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1. Introduction

It is well known that convex analysis plays a fundamental role in optimization theory.
There are many approaches to generalize the notion of convexity in order to tackle non-
convex optimization problems. One of the major approaches is to generalize the local
aspect of a convex function based on the subdifferential. This gave rise to the subject of
nonsmooth analysis. Another approach, which we follow in this paper, is to generalize a
very important global aspect of a convex function. It is well known that every proper and
lower semicontinuous convex function can be expressed as a pointwise supremum of the
family of affine functions majorized by it [6]. Thus affine functions can be considered as
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elementary functions with respect to convex functions since they are the basic building
blocks for convex functions. It is natural to see what happens if we replace affine functions
with some other class of elementary functions. This gave rise to the subject of Abstract
Convexity ; for details see [5, 9, 7]. Abstract convexity studies abstract convex functions,
that is, functions that can be realized in a pointwise fashion through the supremum of a
class of elementary functions. It has been observed that some classes of increasing func-
tions are abstract convex. This gave rise to a special part of abstract convexity called
Monotonic Analysis, which studies increasing functions with some additional properties.
Notable among them are Increasing and Positively Homogeneous functions (IPH) and
Increasing and Convex-Along-Rays functions (ICAR). The first studies of these functions
were carried out over the interior of the cone R

n
+; one can find the details in Rubinov

[7]. This was generalized by Dutta, Mart́ınez-Legaz and Rubinov [1, 2], where IPH and
ICAR functions defined over cones were studied. This study helped to provide a broader
perspective on these classes of functions and threw new light on their properties, which
cannot be easily visualized if one restricts oneself to R

n
+. Some other contributions to

Monotonic Analysis are [4] and [8].

In this paper we study another class of increasing functions, called Increasing and Co-
radiant (ICR), over cones. These functions arise, for instance, in mathematical economics;
see, e.g., [3], where quasiconcave ICR functions have been studied. Unlike in our previous
papers [1] and [2], in this article we do not assume that the ordering is induced by
a closed, convex, solid and pointed cone; we rather impose some weaker properties on
the order relation, which are still sufficient for the study of ICR functions. Thus this
approach differs considerably from the approach in [1] and [2]. We introduce a class of
elementary functions, with respect to which ICR functions are abstract convex. The paper
is organized as follows. In Section 2 we study the required properties of the order relation
and provide the definition of ICR functions and their basic properties. Sections 3 and 4
are devoted to the representation of ICR functions as abstract convex functions and to
the study of the properties of their support sets. In Section 5 we study polarity of sets
and, finally, in Section 6 we show the relations between IPH and ICR functions.

Before we end this section let us mention the following conventions, which we shall use
throughout the article: sup ∅ = 0, inf ∅ = +∞. Some other conventions will be introduced
when needed, sometimes in an apparently inconsistent way. For instance, in (19) we use
0
0
:= 0, whereas in (20) we take 0

0
:= +∞. In fact, in the given context this second

choice is necessary for the sake of consistency with the first one; indeed, if a
b
= 0 then we

should consistently have b
a
=
(

a
b

)−1
= 0−1 = +∞, even though a

b
and b

a
yield the same

expression 0
0
when both a and b are equal to 0.We could solve this apparent inconsistency

regarding notation by introducing two different operations, a "lower" division and an
"upper" division, similarly to the lower addition and upper addition often used in Abstract
Convex Analysis, but we prefer to avoid this in order to keep our notation as simple as
possible.

2. Preliminaries: ICR functions and their properties

A nonempty set C 6= {0} in a vector space X is called a cone if (x ∈ C, λ > 0) =⇒ λx ∈
C. We consider a cone C equipped with an order relation ≤. It is assumed in this paper
that this relation agrees with the conic structure of C. This means that the following
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assumption holds:

Assumption 2.1. (x, y ∈ C, x ≤ y; λ > 0) =⇒ λx ≤ λy.

We also make the following assumptions:

Assumption 2.2. (x ∈ C, 0 < λ ≤ 1) =⇒ λx ≤ x.

Assumption 2.3. (x, y ∈ C, λky ≤ x, λk → 1) =⇒ y ≤ x.

It follows from Assumption 2.2 and the transitivity of ≤ that

(x, y ∈ C, y ≤ x; λ ≤ 1) =⇒ λy ≤ x. (1)

From Assumption 2.2 it also follows that

(x ∈ C, λ ≥ 1) =⇒ x ≤ λx. (2)

Further using Assumption 2.1 and (2) one has (x, y ∈ C, x ≤ y; λ ≥ 1) =⇒ x ≤ λy. As
a consequence of Assumptions 2.1 and 2.3, for each λ > 0 one has:

(λky ≤ x, λk → λ) =⇒ λy ≤ x. (3)

If 0 ∈ C then it makes sense to consider Assumption 2.2 also for λ = 0. This condition
holds if and only if 0 ≤ x for all x ∈ C, that is, 0 is the least element of C. This property
will also be assumed throughout the paper:

Assumption 2.4. If 0 ∈ C then 0 ≤ x for all x ∈ C.

A function f : C → R ∪ {+∞} is called increasing if x ≤ y =⇒ f(x) ≤ f(y); f is called
co-radiant if f(λx) ≥ λf(x) for all x ∈ C and λ ∈ (0, 1]. In this paper we study increasing
co-radiant (ICR) functions.

We shall now define two important types of sets associated with our study, namely radiant
and co-radiant sets. A set B ⊆ C is called radiant if x ∈ B and 0 < λ ≤ 1 imply that
λx ∈ B. A set B ⊆ C is called co-radiant if x ∈ B and λ ≥ 1 imply that λx ∈ B. The
Minkowski gauge µB : C → R ∪ {+∞} of a radiant set B is defined by

µB (x) := inf
{

λ > 0 :
x

λ
∈ B

}

.

Two other types of sets that arise in Monotonic Analysis are the normal and the co-normal
sets. Assume as before that B ⊂ C. The set B is said to be normal if y ∈ C, x ∈ B
and y ≤ x imply that y ∈ B. The set B is said to be co-normal if y ∈ C, x ∈ B and
x ≤ y imply that y ∈ B. Notice that, by Assumption 2.2, every normal (co-normal) set is
radiant (respectively, co-radiant). The normal hull of a set B, denoted Nh (B) , is defined
as the smallest normal set in C containing B:

Nh (B) := {z ∈ C : z ≤ x for some x ∈ B}.

Proposition 2.5.

1) f is co-radiant if and only if f(µx) ≤ µf(x) for all x ∈ C and µ > 1.
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2) If f is ICR and f(x) = +∞ then f(λx) = +∞ for all λ > 0.

3) An ICR function f is nonnegative.

4) If f is increasing and 0 ∈ C then f(0) = minx∈C f(x).

Proof. 1) Let µ > 1, λ = µ−1 and µx = y. Then the inequality f(λy) ≥ λf(y) is
equivalent to f(µx) ≤ µf(x);

2) Let f is ICR and f(x) = +∞. It follows from Assumptions 2.1 and 2.2 and the
monotonicity of f that f(λx) ≥ f(x) for λ > 1. We also have f(λx) ≥ λf(x) for
λ ∈ (0, 1). So f(λx) = +∞ for all λ > 0.

3 ) Let x ∈ C. Assume without loss of generality that f(x) < +∞. The function
fx(λ) = f(λx) (λ > 0) is increasing so there exists limλ→0+ fx(λ). Since f(λx) ≥ λf(x)
for λ ∈ (0, 1) it follows that limλ→0+ fx(λ) ≥ 0, therefore f(x) = fx(1) ≥ 0.

4) It follows from Assumption 2.4.

The set of all ICR functions is closed under pointwise convergence, this set is a convex
cone (if f and g are ICR and α, β > 0 then αf + βg is ICR) and a complete lattice (if
(ft)t∈T is a family of ICR functions then f̄(x) := supt∈T ft(x) and f(x) := inft∈T ft(x) are
ICR functions).

A function f : C → R+∞ is called positively homogeneous of the first degree if f(λx) =
λf(x) for all λ > 0. Increasing positively homogeneous of the first degree (IPH) functions
form an important subclass of the class of ICR functions.

For each x, y ∈ C consider the set Λx,y := {0} ∪ {λ > 0 : λy ≤ x}. It follows from (1)
that this set is a segment with the left endpoint equal to zero. Let us show that Λx,y is a
closed set. Without loss of generality assume that λ := supΛx,y < +∞. If λ > 0 then in
view of (3) we get λ ∈ Λx,y. If λ = 0 then Λx,y = {0}, hence Λx,y is closed.

Define l : C × C → [0,+∞] by

l(x, y) := sup{λ > 0 : λy ≤ x}. (4)

Since the set Λx,y is closed it follows that either l(x, y) = 0, or l(x, y) = +∞, or l(x, y) =
max{λ > 0 : λy ≤ x}. It is easy to see that for each x, y ∈ C and λ > 0 it holds:

l(λx, y) = λl(x, y), l(x, λy) = λ−1l(x, y), (5)

x ≤ x′ =⇒ l(x, y) ≤ l(x′, y), y ≤ y′ =⇒ l(x, y) ≥ l(x, y′). (6)

Since y ≤ x is valid if and only if λ = 1 belongs to the closed segment Λx,y it follows that

y ≤ x ⇐⇒ l(x, y) ≥ 1 (7)

We now present some examples of co-radiant and ICR functions.

Example 2.6. Let C be a conic set and f : C → [0,+∞] be a concave-along-rays
function, that is, the function fx defined on (0,+∞) by fx(t) = f(tx) is concave for all
x ∈ C. Then f is co-radiant; indeed, for every x ∈ C, λ ∈ (0, 1] and ǫ ∈ (0, λ) one has

f (λx) = fx (λ) = fx

(

1− λ

1− ǫ
ǫ+

λ− ǫ

1− ǫ
1

)

≥
1− λ

1− ǫ
fx (ǫ) +

λ− ǫ

1− ǫ
fx (1) ≥

λ− ǫ

1− ǫ
fx (1) ,
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and by setting ǫ go to 0 in this inequality one obtains f (λx) ≥ λf (x) . In particular, a
positively homogeneous function of degree δ ∈ (0, 1] is co-radiant.

Example 2.7. Let X be the space C(S) of continuous functions defined on a compact
subset S of the Euclidean space Rn. Consider the cone C ⊂ C(S) of nonnegative functions
with the order relation ≥ generated by this cone: x ≤ y =⇒ y − x ∈ C. Let

f(x) :=

∫

S

x(s)δ(s)dµ,

where x ∈ C, δ(s) ∈ (0, 1] for all s ∈ S and µ is a nonnegative measure on S. It is easy
to check that f is an ICR function on C.

Example 2.8. Let X = R
2 and let C be the cone R

2
++ of vectors with positive coordi-

nates. Consider the order relation ≤ defined on C by

(x1, x2) ≤ (y1, y2) ⇐⇒ x1 ≤ y1 and
y2
x2

≤
y1
x1
.

It is easy to check that Assumptions 2.1, 2.2 and 2.3 are valid for ≤. Consider the function
f : R2

++ → R++, where f(x1, x2) =
x1

x2
. The restriction of f to the ray Rx = {λx : λ > 0} is

a constant positive function for each x ∈ R
n
++, hence f is co-radiant. If (x1, x2), (y1, y2) ∈

R
2
++ and (x1, x2) ≤ (y1, y2) then

x1

x2
≤ y1

y2
.This means that f is increasing, hence f is ICR.

3. The supremal generator approach

Let C 6= {0} be a nonempty cone in a vector space X equipped with an order relation ≤
satisfying Assumptions 2.1, 2.2, 2.3 and 2.4, and define c : C × C → [0, 1] by

c(x, y) := max{λ ∈ [0, 1] : λy ≤ x} = min{l(x, y), 1}, (8)

where l is defined by (4).

Proposition 3.1. For every x, x′, y, y′ ∈ C and λ ∈ (0, 1] , one has

c(λx, y) ≥ λc(x, y), (9)

c(x, λy) ≤ λ−1c(x, y), (10)

x ≤ x′ =⇒ c(x, y) ≤ c(x′, y) (11)

y ≤ y′ =⇒ c(x, y) ≥ c(x, y′), (12)

y ≤ x⇐⇒ c(x, y) = 1. (13)

The proof easily follows from the properties of function l (see (5), (6) and (7)).

Proposition 3.2. Let x, y ∈ C be such that c(x, y) > 0. Then c(x, y)y ≤ x.

Proof. Since c(x, y) > 0 it follows that the set {λ > 0 : λy ≤ x} is not empty. Let
λ = sup{λ > 0 : λy ≤ x}. If λ > 1 then c(x, y) = 1 and c(x, y)y = y ≤ x. Let λ ≤ 1.
Since the segment Λx,y = {0} ∪ {λ > 0 : λy ≤ x} is closed it follows that λ ∈ Λx,y and
λ 6= 0. Then λy ≤ x and λ = c(x, y).

Theorem 3.3. Let f : C → [0,+∞]. Then the following statements are equivalent:
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(i) f is ICR.

(ii) f(x) ≥ λf(y) for all x, y ∈ C and λ ∈ (0, 1] such that λy ≤ x.

(iii) f(x) ≥ c(x, y)f(y) for all x, y ∈ C.

In (iii) we use the convention 0 · (+∞) := 0.

Proof. (i) =⇒ (ii). Obvious.

(ii) =⇒ (iii). Let c(x, y) > 0. Then in view of Proposition 3.2 we get c(x, y)y ≤ x, so
c(x, y)f(y) ≤ f(x). Since f is nonnegative, this inequality also holds if c(x, y) = 0 using
the convention that 0(+∞) = 0.

(iii) =⇒ (i). Let (iii) hold. Then f is increasing; indeed, if x, y ∈ C are such that y ≤ x
then, by (8), c(x, y) = 1 and hence (iii) yields f(x) ≥ f(y). Finally, if y ∈ C and λ ∈ (0, 1]
then, by (iii), (9) and (13), f(λy) ≥ c(λy, y)f(y) ≥ λc(y, y)f(y) = λf(y); therefore f is
co-radiant.

Given y ∈ C, let us define cy : C → [0, 1] by cy(x) := c(x, y) for all x ∈ C. It follows from
(9) that cy is an ICR function. We introduce the following class of functions:

L := {αcy : y ∈ C, α ∈ R++}

and the mapping ψ : C × R++ → L defined by

ψ (y, α) := αcy.

Let us now consider the pointwise ordering in L: For any pair of points (y, α), (y′, α′) in
C × R++, αcy ≥ α′cy′ if and only if αcy(x) ≥ α′cy′(x) for all x ∈ C.

Proposition 3.4. The mapping ψ is a bijection from C × R++ onto L. Moreover, it is
increasing in α and decreasing in y:

y ≤ y′ ⇐⇒ ψ (y, α) ≥ ψ (y′, α) (y, y′ ∈ C, α ∈ R++) . (14)

α ≤ α′ ⇐⇒ ψ (y, α) ≤ ψ (y, α′) (y ∈ C, α, α′ ∈ R++) . (15)

Proof. We will first prove the equivalences. The implication =⇒ in (14) follows from (12)
and the nonnegativity of the functions cy and cy′ . To prove ⇐=, assume that y, y′ ∈ C
and α ∈ R++ are such that ψ (y, α) ≥ ψ (y′, α) . Since α > 0, one has cy ≥ cy′ ; hence,
using (13), we obtain c (y′, y) = cy (y

′) ≥ cy′ (y
′) = 1. As c (y′, y) ∈ [0, 1] , we deduce that

c (y′, y) = 1; therefore, by (13), y ≤ y′. The implication =⇒ in (15) is obvious, since the
function cy is nonnegative. To prove the converse implication, notice that, by (13),

ψ (y, α) (y) = αcy (y) = αc (y, y) = α;

hence from ψ (y, α) ≤ ψ (y, α′) we get α = ψ (y, α) (y) ≤ ψ (y, α′) (y) = α′.

Since, by the definition of L, ψ is onto, to prove that it is a bijection it only remains to
prove that it is one-to-one. Let α, α′ ∈ R++ and y, y′ ∈ C be such that ψ (y, α) = ψ (y′, α′) .
We have

α = ψ (y, α) (y) = ψ (y′, α′) (y) = α′cy′ (y) ≤ α′;

by symmetry, we also obtain α′ ≤ α, so that α = α′ and hence ψ (y, α) = ψ (y′, α). Using
(14), we conclude that y = y′.



J. Dutta, J. E. Mart́ınez-Legaz, A. M. Rubinov / Monotonic Analysis over Cones ... 567

For a function f : C → [0,+∞] define the positive hypograph hypo+f by

hypo+f := {(y, α) ∈ C × R++ : f (y) ≥ α} (16)

(recall that that the hypograph of f is hypo (f) = {(y, α) ∈ C × R : f (y) ≥ α}). The
notion of positive hypograph fits well to nonnegative functions, as one can recover f from
hypo+f by

f (y) = sup
{

α : (y, α) ∈ hypo+f
}

(y ∈ C) (17)

in view of our convention sup ∅ = 0. It follows directly from the definition of a co-radiant
function and the definition of the positive hypograph that hypo+f is a radiant set if and
only if f is co-radiant. It is easy to check that f is increasing if and only if the section
{x ∈ C : (x, α) ∈ hypo+f} of the set hypo+f is a co-normal set for every α ∈ R++.

Theorem 3.5. A function f : C → [0,+∞] is ICR if and only if there exists a set
S ⊆ C × R++ such that

f(x) = sup
(y,α)∈S

αcy (x) (x ∈ C) (18)

Hence, f : C → [0,+∞] is ICR if and only if it is L-convex.

Proof. It is easy to prove that L consists of ICR functions; hence the pointwise supremum
of such functions is also ICR. We will now prove that (18) holds by taking S equal to the
positive hypograph hypo+ f of f. This is obviously true if hypo+ f = ∅, as this means
that f is identically 0. Assume then that hypo+ f 6= ∅. For any (y, α) ∈ hypo+ f, one
has αcy (x) ≤ f (y) c (x, y) ≤ f (x) , due to (iii) of Theorem 3.3. Hence the inequality
≥ holds in (18). We next prove that for every x ∈ C with f (x) < +∞ there exists
(y, α) ∈ hypo+ f such that αcy (x) = f (x) . If f (x) > 0, take (y, α) = (x, f (x)) ; one
then has αcy (x) = f (x) cx (x) = f (x) c (x, x) = f (x) , in view of (13). If f (x) = 0 then
take any (y, α) ∈ hypo+ f and observe that f (x) ≥ c(x, y)f(y) ≥ αcy (x) ≥ 0 = f (x) .
Thus, to prove (18) it only remains to consider the case when f (x) = +∞. In this case
(x, α) ∈ hypo+ f for any α > 0 and so one has sup(y,α)∈S αcy (x) ≥ supα>0 αcx (x) =
supα>0 αc (x, x) = supα>0 α = +∞ = f (x) .

Definition 3.6. The sup-polar function of f : C → [0,+∞] is the function

f∇ : C → [0,+∞] defined by

f∇ (y) := sup
x∈C

c (x, y)

f (x)
(19)

(with the convention 0
0
:= 0).

We will mainly consider the function 1
f∇ . It follows from the definition of f∇ that

1

f∇
(y) = inf

x∈C

f(x)

c(x, y)
(20)

(for this formula to be consistent with the convention adopted in the definition of f∇, we
need here the opposite convention 0

0
:= +∞).
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Theorem 3.7. Let f : C → [0,+∞] . Then 1
f∇ is the largest ICR minorant of f. Hence

f∇ ≥
1

f
,

and f is ICR if and only if

f∇ =
1

f
.

Proof. By (20), (12) and (10), 1
f∇ is ICR. Moreover, for every y ∈ C one has f∇ (y) ≥

c(y,y)
f(y)

= 1
f(y)

; hence 1
f∇ is an ICR minorant of f. Let g be any ICR minorant of f and

let y ∈ C. By Theorem 3.3, for every x ∈ C we have g (y) ≤ g(x)
c(x,y)

≤ f(x)
c(x,y)

(with the

convention 0
0
:= +∞); therefore g (y) ≤ infx∈C

f(x)
c(x,y)

= 1
f∇(y)

. This shows that 1
f∇ is the

largest ICR minorant of f.

Consider the lower support set of a function f : C → [0,+∞] with respect to L:

suppl f := {(y, α) ∈ C × R++ : αcy ≤ f} .

The next proposition shows that, in the case of an ICR function f, this set coincides with
its positive hypograph as defined in (16).

Proposition 3.8. Let f : C → [0,+∞] . Then

suppl f = hypo+
1

f∇
. (21)

Hence, f is ICR if and only if
suppl f = hypo+f. (22)

Proof.

suppl f = {(y, α) ∈ C × R++ : αcy ≤ f}

= {(y, α) ∈ C × R++ : αc (x, y) ≤ f (x) ∀ x ∈ C}

=
{

(y, α) ∈ C × R++ : αf∇ (y) ≤ 1
}

= hypo+
1

f∇
.

By Theorem 3.7, f is ICR if and only if 1
f∇ = f, which is equivalent to the equality

hypo+ 1
f∇ = hypo+f ; in view of (21) this is in turn equivalent to (22).

The following definition will be useful to characterize lower supports.

Definition 3.9. A subset U of C ×R++ is called hypographical if U = hypo+f for some
function f : C → [0,+∞] .

The following proposition is immediate.

Proposition 3.10. A subset U of C×R++ is hypographical if and only if for every y ∈ C
the set {α ∈ R++ : (y, α) ∈ U} is either of the form (0, α] , with α ∈ [0,+∞) , or R++.
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Proposition 3.11. For any set U ⊆ C × R++, the following statements are equivalent:

(i) There exists a function f : C → [0,+∞] such that suppl f = U.

(ii) There exists an ICR function f : C → [0,+∞] such that suppl f = U.

(iii) U is hypographical and radiant and for every α ∈ R++ the section Uα := {y ∈ C :
(y, α) ∈ U} is co-normal.

Furthermore, the function f of (ii) is unique, namely, it is determined by the equality
hypo+f = U.

Proof. (i) =⇒ (iii). If (i) holds then, by Proposition 3.8, U is hypographical; moreover,
it is easy to check that it is radiant and has co-normal sections Uα, using (10) and (12),
respectively.

(iii) =⇒ (ii). Assume that U = hypo+f for some function f : C → [0,+∞] . If the
sections Uα are co-normal then f is increasing, and if U is radiant then f is co-radiant.
So f is ICR and hence, by (22), suppl f = U.

Implication (ii) =⇒ (i) is obvious.

The last assertion in the statement follows from (17) and (22).

Corollary 3.12. The mapping f 7−→ hypo+f is a bijection from the set of all ICR func-
tions f : C → [0,+∞] onto the set of all hypographical radiant sets U ⊆ C × R++ with
co-normal sections Uα.

Associated with the duality mapping f 7→ f∇, we introduce the ∇-subdifferential of
f : C → [0,+∞] at a point x0 ∈ f−1 ((0,+∞)) as follows:

∂∇f (x0) :=

{

y ∈ C :
f (x)

f (x0)
≥

c (x, y)

c (x0, y)
∀ x ∈ C

}

(23)

(with the convention 0
0
:= 0). The next assertion gives a reformulation of the definition

of ∇-subdifferential in terms of the sup-polar function f∇.

Proposition 3.13. Let f : C → [0,+∞] , x0 ∈ f−1 ((0,+∞)) and y ∈ C. Then y ∈

∂∇f (x0) if and only if f∇ (y) = c(x0,y)
f(x0)

.

The next proposition, whose proof is immediate, shows the relationship existing between
the ∇-subdifferentials of a function and its support set.

Proposition 3.14. Let f : C → [0,+∞] , x0 ∈ f−1 ((0,+∞)) and y ∈ C be such that

c (x0, y) > 0. Then y ∈ ∂∇f (x0) if and only if
(

y, f(x0)
c(x0,y)

)

∈ suppl f.

Combining Proposition 3.13 with Theorem 3.7, one easily obtains the following result:

Theorem 3.15. Let f : C → [0,+∞] and x0 ∈ f−1 ((0,+∞)) . Then

∂∇f (x0) ⊆

{

y ∈ C : f (y) ≥
f (x0)

c (x0, y)

}

. (24)
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If f is ICR then equality holds in (24) and one also has

∂∇f (x0) =

{

y ∈ C : f (y) =
f (x0)

c (x0, y)

}

.

4. The infimal generator approach

We define d : C × C → [1,+∞] by

d (x, y) :=
1

c (y, x)
= min {µ ≥ 1 : x ≤ µy} (25)

(here and in the sequel we use the convention min ∅ := +∞). One has

d (x, y) = max {u (x, y) , 1} , (26)

with

u (x, y) :=
1

l (y, x)
= min {µ ≥ 0 : x ≤ µy} .

Using (25) we reformulate Proposition 3.1 in the following form:

Proposition 4.1. For every x, x′, y, y′ ∈ C and µ ≥ 1, one has

d (µx, y) ≤ µd (x, y) ,

d (x, µy) ≥ µ−1d (x, y) ,

x ≤ x′ =⇒ d (x, y) ≤ d (x′, y) ,

y ≤ y′ =⇒ d (x, y) ≥ d (x, y′) ,

y ≤ x⇐⇒ d (x, y) = 1,

Proposition 3.2 can be presented as

Proposition 4.2. Let x, y ∈ C be such that d(x, y) < +∞. Then x ≤ d(x, y)y.

We also reformulate Theorem 3.3:

Theorem 4.3. Let f : C → [0,+∞] . Then the following statements are equivalent:

(i) f is ICR.

(ii) f (x) ≤ µf (y) for all x, y ∈ C and µ ≥ 1 such that x ≤ µy.

(iii) f (x) ≤ d (x, y) f (y) for all x, y ∈ C (here and in the sequel we use the convention
(+∞) 0 := +∞).

Given y ∈ C, let us define dy : C → [1,+∞) by dy (x) := d (x, y) for all x ∈ C. We
introduce the following class of functions:

U := {αdy : y ∈ C, α ∈ R++}

and the mapping η : C × R++ → U defined by

η (y, α) := αdy.

The statements below are a reformulation of the corresponding statements from Section
3 and we omit their proofs.
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Proposition 4.4. The mapping η is a bijection from C × R++ onto U . Moreover, it is
increasing in α and decreasing in y :

y ≤ y′ ⇐⇒ η (y, α) ≥ η (y′, α) (y, y′ ∈ C, α ∈ R++) .

α ≤ α′ ⇐⇒ η (y, α) ≤ η (y, α′) (y ∈ C, α, α′ ∈ R++) .

Theorem 4.5. A function f : C → [0,+∞] is ICR if and only if there exists a set
T ⊆ C × R++ such that

f (x) = inf
(y,α)∈T

αdy (x) (x ∈ C) .

Hence, f : C → [0,+∞] is ICR if and only if it is U-concave.

Definition 4.6. The inf-polar function of f : C → [0,+∞] is the function f∇ : C →
[0,+∞] defined by

f∇ (y) := inf
x∈C

d (x, y)

f (x)

(with the convention +∞
+∞

:= +∞).

Theorem 4.7. Let f : C → [0,+∞] . Then 1
f∇

is the smallest ICR majorant of f. Hence

f∇ ≤
1

f
,

and f is ICR if and only if

f∇ =
1

f
.

On combining Theorems 3.7 and 4.7, one gets

Theorem 4.8. Let f : C → [0,+∞] . Then f∇ ≤ f∇, and f is ICR if and only if
f∇ = f∇.

The set
suppu f := {(y, α) ∈ C × R++ : αdy ≥ f}

is called the upper support of f : C → [0,+∞] . The next proposition shows that, in the
case of an ICR function f, this set coincides with its positive epigraph, defined as follows:

epi+f := {(y, α) ∈ C × R++ : f (y) ≤ α} .

Similarly to the case of the positive hypograph introduced in the preceding section, the
definition of positive epigraph fits well to nonnegative functions, as one can recover f
from epi+f by

f (y) = inf
{

α : (y, α) ∈ epi+f
}

(y ∈ C) . (27)

Proposition 4.9. Let f : C → [0,+∞] . Then

suppu f = epi+
1

f∇
.

Hence, f is ICR if and only if
suppu f = epi+f.
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The following definition will be useful to characterize upper supports.

Definition 4.10. A subset U of C × R++ is called epigraphical if U = epi+f for some
function f : C → [0,+∞] .

Proposition 4.11. A subset U of C ×R++ is epigraphical if and only if for every y ∈ C
the set {α ∈ R++ : (y, α) ∈ U} is either R++ or of the form [α,+∞) , with α ∈ (0,+∞] .

Upper support sets are characterized next.

Proposition 4.12. For any set U ⊆ C × R++, the following statements are equivalent:

(i) There exists a function f : C → [0,+∞] such that suppu f = U.

(ii) There exists an ICR function f : C → [0,+∞] such that suppu f = U.

(iii) U is epigraphical and co-radiant and for every α ∈ R++ the section Uα is normal.

Furthermore, the function f of (ii) is unique.

Corollary 4.13. The mapping f 7−→ epi+f is a bijection from the set of all ICR func-
tions f : C → [0,+∞] onto the set of all epigraphical co-radiant sets U ⊆ C × R++ with
normal sections Uα.

Associated with the duality mapping f 7→ f∇, we introduce the ∇-superdifferential of
f : C → [0,+∞] at a point x0 ∈ f−1 ((0,+∞)) as follows:

∂∇f (x0) :=

{

y ∈ C :
f (x)

f (x0)
≤

d (x, y)

d (x0, y)
∀ x ∈ C

}

.

Proposition 4.14. Let f : C → [0,+∞] , x0 ∈ f−1 ((0,+∞)) and y ∈ C. Then y ∈

∂∇f (x0) if and only if f∇ (y) = d(x0,y)
f(x0)

.

Proposition 4.15. Let f : C → [0,+∞] , x0 ∈ f−1 ((0,+∞)) and y ∈ C be such that

d (x0, y) < +∞. Then y ∈ ∂∇f (x0) if and only if
(

y, f(x0)
d(x0,y)

)

∈ suppu f.

Proposition 4.16. Let f : C → [0,+∞] and x0 ∈ f−1 ((0,+∞)) . Then

∂∇f (x0) ⊆

{

y ∈ C : f (y) ≤
f (x0)

d (x0, y)

}

. (28)

If f is ICR then equality holds in (28) and one also has

∂∇f (x0) =

{

y ∈ C : f (y) =
f (x0)

d (x0, y)

}

.

5. Polarity between sets

Motivated by the abstract convexity representations of ICR functions given in the pre-
ceding sections, we will now introduce and study several related polarities between sets.

Definition 5.1. Let U ⊆ C × R++. The left polar set of U is

U l := {(x, β) ∈ C × R++ : αc (x, y) ≤ β ∀ (y, α) ∈ U} .
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Proposition 5.2. Let U ⊆ C × R++. Then

U l = suppu hU ,

hU : C → [0,+∞] being the function defined by

hU (y) := sup {α : (y, α) ∈ U} (y ∈ C) .

Proof. The proof is straightforward:

U l = {(x, β) ∈ C × R++ : αc (x, y) ≤ β ∀ (y, α) ∈ U}

= {(x, β) ∈ C × R++ : α ≤ βd (y, x) ∀ (y, α) ∈ U}

= {(x, β) ∈ C × R++ : hU (y) ≤ βd (y, x) ∀ (y, α) ∈ U}

= {(x, β) ∈ C × R++ : hU ≤ βdx} = suppu hU .

Definition 5.3. Let U ⊆ C × R++. The right polar set of U is

U r := {(y, α) ∈ C × R++ : αc (x, y) ≤ β ∀ (x, β) ∈ V } .

Similarly to Proposition 5.2, we have:

Proposition 5.4. Let U ⊆ C × R++. Then

U r = suppl eU ,

eU : C → [0,+∞] being the function defined by

eU (x) := inf {β : (x, β) ∈ U} (x ∈ C) .

The sets that are closed under the closure operators U 7−→ U lr and U 7−→ U rl are
identified in the next theorem.

Theorem 5.5. Let U ⊆ C × R++. Then the following statements hold:

(1) One has U = U lr if and only if U is hypographical and radiant and for every α ∈ R++

the section Uα := {y ∈ C : (y, α) ∈ U} is co-normal.

(2) One has U = U rl if and only if U is epigraphical and co-radiant and for every
α ∈ R++ the section Uα is normal.

Proof. We will only prove (1), since the proof of (2) is very similar.

If U = U lr then, by Proposition 5.4, U = suppl eU l ; hence, by Proposition 4.12, U is
hypographical and radiant and its sections Uα are co-normal.

Conversely, assume that U is hypographical and radiant and has co-normal sections.
Then, by Propostions 3.11 and 3.8, there exists an ICR function f : C → [0,+∞] such
that U = suppl f = hypo+ f. In view of (17), f = hU ; hence, by Propositions 5.2 and
4.9, U l = suppu f = epi+ f. Using (27), we see that f = eU l . Therefore, by Proposition
5.4, U lr = suppl f = U.
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Remark 5.6. Theorem 5.5 combined with Propositions 4.12 and 3.11 shows that the
relevant sets to consider in connection with the polarities U 7−→ U l and U 7−→ U r are
of the type U = hypo+f and U = epi+f, respectively, f : C → [0,+∞] being an ICR
function. According to the preceding proof, for such sets the polarity relations can be
simply written as (hypo+f)

l
= epi+f and (epi+f)

r
= hypo+f.

We will now consider another polarity relations between sets.

Definition 5.7. Let B ⊆ C. The polar set of B is

Bo := {(y, α) ∈ C × R++ : αc (x, y) ≤ 1 ∀ x ∈ B} .

Proposition 5.8. Let B ⊆ C. Then

Bo = hypo+µNh(B) ∪ (C × (0, 1]) , (29)

µNh(B) : C → [0,+∞] denoting the Minkowski gauge of Nh (B) .

Proof. Clearly, Bo = (B × {1})r , so by Propositions 5.4 and 3.8 we have Bo =
suppl eB×{1} = hypo+ 1

(eB×{1})
∇ . Let us compute 1

(eB×{1})
∇ . For every y ∈ C,

(

eB×{1}

)∇
(y) = sup

x∈C

c (x, y)

eB×{1} (x)
= sup

x∈B
c (x, y) = sup

x∈B
max
λ∈[0,1]

{λ : λy ≤ x}

= sup
λ∈[0,1]

sup
x∈B

{λ : λy ≤ x} = sup
λ∈[0,1]

{λ : λy ∈ B} .

By taking reciprocals, after a straightforward computation one gets the equality 1

(eB×{1})
∇

= max {µB, 1} , which yields (29).

Definition 5.9. Let U ⊆ C × R++. The polar set of U is

U0 := {x ∈ C : αc (x, y) ≤ 1 ∀ (y, α) ∈ U} .

Proposition 5.10. Let U ⊆ C × R++. Then

U o = {x ∈ C : (hU)∇ (x) ≥ 1} .

Proof. One has U0 =
{

x ∈ C : (x, 1) ∈ U l
}

; since, by Propositions 5.2 and 4.9, U0 =
epi + 1

(hU )∇
, the result immediately follows.

The following lemma will be useful to characterize the sets B ⊆ C that coincide with
their second polars.

Lemma 5.11. For every ICR function f : C → [0,+∞] and x ∈ C, the function R++ ∋
t 7−→ f (tx) is continuous.

Proof. By Theorem 3.5, f is the pointwise supremum of a collection of functions of the
type αcy, with (y, α) ∈ C × R++. Each of these functions is continuous along rays since,
for every x ∈ C and t ∈ R+, in view of (8) one has

αcy (tx) = αc (tx, y) = αmin {l (tx, y) , 1} = αmin {tl (x, y) , 1} .
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So it follows that f is lower semicontinuous along rays. Similarly, using Theorem 4.5 and
(26) one can easily prove that the restriction of f to C\ {0} is upper semicontinuous along
rays.

The following definition will be used in the characterization of the sets U ⊆ C×R++ that
coincide with their second polars.

Definition 5.12. Let S and E be two subsets of a common vector space. The set S is
said to be an E-enlarged cone if it is the union of E with a cone.

The next proposition, which has an immediate proof, provides two characterizations of
E-enlarged cones.

Proposition 5.13. Let S and E be two subsets of a common vector space. Then the
following statements are equivalent:

(i) S is an E-enlarged cone.

(ii) S ⊇ E and satisfies the following property: for every x ∈ S\E and every λ > 0 one
has λx ∈ S.

(iii) S = cone (S\E) ∪ E, cone (S\E) denoting the smallest cone containing S\E.

Theorem 5.14. Let B ⊆ C and U ⊆ C × R++. Then the following statements hold:

(1) One has B = Boo if and only if B is normal and closed along rays (in the sense
that for every x ∈ C the set {t ∈ R++ : tx ∈ C} is closed in R++).

(2) One has U = U oo if and only if U is a hypographical C × (0, 1]-enlarged cone and
for every α ∈ R++ the section Uα is co-normal.

Proof. (1) Let B ⊆ C. If B = Boo then, by Proposition 5.10, B = {x ∈ C : (hBo)∇ (x)
≥ 1} . Since, according to Theorem 4.7, the function 1

(hBo )∇
is ICR, it follows that B is

normal and, by Lemma 5.11, it is closed along rays.

Assume now that B is normal and closed along rays. The function µB is positively
homogeneous and, since B is normal, it is also increasing. Hence it is ICR. Moreover,
as B is closed along rays, B = {x ∈ C : µB (x) ≤ 1} . In view of Theorem 4.7, we can
equivalently writeB = {x ∈ C : (µB)∇ (x) ≥ 1} .On the other hand, by (17) with f := µB,
we have µB = hhypo+

µB

; therefore, using Propositions 5.10, the normality of B and the

equalities (C × (0, 1])o = C and (29), we get

B =
{

x ∈ C :
(

hhypo+
µB

)

∇
(x) ≥ 1

}

=
(

hypo+µB

)o
=
(

hypo+µNh(B)

)o
∩ (C × (0, 1])o

=
(

hypo+µNh(B)

)o
∩ (C × (0, 1])o =

(

hypo+µNh(B) ∪ (C × (0, 1])
)o

= Boo.

(2) Let U ⊆ C × R++. If U = U oo then, by Proposition 5.8, U = hypo+ µNh(Uo) ∪
(C × (0, 1]) = hypo+ max

{

µNh(Uo), 1
}

. Given that µNh(Uo) is positively homogeneous,
hypo+ µNh(Uo) is a cone; therefore U is an C × (0, 1]-enlarged cone. Since the function
max

{

µNh(Uo), 1
}

is ICR, by Propositions 3.8 and 3.11 U is hypographical and its sections
Uα are co-normal.

Assume now that U is a hypographical C×(0, 1]-enlarged cone and has co-normal sections.
Then there exists a cone L ⊆ C × R++ such that U = L ∪ (C × (0, 1]) . Since, as one
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can easily check, the smallest hypographical set that contains a given cone is also a cone,
without loss of generality we assume that L is hypographical, so L = hypo+f for some
function f : C → [0,+∞] . This function f must be positively homogeneous. Moreover
the sections Lα are co-normal, since so are the sections Uα (indeed, since L is a cone it
suffices to check that one of its sections is co-normal, and so is the case because L2 = U2).
Therefore f is increasing and hence it is an IPH function. Let B := {y ∈ C : f (y) ≤ 1} .
Then B is normal, that is, B = Nh(B), and f = µB = µNh(B). Moreover, by Theorem
4.7,

B = {y ∈ C : f∇ (y) ≥ 1} = {y ∈ C : (hL)∇ (y) ≥ 1} = Lo = Lo ∩ (C × (0, 1])o

= (L ∪ (C × (0, 1]))o = U0.

So, using (29) we conclude that

U = L ∪ (C × (0, 1]) = hypo+f ∪ (C × (0, 1]) = hypo+µNh(B) ∪ (C × (0, 1]) = Bo

= U oo.

Corollary 5.15. The mapping B 7−→ Bo is a bijection from the set of all normal and
closed along rays subsets of C onto the set of all hypographical C × (0, 1]-enlarged cones
U ⊆ C × R++ that have co-normal sections Uα; the inverse mapping is U 7−→ U o.

Proof. Let B ⊆ C be normal and closed along rays. Using (29), one can easily see that
Bo is an hypographical C × (0, 1]-enlarged cone with co-normal sections, so the mapping
B 7−→ Bo is onto. By Theorem 5.5, B = Boo, which shows that this mapping is also
one-to-one and has U 7−→ U o as its inverse.

6. IPH functions

In this section we will study relations between duality for IPH functions and ICR functions
under an additional Assumption 6.1, which we impose on the order relation ≥ under
consideration. (Recall that we consider order relations for which Assumptions 2.1, 2.2,
2.3 and 2.4 are valid.)

Assumption 6.1. For each x, y ∈ C, y 6= 0 there exists λ > 0 such that the inequality
λy ≤ x does not hold.

Assumption 6.1 is equivalent to the finiteness of l(x, y) for all x ∈ C and y 6= 0. Recall
that an order relation ≤ is called Archimedean if for all x, y ∈ C, y 6= 0 there exists a
natural number n such that x < ny. Clearly Assumption 6.1 holds for Archimedean order
relations. Assumption 6.1 does not hold for the lexicographic order relation on the cone
R

n
+.

Let f : C → [0,+∞) be a finite IPH function. Consider, as in [1], the lower polar function
f ◦ : C → [0,+∞] of f defined by

f ◦(y) = sup
x∈C

l(x, y)

f(x)
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(with the convention 0
0
:= 0) and the upper polar function f◦ : C → [0,+∞] of f defined

by

f◦(y) = inf
x∈C

u(x, y)

f(x)
.

(with the convention 0
0
:= +∞). Both polar functions were defined for IPH functions in

[1].

Proposition 6.2. Let f be an IPH function. Then f∇ = f ◦ and f∇ = f◦.

Proof. First we present the proof for the lower case. Assume that 0 ∈ C and y = 0.
Since 0 ≤ x for all x ∈ C it follows that l(x, y) = +∞ for all x ∈ C so c(x, y) = 1 for all
x ∈ C. Since f(0) = 0 for a finite IPH function f , we have

f∇(0) = sup
x∈C

1

f(x)
≥

1

0
= +∞; f ◦(0) = sup

x∈C

l(x, 0)

f(x)
≥
l(0, 0)

f(0)
= +∞.

Hence f∇(0) = f ◦(0).

Let y ∈ C, y 6= 0. Since c(x, y) = min(l(x, y), 1) it follows that

f∇(y) = sup
x∈C

c(x, y)

f(x)
= max

(

sup
x∈C,l(x,y)≤1

l(x, y)

f(x)
, sup
x∈C,l(x,y)≥1

1

f(x)

)

. (30)

Due to Assumptions 6.1 and 2.2, l(x, y) < +∞ for all x ∈ X. Let l(x, y) := µ ≥ 1 and
x′ = x/µ. Then l(x′, y) = 1 and f(x) = f(µx′) = µf(x′) ≥ f(x′). Therefore

sup
x∈C,l(x,y)≥1

1

f(x)
= sup

x′∈C,l(x′,y)=1

1

f(x′)
. (31)

Since both f and ly (recall that ly(x) = l(x, y)) are positively homogeneous of degree one
and finite it follows that

sup
x∈C

l(x, y)

f(x)
= sup

x∈C,l(x,y)≤1

l(x, y)

f(x)
= sup

x∈C,l(x,y)=1

l(x, y)

f(x)
= sup

x∈C,l(x,y)=1

1

f(x)
(32)

Hence

f ◦(y) = sup
x∈C

l(x, y)

f(x)
= sup

x∈C,l(x,y)=1

1

f(x)
(33)

The result in the lower case follows from (30), (31) and (32).

Consider now the upper case. Let 0 ∈ C and y = 0. Due to Assumption 2.4, the set
{µ ≥ 0 : x ≤ µy} is empty for all x 6= 0, so u(x, y) = +∞ and d(x, y) = +∞ for all x 6= 0.

At the same time u(0, 0) = 0 and d(0, 0) = 1. Since 0/0 = +∞ it follows that u(x,y)
f(x)

= +∞

for all x ∈ C. We also have d(x,y)
f(x)

= +∞ for all x ∈ C. Hence f◦(0) = +∞ = f∇(0).

Assume now that y 6= 0. Then

f∇(y) = inf
x∈C

d(x, y)

f(x)
= min

(

inf
x∈C,u(x,y)≥1

u(x, y)

f(x)
, inf
x∈C,u(x,y)≤1

1

f(x)

)

. (34)
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Let uy(x) = u(x, y). It is easy to check that uy is positively homogeneous of degree one.
Since f is also positively homogeneous of degree one, we have

inf
x∈C,u(x,y)≥1

u(x, y)

f(x)
= inf

x∈C,u(x,y)=1

u(x, y)

f(x)
. (35)

We now show that u(x, y) > 0 for all x 6= 0. Indeed, if x 6= 0 then due to Assumption
2.1 and Assumption 6.1 there exists µ > 0 such that the inequality x ≤ µy does not hold,
hence, by Assumption 2.2, u(x, y) > 0. At the same time u(0, y) = 0 due to Assumption
2.4.

Let x 6= 0 and u(x, y) := µ ≤ 1. Let x′ = x/µ. Since uy is positively homogeneous we
have u(x′, y) = 1. We also have f(x) = f(µx′) = µf(x′) ≤ f(x′). If 0 ∈ C and x = 0 then
f(x) = 0 which implies 1

f(x)
= +∞ and 0

f(x)
= +∞, so we can omit x = 0 calculating

inf 1
f(x)

or inf 0
f(x)

to compute f0(y). Then we have

inf
x∈C,u(x,y)≤1

1

f(x)
= inf

x∈C,u(x,y)=1

1

f(x)
. (36)

Using positive homogeneity of uy and f we get

f◦(y) = inf
x∈C

uy(x)

f(x)
= inf

x∈C,u(x,y)=1

uy(x)

f(x)
= inf

x∈C,u(x,y)=1

1

f(x)
. (37)

The result in the upper case follows from (34), (35), (36) and (37).

The proof of the following proposition is immediate and we omit it.

Proposition 6.3. Let f : C → [0,+∞] be a function. The following assertions are
equivalent:

(i) f is positive homogeneous of the first degree;

(ii) the positive hypograph hypo+f is a cone;

(iii) the positive epigraph epi+f is a cone.

Using results from Sections 3 and 4 and Propositions 6.3 and 6.2 we can give a descrip-
tion of IPH functions in terms of the lower and upper polar functions and their positive
hypographs and positive epigraphs.

We now consider the ∇-subdifferential ∂∇f (x0) of an IPH function f at a point x0 ∈ C
such that 0 < f (x0) < +∞ :

Proposition 6.4. Let f be an IPH function and x0 ∈ f−1 ((0,+∞)) . Then y ∈ ∂∇f(x0)
if and only if

f(x) ≥ f(x0)
l(x, y)

l(x0, y)
, if l(x0, y) ≤ 1 (38)

f(x) ≥ f(x0)l(x, y), if l(x0, y) ≥ 1. (39)



J. Dutta, J. E. Mart́ınez-Legaz, A. M. Rubinov / Monotonic Analysis over Cones ... 579

Proof. By definition y ∈ ∂∇f(x0) if f(x) ≥ f(x0)
c(x, y)

c(x0, y)
for all x ∈ C. Replacing x with

λx, where λ > 0 and dividing into λ we get that y ∈ ∂∇f(x0) implies

f(x) ≥ f(x0)
1

λ

c(λx, y)

c(x0, y)
, λ > 0.

We have l(λx, y) = λl(x, y) ≤ 1 for sufficiently small numbers λ. So c(λx, y) = l(λx, y) =
λl(x, y) for these λ and we obtain (38) and (39). Obviously (38) and (39) imply that
y ∈ ∂∇f(x0).

A similar characterization can be given for the ∇-superdifferential ∂∇f(x0).
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