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1. Introduction

Farkas’ lemma states that given any vectors aq, as, ..., a, in R™ and for each choice of
vector ¢ €R”, the linear inequality ¢’z = 0 is a consequence of the linear system aiTx =0,
i=1,2,...,mif and only if ¢ = ", N\ja;, for some multipliers \; = 0. Applications by way
of extensions of the celebrated Farkas lemma range from classical nonlinear programming to
modern areas of optimization such as nonsmooth optimization and semidefinite programming.
For a recent look at its extensions and applications see [3, 7, 12, 18]. However, it is well known
that the Farkas lemma for linear systems involving non-polyhedral cones is, in general, not valid
without a regularity condition, often called “closed cone condition” (see e.g. [6, 12])

The generalized Farkas lemma for a given cone-convex system —g(z) € S and for each choice of
real-valued convex function f states that f(z) = 0 is a consequence of the system —g(z) € S if
and only if there exists A € ST such that, for each x € R™, f(z) + (Ao g)(z) 2 0. Symbolically,

[—g(x) €S = f(x) 20 3re ST)(Vr € R") f(z)+ (Nog)(z) 20, (1)
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where the set S C R™ is a closed convex cone with the dual cone S* and g : R — R™ is a
continuous convex function with respect to S. Various sufficient conditions have been established
for this equivalence in (1). For details, see e.g. [6, 10, 11, 12].

The purpose of this paper is to present necessary and sufficient conditions for the Farkas lemma
with respect to the given cone-convex system —g(z) € S and to obtain corresponding duality
properties for convex optimization problems. In particular, we establish a necessary and suffi-
cient closed cone condition for the Farkas lemma. As an application, we obtain necessary and
sufficient conditions for the strong duality for convex second-order cone programming problems
[1, 2, 17], which have received a great deal of attention in recent years.

The outline of the paper is as follows. Section 2 provides background material on convex analysis
that will be used later in the paper. Section 3 presents several characterizations of the Farkas
lemma, including a necessary and sufficient closed cone (regularity) condition. Section 4 provides
an application of the Farkas lemma and establishes characterizations of strong duality properties
for second-order cone programming problems and for semidefinite programming problems.

2. Preliminaries

We recall in this section some notations and basic results which will be used in this paper. Let
X be a normed space with X* its dual endowed with weak*-topology. For a subset D C X*,
the w*-closure of D will be denoted by cl D and the convex cone generated by D by coconeD.

Let h: X — RU{—o00,400}. The conjugate function of h, h* : X* — R U {400}, is defined by
h*(v) := sup{v(z) — h(z) | = € domh},

where dom h := {z € X | h(z) < +oo} is the effective domain of h. The function h is said to be
proper if h does not take on the value —oco and dom h # ). The epigraph of h is defined by

epih:={(z,7) € X xR |z € domh, h(x) = r}.
The set (possibly empty)
Oh(a) == {v € X* | h(z) — h(a) Z v(z — a),Vxr € domh}

is the subdifferential of the convex function h at a € domh. For a closed convex subset D of
X, the indicator function dp is defined as dp(x) = 0 if x € D and ép(x) = +o0 if x ¢ D.
The support function 67, is defined by 6},(u) = sup,cp u(x). Then 9dp(x) = Np(x), which
is known as the normal cone of D of x. If h is proper lower semicontinuous and sublinear (i.e.,
convex and positively homogeneous of degree one), then epig* = dg(0) x R...

For proper lower semicontinuous convex functions g, h : X — RU{+o00}, the infimal convolution
of g with h, denoted glJh, is defined by

(g0h)(x) = inf {g(z1) + h(z2)}.
r1+To=T
The lower semicontinuous envelope and lower semicontinuous convex hull of g are denoted re-
spectively by clg and clcog. That is, epi(clg) = cl(epig) and epi(clcog) = clco (epig). For
details, see [21].

Let g, h and g;, i € I (where I is an arbitrary index set) be proper lower semicontinuous convex
functions. It is well known from the dual operation (see [20], [21]) that if dom g N dom h # 0,
then

(90R)* = g* +h*, (g+h)* = cl(g*0n")



V. Jeyakumar, S. Kum, G. M. Lee / Necessary and Sufficient Conditions for ... 65

and if sup;c; g; is proper, then
(sup g;)* = clco (inf g)).
ie[ iGI

So, one can check that

epi(g + h)* = cl(epig” + epih*) and epi(supg;)* = clco (U epig;).
el icl

The closure in the first equation is superfluous if one of g and h is continuous at some zg €
dom g Ndomh (see [4, 21] for details).

Let Y be another normed linear space with topological dual Y* and let S be a closed convex
cone in Y. Denote by ST the dual cone of S, defined as

St ={y*cY*|y*(y) 20 for any y € S}.

We say that the map g: X — Y is S—convex if for any 1, x9 € X and any A € [0, 1],
g(Az1+ (1 = A)z2) € Ag(x1) + (1 — N)g(a2) — S

and that g is S—sublinear if g is S—convex and positively homogeneous of degree 1. Note that
g (=8)={zeX| —g(x)e S}

3. Necessary and Sufficient Conditions for Farkas’ Lemma

In this section we present several characterizations of Farkas lemma for cone-convex systems.
In particular, we show that the well known closed convex cone condition for sublinear systems
completely characterize the Farkas lemma.

Theorem 3.1. Suppose that g : X — Y is a continuous and S—convex function with
g U =S)#0. Let A={l|1l:X — R is continuous and conver}. Then the following
statements are equivalent:

(i)  For each f € A,

[—g(x) €S = f(z) 20/ < 3ANe ST)(Vz € X) f(z)+ (Nog)(z) 2 0. (1)

(it) For each f € A,

[~g(x) € S = f(z) 2 0] < (IX € ST) (0,0) € epi f* +epi(Aog)*. (2)

(ii1) For each f € A,

(3A e §7) mf{f(z)+Aog)(a)} = wegi}}ffs) f(z). (3)

(iv) The convez cone,

U epi(Aog)* is w* — closed. (4)
AeS+
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Proof. [(ii) <= (i)]. Assume that (i) holds. Let f € A. Suppose that f(x) = 0 for each
x € g~ Y(—S). Then, by (i), there exists A € S* such that (0,0) € epi f* +epi(Aog)*. So, there
exists (v,7) € epi(Aog)* such that —(v,r) € epi f*. Now, for each z € X, v(x) — (Ao g)(x) = 7,
and for each z € X, —v(z) — f(z) = — r. Adding the two inequalities, we get that for each
r€ X, f(x)+ (Aog)(x) 2 0. The converse implication in (1) always holds.

Conversely, assume that (i) holds. Let f € A. Suppose that f(x) = 0 for each x € g~(-5).
Then, by (i), there exists A € ST such that for each z € X, f(x) + (Ao g)(z) =2 0. So, (f +
Ao ¢)*(0) = 0 and hence (0,0) € epi(f + Ao g)*. Since f is continuous, epi(f + X o g)* =
epi f* 4 epi(A o g)*, and consequently (0,0) € epi f* + epi(A o g)*.

[(#43) <= (i)]. Suppose that (iii) holds. Let f € A. If f(x) 2 0 for each x € g~1(—S) then
inf,e,-1(_g) f(z) 2 0 and so, from (iii), there exists A € ST such that
inf {f(z) + (Ao g)(x)} = 0.

Hence (i) holds as the converse implication always holds.

Suppose now that (i) holds. Let f € A. If inf,c -1(_gy f(z) = —o0, then

nf{f() + (0og)@) = _inf _ f(x) = —oc.

Since g~1(—=S) # (), we may assume that r := inf,c,—1(_g) f(x) is finite. Since f(-) —r € A, it
follows from (4) that there exists A € S*such that f(z)+ (Ao g)(x) 2 r for each x € X. Thus,

D)+ Rog)@) 2 it f)

Since f(z) 2 f(z) + (Ao g)(x), for each x € g71(—S5), we have

o F@) 2 g {f(@) + (o g)(a),

Hence, (7ii) holds.

(1)) <= (iv)]. Suppose that (ii) holds. Let (v,7) € cl{Jycg+ epi(A o g)*. Then there exist
nets {A\a} C ST, {(va,7a)} C epi(Ay 0 g)* such that (ve,7a) — (v,7). We can easily check that
va(x) = 74 for each 2 € g71(—9). Letting a — oo, we get that v(x) = r, for each z € g~1(-9).
Let f(z) = —v(x) + r. Then for each x € g~*(—S), f(x) 2 0. Moreover,

epi f* = {(—v,—r +a) | a« 2 0}
So, it follows from (ii) that there exist A € ST and o 2 0 such that (v,7 —a) € epi(Aog)*. This
gives us that (v,r) € epi(A o g)*. Hence (Jycg+ epi(A o g)* is w*-closed.

Conversely, assume that (iv) holds. Since (ST)" = S, for each x € X,

sup (Ao g)(x) = d,-1(—g)(®).
AesSt

So,

epidy 1 (_g) = clco( U epi(Ao g)).
AesSt

As the set | Jycg+ epi(A o g)* is a convex cone [15], it follows from (iv),

epi 6;,1(_5) = U epi(Aog)*.
AesSt
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Now,

) 2 0 for each z € g7 (—5)
+05-1(-5))"(0) = 0
,O) S ep1(f+(5 g—1(—S ))
;0) € epi f* +epid, 1 (—5)
0

,0) € epi f*+ | J epi(Aog)*.
AeSt

fz
f
0
0
0

IIMII

(
(
(
(

Hence (ii) holds. O

The following examples illustrate the significance of the closed cone condition (iv) in Theorem
3.1 for Farkas lemma for cone-convex systems.

Example 3.2. Let g(x) := max{0,z}, S =Ry and A= {l|!:R — Ris convex}. Theng: R —

R is a convex function and g~!(—S) = (—o0,0]. We can easily check that |J epi(Aog)* =RZ.
res+

For each f € A, we can choose A € R such that A\ 2 max{—v,0}, where v € 9f(0). Now, if,
for each z € g71(=9), f(x) 2 0, then for each z € R, f(z) + Ag(x) 2 0. Indeed, if x = 0, then
f(z) + Ag(z) = f(x) 2 0; if x 2 0, then

f@)+Ag(z) 2 vz +Ag(x) 2 (v+ Nz 20

On the other hand, if, for some A\ 2 0, f(x)+ Ag(z) 2 0, for each x € R, then, clearly, f(z) = 0,
for each z € g~ 1(—95). Now, let r := mf:ceg (—s) f(x). If r is finite, then f —r € A and so, for
each z € R, f(x)+ Ag(x) = r. This gives us that inf,cg f(2)+ Ag(x) = r. By the weak duality,
r = max, g+ infyer f(2) +pg(z). If r = —oo then this equality trivially holds. Hence Theorem
3.1 holds. Tt is worth noting that the Slater condition that g(xg) < 0 for some zy € R, does not

hold for this Example.

Example 3.3. Let g(x) := [max{0,2}]>, S = R;. Then g : R — R is a convex function

and g~ }(—=S) = (—0 0] Then if A = 0,epi(Ao g)* = {0} x R4, and if A > 0,epi(Ao g)* =

{(v,a) €R? | v 20, Z)\ S a}, and hence |J epi(Aog)* is not closed. Let f(z) = —z. Then
Aes+

epi f* = {—1} x Ry, and hence we can not find A 2 0 such that (0,0) € epi f* + epi(\ o g)*.

Thus, Theorem 3.1 fails to hold.

The generalized Farkas lemma for cone-sublinear systems has been well known under the closed
cone condition that (Jycg+ O(A o g)(0) is w*-closed. For details, see [8, 12] and other references
therein. We now show that this closed cone condition completely characterizes the Farkas lemma
for the cone-sublinear systems.

Corollary 3.4. Let g: X — Y be a continuous and S-sublinear function. Let B={l | [:
X — R is continuous and sublinear}. Then the following statements are equivalent:

(i)  For each f € B,

[—g(z) €S = f(x) 2 0] & (3A€ ST) 0€df(0)+ (X0 g)(0).

(i1)  Uneg+ O(X0g)(0) is w*-closed.
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Proof. Since g is S—sublinear,
U epithog) = [J o(rog)(0) xR
AeSt res+t

and hence (iv) of Theorem 3.1 holds if and only if (J,cg+ O(X 0 g)(0) is w*-closed. Since f is
sublinear and g is S-sublinear,

f(@)+Nog)(z) 20Vz € X & 0€df(0)+ (Ao g)(0).
Thus the conclusion follows from Theorem 3.1. O

Corollary 3.5. Let A: X — Y be continuous and linear. Then the following statements
are equivalent:

(i) VeeX* [-AzeS =c(z) 20| < (Ire St) c+ATa=0.

(i1)  AT(ST) is w*-closed.

Proof. Let g(z) = Az. Then (J, g+ (A 0 g)(0) = AT(ST). Then, the conclusion follows from
Corollary 3.4. O

Remark 3.6. When Y = R™ and S is a polyhedral convex cone in Y, then A7 (S%) is a finitely
generated cone and hence AT (S%) is closed. So, from Corollary 3.5, the original Farkas lemma
follows (see [5]).

The following corollary, which can be used to study convex vector optimization problems, pro-
vides solvability conditions for systems involving convex vector functions f. See [16, 14] for
recent results for convex vector optimization problems.

Corollary 3.7. Let g: X — Y be a continuous and S-convex function with g=1(—S) # 0.
Let C={l|1: X — RP is continuous and R - convezr }. Let A, = {x € R’ | ¥  z; =1}
Then the following statements are equivalent:

(i)  For each f€C,

[—g(z) € S = f(x) ¢ —intRE]
& (30 A)ANe ST)(Va € X) 07 f(x) + (Mo g)(z) 2 0.
(i1) For each f €C,
~g(@) €S = f(z) ¢ —intRY]
& (30 € A)(BA € ST) (0,0) € epi(8T f)* +epi(hog)*.

(117) Ureg+ epi(Ao g)* is w*-closed.

Proof. Let f € C. The Hahn-Banach separation theorem [20] ensures that

[—g(z) € S = f(z) ¢ —intRY] & (I € A,) [~g(x) € S =0T f(z) 2 0).
Now, from Theorem 3.1, (i) is equivalent to (i7), and (zi7) implies (i7).
To establish that (i) implies (44i) suppose that (i7) holds. Let (v,r) € (Jycg+ epi(A o g)*. Then
v(z) = r for each z € g 1(—S). Let f(z) = (r —v(z), -+ ,r —v(z)). Then f(z) ¢ —intRE , and
from (ii), there exist € A, and A\ € ST such that (0,0) € epi(67 f)* + epi(A o g)*. Noting that

0T f(x) = r — v(z), the same arguments of the proof of Theorem 3.1 lead to the condition that
(v,7) € epi(A o g)*. Hence (iii) holds. O
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4. Characterizations of Duality in Cone Programming

In this section, we examine second-order cone programming problems which arise in various
application areas (see e.g. [2, 17]). As an application of our Farkas lemma, we first present
a constraint qualification which completely characterizes the strong duality of a second-order
cone programming problem. We then derive a necessary and sufficient condition for the strong
min-max duality whenever the given problem attains its infimum.

Consider the following convex second-order cone program:

(SOCP) inf f(x)
subject to x € M :={zx € R" | |[Hz +b|| < Tz +d },
where f : R® — R is a convex function and H is an (m — 1) x n matrix, b € R™~! ¢ € R",
d€R and ||z|| = VzTz, z € R™ L,

Suppose that M # 0. Let K = {(y,t)T € R™""1 xR | |ly|| = ¢ }, that is, K is a second-order
cone in R™. Then K is self-dual, that is, K = K.

Theorem 4.1. Let A={l |l :R” — R is convex }. Then the following statements are
equivalent:

(i)  For each f € A,

max inf {f(x)—)\T <Hx+b>} — inf f(x).

AeK z€Rn Ar+d zEM

(i) Unex { <— (f})T A (Z)T A) } + {0} x R* s closed.

Proof. Note that

Hx+b
< T
|Hz +b|| = cz+d < (cTa:+d> € K.

_ Hx+b
Let g(z) = — <CT:E . d> . Then we have,
T T
. H b "
U Qoeg = {(- <CT) A, <d> A>}+{0}><R :
AeK AeK
Hence the conclusions follow from Theorem 3.1. O

Remark 4.2. In Theorem 4.1, if b = 0 and d = 0, then (i7) is equivalent to the fact that
(HT ¢)(K) is closed. Moreover, if m = n and the n x n matrix (H”, ¢) is nonsingular, then the
set (HT,c)(K) is closed.

Now we derive a new condition for the min-max Lagrangian duality for (SOCP), where
infyens f(2) is attained.

Theorem 4.3. Let A= {l |l :R” — R is convex }. Then the following statements are
equivalent:
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(i)  For each x € M,

T
H Hx+b
Ny(z) = {— <CT> M reK, AT <ch+d> :0}.

(ii) For each f € A,

zeM AEK z€ER™ Tx +d

min f(z) = max inf {f(x)—)\T <Hx+b>}.

Proof. Suppose that (i) holds. Let f € A. Assume that x € M and that f(z) = minyen f(y).
Then, by optimality condition, 0 € 0f(z)+ Ny (z) and so from (i), there exists A € K such that

T
OEaf(x)—<BT[> A and AT <H“+b>=o.

c Tr4d

. Hy+b
inf, {f(y) — AT (CTy N d) }

Hence, by weak duality, (ii) holds.

This gives us that

v

f(@).

Conversely, assume that (i) holds. Let €2 be the right side of the equality in (i). Let x € M
and u € Ny(z). Then —ul'z = minyepr(—ul'y). So, it follows from (ii) that there exists A € K
such that, for each y € R"

—ulz £ — Ty — AT (CHTZiZC)l) .

This gives us that

T
A (ch td) = 0 and U= o7 A
Thus u € €. On the other hand, the inclusion Q C Njs(x) always holds. Hence () holds. O
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