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1. Introduction

Imagine a nonlinear elastic membrane, fixed on a boundary 0f2 of a plane domain €). If
u(x) denotes its vertical displacement, and if its deformation energy is given by [, [Vul? dz,
then a minimizer of the Rayleigh quotient

Jo [Vul? da
Jo [ulP dx

on W, (Q) satisfies the Euler-Lagrange equation
—Ayu =\, [uPu in Q, (1)

where Ayu = div(|Vu|P~2Vu) is the well-known p-Laplace operator. This eigenvalue
problem has been extensively studied in the literature. As p — 1, formally the limit
equation reads

Vu
—div| — ] =X (Q) inN
iv (|Vu|> 1(©2) in Q, @)
u=0 on 0f).

For a precise interpretation of (2) see [23] or [33]. Naturally, here A;(£2) := lim, 14 A\, (€2).
A somewhat surprising recent result is that the family of eigenfunctions {u,} converges
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in L'(Q) cum grano salis to (a multiple of) the characteristic function x,, of a subset Cq
of , a so called Cheeger-set, see [21]. A Cheeger set of ) is characterized as a domain
that minimizes

. 0D
h(Q2) := 1gf 1l
with D varying over all smooth subdomains of €2 whose boundary 0D does not touch 0f2,
and with |0D| and |D| denoting (n — 1)- and n-dimensional Lebesgue measure of 0D and
D. The existence, uniqueness, regularity and construction of such sets is discussed in [21]
and [22] (and partly in [34]) and its continuous dependence on € in [18]. The paper [26]
contains a numerical method for the calculation of n-dimensional Cheeger sets and some
three-dimensional examples. Cheeger sets are of significant importance in the modelling
of landslides, see [19], [20], or in fracture mechanics, see [24]. Notice that a set D C Q) is
a Cheeger set if and only if it is a minimizer of

0E| — h(Q)|E| for E C Q. (3)

Now suppose that the membrane is not isotropic. It is for instance woven out of elastic
strings like a piece of material. Then the deformation energy can be anisotropic, see
[5]. Another way to describe this effect is by stating that the Euclidean distance in €2 is
somehow distorted. It is the purpose of the present paper to generalize the above result
on eigenfunctions and their convergence as p — 1 to the situation, where 2 C R" is no
longer equippped with the Fuclidean norm, but instead with a general norm ¢. In that
case a Lipschitz continuous function u : Q — R (in a convex domain ) has Lipschitz
constant L = sup,. ¢*(Vu(z)), where ¢* denotes the dual norm to ¢. Therefore the
Rayleigh quotient studied in this paper is given by

Jo (¢ (V) dx

Ry(u) := (4)

Jo lulp dz
on W,?(€) and the Cheeger constant by
_ o De(D)

with P, denoting anisotropic perimeter in R™ (see (10) below). The minimizer u, of R,
satisfies the Euler-Lagrange inclusion

—Qpu = —div ((gb*(Vu))p_z J(Vu)) 2 MplufP~?u in Q (6)

in the weak sense [8], i.e.
| @@y .50 o=, [ a0 de ™)
0 Q

for any v € Wy"(Q) and for a measurable selection n € J (Vu,), where the function
J : R™ — P(R") is defined as the subdifferential

se =0 (8. ®)
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Note that the function J is single-valued iff the norm ¢ is strictly convex, i.e. if its unit
sphere {x : ¢(x) = 1} contains no nontrivial line segments [39, p. 400]. Note further
that J(0) = 0 and that for the Euclidean norm the duality map reduces to the identity
J(Vu) = Vu.

The paper is organized as follows. In Section 2 we fix some notation. In Section 3 we
recall and derive the existence, uniqueness, regularity and log-concavity of solutions for
p > 1. In Section 4 we derive the limit equation for p — 1. In Section 5, we discuss in
detail the two-dimensional case, proving uniqueness of Cheeger sets in the convex case.
In Section 6 we provide some instructive examples.

2. Notation

We say that the norm ¢ is regular if ¢* (¢*)?> € C?*(R™). This includes for instance
o(x) = ||z||, with ¢ € (1,00) but excludes the crystalline cases ¢ = 1 or ¢ = oo, see
Section 6.

Given E C R™ and x € R", we set

disty(z, E) := inf ¢(x — y), df (z) := disty(z, E) — disty(R" \ E, z).

yek

df(ac) indicates the signed distance of x to 0F and is positive outside E. Notice that, at
each point where df is differentiable, there holds

¢*(VdE) = 1. (9)

Let us define the (anisotropic) perimeter of E as

Py(E) = sup { [E divy de [n € CH(R"), ¢(n) < 1} — [ wPant, (1)

O*E

where 9*F and v¥ denote the reduced boundary of E and the (Euclidean) unit normal
to O*FE.

Given an open set 2 C R™ we define the BV -seminorm of v € BV () as

/gb*(Dv) = sup{/ vdivy dr |n € CHR™), ¢(n) < 1}.
Q Q
Given 0 > 0, we define
B = {xeRn\ i~ <5} = E+0W,,
B = {z e R df < -6},
5

E}:= (E’), CE,

where Wy, := {z| ¢(x) < 1}, also called Wulff shape, denotes the unit ball with respect to
the norm ¢.
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Given a compact set £ C R" with Lipschitz boundary, we denote by n, : O0F — R™ any
Lipschitz vector field satisfying ny € J(VdJ) a.e. on OE. Moreover, we set

Kol 700 = inf div.ngl| e
kgl Lo~ (om) n¢eJ(Vdf)H Mo~ @E),

which represents the L*°-norm of the ¢-mean curvature of F. Here div, denotes the
tangential divergence operator. We make the convention that ||kg||r~@r) = 400 if the
set I does not admit any Lipschitz vector field ng € J (Vdf ). We say that F is ¢-regular
if [l ]| o= (om) < +-00.

Notice that in the Euclidean case E is ¢-regular iff OF is of class C1't. Moreover, the unit
ball Wy is always ¢-regular and ||#¢||z~@w,) = n— 1. To see this, it is enough to consider
the vector field ny(z) = z/¢(z).

3. Existence, uniqueness, regularity and log-concavity of solutions

Let 2 C R™ be a bounded open set. If we minimize the functional
I,(v) = / ¢* (Vo) dx on K :={veW,"(Q); vl|zry =1}, (11)
Q

then via standard arguments (see [6]) a minimizer u, exists for every p > 1 and it is a
weak solution to the equation (6), with A\, = I,(u,). Note that A, := I,(u,)"/? is the
minimum of the Rayleigh quotient

(foy (&7 (V)P da)"”

[Vl

R,(v) := (12)

on W, P(Q) \ {0}. Without loss of generality we may assume that u, is nonnegative.
Otherwise we can replace it by its modulus.

Moreover, as shown in [6] any nonnegative weak solution of (6) is necessarily bounded
and positive in Q. If p > n, then u, is also uniformly Hoélder continuous because of the
Sobolev-embedding theorem and the equivalence of the usual Sobolev norm with

fully = ( [ 1o dx)l/p+( [ @@y dx)l/p. (13

If the norm ¢ is regular and p > 1, one can even show that u, € C**(Q). Indeed, the
function u, minimizes

Jy(v) = / (6° (V) = Mp(Q)lul? da,

and the theory for quasiminima in [17] implies that minimizers are bounded (Thm. 7.5),
Holder continuous (Thm. 7.16) and satisfy a strong maximum principle (Thm. 7.12),
because one can easily check that u, satisfies (7.71) in [17]. Therefore u, is positive.
Once positivity is known, the uniqueness follows from a simple convexity argument, see
[4] or [6]. Moreover, from the result in [12] one can conclude that u, € C%?(Q) for any
S € (0,1). Finally, if ¢ is regular, then u, € C**(Q) according to [7], [28], [37], [38] or
[13]. Let us summarize these statements.
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Theorem 3.1. For every p € (1,00) the nonnegative minimizer u, of (11) is positive,
unique, belongs to C%P(Q) for any B € (0,1) and it solves (6) in the weak sense. Moreover,
if the norm ¢ is reqular then u, is of class CH*(Q) for some a € (0,1). Finally, if  is
convez, then u, is log-concave and the level sets set {u, >t} C Q are convex for allt > 0.

Proof. To prove the last statement, we follow Sakaguchi’s approach from [31], first for
strictly convex () and for a smooth norm ¢. The general case follows then from approx-
imation arguments for 2 and ¢. Log-concavity of a sequence w,, is preserved under
pointwise limits as n — 0o, because the inequality

1 1
Nt xQ) > élogupm(:vl) + §logup,n(x2) in QxQ

loguy, (
is stable under such limits. If u, solves (6), then v, := logu, solves

—div ((¢"(V0))" ™ J(Vv)) = (p = 1)¢* (Vo) + A, in Q (14)

and this degenerate elliptic equation can be approximated by a nondegenerate one

— div (¢ + (¢"(V0))?) = J(Vo))
= (p—1—)(¢"(V)2(e + (¢*(V0)2)'T + A, (15)

Modulo yet another approximation by a right hand side which is strictly monotone in v,
equation (15) is now amenable to Korevaar’s concavity maximum principle ([25] or [31])
which states that the concavity function

1 1
C(z1,29) == (xl i :152) — —v(zy) — 52}(172) with 21,20 € 2 x Q

can attain a negative minimum only on the boundary of 2 x €2. The latter is ruled out,
however, because of the boundary condition. Thus C' is nonnegative in €2 x €2, that is v
must be concave in €. The interested reader is referred to [31] for more details. O

Remark 3.2. We should point out that without uniqueness of u, the approximation
arguments would only yield log-concavity of a solution and not the solution wu,,.

4. The limit problem for p — 1
The following estimate for A, is optimal (as p — 1) for any shape of Q (see [6]).

Theorem 4.1 (Convergence of eigenvalues). For every p € (1,00) the eigenvalue
Ap(€2) can be estimated from below as follows:

o = (1) (16)

p

Here h(2) is the Cheeger constant of 2 as defined in (5). Moreover, as p — 1, the
eigenvalue A\y(€2) converges to A;(£2) = h(2).
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Proof. In the Euclidean case this is Cheeger’s original estimate [11] when p = 2, and for
general p it can be found in [27], [2], [29] and [36]. For a more general ¢ one can easily
modify their proofs by using the generalized coarea formula from [15] or [16]. To prove
the limiting behaviour of \,(€2) as p — 1 we proceed as in [21] and observe that (16)
implies liminf, .; A,(€©2) > h(€2). Therefore it suffices to find a suitable upper bound. Let
{Dy}k=12.. be a sequence of regular domains for which Py(Dy)/|Dy| converges to h(€2).
We approximate the characteristic function of each Dy, by a function wy, with the following
properties: w = 1 on Dy, w = 0 outside an e-neighborhood of D}, and ¢*(Vw;) = 1/¢ in
an e-layer outside Dj. For small ¢ the function wy, is in VVO1 >°(Q) and provides the upper
bound

Py,(D
(@) < L2 iy (17)
| Dy
Now one sends first p — 1, then kK — oo to complete the proof. n

Theorem 4.2 (Convergence of eigenfunctions). Asp — 1, the eigenfunction u, con-
verges, up to a subsequence, to a limit function uy € BV (), with uy > 0 and |Juq]j; = 1.
Moreover, almost all level sets )y := {uy >t} of uy are Cheeger sets.

Proof. For every p > 1 the function w, minimizes
I0)i= [ (@(F0) = Ml@Dlel do

on W, *(). If one extends J, to L'(R2) by setting it +oo on L'(Q) \ W, ?(Q), the family
J, T-converges (see [14]) with respect to the L'(£2)-topology to

/gb*(Dv)—h(Q)/ wldr e BV(Q),
Q Q
ve LY (Q)\ BV(Q).
Indeed, since J; is lower semicontinuous on L'(€), it is enough to prove the I-limsup

inequality on the subset C*(Q) C L'(€2) (which is dense both in topology and in energy),
where it becomes trivial.

Let us now prove the I-liminf inequality. Notice that, if v,, — w in L'(Q), then either
there exists a subsequence v, which is equibounded in BV (Q), or J,, (v,,) goes to +ooc.
If vy, := vy, is bounded in BV(Q), letting py := py, and Ji := J,, , we have

Jl(Uk) = /(]5 Vvk )|’Uk’ dx

[ @@y dxfk %~ (o) / o] d

<

< —/ “(Vog) )P+ da;+p’“ Lo - /\vk|d93
(@ / o do = 2, (@) [ ol da

<

Jeoe) + 221101 10, (@) /mym dz — h(Q) /|uk\ dx
Pk Q Q

= Jk(vk) —1—wk, (18)
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where lim;_, ., w,, = 0. It then follows

Ji(u) < liminf Jy (vg) < likm inf Ji (vg).

k—o0

Since J, > 0 on W,7(Q), we get J; > 0 on BV(Q). Moreover u, forms a minimizing
sequence for J; since, from the last inequality in (18), we have

/ ¢*(Vu,) dx < p;lm’ + A(92),
Q p

where we have used the fact that J,(u,) = 0 and ||u,|[, = 1. As a consequence, the
family {w,},~1 is bounded in BV (Q2) and, after possibly passing to a subsequence, it
converges strongly in L'(Q2) to a limit function u; € BV () such that Ji(u1) =0, u; >0
and ||uy]|; = 1. Using the coarea formula as in [21, Eq. (7)] (adapted to the anisotropic
setting), one can see that for all ¢ € [0, maxq u;) the level set €, := {u; > t} is a Cheeger
set. [l

Remark 4.3. As a consequence of Theorem 4.2 and the logconcavity of u,, for every
convex set 2 (Theorem 3.1) there exists a convex Cheeger set. Moreover, it follows from
the results of [10] that there exists a convex Cheeger set D C  which is maximal, in the
sense that any other Cheeger set of {2 must be contained in D. Recently it was shown in
9] that for convex €2 the Cheeger set is uniquely determined. The uniqueness of Cheeger
sets is in general not true for nonconvex domains (see [22]).

5. The planar case

In this section we derive further properties of the function u;, under the additional as-
sumption n = 2. Let us begin with the following theorem, which extends the analogous
result in the Euclidean case [22, Thm. 1].

Theorem 5.1. Let Q C R? be a bounded open convex set. Then, there exists a unique
Cheeger set D C ). Moreover, D is convex and we have

h(Q) = — D =Qf, (19)

where t* > 0 is the (unique) value t such that |QF | = 3|W,|.

Remark 5.2. In other words, the theorem states that the Cheeger set is the union of all
the Wulff shapes of radius ¢* with center in Q¥ , a level set of the distance function to 9%,
that was called inner Cheeger set in [22].

Proof. Let D be a Cheeger set of (). Notice first that D is a convex set, since otherwise
we could replace it by its convex hull and reduce (3) (see [3, Thm. 7.1]). Moreover, from
the first variation of (3) it follows that the anisotropic curvature of 9D is bounded by
h(2), and each connected component of 9D N2 is contained up to translation in ﬁam

(see [30, Thm. 4.5]). Let D be the open maximal Cheeger set of € (recall Remark 4.3),
and let I C ﬁ@Wd, be a connected component of 0D N D. We denote by z,y € I'N oD

the extremal points of I, and we let IV be the arc of dD with extrema x,y and lying
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F/

Figure 5.1: The Cheeger sets D, D of Theorem 5.1.

in the same halfplane of I" with respect to the straight line r passing through z,y (see
Figure 5.1). Reasoning as in [3, Lemma 7.3], it is easy to show that both I' and I"
can be written as graphs on r along some directions. More precisely, there exists a vector
v € R? with |v| = 1, and two functions fi, fo : r — R such that 0 < f; < f; on [z, y], that
min{ fo(x), f2(y)} = 0, and that I' = Fi([z,y]) and IV = Fy([z,y]), with F;(z) := f;(z)v,
for © = 1,2. Without loss of generality, we shall assume that v L r. Since D and D are
both minimizers of (3), it follows that both f; and f, are minimizers of

G(f) = [ }aﬁ*(—f’(S), 1) = h(€) f(s) ds. (20)
x7y

If ¢ is a regular norm, then the functional G is strictly convex, which implies f; = f, i.e.
D = D. For a general norm, one has to be more careful, since the functional G is not
strictly convex, but only convex. However, reasoning as in [3, Lemma 8.2], the inclusion
I'c ﬁ@Wd, and the inequality fi < fo imply ||ke|zeorry > h(Q2), with equality iff I' = I”,
which proves the uniqueness of the Cheeger set D.
Let us now prove (19), reasoning as in [22, Thm. 1]. It has been proved in [3] that the

convex set D = Qli/ MY s a Cheeger set of €2, hence it is the unique Cheeger set of 2.
Therefore, it remains to prove that t* = 1/h(Q), i.e.

| _ 1

N h(Q)?

[¢:

Let us recall from [1, Section 2.7],[32] the following Steiner-type formulae
|C°1 = |C] + 0Ps(C) + 62| W]
Py(C°) = Py(C) + 6P5(Wy). (21)

Incidentally, the second equation follows from the first one and, as in the Euclidean case,
Py(Wy4) = 2|Wy|. This follows from integrating diva on Wy. Applying (21) to C' = DY/
and recalling that h(Q) = P4(D)/|D|, we get

DY) Wol
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The claim now follows if we observe that

1 1

QM@ — phe

]

Corollary 5.3. If n = 2 and § is a bounded convex set, then the sequence of functions
u, converges to a multiple of the characteristic function of D. Moreover, D = (1 if and

only if
%6 [l o0 (00) < A(S2)- (22)

In particular, (22) always holds in the case Q@ = Wi,.

6. Example and concluding remarks

If the norm under consideration for x € € is the usual /,- norm, ie. for ¢,(z) =
0 |zi9)Ye, g > 1. When ¢ > 1, the dual norm of ¢, is given by ¢i = ¢g, with
¢ = q/(q—1), and the duality map according to (8) is

Ji(y) = (Iyle)* il 2y

Then the p-Laplace operator in this metric is given by (see [6])

y 729
Qpqtt = 2(9 <¢q (Vu)"~ 85-)’

and for ¢ = 2 = ¢’ the norm ¢, is just the Euclidean norm and @), , reduces to the
well-known p-Laplace Operator

ou
8:102-

Qpqt = Apu = div(|Vu|p_2Vu) .

For general ¢ and p — 1 the operator ();, is formally given by

_ R
Qrqu = Za% (bq VU)} %’(v“))'

Again for ¢ = 2 = ¢ this expression shrinks down to the customary

Vu
Q12u = Ayu = div <|Vu|)

We complete this section with the construction of a particular Cheeger set for a nonregular
anisotropy. Let us fix n = 2 and consider the norm ¢ = ¢;. Notice that in this case the
Waulff Shape W, has the shape of a rhombus. To be precise, it is a square of sidelength V2,
centered in the origin and rotated by 7 /2 with respect to the coordinate axes. Moreover,
the dual norm ¢* is given by ¢*(y) = max{|y1]|, |y2|}. To better illustrate the results
of Section 5, let us compute the Cheeger set (and Cheeger constant) of a square @ of
sidelength 1 (see Figure 6.1).
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Q

Figure 6.1: The Cheeger set of a square with respect to the norm ¢;.

Since in this case |Wy| = 2 and Q" is a square of sidelength 1 — 2¢, from Theorem 5.1

we get t* = 1 —+/2/2 and h(Q) = 2 + v/2. It is interesting to note that the Cheeger set
of @ is a regular octahedron (and the inner Cheeger set Q¥ defined in Remark 5.2 is a
square). After this manuscript was submitted for publication, we learned that G. Strang
independently discusses this example in [35].
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of Nonlinear Partial Differential Equations (GLOBAL)”.
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