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1. Introduction

Imagine a nonlinear elastic membrane, fixed on a boundary ∂Ω of a plane domain Ω. If
u(x) denotes its vertical displacement, and if its deformation energy is given by

∫
Ω
|∇u|p dx,

then a minimizer of the Rayleigh quotient
∫
Ω
|∇u|p dx∫
Ω
|u|p dx

on W 1,p
0 (Ω) satisfies the Euler-Lagrange equation

−∆pu = λp |u|p−2u in Ω, (1)

where ∆pu = div(|∇u|p−2∇u) is the well-known p–Laplace operator. This eigenvalue
problem has been extensively studied in the literature. As p → 1, formally the limit
equation reads

−div

( ∇u

|∇u|

)
= λ1(Ω) in Ω,

u = 0 on ∂Ω.
(2)

For a precise interpretation of (2) see [23] or [33]. Naturally, here λ1(Ω) := limp→1+ λp(Ω).
A somewhat surprising recent result is that the family of eigenfunctions {up} converges
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in L1(Ω) cum grano salis to (a multiple of) the characteristic function χCΩ
of a subset CΩ

of Ω, a so called Cheeger-set, see [21]. A Cheeger set of Ω is characterized as a domain
that minimizes

h(Ω) := inf
D

|∂D|
|D|

with D varying over all smooth subdomains of Ω whose boundary ∂D does not touch ∂Ω,
and with |∂D| and |D| denoting (n− 1)- and n-dimensional Lebesgue measure of ∂D and
D. The existence, uniqueness, regularity and construction of such sets is discussed in [21]
and [22] (and partly in [34]) and its continuous dependence on Ω in [18]. The paper [26]
contains a numerical method for the calculation of n-dimensional Cheeger sets and some
three-dimensional examples. Cheeger sets are of significant importance in the modelling
of landslides, see [19], [20], or in fracture mechanics, see [24]. Notice that a set D ⊆ Ω is
a Cheeger set if and only if it is a minimizer of

|∂E| − h(Ω)|E| for E ⊆ Ω. (3)

Now suppose that the membrane is not isotropic. It is for instance woven out of elastic
strings like a piece of material. Then the deformation energy can be anisotropic, see
[5]. Another way to describe this effect is by stating that the Euclidean distance in Ω is
somehow distorted. It is the purpose of the present paper to generalize the above result
on eigenfunctions and their convergence as p → 1 to the situation, where Ω ⊂ R

n is no
longer equippped with the Euclidean norm, but instead with a general norm φ. In that
case a Lipschitz continuous function u : Ω 7→ R (in a convex domain Ω) has Lipschitz
constant L = supz∈Ω φ∗(∇u(z)), where φ∗ denotes the dual norm to φ. Therefore the
Rayleigh quotient studied in this paper is given by

Rp(u) :=

∫
Ω
(φ∗(∇u))p dx∫

Ω
|u|p dx

(4)

on W 1,p
0 (Ω) and the Cheeger constant by

h(Ω) := inf
D⊂Ω

Pφ(D)

|D| , (5)

with Pφ denoting anisotropic perimeter in R
n (see (10) below). The minimizer up of Rp

satisfies the Euler-Lagrange inclusion

−Qpu := −div
(
(φ∗(∇u))p−2 J(∇u)

)
∋ λp|u|p−2u in Ω (6)

in the weak sense [8], i.e.

∫

Ω

(φ∗(∇up))
p−2 〈η,∇v〉 dx = λp

∫

Ω

|up|p−2up · v dx (7)

for any v ∈ W 1,p
0 (Ω) and for a measurable selection η ∈ J(∇up), where the function

J : Rn → P(Rn) is defined as the subdifferential

J(ξ) := ∂

(
φ∗(ξ)2

2

)
. (8)
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Note that the function J is single-valued iff the norm φ is strictly convex, i.e. if its unit
sphere {x : φ(x) = 1} contains no nontrivial line segments [39, p. 400]. Note further
that J(0) = 0 and that for the Euclidean norm the duality map reduces to the identity
J(∇u) = ∇u.

The paper is organized as follows. In Section 2 we fix some notation. In Section 3 we
recall and derive the existence, uniqueness, regularity and log-concavity of solutions for
p > 1. In Section 4 we derive the limit equation for p → 1. In Section 5, we discuss in
detail the two-dimensional case, proving uniqueness of Cheeger sets in the convex case.
In Section 6 we provide some instructive examples.

2. Notation

We say that the norm φ is regular if φ2, (φ∗)2 ∈ C2(Rn). This includes for instance
φ(x) = ‖x‖q with q ∈ (1,∞) but excludes the crystalline cases q = 1 or q = ∞, see
Section 6.

Given E ⊂ R
n and x ∈ R

n, we set

distφ(x,E) := inf
y∈E

φ(x− y), dEφ (x) := distφ(x,E)− distφ(R
n \ E, x).

dEφ (x) indicates the signed distance of x to ∂E and is positive outside E. Notice that, at
each point where dEφ is differentiable, there holds

φ∗(∇dEφ ) = 1. (9)

Let us define the (anisotropic) perimeter of E as

Pφ(E) := sup

{∫

E

divη dx | η ∈ C1
c (R

n), φ(η) ≤ 1

}
=

∫

∂∗E

φ∗(νE)dHn−1 , (10)

where ∂∗E and νE denote the reduced boundary of E and the (Euclidean) unit normal
to ∂∗E.

Given an open set Ω ⊆ R
n we define the BV -seminorm of v ∈ BV (Ω) as

∫

Ω

φ∗(Dv) := sup

{∫

Ω

v divη dx | η ∈ C1
c (R

n), φ(η) ≤ 1

}
.

Given δ > 0, we define

Eδ
+ :=

{
x ∈ R

n| dEφ < δ
}
= E + δWφ,

Eδ
− :=

{
x ∈ R

n| dEφ < −δ
}
,

Eδ
± :=

(
Eδ

−

)δ
+
⊆ E,

where Wφ := {x| φ(x) < 1}, also called Wulff shape, denotes the unit ball with respect to
the norm φ.
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Given a compact set E ⊂ R
n with Lipschitz boundary, we denote by nφ : ∂E → R

n any
Lipschitz vector field satisfying nφ ∈ J(∇dEφ ) a.e. on ∂E. Moreover, we set

‖κφ‖L∞(∂E) := inf
nφ∈J(∇dEφ )

‖divτnφ‖L∞(∂E),

which represents the L∞-norm of the φ-mean curvature of ∂E. Here divτ denotes the
tangential divergence operator. We make the convention that ‖κφ‖L∞(∂E) = +∞ if the
set E does not admit any Lipschitz vector field nφ ∈ J(∇dEφ ). We say that E is φ-regular
if ‖κφ‖L∞(∂E) < +∞.

Notice that in the Euclidean case E is φ-regular iff ∂E is of class C1,1. Moreover, the unit
ball Wφ is always φ-regular and ‖κφ‖L∞(∂Wφ) = n−1. To see this, it is enough to consider
the vector field nφ(x) = x/φ(x).

3. Existence, uniqueness, regularity and log-concavity of solutions

Let Ω ⊂ R
n be a bounded open set. If we minimize the functional

Ip(v) =

∫

Ω

φ∗ (∇v)p dx on K := { v ∈ W 1,p
0 (Ω); ‖v‖Lp(Ω) = 1 }, (11)

then via standard arguments (see [6]) a minimizer up exists for every p > 1 and it is a
weak solution to the equation (6), with λp = Ip(up). Note that Λp := Ip(up)

1/p is the
minimum of the Rayleigh quotient

Rp(v) :=

(∫
Ω

(φ∗(∇v))p dx
)1/p

‖v‖p
(12)

on W 1,p
0 (Ω) \ {0}. Without loss of generality we may assume that up is nonnegative.

Otherwise we can replace it by its modulus.

Moreover, as shown in [6] any nonnegative weak solution of (6) is necessarily bounded
and positive in Ω. If p > n, then up is also uniformly Hölder continuous because of the
Sobolev-embedding theorem and the equivalence of the usual Sobolev norm with

‖u‖1,p :=
(∫

Ω

|u|p dx

)1/p

+

(∫

Ω

(φ∗(∇u))p dx

)1/p

. (13)

If the norm φ is regular and p > 1, one can even show that up ∈ C1,α(Ω). Indeed, the
function up minimizes

Jp(v) :=

∫

Ω

(φ∗(∇v))p − λp(Ω)|u|p dx,

and the theory for quasiminima in [17] implies that minimizers are bounded (Thm. 7.5),
Hölder continuous (Thm. 7.16) and satisfy a strong maximum principle (Thm. 7.12),
because one can easily check that up satisfies (7.71) in [17]. Therefore up is positive.
Once positivity is known, the uniqueness follows from a simple convexity argument, see
[4] or [6]. Moreover, from the result in [12] one can conclude that up ∈ C0,β(Ω) for any
β ∈ (0, 1). Finally, if φ is regular, then up ∈ C1,α(Ω) according to [7], [28], [37], [38] or
[13]. Let us summarize these statements.
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Theorem 3.1. For every p ∈ (1,∞) the nonnegative minimizer up of (11) is positive,
unique, belongs to C0,β(Ω) for any β ∈ (0, 1) and it solves (6) in the weak sense. Moreover,
if the norm φ is regular then up is of class C1,α(Ω) for some α ∈ (0, 1). Finally, if Ω is
convex, then up is log-concave and the level sets set {up > t} ⊆ Ω are convex for all t > 0.

Proof. To prove the last statement, we follow Sakaguchi’s approach from [31], first for
strictly convex Ω and for a smooth norm φ. The general case follows then from approx-
imation arguments for Ω and φ. Log-concavity of a sequence up,n is preserved under
pointwise limits as n → ∞, because the inequality

logup,n

(x1 + x2

2

)
≥ 1

2
logup,n(x1) +

1

2
logup,n(x2) in Ω× Ω

is stable under such limits. If up solves (6), then vp := logup solves

−div
(
(φ∗(∇v))p−2 J(∇v)

)
= (p− 1)φ∗(∇v)p + λp in Ω (14)

and this degenerate elliptic equation can be approximated by a nondegenerate one

− div
((

ε+ (φ∗(∇v))2
) p−2

2 J(∇v)
)

= (p− 1− ε)(φ∗(∇v))2(ε+ (φ∗(∇v))2)
p−2
2 + λp. (15)

Modulo yet another approximation by a right hand side which is strictly monotone in v,
equation (15) is now amenable to Korevaar’s concavity maximum principle ([25] or [31])
which states that the concavity function

C(x1, x2) := v
(x1 + x2

2

)
− 1

2
v(x1)−

1

2
v(x2) with x1, x2 ∈ Ω× Ω

can attain a negative minimum only on the boundary of Ω× Ω. The latter is ruled out,
however, because of the boundary condition. Thus C is nonnegative in Ω× Ω, that is v
must be concave in Ω. The interested reader is referred to [31] for more details.

Remark 3.2. We should point out that without uniqueness of up the approximation
arguments would only yield log-concavity of a solution and not the solution up.

4. The limit problem for p → 1

The following estimate for λp is optimal (as p → 1) for any shape of Ω (see [6]).

Theorem 4.1 (Convergence of eigenvalues). For every p ∈ (1,∞) the eigenvalue
λp(Ω) can be estimated from below as follows:

λp(Ω) ≥
(
h(Ω)

p

)p

. (16)

Here h(Ω) is the Cheeger constant of Ω as defined in (5). Moreover, as p → 1, the
eigenvalue λp(Ω) converges to λ1(Ω) = h(Ω).
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Proof. In the Euclidean case this is Cheeger’s original estimate [11] when p = 2, and for
general p it can be found in [27], [2], [29] and [36]. For a more general φ one can easily
modify their proofs by using the generalized coarea formula from [15] or [16]. To prove
the limiting behaviour of λp(Ω) as p → 1 we proceed as in [21] and observe that (16)
implies lim infp→1 λp(Ω) ≥ h(Ω). Therefore it suffices to find a suitable upper bound. Let
{Dk}k=1,2,... be a sequence of regular domains for which Pφ(Dk)/|Dk| converges to h(Ω).
We approximate the characteristic function of eachDk by a function wk with the following
properties: w ≡ 1 on Dk, w ≡ 0 outside an ε–neighborhood of Dk and φ∗(∇wk) = 1/ε in
an ε–layer outside Dk. For small ε the function wk is in W 1,∞

0 (Ω) and provides the upper
bound

λp(Ω) ≤
Pφ(Dk)

|Dk|
ε1−p . (17)

Now one sends first p → 1, then k → ∞ to complete the proof.

Theorem 4.2 (Convergence of eigenfunctions). As p → 1, the eigenfunction up con-
verges, up to a subsequence, to a limit function u1 ∈ BV (Ω), with u1 ≥ 0 and ‖u1‖1 = 1.
Moreover, almost all level sets Ωt := {u1 > t} of u1 are Cheeger sets.

Proof. For every p > 1 the function up minimizes

Jp(v) :=

∫

Ω

(φ∗(∇v))p − λp(Ω)|v|p dx

on W 1,p
0 (Ω). If one extends Jp to L1(Ω) by setting it +∞ on L1(Ω) \W 1,p

0 (Ω), the family
Jp Γ-converges (see [14]) with respect to the L1(Ω)-topology to

J1(v) :=





∫

Ω

φ∗(Dv)− h(Ω)

∫

Ω

|v| dx v ∈ BV (Ω),

+∞ v ∈ L1(Ω) \BV (Ω).

Indeed, since J1 is lower semicontinuous on L1(Ω), it is enough to prove the Γ-limsup
inequality on the subset C1(Ω) ⊂ L1(Ω) (which is dense both in topology and in energy),
where it becomes trivial.

Let us now prove the Γ-liminf inequality. Notice that, if vpn → u in L1(Ω), then either
there exists a subsequence vpnk

which is equibounded in BV (Ω), or Jpn(vpn) goes to +∞.
If vk := vpnk

is bounded in BV (Ω), letting pk := pnk
and Jk := Jpnk

, we have

J1(vk) =

∫

Ω

φ∗(∇vk)− h(Ω)|vk| dx

≤
[∫

Ω

(φ∗(∇vk))
pk dx

] 1
pk |Ω|

pk−1

pk − h(Ω)

∫

Ω

|vk| dx

≤ 1

pk

∫

Ω

(φ∗(∇vk))
pk dx+

pk − 1

pk
|Ω| − h(Ω)

∫

Ω

|vk| dx

+λpk(Ω)

∫

Ω

|vk|pk dx− λpk(Ω)

∫

Ω

|vk|pk dx

≤ Jk(vk) +
pk − 1

pk
|Ω|+ λpk(Ω)

∫

Ω

|vk|pk dx− h(Ω)

∫

Ω

|vk| dx

= Jk(vk) + ωk , (18)
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where limk→∞ ωk = 0. It then follows

J1(u) ≤ lim inf
k→∞

J1(vk) ≤ lim inf
k→∞

Jk(vk).

Since Jp ≥ 0 on W 1,p
0 (Ω), we get J1 ≥ 0 on BV (Ω). Moreover up forms a minimizing

sequence for J1 since, from the last inequality in (18), we have

∫

Ω

φ∗(∇up) dx ≤ p− 1

p
|Ω|+ λp(Ω),

where we have used the fact that Jp(up) = 0 and ‖up‖p = 1. As a consequence, the
family {up}p>1 is bounded in BV (Ω) and, after possibly passing to a subsequence, it
converges strongly in L1(Ω) to a limit function u1 ∈ BV (Ω) such that J1(u1) = 0, u1 ≥ 0
and ‖u1‖1 = 1. Using the coarea formula as in [21, Eq. (7)] (adapted to the anisotropic
setting), one can see that for all t ∈ [0,maxΩ u1) the level set Ωt := {u1 > t} is a Cheeger
set.

Remark 4.3. As a consequence of Theorem 4.2 and the logconcavity of up, for every
convex set Ω (Theorem 3.1) there exists a convex Cheeger set. Moreover, it follows from
the results of [10] that there exists a convex Cheeger set D ⊆ Ω which is maximal, in the
sense that any other Cheeger set of Ω must be contained in D. Recently it was shown in
[9] that for convex Ω the Cheeger set is uniquely determined. The uniqueness of Cheeger
sets is in general not true for nonconvex domains (see [22]).

5. The planar case

In this section we derive further properties of the function u1, under the additional as-
sumption n = 2. Let us begin with the following theorem, which extends the analogous
result in the Euclidean case [22, Thm. 1].

Theorem 5.1. Let Ω ⊂ R
2 be a bounded open convex set. Then, there exists a unique

Cheeger set D ⊆ Ω. Moreover, D is convex and we have

h(Ω) =
1

t∗
, D = Ωt∗

± , (19)

where t∗ > 0 is the (unique) value t such that |Ωt
−| = t2|Wφ|.

Remark 5.2. In other words, the theorem states that the Cheeger set is the union of all
the Wulff shapes of radius t∗ with center in Ωt∗

− , a level set of the distance function to ∂Ω,
that was called inner Cheeger set in [22].

Proof. Let D be a Cheeger set of Ω. Notice first that D is a convex set, since otherwise
we could replace it by its convex hull and reduce (3) (see [3, Thm. 7.1]). Moreover, from
the first variation of (3) it follows that the anisotropic curvature of ∂D is bounded by
h(Ω), and each connected component of ∂D∩Ω is contained up to translation in 1

h(Ω)
∂Wφ

(see [30, Thm. 4.5]). Let D̃ be the open maximal Cheeger set of Ω (recall Remark 4.3),

and let Γ ⊂ 1
h(Ω)

∂Wφ be a connected component of ∂D ∩ D̃. We denote by x, y ∈ Γ∩ ∂D̃

the extremal points of Γ, and we let Γ′ be the arc of ∂D̃ with extrema x, y and lying
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DD̃

x

y

r

Γ

Γ′

Figure 5.1: The Cheeger sets D, D̃ of Theorem 5.1.

in the same halfplane of Γ with respect to the straight line r passing through x, y (see
Figure 5.1). Reasoning as in [3, Lemma 7.3], it is easy to show that both Γ and Γ′

can be written as graphs on r along some directions. More precisely, there exists a vector
v ∈ R

2, with |v| = 1, and two functions f1, f2 : r → R such that 0 ≤ f1 ≤ f2 on [x, y], that
min{f2(x), f2(y)} = 0, and that Γ = F1([x, y]) and Γ′ = F2([x, y]), with Fi(x) := fi(x)v,

for i = 1, 2. Without loss of generality, we shall assume that v ⊥ r. Since D and D̃ are
both minimizers of (3), it follows that both f1 and f2 are minimizers of

G(f) :=

∫

[x,y]

φ∗(−f ′(s), 1)− h(Ω)f(s) ds . (20)

If φ is a regular norm, then the functional G is strictly convex, which implies f1 = f2, i.e.
D = D̃. For a general norm, one has to be more careful, since the functional G is not
strictly convex, but only convex. However, reasoning as in [3, Lemma 8.2], the inclusion
Γ ⊂ 1

h(Ω)
∂Wφ and the inequality f1 ≤ f2 imply ‖κφ‖L∞(Γ′) ≥ h(Ω), with equality iff Γ = Γ′,

which proves the uniqueness of the Cheeger set D.

Let us now prove (19), reasoning as in [22, Thm. 1]. It has been proved in [3] that the

convex set D = Ω
1/h(Ω)
± is a Cheeger set of Ω, hence it is the unique Cheeger set of Ω.

Therefore, it remains to prove that t∗ = 1/h(Ω), i.e.

∣∣Ω
1

h(Ω)

−

∣∣ = |Wφ|
h(Ω)2

.

Let us recall from [1, Section 2.7],[32] the following Steiner-type formulae

|Cδ| = |C|+ δPφ(C) + δ2|Wφ| ,
Pφ(C

δ) = Pφ(C) + δPφ(Wφ) . (21)

Incidentally, the second equation follows from the first one and, as in the Euclidean case,
Pφ(Wφ) = 2|Wφ|. This follows from integrating divx onWφ. Applying (21) to C = D

1/h(Ω)
−

and recalling that h(Ω) = Pφ(D)/|D|, we get

|D1/h(Ω)
− | = |Wφ|

h(Ω)2
.
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The claim now follows if we observe that

Ω
1

h(Ω)

− = D
1

h(Ω)

− .

Corollary 5.3. If n = 2 and Ω is a bounded convex set, then the sequence of functions
up converges to a multiple of the characteristic function of D. Moreover, D = Ω if and
only if

‖κφ‖L∞(∂Ω) ≤ h(Ω). (22)

In particular, (22) always holds in the case Ω = Wφ.

6. Example and concluding remarks

If the norm under consideration for x ∈ Ω is the usual lq- norm, i.e. for φq(x) =
(
∑n

i=1 |xi|q)1/q, q ≥ 1. When q > 1, the dual norm of φq is given by φ∗
q = φq′ , with

q′ = q/(q − 1), and the duality map according to (8) is

Ji(y) = (|y|q′)2−q′|yi|q
′−2yi.

Then the p-Laplace operator in this metric is given by (see [6])

Qp,qu =
n∑

i=1

∂

∂xi

(
φq′(∇u)p−q′

∣∣∣∣
∂u

∂xi

∣∣∣∣
q′−2

∂u

∂xi

)
,

and for q = 2 = q′ the norm φq′ is just the Euclidean norm and Qp,q reduces to the
well-known p-Laplace Operator

Qp,qu = ∆pu = div(|∇u|p−2∇u) .

For general q and p → 1 the operator Q1,q is formally given by

Q1,qu =
n∑

i=1

∂

∂xi

([ |uxi
|

φq′(∇u)

]q′−2
uxi

φq′(∇u)

)
.

Again for q = 2 = q′ this expression shrinks down to the customary

Q1,2u = ∆1u = div

( ∇u

|∇u|

)
.

We complete this section with the construction of a particular Cheeger set for a nonregular
anisotropy. Let us fix n = 2 and consider the norm φ = φ1. Notice that in this case the
Wulff Shape Wφ has the shape of a rhombus. To be precise, it is a square of sidelength

√
2,

centered in the origin and rotated by π/2 with respect to the coordinate axes. Moreover,
the dual norm φ∗ is given by φ∗(y) = max{|y1|, |y2|}. To better illustrate the results
of Section 5, let us compute the Cheeger set (and Cheeger constant) of a square Q of
sidelength 1 (see Figure 6.1).
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D

Q

Figure 6.1: The Cheeger set of a square with respect to the norm φ1.

Since in this case |Wφ| = 2 and Qt
− is a square of sidelength 1 − 2t, from Theorem 5.1

we get t∗ = 1−
√
2/2 and h(Q) = 2 +

√
2. It is interesting to note that the Cheeger set

of Q is a regular octahedron (and the inner Cheeger set Qt∗

− defined in Remark 5.2 is a
square). After this manuscript was submitted for publication, we learned that G. Strang
independently discusses this example in [35].
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