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This paper addresses the Cauchy problem for the quasi-variational sweeping process in the ordered Hilbert
space H

−u′(t) ∈ NC(t,u(t))(u(t)) for a.e. t ∈ (0, T ), u(0) = u0,

where the set C(t, u(t)) ⊂ H is non-convex and NC(t,u(t)) denotes its normal cone. We provide an
existence result based on the classical implicit time-discretization procedure and on a fixed point argument
in ordered spaces.
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1. Introduction

Let H be a separable Hilbert space and T > 0 be a reference time. Moreover, let C :
[0, T ] → 2H be a set-valued mapping with non-empty, ϕ−convex and closed values for all
times t ∈ [0, T ]. A precise definition of the class of non-convex sets called ϕ-convex sets
will be given in Section 2. We consider the evolution of a point u(t) ∈ H remaining in
the set C(t) for all time t ∈ [0, T ] and being swept in a normal direction as it touches the
boundary of the set. Hence we shall find u : [0, T ] → H such that

−u′(t) ∈ NC(t)(u(t)) for a.e. t ∈ (0, T ), u(0) = u0. (1)

In the above relation, the prime stands for differentiation with respect to time, while
NC(t)(u(t)) denotes the normal cone to the set C(t) at the point u(t) (see Section 2) and
u0 ∈ C(0) is an initial datum. This differential inclusion is called a sweeping process.

The sweeping process (1) arises in many applications ranging from non-smooth mechanics
to mathematical economics, optimization, free boundary models, etc. Problem (1) was
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introduced and studied extensively in the seventies by Moreau (e.g. in [24] and [25]) and
by many other authors thereafter. The set-valued map t 7→ C(t) was first assumed to be
Lipschitz continuous or to have bounded variation and the sets C(t) were convex. The
subject has developed in different directions. For instance, the continuity requirements
on the set-valued map have been weakened in case the sets have non-empty interior ([6],
[20] are two examples) and the non-convex situation, pioneered by Valadier [32] has been
much developed ever since.

In the present article we address instead a quasi-variational version of (1), that is the case
of a set-valued driving function which depends on the solution u as well. In particular,
we assume to be given C : [0, T ]×H → 2H with non-empty and ϕ−convex values and a
point u0 ∈ C(0, u0). We look for a solution to the quasi-variational problem

−u′(t) ∈ NC(t,u(t))(u(t)) for a.e. t ∈ (0, T ), u(0) = u0. (2)

This type of problems appears in quasi-statical evolution problems with friction, micro-
mechanical damage theory and shape memory models.

Let us now comment on the previous contributions on quasi-variational sweeping pro-
cesses. For convex sets, Kunze & Monteiro Marques [17] proved the existence of solutions
when the moving set C depends in a Lipschitz continuous way on the time t and the state
u. The Lipschitz continuity constant of C with respect to the dependence on u is asked
to be strictly less than 1. In order to solve (2) in a Hilbert space H, some compactness
assumption on C is required in [17], [18]. A second existence result for the above-referred
Lipschitz continuous case has been provided by Brokate, Krejč̀ı, & Schnabel [3] by replac-
ing the compactness assumptions with a non-empty interior condition along with extra
continuity properties. In this case, uniqueness of a solution is also achieved.

A third class of existence results has been recently obtained by replacing compactness and
Lipschitz continuity by means of ordering-type assumptions and exploiting fixed point
devices in ordered spaces. With this approach the existence of suitably weak solutions
to the quasi-variational sweeping processes (2) in the convex case has been obtained by
Stefanelli [30, 29] and Rossi & Stefanelli [28].

For non-convex quasi-variational sweeping processes (2), an existence result was given by
Chemetov & Monteiro Marques in [7], assuming that C(t, u), t ∈ [0, T ] are ϕ-convex sets
and H is either a finite or an infinite-dimensional space. In particular, in the infinite-
dimensional situation, a compactness assumption has to be made.

In the present paper, we focus on the situation of a quasi-variational sweeping process in
the setting of an ordered Hilbert space H. In particular, we do not assume compactness
but instead require some monotonicity along with some continuity for the moving convex
sets. By suitably exploiting the techniques developed in [7], [17] and [29], we provide a
new existence result for the ϕ-convex quasi-variational sweeping process (2).

2. Notations and preliminaries

Sets. We shall denote by H a separable Hilbert space endowed with the scalar product
(·, ·) and by | · | the corresponding norm. For all non-empty sets A,B ⊂ H and x ∈ H we
let d(x,A) := infa∈A |x − a| be the usual distance and e(A,B) := supa∈A d(a,B) denote
the Hausdorff or excess semi-distance between the sets A,B. Given a final reference time
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T > 0, a non-empty set-valued function C : [0, T ] → 2H and [s, t] ⊂ [0, T ], we shall define
the retraction ret(C; s, t) of C on [s, t] as

ret(C; s, t) := sup
p

{

N
∑

i=1

e(C(ti−1), C(ti)) for p = {s = t0 < t1 < · · · < tN−1 < tN = t}
}

,

on all partitions.

We finally let C([0, T ];H), W 1,∞(0, T ;H), L1(0, T ;H) and BV (0, T ;H) denote the space
of continuous, Lipschitz continuous, integrable and bounded variation functions of [0, T ]
with values in H, respectively.

Normals. Let C ⊂ H be a non-empty and closed set and let z ∈ H. We denote by
πC(z) ⊂ H the metric projection of z into C, defined as

πC(z) := {x ∈ C : |x− z| = inf
y∈C

|y − z|}.

The latter could of course be empty (see below). It is however non-empty in case C is
weakly closed and it is a singleton if C is convex. Given x ∈ C, an element v ∈ H is said
to be a proximal normal to C at x if it is of the form y − x with x ∈ πC(y). The set of
all proximal normals to C at x is denoted by NC(x) and is a convex cone which may not
be closed. It is easy to show that if v is a proximal normal to C at x then there exists
σ > 0 such that

(v, y − x) ≤ σ|y − x|2 ∀y ∈ C.

This is actually a characterization since, owing to [8, Prop. 1.5],

NC(x) ≡
⋃

σ>0

{v ∈ H : (v, y − x) ≤ σ|y − x|2 ∀y ∈ C}.

ϕ−convexity. We shall follow Colombo & Goncharov [9] for notation and terminology.
The non-empty and closed set C ⊂ H is said to be ϕ−convex if there exists a continuous
function ϕ : C → [0,+∞) such that, for all x, y ∈ C and v ∈ NC(x), one has that

(v, y − x) ≤ ϕ(x) |v| |y − x|2.

The name ϕ−convexity is borrowed from Marino & Tosques [19] and the reader is referred
to the pioneering paper by Degiovanni, Marino, & Tosques [10] and the contributions
[5, 8, 26] as well (see also [9] for some additional material and a review of results on
ϕ−convexity of sets). The very same notion is also commonly referred to as prox-regularity
see, e.g., Rockafellar & Wets [27]. From the geometric point of view, ϕ−convexity entails
the external ball property. Namely, an external tangent ball, with radius strictly less then
1/(2ϕ(x)) can be rolled around C by touching the set just in x. Examples of ϕ−convex
sets are of course convex sets and C1,1 smooth sets. More generally, whenever for all
x ∈ C there exists a ball B centered in x with either C ∩B convex or C1,1 smooth, then
the set C is ϕ−convex. We will term the ϕ−convex set C to be ϕ0-convex iff the function
ϕ can be chosen to be the constant ϕ0 > 0. In the latter case, let us observe that the
metric projection πC is non-empty, single-valued and Lipschitz continuous with constant
2 whenever restricted to the set {u ∈ H : d(x,C) ≤ 1/(4ϕ0)}. We shall stress that πC
could be empty outside some suitable neighborhood of C (see [9, Ex. 7.3]).
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Orders and fixed point tool. This material follows the discussion by Baiocchi &
Capelo [1]. Let (E,≤) denote a non-empty ordered set and F ⊂ E. We recall that f ∈ F
is a maximal (minimal) element of F if, for all f ′ ∈ F , f ≤ f ′ (f ′ ≤ f , respectively)
implies f = f ′. Then, f is the maximum (minimum) of F if f ′ ≤ f (f ≤ f ′, respectively)
for all f ′ ∈ F . Moreover, e ∈ E is an upper bound (lower bound) of F if f ≤ e (e ≤ f ,
respectively) for all f ∈ F and e ∈ E is the supremum or least upper bound (infimum
or greatest lower bound ) if e is the minimum (maximum) of the set of upper bounds
(lower bounds, respectively) of F . Moreover, we say that F is a chain if it is totally
ordered and that F is an interval if there exist e∗, e

∗ ∈ E such that F ≡ {e ∈ E :
e∗ ≤ e ≤ e∗}. In the latter case we use the notation F = [e∗, e

∗]. The set (E,≤)
is said to be completely s-inductive (completely i-inductive) if every chain of E has a
supremum (infimum, respectively). Finally (E,≤) is said to be completely inductive if it
is both completely s-inductive and completely i-inductive. We are now in the position of
introducing our fixed point device.

Lemma 2.1. Let (E,≤) be an ordered set and I : [u∗, u
∗] ⊂ E be completely inductive.

Suppose that S : I → I is non-decreasing. Then, the set {u ∈ I : u = S(u)} is non-empty
and has a minimum and a maximum.

The latter result was announced by Kolodner [16] and turns out to be the main tool in the
analysis of Mignot & Puel [21, 22] and Tartar [31]. Its proof is to be found, for instance,
in [1, Thm. 9.26, p. 223].

Orders in Hilbert spaces. Assume we are given a non-empty closed, and convex cone
P ⊂ H with P ∩ −P = {0} and define u ≤ v iff v − u ∈ P. The latter is an order
relation [27, Prop. 3.38, p. 95] and we shall interpret P as the cone of positive elements.
By defining the polar cone

P ∗ := {u ∈ H : (u, v) ≤ 0 ∀v ∈ P},

we possibly obtain, for all u ∈ H, a (unique) decomposition [23]

u = u1 + u2 where u1 ∈ P, u2 ∈ P ∗ and (u1, u2) = 0.

Indeed the latter elements u1 and u2 are exactly the corresponding projections. Owing to
these considerations we will use the notation u1 = u+ = πP (u) and u2 = −u− = πP ∗(u).
These notations are particularly well motivated in the special case of P ∗ = −P (which
entails indeed the closure and strictness of P ) where indeed u− = πP (−u). Moreover, we
will use the following notation

u ∨ v := v + (u− v)+, u ∧ v := u− (u− v)+.

In the particular case P ∗ = −P one of course has that u ∨ v = u + (v − u)+ and
u∧v = v− (v−u)+ while this is not true in general. Let us stress that the symbols ∧ and
∨ are chosen just for the sake of notational simplicity. Indeed, we are not claiming that
one is able to find, for all u, v ∈ H, the element inf{u, v} or sup{u, v} although, whenever
they exist, they coincide with u ∧ v and u ∨ v, respectively. Let us collect here for the
reader’s convenience some examples of cones P such that P ∗ = −P .
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Example 2.2. Our first example for P ∗ = −P is the n-dimensional non-negative orthant
P := {x = (x1, . . . , xn) ∈ R

n : xi ≥ 0 for i = 1, . . . , n}.

Example 2.3. Let Ω be a measure space, µ be a positive measure on Ω and denote by
L2(Ω, µ) the Hilbert space of all square µ−integrable functions on Ω endowed with the
standard inner product. Hence we define P := {u ∈ L2(Ω, µ) : u ≥ 0 µ−a.e. in Ω} and
relation ≤ turns out to be

u ≤ v iff u(x) ≤ v(x) for µ−a.e. x in Ω.

Example 2.4. Let H be the space of symmetric n × n real matrices endowed with the
standard contraction product (A,B) := tr(AB) for all A,B ∈ H, where tr stands for the
trace. We define P as the set of positive semidefinite matrices. Again it is a standard
matter to check that −P = P ∗ [15, Cor. 7.5.4, p. 459]. Of course, relation ≤ entails that

A ≤ B iff B − A is positive semidefinite.

Example 2.5. We now consider the case of the so-called second order cone. Given the
spaceH let us consider the convex cone in R×H defined by P := {(t, u) ∈ R×H : t ≥ |u|}.
One easily checks that −P = P ∗ in R×H. This example in particular shows that there
exist cones with −P = P ∗ in R

n that are not isometric to the non-negative orthant of
Example 2.2. Moreover, the relation ≤ reduces in this case to

(t, u) ≥ (s, v) iff t− s ≥ |u− v|.

Example 2.6. Let un denote a countable orthonormal basis for the separable Hilbert
space H. We denote by P the range of the mapping u 7→ ∑

n∈N(u, un)
+un. Namely, P

is the set of linear combinations of un with non-negative coefficients (conic combination).
Hence, it is straightforward to check that −P = P ∗ (cf. Example 2.2).

Before moving on, let us report here a slight generalization of [1, Thm. 19.12, p. 399].

Lemma 2.7. Let P ⊂ H be closed and such that −P ⊂ P ∗. Then any non-empty interval
[u∗, u

∗] ⊂ H is completely inductive.

Proof. Let us denote by uα with α ∈ A a totally ordered subset in [u∗, u
∗] and check for

complete s-inductiveness (the proof for complete i-inductiveness being completely analo-
gous). We assume without loss of generality and without introducing new notation that
the set of indices (A,≤) is given in such a way that

α ≤ β in A ⇒ uα ≤ uβ in H.

By using −P ⊂ P ∗, we easily check that the sequence (uα, u
∗ − u∗) is non-decreasing as

α increases and it is bounded from above. Hence it converges. On the other hand, for all
α, β ∈ A such that α ≤ β we deduce that

|uα − uβ|2 = (uβ − uα, uβ − uα) ≤ (uβ − uα, u
∗ − u∗).

Namely, uα is a Cauchy sequence in H as α increases. Finally, owing to the closure of P ,
we conclude that supα∈A uα ∈ [u∗, u

∗] as well.
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We now follow for instance [1, 11] and introduce on the set of non-empty subsets of H
the relation � as

C1 � C2 iff
(

u1 ∈ C1, u2 ∈ C2 ⇒ u1 ∧ u2 ∈ C1, u1 ∨ u2 ∈ C2

)

.

Here notation is motivated by the fact that relation� turns out to be an order on the non-
empty closed intervals of H. However, � is not an order in general, even when restricted
to non-empty, convex and closed sets.

Given the ordered Hilbert space (H,P ) we will also consider the corresponding pointwise
order for functions with values in H without changing symbols. Namely, for all u, v :
[0, T ] → H, we shall let

u ≤ v iff v(t)− u(t) ∈ P ∀t ∈ [0, T ].

3. The variational problem

Let us start our discussion on (1) by stating our assumptions on the data C and u0.

(A1) H is a separable Hilbert space.

(A2) C : [0, T ] → 2H has non-empty, ϕ0−convex and closed values. Moreover, there
exists λ > 0 such that, for all [s, t] ⊂ [0, T ] one has that

e(C(s), C(t)) ≤ λ(t− s). (3)

(A3) u0 ∈ C(0).

Condition (3) plays the role of a Lipschitz continuity requirement. In particular, the
function r(t) := ret(C, 0, t) turns out to be Lipschitz continuous. This assumption can
be somehow relaxed (see below). However, we prefer to stick to the present Lipschitz
continuous situation for the sake of simplicity. Finally, assumption (A3) makes of course
sense since C(0) is non-empty by (A2).

The main result of this section states the existence of strong solutions to (1) in the above
setting. Namely, we have the following.

Theorem 3.1. Under assumptions (A1)-(A3) there exists u ∈ W 1,∞(0, T ;H) fulfilling
(1). Moreover u(t) ∈ C(t) for all t ∈ [0, T ], |u′(t)| ≤ λ for almost every t ∈ (0, T ), and,
for all solutions u1, u2 ∈W 1,∞(0, T ;H) to (1), one has that

|u1(t)− u2(t)| ≤ |u1(0)− u2(0)|e4ϕ0λt ∀t ∈ [0, T ]. (4)

In particular, the solution to (1) is unique.

We prove the latter theorem in the remainder of this section by means of a classical time
discretization procedure. Before moving one, one shall mention the papers by Bounkhel &
Thibault [2] and Edmond & Thibault [13] were some strictly related existence result has
been proved. In particular, the above-mentioned papers deal with the even more general
situation of a perturbed sweeping process

−u′(t) ∈ NC(t)(u(t)) + F (t, u(t)) for a.e. t ∈ (0, T ), u(0) = u0

where F : [0, T ] × H → H may be multivalued and fulfills suitable boundedness and
compactness requirements. On the other hand, the continuity assumtpion on C is slightly
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different. Indeed, they ask for C to be absolutely continuous with respect to the Hausdorff
distance whereas here we impose a one-sided Lipschitz estimate on the excess only (see
(3)).

The catching-up algorithm. This scheme can be traced back at least to Moreau
[24, 25]. For all n ∈ N let us prescribe a uniform partition of [0, T ] by means of the nodes
tin = iT/2n, for i = 0, . . . , 2n. Of course the forthcoming proof does not rely on the fact
that the partition is dyadic nor uniform with diameter hn := T/2n and one is entitled to
transpose with no particular intricacy the whole argument to non-uniform partitions as
well. This could be of some interest from the numerical point of view. We however reduce
ourselves to the current choice for the sake of notational simplicity. Finally, let I in denote
the subinterval (ti−1

n , tin] for i = 1, . . . , 2n.

Let now u0n = u0 ∈ C(0). We shall be constructing an approximating solution by succes-
sively projecting on the moving closed set C. To this aim, we readily assume to be given
n sufficiently large in such a way that

2λhn = λT2−n+1 ≤ 1/(4ϕ0).

Owing to (3), in the latter case, given some suitable ui−1
n ∈ C(ti−1

n ), there exists a unique
projection

uin = πC(tin)
(ui−1

n ) ∀i = 1, . . . , 2n.

This of course stems from the fact that

d(ui−1
n , C(tin)) ≤ e(C(ti−1

n ), C(tin)) ≤ λhn ≤ 1/(4ϕ0).

We shall denote by un : [0, T ] → H the piecewise linear interpolant of the above defined
discrete solution. Namely, we let

un(0) = u0n, un(t) = ui−1
n +

t− ti−1
n

hn
(uin − ui−i

n ) ∀t ∈ I in, i = 1, . . . , 2n.

Moreover, we let τn(t) = tin, sn(t) = ti−1
n for t ∈ I in, i = 1, . . . , 2n. Hence we have that

un(τn(t)) ∈ C(τn(t)) for all t ∈ [0, T ] and

−u′n(t) ∈ NC(τn(t))(un(τn(t))) for a.e. t ∈ (0, T ). (5)

Moreover, we readily prove that

|uin − ui−1
n | = d(ui−1

n , C(tin)) ≤ e(C(ti−1
n ), C(tin)) ≤ λhn, (6)

so that un ∈W 1,∞(0, T ;H) and |u′n(t)| ≤ λ for almost every t ∈ (0, T ).

Convergence. We shall now prove that un is a Cauchy sequence in C([0, T ];H). Indeed,
from (5) and for almost every t ∈ (0, T ) we have

d(un(t), C(t)) ≤ |un(t)− un(sn(t))|+ e(C(sn(t)), C(t)) ≤ 2λhn, (7)

(u′n(t), un(τn(t))− v) ≤ ϕ0|u′n(t)| |un(τn(t))− v|2 ∀v ∈ C(τn(t)). (8)
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Moreover, notice that for all m ≥ n,

d(um(t), C(τn(t)))

≤ |um(t)− um(τm(t))|+ e(C(τm(t)), C(τn(t))) ≤ λhm + λhn ≤ 2λhn ≤ 1/(4ϕ0),

so that the projection vm(t) = πC(τn(t))(um(t)) is well defined and for all t ∈ [0, T ]

|um(t)− vm(t)| ≤ 2λhn.

Therefore, inequality (8) gives

(u′n(t), un(t)− um(t)) ≤ 2ϕ0λ|un(t)− um(t)|2 + 18ϕ0λ
3h2n + 3λ2hn for a.e t ∈ (0, T ). (9)

Similarly, vn(t) = πC(τm(t))(un(t)) exists and for all t ∈ [0, T ]

|un(t)− vn(t)| = d(un(t), C(τm(t))) ≤ |un(t)− un(sn(t))|+ d(un(sn(t)), C(τm(t)))

≤ λhn + e(C(sn(t)), C(τm(t))) ≤ 2λhn.

In particular, by exploiting (8) at level m, one obtains that

(u′m(t), um(t)−un(t)) ≤ 2ϕ0λ|un(t)−um(t)|2+18ϕ0λ
3h2n+3λ2hn for a.e t ∈ (0, T ). (10)

Hence, taking the integral on (0, t) for t ∈ (0, T ] of the sum of (9) and (10), we deduce by
Gronwall’s lemma that

|un(t)− um(t)|2 ≤
(

18ϕ0λ
3h2n + 3λ2hn

)

(e8ϕ0λt − 1)/2φ0λ ∀t ∈ [0, T ]. (11)

Finally, there exists a (not relabeled) subsequence un such that

un → u strongly in C([0, T ];H) and weakly star in W 1,∞(0, T ;H),

and by (6) we readily check that the limit u fulfills |u′(t)| ≤ λ for almost every t ∈ (0, T ).
We shall prove that actually u solves (1). Let us start by observing that u(0) = u0 and,
for all t ∈ [0, T ],

d(u(t), C(t)) ≤ lim inf
n→+∞

(

|u(t)− un(sn(t))|+ e(C(sn(t)), C(t))
)

≤ lim inf
n→+∞

(

|u(t)− un(sn(t))|+ λ(t− sn(t))
)

= 0.

Namely u(t) ∈ C(t) for all t ∈ [0, T ].

Notice that the proof shows that there exists a continuous selection of C (namely u =
u(t)), such that u(0) = u0. Clearly, we can conclude that for any t0 ∈ [0, T ] and any
v0 ∈ C(t0) there is a continuous selection v = v(t) on some interval [t0, t0 + δ] with
v(t0) = v0.

Next, for almost every fixed t0 ∈ (0, T ) which is a Lebesgue point of u′ and for all v0 ∈
C(t0), we consider a suitable v ∈ C([t0, t0 + δ];H) such that v(t0) = v0 and v(s) ∈ C(s)
for all s ∈ [t0, t0 + δ]. Then, by choosing v = vn(s) = πC(τn(s))(v(s)) in (8) and taking the
integral on [t0, t0 + δ], one readily gets that

∫ t0+δ

t0

(u′n(s), un(τn(s))−v(s)) ds ≤
∫ t0+δ

t0

ϕ0|u′n(s)| (|un(τn(s))− v(s)|+ λhn)
2 ds+δλ2hn.
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Finally, by passing to the limit with n and taking into account the above proved conver-
gence we readily conclude that

1

δ

∫ t0+δ

t0

(u′(s), u(s)− v(s)) ds ≤ 1

δ

∫ t0+δ

t0

ϕ0|u′(s)||u(s)− v(s)|2 ds.

Taking δ → 0, we obtain

(u′(t0), u(t0)− v0) ≤ ϕ0|u′(t0)||u(t0)− v0|2,

and (1) easily follows. Finally, since the solution u ∈W 1,∞(0, T ;H) is unique (see below),
one has that the above-stated convergences hold for the whole sequence un.

Error control. The above detailed existence proof provides as a by-product an effective
approximation technique. In particular, we have an a priori error control of the discretiza-
tion error of (suboptimal) order 1/2. Indeed, by passing to the limit in m in (11) one
readily gets that

|u(t)− un(t)|2 ≤ (18ϕ0λ
3h2n + 3λ2hn)(e

8ϕ0λt − 1)/2φ0λ ∀t ∈ [0, T ].

Continuous dependence on initial data. Let u1, u2 ∈ W 1,∞(0, T ;H) fulfill the in-
clusion in (1) along with the initial conditions u1(0) = u0,1 and u2(0) = u0,2 for some
u0,1, u0,2 ∈ C(0), respectively. Hence, we readily have that

(u′i(t), ui(t)− uj(t)) ≤ ϕ0|u′i(t)||ui(t)− uj(t)|2 for a.e t ∈ (0, T ), i = 1, 2, j = 3− i.

By adding the corresponding relations and taking the integral we readily check that

|u1(t)− u2(t)| ≤ |u0,1 − u0,2|e4ϕ0λt ∀t ∈ [0, T ].

Continuous sweeping processes with bounded variation. As mentioned above,
the convergence of the catching-up algorithm can be proved under some slightly weaker
assumptions on C. In particular, the existence and continuous dependence on data of
a function u ∈ BV (0, T ;H) ∩ C([0, T ];H) solving (1) in a suitably weak sense can be
obtained whenever r : t 7→ ret(C; 0, t) is continuous and of bounded variation. The reader
is referred to the recent contributions by Edmond & Thibault [14] and Edmond [12] in
this direction. Moreover, we shall mention the paper Brokate, Krejč̀ı, & Stefanelli [4] for
a BV counterpart of the analysis on the quasi-variational in ordered spaces for functions
C with convex values.

4. Ordering solutions

Assume now we are given a separable and ordered Hilbert space (H,P ), solve (1) for two
sets of data (C1, u0,1) and (C2, u0,2) fulfilling (A2)-(A3), and obtain u1, u2 ∈ W 1,∞(0, T ;
H), respectively.

We shall be interested in establishing some conditions on the data so that the solutions
u1 and u2 will be ordered for all times. The very same problem is addressed for (convex)
variational inequalities by Duvaut & Lions [11, Ch. 1.6, p. 58] and we will adapt the same
idea to the current non-convex situation. In particular, we easily prove the following.
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Lemma 4.1. Assume (H,P ) is a separable and ordered Hilbert space, let (C1, u0,1) and
(C2, u0,2) fulfilling (A2)-(A3) be given, and denote by u1, u2 ∈ W 1,∞(0, T ;H) the corre-
sponding solutions to (1). Moreover let u0,1 ≤ u0,2 and C1(t) � C2(t) for almost every
t ∈ (0, T ). Then u1 ≤ u2.

Proof. We start from the following

(u′i(t), ui(t)− vi(t)) ≤ ϕ0|u′i(t)||ui(t)− vi(t)|2 for a.e. t ∈ (0, T ), ∀v(t) ∈ Ci(t), i = 1, 2.

Since ui(t) ∈ Ci(t) for all t ∈ [0, T ], i = 1, 2, and C1(t) � C2(t) for almost every t ∈ (0, T ),
one readily has that

(u1 ∧ u2)(t) ∈ C1(t) and (u2 ∨ u1)(t) ∈ C2(t) for a.e. t ∈ (0, T ).

By choosing v1(t) = (u1 ∧ u2)(t) and v2(t) = (u2 ∨ u1)(t) above, adding the two resulting
relations, and taking the integral on (0, t) for t ∈ [0, T ] we get that

|(u1(t)− u2(t))
+|2 ≤ |(u0,1 − u0,2)

+|2 + 4ϕ0λ

∫ t

0

|(u1(s)− u2(s))
+|2ds ∀t ∈ [0, T ],

and, since (u0,1 − u0,2)
+ = 0, the result follows from Gronwall’s lemma.

5. The quasi-variational problem

We shall now turn to problem (2). To this aim, we start by reformulating (A1)-(A3) as
follows

(B1) (H,P ) is a separable and ordered Hilbert space with P closed and −P ⊂ P ∗.

(B2) C : [0, T ] × H → 2H has ϕ0−convex values and it is Lipschitz continuous with
respect to the excess semi-distance, i.e.,

e(C(s, u), C(t, v)) ≤ ν(t− s) + µ|u− v| ∀u, v ∈ H, ∀t > s, (12)

for some µ, ν ≥ 0.

(B3) u0 ∈ C(0, u0).

Let us stress that, differently from (A3), the possibility of finding u0 fulfilling (B3) does
not follow directly from the corresponding assumption (B2). Indeed, we are asking in
(B3) that the viability problem u ∈ C(0, u) has at least a solution.

Following the general theory, in order to solve the quasi-variational problem (2) we shall
be concerned with its variational section [1]. Namely, given ū ∈ W 1,∞(0, T ;H) we shall
first solve for u ∈W 1,∞(0, T ;H) the following

−u′(t) ∈ NC(t,ū(t))(u(t)) for a.e. t ∈ (0, T ), u(0) = u0. (13)

We have already developed in Section 3 an existence-uniqueness theory for the latter
problem. Indeed, owing to Theorem 3.1, we are entitled to define a solution operator
S that associates to ū ∈ W 1,∞(0, T ;H) the corresponding unique solution to (13). We
recall that the mapping S is generally referred to as the variational selection of the quasi-
variational problem (2).

The key feature of the present analysis is the choice of exploiting some monotone structure
in (2). The latter is encoded in the following assumption
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(B4) For all ū1, ū2 ∈ W 1,∞(0, T ;H) with ū1 ≤ ū2 we have that C(t, ū1(t)) � C(t, ū2(t))
for almost every t ∈ (0, T ).

We shall explicitly observe that we are not directly requiring in that the viability problem
u(t) ∈ C(t, u(t)) for almost every t ∈ [0, T ] has at least a solution (which is indeed implicit
in (2)). This will eventually follow from our overall assumptions (see below).

For all λ > 0 let us now define the set

Eλ := {u ∈W 1,∞(0, T ;H) : |u′| ≤ λ a.e. in (0, T )}.

We shall assume the following

(B5) There exists λ > 0 such that S(Eλ) ⊂ Eλ.

Assumption (B5) clearly entails some restriction on the choice of C and goes in the
direction of possibly considering a fixed point procedure in Eλ. Of course, whenever we
have (B2), the function t 7→ C(t, ū(t)) turns out to fulfill (3) for all ū ∈ W 1,∞(0, T ;H).
Namely, since S(Eλ) ⊂W 1,∞(0, T ;H), assumption (B5) just requires that the size of the
Lipschitz constant of S(ū) is controlled by that of ū.

Let us give here our basic examples of maps C fulfilling (B5). At first, we shall consider
the following Lipschitz continuity condition

e(C(t, u), C(s, v)) ≤ max{µ(t− s), |u− v|} ∀u, v ∈ H, 0 ≤ s < t ≤ T, (14)

for some µ > 0. The latter choice entails of course (B5) with λ ≥ µ since one readily
checks that, given 0 ≤ s < t ≤ T , we have

e(C(t, ū(t)), C(s, ū(s))) ≤ max{λ(t− s), |ū(t)− ū(s)|} ≤ λ(t− s).

Hence, starting from ū ∈ Eλ, the very same Lipschitz bound on S(ū) follows.

As soon as the Lipschitz dependence on u in C (see (12)) is strictly contracting, we may
possibly consider a second class of functions C such that (B5) holds. Indeed, letting
ν ∈ [0, 1) in (12), we readily check that (B5) follows with the choice λ > µ/(1− ν).

Before moving on, we briefly comment on the latter assumptions with respect to the former
contributions on quasi-variational sweeping processes. First of all, we mention that the
absolutely continuous existence results of [3, 17, 18] are placed exactly in the framework
of (B2), by restricting it indeed to convex values. In all the above mentioned papers, the
Lipschitz continuity constant of C with respect to the dependence on u is asked to be
strictly less than 1. In this regard, the current frame is slightly more general since we allow
ν ≥ 1 in (14) (see the Example below). Moreover, the Lipschitz continuity is referred to
the excess semi-distance and is one-sided in time (besides dealing with non-convex sets,
of course).

Additionally, let us recall that some compactness for C is assumed in [17, 18] while C is
asked to fulfill a non-empty interior condition along with extra continuity properties in [3].
On the contrary, by virtue of our additional ordering assumption (B4), no compactness is
needed in the present setting and we are able to deal with the case of functions C having
values with empty interior.

We say that v ∈ Eλ is a subsolution (supersolution) of (2) if v ≤ S(v) (v ≥ S(v),
respectively). Then, our existence result for (2) reads as follows.



212 N. V. Chemetov, M. D. P. Monteiro Marques, U. Stefanelli / Ordered ...

Theorem 5.1. Assume (B1)-(B5) and that there exist a subsolution u∗ and a superso-
lution u∗ in Eλ of (2) with u∗ ≤ u∗. Then, the set of solutions u ∈ Eλ to (2) such that
u∗ ≤ u ≤ u∗ is non-empty and has a minimum and a maximum.

Proof. Owing to (B1)-(B3) and (B5), for all ū ∈ [u∗, u
∗] ∩ Eλ there exist a unique

solution u = S(ū) ∈ Eλ of (13). Assumption (B4) and Lemma 4.1 entail at once that, for
all ū1, ū2 ∈ [u∗, u

∗] ∩ Eλ with ū1 ≤ ū2 one has that S(ū1) ≤ S(ū2). Lemma 2.7 ensures
that [u∗, u

∗] ⊂ L2(0, T ;H) is completely inductive. Indeed, the very same argument of
Lemma 2.7 ensures that [u∗, u

∗] ∩ Eλ ⊂ W 1,∞(0, T ;H) is completely inductive as well.
Hence, the assertion follows by applying Lemma 2.1.

6. An example

Let us now motivate our analysis by providing an example where assumptions (B1)-(B5)
as well as the existence of suitable sub and supersolution can be fulfilled.

In order to keep the notation as simple as possible, we shall restrict ourselves to the
finite dimensional case H = R

2. The reader could of course reinterpret the example in
an infinite dimensional setting with small modifications. We assume H to be ordered by
means of the orthant

P = {(x1, x2) ∈ H : x1 ≥ 0, x2 ≥ 0}
so that −P ∗ = P and (B1) holds.

For all s ∈ R, u ∈ H, and t ≥ 0 we shall define

C(t, u) := K(u)− (t, 0), (15)

where
K(u) :=

{

(v1, v2) ∈ H : v1 ≤ f(u1) and v2 ≤ ψ(v1)
}

, (16)

with f(s) := (s ∧ 2s) ∧
(

s/
√
2 + 1

)

and ψ : R → [0, 2] smooth, such that











ψ(1) = 1;

0 ≤ ψ′ ≤ 1 on R and ψ′ = 0 on (−∞, 1];

ψ′′ is bounded on R.

Clearly, the set C fulfills (B2). The Lipschitz continuity of the excess semidistance (14)
holds with the choices µ = ν = 1 (the latter follows from the fact that we have chosen ψ
and f in such a way that ψ′f ′ ≤ 1/

√
2 almost everywhere). In particular the set C has

ϕ0-convex values, since C admits an external tangent ball with a fixed radius (recall that
ψ′′ > 0 is allowed). Assumption (B4) can be verified by using the fact that f and ψ are
non-decreasing.

Let us consider the corresponding quasi-variational sweeping process (2) on the time
interval (0, 1) with the initial value

u0 = (1, 1), (17)

which obviously satisfies (B3). The reader can easily check that the constants u∗ = (0, 0)
and u∗ = (2, 2) are suitable sub and supersolutions, respectively. Hence, we are in the
position of applying Theorem 5.1 and obtain the existence of a solution to (2) in [u∗, u

∗].
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We shall explicitly mention that the choices (15)-(16) along with (17) have merely an
academical interest. Indeed, one could easily check that the unique solution to the cor-
responding quasi-variational sweeping process (2) is u(t) = (1 − t, 1) for t ∈ [0, 1] and
that the latter is indeed the solution to the variational problem referred to the moving
convex set K(t) = [0, 1]× [0, 1]− (t, 0). In fact, we are not claiming to be interested in the
problem itself but rather in providing an easy example which is a priori not fitting with
the former results by Chemetov & Monteiro Marques [7], because of µ ≥ 1. On the other
hand, let us stress that the present oversimplified situation is still of a quasi-variational
nature. Indeed, one could check that the latter variational characterization holds true by
virtue of the choice t ∈ (0, 1) only. In particular, no absolutely continuous solution to (2)
exists for t > 1 since the region {(v1, v2) ∈ H : v1 < 0} is not accessible for the solution
(this construction is inspired by the counterexample to strong solvability by Kunze &
Monteiro Marques [18]).
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[4] M. Brokate, P. Krejč́ı, U. Stefanelli: Ordered sweeping processes in BV, in preparation
(2008).

[5] A. Canino: On p-convex sets and geodesics, J. Differ. Equations 75(1) (1988) 118–157.

[6] C. Castaing: A new class of evolution equation in a Hilbert space, in: Multifunctions and
Integrands (Catania, 1983), Lecture Notes in Math. 1091, Springer, Berlin (1984) 117–128.

[7] N. V. Chemetov, M. D. P. Monteiro Marques: Non-convex quasi-variational differential
inclusions, preprint.

[8] F. H. Clarke, R. J. Stern, P. R. Wolenski: Proximal smoothness and the lower-C2 property,
J. Convex Analysis 2(1-2) (1995) 117–144.

[9] G. Colombo, V. V. Goncharov: Variational inequalities and regularity properties of closed
sets in Hilbert spaces, J. Convex Analysis 8(1) (2001) 197–221.

[10] M. Degiovanni, A. Marino, M. Tosques: Evolution equations with lack of convexity, Non-
linear Anal., Theory Methods Appl. 9(12) (1985) 1401–1443.

[11] G. Duvaut, J.-L. Lions: Inequalities in Mechanics and Physics, Springer, Berlin (1976).

[12] J. F. Edmond: Existence of BV solutions for an evolution problem associated with a moving
set, Technical Report CMM-B-06/09-168, Departamento de Ingenieria Matemática, Univer-
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Montpellier (1988).


