33, Proposition 3.7] (cf. [40,
Theorem A]).

Proposition 3.1. Let f be a mapping from a normed linear space X to a Banach space
Y . Then f is strictly differentiable at a point a ∈ X if and only if f is continuous at a
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and for each ε > 0 there exists δ > 0 such that
∥

∥

∥

∥

f(y + kv)− f(y)

k
−
f(y)− f(y − hv)

h

∥

∥

∥

∥

< ε, (6)

whenever ‖v‖ = 1, k > 0, h > 0, y − hv ∈ B(a, δ), y + kv ∈ B(a, δ).

So the following easy (geometrically more understandable) reformulation of the definition
of approximate convexity shows that approximate convexity at a point has the meaning
of “semi-strict differentiability�.

Lemma 3.2. Let X be a Banach space and f be a real function defined on a neighbourhood
of a point a ∈ X. Then f is approximately convex at a if and only if for each ε > 0 there
exists δ > 0 such that

f(y + kv)− f(y)

k
−
f(y)− f(y − hv)

h
> −ε, (7)

whenever ‖v‖ = 1, k > 0, h > 0, y − hv ∈ B(a, δ), y + kv ∈ B(a, δ).

Proof. Denote x1 := y + kv, x2 := y − hv, t := h/(h + k). Then 1 − t = k/(k + h),
y = tx1 + (1− t)x2 and an easy computation shows that

f(y + kv)− f(y)

k
−
f(y)− f(y − hv)

h

=
1

t(1− t)‖x1 − x2‖
(tf(x1) + (1− t)f(x2)− f(tx1 + (1− t)x2)) .

The rest of the proof is clear.

Proposition 3.1 and Lemma 3.2 have the following immediate consequence.

Corollary 3.3. Let X be a Banach space and f be a real function defined on an open
neighbourhood of a point a ∈ X. Then f is strictly differentiable at a if and only if f is
continuous at a and both f and −f are approximately convex at a.

Using Lemma 3.2, we give a short proof of the following easy result which generalizes the
well-known property of convex functions.

Proposition 3.4. Let X be a Banach space and f be approximately convex and Fréchet
differentiable at a ∈ X. Then f is strictly differentiable at a.

Proof. We can clearly suppose (adding an affine function to f , if necessary) that f(a) = 0
and f ′(a) = 0. Let ε > 0 be given. Let δ > 0 be a number which corresponds to ε∗ := ε/2
by Lemma 3.2. Further choose ω ∈ (0, δ) such that

|f(x)| < (ε/8)‖x− a‖, whenever x ∈ B(a, ω). (8)

Put ρ := ω/2 and consider arbitrary different points y, z ∈ B(a, ρ). Denote v := (z −
y)/‖z−y‖. Since the points y, z, z+ρv, y−ρv belong to B(a, ω) ⊂ B(a, δ), by the choice
of δ and (8) we obtain that

f(z + ρv)− f(z)

ρ
−
f(z)− f(y)

‖z − y‖
> −ε/2, (9)
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f(z)− f(y)

‖z − y‖
−
f(y)− f(y − ρv)

ρ
> −ε/2, (10)

and the numbers |f(y)|, |f(z)|, |f(z + ρv)|, |f(y − ρv)| are less than (ε/8)2ρ = ερ/4.
Therefore |(f(z + ρv)− f(z))/ρ| < ε/2 and |(f(y)− f(y − ρv))/ρ| < ε/2. So (9) implies
(f(z)− f(y))/‖z − y‖ < ε and (10) gives (f(z)− f(y))/‖z − y‖ > −ε. We obtain that 0
is the strict derivative of f at a.

4. Gateaux differentiability

4.1. Gateaux differentiability on separable spaces

Theorem 4.1. Let X be a separable Banach space, G ⊂ X be an open set and f :
G → R be a continuous approximate convex function on G. Then the set NG(f) of all
points at which f is not Gateaux differentiable can be covered by countably many Lipschitz
hypersurfaces. In particular, NG(f) is Gaussian null, Haar null and Γ-null.

Proof. Lemma 2.5(i) says that

f is locally Lipschitz and f has all one-sided derivatives at all points. (11)

By [18, Theorem 3.3], condition (11) implies that NG(f) can be covered by countably
many Lipschitz hypersurfaces.

Remark 4.2.

1. Theorem 4.1 is also an almost immediate consequence of Lemma 2.5(i), (ii) and
[36, Lemma 2] (and also of a related [15, Theorem 3]). In fact, [18, Theorem 3.3]
implies slightly more: NG(f) can be covered by countably many of “special parts�
of Lipschitz hypersurfaces.

2. A complete characterization of smallness of sets NG(f) for continuous convex func-
tions on a separable space was given in [35] (see also [3, Theorem 4.20]). A complete
characterization of sets NG(f) for continuous convex functions on Rn was given in
[21].

Theorem 4.1 for semiconcave functions (and thus also for continuous strongly paraconvex
functions) was essentially proved in [1]. Although the definition of σ-(∞−1)-dimensional
rectifiable sets used in [1] is too weak (since the whole space can be such a set), the proof
in fact gives the result.

4.2. Gateaux differentiability on non-separable spaces

It was proved in [39] that, if f : X → R is a continuous convex function and X is
Asplund or X∗ is strictly convex (i.e. rotund), then NG(f) is σ-cone supported. If X
is Asplund, this result was generalized in [16] to the case when f is “uniformly almost
superdifferentiable�, and thus essentially also to the case of a semiconcave function (or a
continuous strongly paraconvex function).

The proof of [39] was given via single-valuedness of monotone operators and the proof of
[16] via single-valuedness of submonotone operators. Further generalizations of the above
mentioned result of [39] were given in [12] (where monotone operators are considered) and
in [10] (where directionally submonotone operators are considered). The above mentioned
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articles contain (or essentially contain) the following result on submonotone operators.
Recall that X is called an Asplund generated space (or a GSG space, see [7]) if there
exists an Asplund space V and a continuous linear mapping F : V → X such that F (V )
is dense in X.

Proposition 4.3. Let T : X → X∗ be a locally bounded (multivalued) submonotone
operator with an arbitrary domain D(T ) = {x ∈ X : T (x) 6= ∅}. Let X be Gateaux
smooth or X be a subspace of an Asplund generated (i.e. GSG) space. Then there exists
a σ-cone supported set A ⊂ D(T ) such that T is single-valued at each point of D(T ) \A.

Proof. The case when X is Gateaux smooth is a special case of [10, Theorem 5.1] (where
directionally submonotone operators are called “submonotone�; so a more general result
is proved). Note that σ-cone supported sets are called “σ-cone porous� in [10].

If X is a subspace of an Asplund generated (i.e. GSG) space, then the result is essentially
proved in [12]. Indeed, Theorems 3.3 and 3.4 of [12] work with monotone operators T ,
but the monotonicity of T is used only via [12, Lemma 3.1] (which coincides with [38,
Lemma 2]). But [16, Lemma 2.2] (formulated for locally almost nonincreasing T ) easily
implies (since T is locally almost nonincreasing if and only if −T is submonotone) that
[12, Lemma 3.1] holds for submonotone operators as well.

Remark 4.4. The argument above and [12, Theorem 3.3] show that Proposition 4.3
(and so also Theorem 4.5 below) holds also for “countably dentable spaces� which form
a (possibly strictly) larger class than subspaces of Asplund generated (i.e. GSG) spaces.
We do not repeat here the (slightly technical) definition of countably dentable spaces.

Theorem 4.5. Let X be Gateaux smooth or X be a subspace of an Asplund generated (i.e.
GSG) space. Let G ⊂ X be an open set and f : G → R be a continuous approximately
convex function on G. Then the set NG(f) of all points x ∈ G at which f is not Gateaux
differentiable is σ-cone supported.

Proof. Lemma 2.5(i), (iii) implies that T := ∂Cf is a locally bounded submonotone
mapping on G. So Proposition 4.3 (we put T (x) := ∅ for x /∈ G) and (1) immediately
give the assertion.

Since each WCG space is Asplund generated (i.e. GSG) space (see [7], p. 16), Theorem
4.5 gives a positive answer to [30, Problem 5].

Using Theorem 4.5 we obtain in the same way as [41, Proposition 6] the following corollary
(which cannot be infered from the fact that NG(f) is a first category set).

Corollary 4.6. Let Γ be an uncountable set, p > 1 and f be a continuous approximately
convex function on ℓp(Γ). Then the set of all points x ∈ ℓ1(Γ) at which f is Gateaux
differentiable is uncountable and dense in ℓ1(Γ).

5. Fréchet differentiability

5.1. Results which follow from Fréchet subdifferentiability of continuous ap-
proximatively convex functions

It was observed already in [37] that some differentiability properties of Lipschitz nonconvex
functions can be easily obtained from their Fréchet subdifferentiability. [37, Theorem 2]
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immediately gives:

If X∗ is separable and f is Lipschitz function on X, then the set of all points x ∈ X at
which ∂Ff(x) 6= ∅ and f is not Fréchet differentiable is σ-upper porous.

So, using Lemma 2.5(i), (ii) and separability of X, we easily obtain:

If X∗ is separable, G ⊂ X is an open set and f : G → R is a continuous approximately
convex function on G, then the set NF (f) of all points x ∈ G at which f is not Fréchet
differentiable is σ-upper porous.

So the general result [40, Theorem 8] on separable reduction (which concerns generic
Fréchet differentiablity) immediately gives:

If X is Asplund, G ⊂ X is an open set and f : G → R is a continuous approximately
convex function on G, then the set NF (f) of all points x ∈ G at which f is not Fréchet
differentiable is a first category set.

Remark 5.1. This result also immediately follows from Lemma 2.5(ii) and [40, Theorem
10] (or [37, Theorem 3]).

So we obtain a generalization of the result [29] on Fréchet differentiability of strongly
paraconvex functions on Asplund spaces.

If X is not an Asplund space but f : X → R is Fréchet subdifferentiable at all points
and we have some information on the set of subdifferentials, then we can sometimes also
obtain that f is generically Fréchet differentiable. The following two propositions are
immediate consequences of [40, Theorem 9 and Theorem 10∗]. (For related results on
Fréchet differentiability of convex functions on non-Asplund spaces see [8], [32] and [43].)

Proposition 5.2. Let X be a Banach space, G ⊂ X be an open set and f : G→ R be a
continuous approximately convex function on G. Let P be a separable subset of X∗. Then
the set A of all points x ∈ G at which ∂Ff(x) ∩ P 6= ∅ but f is not Fréchet differentiable
at x is a first category set.

To formulate the second proposition, we need the following notion of [8]. A subset K of a
dual space X∗ is called separably related to a subset A of X provided, for every separable
bounded subset S of A, the set K is separable for the topology of uniform convergence
on S.

Proposition 5.3. Let X be a Banach space, G ⊂ X be an open set and f : G → R be
a continuous approximately convex function on G. Let K ⊂ X∗ be separably related to X
and ∂Ff(x) ∩K 6= ∅ for each x ∈ G. Then the set NF (f) of all points x ∈ G at which f
is not Fréchet differentiable is a first category set.

5.2. Results obtained via submonotonicity of the subdifferential mapping

We will need the following lemma which is an easy generalization of Lemma 2(ii) of [38].

Lemma 5.4. Let X be a Banach space and f be a continuous approximately convex
function on an open set G ⊂ X. Let g : G→ X∗ be a selection of ∂Cf (i.e., g(x) ∈ ∂Cf(x)
for x ∈ G) and g be continuous at a ∈ G. Then f is Fréchet differentiable at a.
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Proof. Let ε > 0 be given. Choose δ1 > 0 such that ‖g(x) − g(a)‖ < ε for all x ∈
B(a, δ1). Further, by [5, Theorem 2(ii)] we can choose δ2 > 0 such that f(x+u)− f(x) ≥
〈x∗, u〉 − ε‖u‖ whenever x ∈ B(a, δ2), x

∗ ∈ ∂Cf(x), ‖u‖ < δ2 and x + u ∈ B(a, δ2). Put
δ := min(δ1, δ2). Then, for each x ∈ B(a, δ), we have

f(x)− f(a) ≥ 〈g(a), x− a〉 − ε‖x− a‖ and (12)

f(a)− f(x) ≥ 〈g(x), a− x〉 − ε‖x− a‖.

Since ‖g(x)− g(a)‖ < ε, the last inequality implies

f(x)−f(a) ≤ 〈g(a), x−a〉+〈g(x)−g(a), x−a〉+ε‖x−a‖ ≤ 〈g(a), x−a〉+2ε‖x−a‖. (13)

The inequalities (12) and (13) immediately imply that g(a) is the Fréchet derivative of f
at a.

Now we can easily prove the following generalization of [38, Proposition 1] (on uniformly
almost superdifferentiable functions).

Theorem 5.5. If X∗ is separable, G ⊂ X is an open set and f : G→ R is a continuous
approximately convex function on G, then the set NF (f) of all points x ∈ G at which f
is not Fréchet differentiable is angle small.

Proof. Choose a selection g of ∂Cf on G. Since g is submonotone by Lemma 2.5(iii),
[38, Lemma 3] implies that there exists an angle small set A such that g is continuous at
all points x ∈ G \A. Now Lemma 5.4 implies that f is Fréchet differentiable at all points
x ∈ G \ A.

Even if X is a separable Hilbert space, there is known no complete characterization of the
smallest σ-ideal containing all sets NF (f), where f is a continuous convex function on X.

If f is a continuous convex function on a separable superreflexive infinite dimensional
Banach space, the set NF (f) of Fréchet non-differentiable points need not be Haar null
(in particular, it need not be Gaussian, resp. Aronszajn null), see [17].

However, if X is an infinite dimensional space with separable X∗, then NF (f) is Γ-null
for each continuous convex f on X [14, Corollary 3.11]. In fact, the proof in [14] gives
that this result holds also for continuous approximately convex functions:

Proposition 5.6. If X∗ is separable, G ⊂ X is an open set and f : G → R is a
continuous approximately convex function on G, then the set NF (f) of all points x ∈ G
at which f is not Fréchet differentiable is Γ-null.

Proof. In [14], the authors work with a notion of “regularity� ([14, Definition 3.1]) which
is clearly weaker than Clarke regularity. Therefore f is “regular� at all points by Lemma
2.5(iv). So the assertion of the proposition follows (since X is separable and a countable
union of Γ-null sets is Γ-null) from [14, Theorem 2.5 and Theorem 3.10].

Using Proposition 5.6 and [14, Theorem 2.5], we immediately obtain:

Corollary 5.7. Let X∗ be separable and Y have RNP. Let f be a continuous approx-
imately convex function on X and g : X → Y be locally Lipschitz. Then the set
NF (f) ∪ NG(g) is Γ-null. In particular, the set of points at which f is Fréchet differ-
entiable and g is Gateaux differentiable is uncountable and dense in X.
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Remark 5.8. Of course, the proofs give that both Proposition 5.6 and Corollary 5.7 hold
for each (Clarke) regular locally Lipschitz f .

The following result is an easy generalization of [16, Theorem 2.6].

Theorem 5.9. Let X be an Asplund space, G ⊂ X be an open set and f : G → R be
a continuous approximately convex function on G. Then there exists a σ-cone supported
set A ⊂ G and a cone-small set B ⊂ G such that f is Fréchet differentiable at all points
of G \ (A ∪B).

Proof. Denote T (x) := ∂Cf(x). Then T is submonotone by Lemma 2.5(iii) and T (x) 6= ∅
for each x ∈ G. Since f is locally Lipschitz, T is clearly locally bounded and T is norm-
to-weak∗ upper semicontinuous (see e.g. [11, Theorem 1.2.2]). So [16, Proposition 2.3 and
Proposition 2.4] imply that there exist a σ-cone supported set A ⊂ G and a cone-small
set B ⊂ G such that T = ∂Cf is single-valued and norm-to-norm upper semicontinuous
at all points of G\ (A∪B). So [11, Theorem 1.2.3] implies that f is Fréchet differentiable
at all points of G \ (A ∪B).

6. An example

Recall that a function on an open convex subset of a Banach space is called a d.c. function
if it is the difference of two continuous convex functions.

Proposition 6.1. Let I be the smallest σ-ideal of subsets of R2 which contains all sets
of the form NF (g), where g is a continuous convex function on an open convex subset of
R2. Let ω ∈ M be a modulus with limt→0+ t/ω(t) = 0. Then there exists an open convex
set G ⊂ R2 and a function f on G which is semiconcave with modulus ω and NF (f) /∈ I.

Proof. It is well-known (see [20]) that there exists a function ϕ on [0, 1] such that |ϕ(y)−
ϕ(x)| ≤ ω(|y − x|) and ϕ has finite derivative at no point x ∈ (0, 1). We can clearly
suppose that 1 ≤ ϕ(x) ≤ 2 for each x ∈ [0, 1]. Define ψ(x) :=

∫ x

0
ϕ for x ∈ (0, 1), and

p(x, y) := ψ(x)− y for (x, y) ∈ G := (0, 1)×R. Since ψ′ = ϕ is continuous with modulus
of continuity ω, we easily see that p′ is continuous with modulus of continuity ω as well. So
the proof of [4, Proposition 2.1.2] clearly gives that p is semiconcave on G with modulus
ω. Consequently (see [4, Proposition 2.1.5]) the function f := min{p, 0} is semiconcave
on G with modulus ω as well. Clearly f ′

y(x, y) does not exist for (x, y) ∈ M := {(x, y) :

y = ψ(x), x ∈ (0, 1)}; so M ⊂ NF (f).

Suppose on the contrary that NF (f) ∈ I. Then [35, Theorem 1] implies that there
exist sequences αn, βn of d.c. functions on R such that M ⊂

⋃∞

1 An ∪
⋃∞

1 Bn, where
An := {(x, y) : y = αn(x)} and Bn := {(x, y) : x = βn(y)}. The Baire theorem easily
implies that there exists an open interval I ⊂ (0, 1) and n ∈ N such that

{(x, y) : y = ψ(x), x ∈ I} ⊂ An or {(x, y) : y = ψ(x), x ∈ I} ⊂ Bn.

In the first case clearly ψ = αn and so ϕ = α′
n on I, which is impossible, since α′

n has
locally bounded variation and therefore is a.e. differentiable.

In the second case denote J := ψ(I). Then βn = ψ−1 on J and so ψ|I = (βn|J)
−1.

Consequently ψ is locally d.c. on I (it follows immediately from [33, Theorem 5.2], since
ψ is bilipschitz). Thus we obtain a contradiction as in the first case.
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Recall that (by [4, Proposition 2.1.4]), for each α ∈ (0, 1), there exists a function u on an
open interval I ⊂ R which is semiconcave with modulus ω(r) = rα and that cannot be
written in the form u = u1 + u2 with u1 concave and u2 ∈ C1(I). (So, a conjecture in [6,
Remark 3.6] concerning local decomposability of lower-C1,α functions does not hold.)

The following easy consequence of Proposition 6.1 give in R2 a slightly more general and
slightly more precise result.

Proposition 6.2. Let ω ∈ M be a modulus with limt→0+ t/ω(t) = 0. Then there exists
an open convex set G ⊂ R2 and a function f on G which is semiconcave with modulus ω
and which cannot be written in the form f = g+ h, where g is concave (or d.c.) and h is
(Fréchet) differentiable on G.

Proof. Let f be as in Proposition 6.1. If f can be written in the above form, then
NF (f) ∈ I, a contradiction.
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