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1. Introduction

Numerous techniques exist for approximating a nondifferentiable convex function f with
convex functions of different levels of regularity. The technique of Moreau [14], popular in
convex analysis and optimization due to its relationship to proximal mappings and Yosida
regularization of the subdifferential, yields a family of differentiable Moreau envelopes eλf ,
λ > 0, with the property (among other ones which we list in Section 2.1) that the convex
conjugate of eλf is the convex conjugate of f plus a quadratic function. In particular, the
guaranteed differentiability of eλf may be lost when passing to a conjugate. A similar
phenomenon occurs for the “rolling a ball under the graph of f� smoothing technique
of [22], where, thanks to the inf-convolution structure of the smoothing, the conjugate
function can be found explicitly. For other smoothing techniques, say that of [25], that
resembles an inf-convolution but where the quadratic functions used in Moreau envelopes
are replaced by entropy-like distances, or [8], where integral convolutions are used, the
conjugate function becomes hard to track. Smoothing techniques targetting particular
classes of convex functions or optimization problems can be found in [23, 12] and [6, 7].

In this note, relying to an extent on the Moreau envelope, we propose a smoothing tech-
nique that, given any convex function f , yields differentiable approximates sλf , λ ∈ (0, 1),
not only such that their conjugates are also differentiable, but in fact

(sλf)
∗ = sλf

∗.

That is, the smoothing technique is “self-dual�: the conjugate of the smoothed f is
the smoothed conjugate of f . Furthermore, the smoothing technique extends to saddle
functions, convex in some arguments, concave in the others. For such functions, it is
self-dual with respect to saddle function conjugacy. Finally, in an appropriate sense, the
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smoothing is self-dual with respect to partial conjugacy that relates convex functions to
saddle functions.

2. The case of convex functions

2.1. Preliminaries

Throughout the paper, X is a Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, and
IR = [−∞,+∞]. Let f : X → IR be a convex, lower semicontinuous (lsc), and proper
(not identically +∞ and never −∞) function. Given f and λ > 0, the Moreau envelope

eλf of f is defined by

eλf(x) = inf
u∈X

{

f(u) +
1

2λ
‖x− u‖2

}

. (1)

That is, eλf is the inf-convolution of f and the function x 7→ 1
2λ
‖x‖2. For convenience,

we will sometimes use the notation j(x) = 1
2
‖x‖2 and write for the operation of inf-

convolution, so that eλf = f λ−1j.

For any λ > 0, the envelope function eλf is finite-valued, convex, continuous, and Frechet
differentiable, with∇eλf Lipschitz continuous with constant 1/λ. (For second-order prop-
erties of eλf see [13].) These, and other properties of eλf will be reflected in the properties
of the smoothing operation in Section 2.2. We add that the envelope functions eλf are
pointwise convergent and Mosco-epiconvergent to f as λց 0.

Given any function g : X → IR, its convex conjugate g∗ : X → IR is defined by

g∗(y) = sup
x∈X

{〈y, x〉 − g(x)} .

For f as above, f ∗ is a convex, lower semicontinuous, and proper function, and (f ∗)∗ = f .
For the function j and λ > 0, we have (λ−1j)∗ = λj. Finally, (eλf)

∗ = (f λ−1j)
∗

=
f ∗ + λj, and symmetrically, (f + λj)∗ = f ∗ λ−1j.

For more background and details, see [1], in particular Chapter 3, Proposition 3.3, The-
orems 3.20 and 3.24, or [5], Chapter 2, Theorem 2.3 and Corollary 2.3. For the case of
X = IRn, consult [20], Theorem 2.26, Proposition 7.4, and Example 11.26.

2.2. Smoothing of convex functions

Definition 2.1. Given a convex, lower semicontinuous, and proper function f : X → IR
and any λ ∈ (0, 1), the function sλf : X → IR is defined by

sλf(x) =
(

1− λ2
)

eλf(x) +
λ

2
‖x‖2. (2)

The function sλf inherits differentiability from the Moreau envelope eλf . We state this,
and other properties of sλf below, in Lemma 2.3. First, we note the most striking property
of the operation defining sλf : it is symmetric with respect to convex conjugacy.

Theorem 2.2. For any convex, lsc, and proper f : X → IR and any λ ∈ (0, 1),

(sλf)
∗ = sλ(f

∗). (3)
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This was originally stated in [9] and shown via a direct calculation. It is also a special
case of Theorem 3.2 (the proof of which simplifies to the direct proof of Theorem 2.2).
An alternate proof, via Proposition 2.4, was suggested to the author by Stephen Simons
[24].

To illustrate where the symmetry in (3) is coming from, we note that ∇sλf has the
following property:

gph∇sλf =

[

I λI
λI I

]

gph ∂f. (4)

(Above, gph ∂f denotes the graph of the subdifferential mapping ∂f of f , etc., and I is
the identity mapping from X to X.) Indeed, for any convex, lsc, and proper function g,

gph ∂ (g + λj) =

[

I 0
λI I

]

gph ∂g, gph∇eλg =

[

I λI
0 I

]

gph ∂g,

gph ∂
(

(1− λ2)g
)

=

[

I 0
0 (1− λ2)I

]

gph ∂g,

and so

gph ∂sλf =

[

I 0
λI I

] [

I 0
0 (1− λ2)I

] [

I λI
0 I

]

gph ∂f =

[

I λI
λI I

]

gph ∂f.

Now, since gph ∂g∗ =

[

0 I
I 0

]

gph ∂g, we have, from (4), that

gph ∂(sλf)
∗ =

[

0 I
I 0

]

gph ∂sλf =

[

0 I
I 0

] [

I λI
λI I

]

gph ∂f

=

[

0 I
I 0

] [

I λI
λI I

] [

0 I
I 0

]

gph ∂f ∗ =

[

I λI
λI I

]

gph ∂f ∗.

So, the graphs of ∂sλf and of ∂(sλf)
∗ are obtained from those of ∂f , ∂f ∗ via the same

operation. (This effectively justifies (3) up to a constant of integration.)

Lemma 2.3. For any convex, lsc, and proper f : X → IR and any λ ∈ (0, 1),

(a) sλf is strongly convex with constant λ;

(b) sλf is Frechet differentiable, with the gradient Lipschitz continuous with constant

1/λ and given by

∇sλf(x) =
1− λ2

λ
(x− Pλf(x)) + λx,

where Pλf(x) = argminu
{

f(u) + 1
2λ
‖x− u‖2

}

is the proximal mapping for f ;

(c) argmin sλf is a singleton, and equals xλ if and only if xλ = (1− λ2)Pλf(xλ).

Furthermore, as λ ց 0, sλf converge to f pointwise and Mosco-epigraphically, and if

argmin f 6= ∅, then limxλ = x0, where x0 is the unique element of argmin f of minimal

norm.
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Proof. The function sλf − λj = (1 − λ2)eλf is convex, so sλf is strongly convex with
constant λ. Differentiability, Lipschitz property of ∇sλf and the formula it follow directly
from the properties of eλf .

The function sλf is continuous and coercive, so argmin sλf is nonempty. Strong, hence
strict, convexity implies that this set must be a singleton, say xλ. Since sλf is convex
and differentiable, ∇sλf(xλ) = 0, and (b) yields the desired condition. The Mosco-
epigraphical and pointwise convergence of sλf to f comes from such convergence of eλf
to f and continuity of j.

Now assume that argmin f 6= ∅. By convexity of f it is a convex set. Therefore, it
contains a unique element of minimal norm, say x0. For any xλ ∈ argmin sλf we have

min sλf = sλf(xλ) ≤ sλf(x0) = (1− λ2)min f +
λ

2
‖x0‖

2

and also

min sλf = (1− λ2)eλf(xλ) +
λ

2
‖xλ‖

2 ≥ (1− λ2)eλf(x0) +
λ

2
‖xλ‖

2

= (1− λ2)min f +
λ

2
‖xλ‖

2.

Thus ‖xλ‖ ≤ ‖x0‖, so any accumulation point of xλ must have the norm less or equal to
‖x0‖. By the epiconvergence of sλf to f , accumulation points of elements of argmin sλf),
as λ ց 0, belong to argmin f ([1, Proposition 2.9] or [20, Theorem 7.31] for the case of
X = IRn). Any such accumulation point must have the norm equal to at least ‖x0‖, and
thus, it must actually equal x0.

The symmetry described by (3) turns out to be a special case of a more general fact about
the structure of conjugates of functions that are a combination of Moreau envelopes and
quadratic functions. That is, we have the following result:

Proposition 2.4. Let γ, β > 0, α = β/(β + γ). Then for any convex, lsc, and proper

f : X → IR,

[(αf βj) + γj]∗ = (αf ∗ ρj) + σj, (5)

where ρ = β/γ(β + γ) and σ = 1/(β + γ).

Proof. As

[(αf βj) + γj]∗ = (αf βj)∗ (γj)∗ = [(αf)∗ + (βj)∗] γ−1j

= [(αf)∗ + β−1j] γ−1j

and (αf)∗(x) = αf ∗(x/α), we have

[(αf βj) + γj]∗(x) = inf
u∈X

{

αf ∗

(u

α

)

+
‖u‖2

2β
+

‖x− u‖2

2γ

}

= inf
u∈X

{

αf ∗(u) +
‖αu‖2

2β
+

‖x− αu‖2

2γ

}

.
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Now, some algebra shows that

‖αu‖2

2β
+

‖x− αu‖2

2γ
=
ρ

2
‖x− u‖2 +

σ

2
‖x‖2,

and so [(αf βj) + γj]∗ = (αf ∗ ρj) + σj.

Now note that having α, β, γ > 0 with α = β/(β + γ), β = β/γ(β + γ), γ = 1/(β + γ)
and such that

[(αf βj) + γj]∗ = (αf ∗ βj) + γj,

amounts to having γ ∈ (0, 1), β = 1−γ2

γ
, α = 1− γ2. Then, the equation above turns to

[(

(

1− γ2
)

f
1− γ2

γ
j

)

+ γj

]∗

=

(

(

1− γ2
)

f ∗
1− γ2

γ
j

)

+ γj,

which is exactly (3). This proves Theorem 2.2.

3. The case of saddle functions

3.1. Preliminaries

Let X and Y be Hilbert spaces. Inner products and norms in both will be denoted by
〈·, ·〉 and ‖ · ‖. By a saddle function we will understand h : X × Y → IR such that h(x, y)
is convex in x for each fixed y and concave in y for each fixed x. Properties of saddle
functions that in a sense parallel properness and lower semicontinuity of convex functions
are properness and closedness. A saddle function h is proper and closed if its convex
parent f : X × Y → IR and its concave parent g : X × Y → IR, obtained from h via
partial conjugacy formulas

f(x, q) = sup
y∈Y

{h(x, y) + 〈q, y〉} , g(p, y) = inf
x∈X

{h(x, y)− 〈p, x〉}

are such that f and −g are proper convex functions conjugate to each other, that is,

−g(p, y) = sup
x∈X,q∈Y

{〈p, x〉+ 〈y, q〉 − f(x, q)} .

The equivalence class of a proper and closed saddle function h consists of all proper and
closed saddle functions that have the same parents as h, and has the least and the greatest
elements given, respectively, by

h(x, y) = sup
p∈X

{g(p, y) + 〈x, p〉} , h(x, y) = inf
q∈Y

{f(x, q)− 〈y, q〉} .

Given a proper and closed saddle function h, the class conjugate to it (in the saddle sense)
has the least and the greatest elements given by

h∗(p, q) = sup
x

inf
y
{〈p, x〉+ 〈q, y〉 − h(x, y)}, h∗(p, q) = inf

y
sup
x

{〈p, x〉+ 〈q, y〉 − h(x, y)}.
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In other words, the class conjugate to h comes from a convex parent (p, y) 7→ −g(p,−y)
and a concave parent (x, q) 7→ −f(x,−q). If either function displayed above is finite-
valued, then h∗ = h∗ and the equivalence class conjugate to h consists of one element.
For details, see [18], [3] and, for the finite-dimensional case, [15], [16].

An extension of the idea of Moreau envelope to saddle functions was proposed by [4].
Originally, the approximation used two parameters. Here, considering one will suffice.
Given a proper and closed saddle function h and any λ > 0, the mixed Moreau envelope
is defined by

Eλh(x, y) = inf
u∈X

sup
v∈Y

{

h(u, v) +
1

2λ
‖x− u‖2 −

1

2λ
‖y − v‖2

}

. (6)

The order of taking the infimum and supremum in (6) is irrelevant, and the envelope Eλh
depends only on the equivalence class of h. Basic properties of Eλh(x, y) are similar to
those of the Moreau envelope for convex functions. That is, for each λ > 0, Eλh is a finite
continuous and continuously differentiable saddle function, with the gradient Lipschitz
continuous with constant 1/λ and given by ∇Eλh(x, y) = (−(x− ū)/λ, (y − v̄)/λ), where
(ū, v̄) is the unique saddle point in the minimax problem in (6). See [2].

3.2. Smoothing of saddle functions

Definition 3.1. Given a proper and closed saddle function h and any λ ∈ (0, 1), the
function Sλh : X × Y → IR is defined by

Sλh(x, y) =
(

1− λ2
)

Eλh(x, y) +
λ

2

(

‖x‖2 − ‖y‖2
)

, (7)

where Eλh is the mixed Moreau envelope of h given by (6).

The function Sλh inherits finiteness, continuity, differentiability, and Lipschitz continuity
of ∇Sλh from the corresponding properties of Eλh, and is also strongly convex in x,
strongly concave in y. We now turn to the symmetry properties of the smoothing operation
in (7) and its relationship to the smoothing operation for convex functions (2). Below,
given a convex function φ : X × Y → IR,

sλφ(p, y) =
(

1− λ2
)

inf
u∈X,v∈Y

{

φ(u, v) +
1

2λ
‖p− u‖2 +

1

2λ
‖y − v‖2

}

+
λ

2
‖p‖2 +

λ

2
‖y‖2.

That is, sλφ is the smoothing of φ in the sense of (2).

Theorem 3.2. Let h : X × Y → IR be a proper and closed saddle function and let

φ : X × Y → IR be a proper, lsc, and convex function given by

φ(p, y) = sup
x∈X

{〈p, x〉 − h(x, y)} .

Then

sλφ(p, y) = (Sλh(·, y))
∗ (p) = sup

x∈X
{〈p, x〉 − Sλh(x, y)} ,

and, equivalently,

Sλh(x, y) = (sλφ(·, y))
∗ (x) = sup

p∈X
{〈x, p〉 − sλφ(p, y)}.
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The proof is given at the end of this section. Here, we note that the result is written in
terms of the function φ and not convex or concave parents of h, so that it reduces exactly to
Theorem 2.2 for the special case of h being a convex function of x. However, as φ above
equals −g, where g is the concave parent of h, the concave parent of Sλh is −sλ(−g).
Similarly, the convex parent of sλf , equal to the convex conjugate of −g = sλ(−g), turns
out to be sλf , where f is the convex parent of h.

Now, based on the just observed fact that smoothing of a saddle function according to (7)
corresponds to smoothing of its parents according to (2), we can conclude that smoothing
of saddle functions is self dual with respect to saddle function conjugacy. Indeed, the
concave parent of (Sλh)

∗ is, in light of the said fact, given by (x, q) 7→ −sλf(x,−q).
As for any saddle function h, sλh depends only on the equivalence class of h and the
equivalence class of sλh has only one element, we obtain:

Corollary 3.3. Let h : X × Y → IR be a proper and closed saddle function. Then

(sλh)
∗ = sλh

∗. (8)

We now prove Theorem 3.2. Note that for the special case of h : X → IR being a convex
function, which is what one considers to deduce Theorem 2.2 from Theorem 3.2, the proof
simplifies as no minimax theorems need to be invoked.

Proof. Let γ = 1−λ2. Below, supp means supp∈X , similarly for u and z, while infv means
infv∈Y .

(sλφ(·, y))
∗(x) = sup

p
{〈x, p〉 − sλφ(p, y)}

= sup
p

{

〈x, p〉 − γ inf
u,v

{

φ(u, v) +
1

2λ
‖p− u‖2 +

1

2λ
‖y − v‖2

}

−
λ

2
‖p‖2 −

λ

2
‖y‖2

}

= sup
p,u,v

{

〈x, p〉 − γ sup
z

{〈u, z〉 − h(z, v)} −
γ

2λ
‖p− u‖2 −

γ

2λ
‖y − v‖2 −

λ

2
‖p‖2

}

−
λ

2
‖y‖2

= sup
p,u,v

inf
z

{

〈x, p〉 − γ〈u, z〉+ γh(z, v)−
γ

2λ
‖p− u‖2 −

γ

2λ
‖y − v‖2 −

λ

2
‖p‖2

}

−
λ

2
‖y‖2.

Now note that the function

(z, p, u, v) 7→ 〈x, p〉 − γ〈u, z〉+ γh(z, v)−
γ

2λ
‖p− u‖2 −

γ

2λ
‖y − v‖2 −

λ

2
‖p‖2

is convex in z for a fixed (p, u, v), concave in (p, u, v) for a fixed z, and as such a saddle
function, it is proper and closed (since h is). In fact, it is strongly concave in (p, u, v): it is
a sum of a concave in (p, u, v) function and of − 1

2λ
‖p‖2− γ

2λ
‖u‖2− γ

2λ
‖v‖2. Consequently,

the order of taking the supremum and infimum is irrelevant. (In finite dimensions, this
follows from [16, Theorem 37.3]. In general, it can be deduced, for example, from [5,
Chapter 2, Corollary 3.4], by using any point where h has a nonempty subdifferential.)
Thus,

(sλφ(·, y))
∗(x)

= inf
z
sup
v

{

γh(u, v) + sup
p,u

{

〈x, p〉 − γ〈u, z〉 −
γ

2λ
‖p− u‖2 −

λ

2
‖p‖2

}

−
γ

2λ
‖y − v‖2

}

−
λ

2
‖y‖2.
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Now

sup
p,u

{

〈x, p〉 − γ〈u, z〉 −
γ

2λ
‖p− u‖2 −

λ

2
‖p‖2

}

=
γ

2λ
‖x− z‖2 +

λ

2
‖x‖2,

and so

(sλφ(·, y))
∗(x) = inf

z
sup
v

{

γh(z, v) +
γ

2λ
‖x− z‖2 −

γ

2λ
‖y − v‖2

}

−
λ

2
‖x‖2 +

λ

2
‖y‖2

= γeλh(x, y) +
λ

2

(

‖x‖2 − ‖y‖2
)

.

4. Applications

In what follows, ‖ · ‖ is the Euclidean norm and x · y is the dot product.

4.1. Dual problems in optimization

Given convex, lsc, and proper functions gi : IRn → IR, i = 0, 1, . . . ,m, consider the
(primal) optimization problem of minimizing g0(x) subject to gi(x) ≤ 0 for i = 1, 2, . . . ,m
over x ∈ IRn. In other words, the problem is to minimize ϕ, where

ϕ(x) = g0(x) +
m
∑

i=1

δ(−∞,0](gi(x)).

Above, δ(−∞,0] is the indicator of (−∞, 0], with δ(−∞,0](z) = 0 if x ≤ 0, δ(−∞,0](z) = ∞ if
z > 0. Then φ(x) = f(x, 0) for a (convex, lsc, and proper) f : IRn × IRm → IR given by

f(x, u) = g0(x) +
m
∑

i=1

δ(−∞,0](gi(x)− ui).

The Lagrangian l : IRn × IRm → IR is a proper and closed saddle function given by

l(x, y) = inf
u
{f(x, u)− y · u} = g0(x) +

m
∑

i=1

yigi(x)−
m
∑

i=1

δ[0,∞)(yi),

with the convention that ∞−∞ = ∞. The dual problem is that of maximizing ψ, where
ψ(y) = infx l(x, y) = −f ∗(0, y). For background, see [19] or [20, Chapter 11.H,I].

Applying the smoothing (7) to the Lagrangian l results in primal and dual problems
having differentiable objective functions. Indeed, the primal problem corresponding to
the Lagrangian Sλl is that of minimizing ϕλ where ϕλ(x) = sλf(x, 0) – the function
sλf(x, u) comes from considering supy {Sλl(x, y) + u · y}, and this supremum is exactly
sλf(x, u), by Theorem 3.2. The dual is the problem of maximizing ψλ where ψλ(y) =
−(sλf)

∗(0, y) = −sλf
∗(0, y). We conclude by noting that ϕλ is exactly the function

resulting from replacing, in ϕ, the constraints gi(x) ≤ 0 by quadratic penalties, and then
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smoothing the result as in (2). Indeed,

ϕλ(x) = sλf(x, 0)

=
(

1− λ2
)

inf
α,β

{

f(α, β) +
1

2λ
‖x− α‖2 +

1

2λ
‖β‖2

}

+
λ

2
‖x‖2

=
(

1− λ2
)

inf
α,β

{

g0(α) +
m
∑

i=1

δ[gi(α),∞)(βi) +
1

2λ
‖x− α‖2 +

1

2λ
‖β‖2

}

+
λ

2
‖x‖2

=
(

1− λ2
)

inf
α

{

g0(α) + pλ(α) +
1

2λ
‖x− α‖2

}

+
λ

2
‖x‖2

where pλ(x) =
m
∑

i=1

{

0 gi(x) ≤ 0,
1
2λ
‖gi(x)‖

2 gi(x) > 0.
Now, the last line displayed above is exactly

the smoothing of g0 + pλ.

4.2. Dual problems of calculus of variations

Given convex, lsc, and proper functions g : IRn → IR, L : IR2n → IR, consider a pair of
value functions defined by dual problems of Bolza type: for each τ ≥ 0, ξ ∈ IRn, let

V (τ, ξ) = inf

{

g(x(0)) +

∫ τ

0

L (x(t), �x(t)) dt
∣

∣

∣
x(τ) = ξ

}

,

W (τ, η) = inf

{

g∗(p(0)) +

∫ τ

0

L∗ ( �p(t), p(t)) dt
∣

∣

∣
p(τ) = η

}

.

Above, the minimization is over all absolutely continuous arcs x, respectively, p, on [0, τ ]
that meet the endpoint constraints. We pose the mild growth assumptions, required by
the duality theory developed for such problems in [21]: there exist constants α, β and
of a coercive, nondecreasing function θ on [0,∞) such that both L(x, v) and L∗(v, x)
are bounded below by θ (max{0, ‖v‖ − α‖x‖}) − β‖x‖. This assumption guarantees, for
example, for each τ , V (τ, ·) and W (τ, ·) are convex, lsc, and proper functions conjugate
to each other. Furthermore, numerous properties of the value functions can be studied,
through the Hamilton-Jacobi partial differential equation and through the Hamiltonian
differential inclusion, with the help of the Hamiltonian

H(x, p) = sup
v

{p · v − L(x, v)} ,

which is a finite-valued (so proper and closed) saddle function (with the twist that H(x, p)
is concave-convex, in contrast to convex-concave functions we studied in this paper).

The value functions are of use in optimality verification techniques, and together with the
Hamiltonian can be used to construct the optimal feedback mapping: essentially, optimal
solutions to the problem defining V (τ, ξ) are the solutions to the differential inclusion
�x ∈ ∂pH(x, ∂ξV (t, x)). In general, the right-hand side of this inclusion can have bad
regularity properties (it may even turn out to not have convex values; see [10]) and it may
be desirable to approximate it with a more regular mapping.
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Let us consider approximate problems, with L replaced by sλL, and accordingly, with L∗

replaced by sλL
∗, and denote the resulting value functions by Vλ andWλ. The Hamiltonian

corresponding to sλL is SλH (with appropriately changed definition of the smoothing for
the concave-convex H). Note that we are not smoothing the initial costs g and g∗. Both
Vλ and Wλ are finite-valued (since sλL, sλL

∗ are). Functions sλL, as λ ց 0, meet the
uniform growth conditions used to study convergence of problems of Bolza in [11]. We can
then say that Vλ,Wλ are such that for each τ ≥ 0, Vλ(τ, ·),Wλ(τ, ·) converge epigraphically
to V , W ; this follows from [11, Theorem 4.6]. Also, Vλ(τ, ·), Wλ(τ, ·) are strictly convex –
this can be easily shown from the strong, and thus strict, convexity of sλL, sλL

∗ – and by
conjugacy between them, they are also differentiable. (Alternatively, one can rely on the
strict concavity, strict convexity of SλH, and [10, Theorem 4.3].) However, much more
can be said about the regularity of Vλ, Wλ, if one accounts for both strong concavity,
strong convexity of H and Lipschitz continuity of ∇H.

Proposition 4.1. For each τ > 0, the functions Vλ(τ, ·), Wλ(τ, ·) are differentiable and

their gradients are Lipschitz continuous with constant κ = 2λ−2
(

1− e−2τ/λ
)

−1
. By dual-

ity, these functions are also strongly convex with constant κ−1.

Proof. We only show Lipschitz continuity of ∇Vλ(τ, ·); all the other conclusions follow
by symmetry of the assumptions and conjugacy between Vλ(τ, ·) andWλ(τ, ·). We already
know V (τ, ·) is finite-valued. Pick any ξ1 6= ξ2 and any η1 ∈ ∂ξV (τ, ξ1), η2 ∈ ∂ξV (τ, ξ2).
(Here, ∂ξV (τ, ·) denotes the subdifferential of the convex function V (τ, ·).) By [21, The-
orem 2.4], for i = 1, 2, there exist solutions (xi, pi) : [0, τ ] → IRn × IRn to the Hamil-
tonian dynamical system associated with SλH, such that (xi(τ), pi(τ)) = (ξi, ηi) while
pi(0) ∈ ∂g(xi(0)). Now, [17, Theorem 4] adapted for the case of a strongly concave,
strongly convex Hamiltonian SλH, implies that

d

dt
(x1(t)− x2(t)) · (p1(t)− p2(t)) ≥ λc2(t), (9)

where c(t) =
√

‖x1(t)− x2(t)‖2 + ‖p1(t)− p2(t)‖2. Since the Hamiltonian differential
inclusion for SλH reduces to an ordinary differential equation with Lipschitz continuous
right-hand side, with constant 1/λ, we have c(t) ≥ c(τ)e(t−τ)/λ for all t ∈ [0, τ ]. Combining
this bound, inequality (9), and the fact that

(x1(0)− x2(0)) · (p1(0)− p2(0)) ≥ 0

thanks to the monotonicity of the subdifferential mapping ∂g, we obtain

(ξ1 − ξ2) · (η1 − η2) = (x1(t)− x2(t)) · (p1(t)− p2(t)) ≥ d,

where d = λ2c2(τ)
(

1− e−2τ/λ
)

/2. Now c(τ) =
√

‖ξ1 − ξ2‖2 + ‖η1 − η2‖2, and so c(τ) ≥
‖η1− η2‖. Then ‖ξ1− ξ2‖c(τ) ≥ ‖ξ1− ξ2‖‖η1− η2‖ ≥ d and the last two inequalities yield

‖η1 − η2‖

‖ξ1 − ξ2‖
≤
c2(τ)

d
= 2λ−2

(

1− e−2τ/λ
)−1

.

This finishes the proof.
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In summary, by varying only L and L∗ (in a symmetric way) and not g nor g∗, we can
approximate both value functions V and W by families of value functions for which the
gradient with respect to the state variable is Lipschitz continuous. As the approximate
Hamiltonian also has a Lipschitz continuous gradient, the resulting optimal feedback
mappings are Lipschitz continuous.

We conclude by illustrating that just strong concavity, strong convexity of the Hamiltonian
is not sufficient for the conclusions of Proposition 4.1 to hold. Indeed, let n = 1 and
consider L(x, v) = ‖x‖ + x2/2 + v2/2, so that H(x, p) = −‖x‖ − x2/2 + p2/2. This H
is strongly concave, strongly convex with constant 1, and so V (τ, ·) is differentiable, for
each τ > 0, independently of g. The Hamiltonian differential inclusion reduces to �x = p,
�p = x+1 for all p and for x > 0, while for x = 0, we have �x = p, �p ∈ [−1, 1]. In particular,
solutions to the inclusion on [0, τ ] starting from (0, 0) can remain at (0, 0) for any amount
of time, say up to time s, and then start evolving according to �x = p, �p = x+1, which, at
time τ > s, amounts to x(τ) = eτ−s/2+e−(τ−s)/2−1, p(τ) = eτ−s/2−e−(τ−s)/2. Pick any
(convex, lsc) g with g ≥ 0, g(0) = 0, so that in particular, 0 ∈ ∂g(0). By [21, Theorem
2.4], for each τ > 0, et/2 − e−t/2 = ∇Vξ (τ, e

t/2 + e−t/2− 1) for all t ∈ [0, τ ]. This is
enough to check that ∇ξV (τ, ·) is not Lipschitz continuous at 0.
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