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1. Introduction

Farkas’ lemma states that given any vectors a1, a2, . . . , am in R
n and for each choice of

vector c ∈Rn, the linear inequality cTx => 0 is a consequence of the linear system aTi x => 0,
i = 1, 2, . . . ,m if and only if c =

∑m
i=1 λiai, for some multipliers λi => 0. Applications by way

of extensions of the celebrated Farkas lemma range from classical nonlinear programming to
modern areas of optimization such as nonsmooth optimization and semidefinite programming.
For a recent look at its extensions and applications see [3, 7, 12, 18]. However, it is well known
that the Farkas lemma for linear systems involving non-polyhedral cones is, in general, not valid
without a regularity condition, often called “closed cone condition” (see e.g. [6, 12])

The generalized Farkas lemma for a given cone-convex system −g(x) ∈ S and for each choice of
real-valued convex function f states that f(x) => 0 is a consequence of the system −g(x) ∈ S if
and only if there exists λ ∈ S+ such that, for each x ∈ R

n, f(x) + (λ ◦ g)(x) => 0. Symbolically,

[−g(x) ∈ S ⇒ f(x) => 0] ⇔ (∃λ ∈ S+)(∀x ∈ R
n) f(x) + (λ ◦ g)(x) => 0, (1)
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where the set S ⊂ R
m is a closed convex cone with the dual cone S+ and g : Rn → R

m is a
continuous convex function with respect to S. Various sufficient conditions have been established
for this equivalence in (1). For details, see e.g. [6, 10, 11, 12].

The purpose of this paper is to present necessary and sufficient conditions for the Farkas lemma
with respect to the given cone-convex system −g(x) ∈ S and to obtain corresponding duality
properties for convex optimization problems. In particular, we establish a necessary and suffi-
cient closed cone condition for the Farkas lemma. As an application, we obtain necessary and
sufficient conditions for the strong duality for convex second-order cone programming problems
[1, 2, 17], which have received a great deal of attention in recent years.

The outline of the paper is as follows. Section 2 provides background material on convex analysis
that will be used later in the paper. Section 3 presents several characterizations of the Farkas
lemma, including a necessary and sufficient closed cone (regularity) condition. Section 4 provides
an application of the Farkas lemma and establishes characterizations of strong duality properties
for second-order cone programming problems and for semidefinite programming problems.

2. Preliminaries

We recall in this section some notations and basic results which will be used in this paper. Let
X be a normed space with X∗ its dual endowed with weak∗-topology. For a subset D ⊂ X∗,
the w∗-closure of D will be denoted by clD and the convex cone generated by D by coconeD.

Let h : X → R ∪ {−∞,+∞}. The conjugate function of h, h∗ : X∗ → R ∪ {+∞}, is defined by

h∗(v) := sup{v(x)− h(x) | x ∈ domh},

where domh := {x ∈ X | h(x) < +∞} is the effective domain of h. The function h is said to be
proper if h does not take on the value −∞ and domh 6= ∅. The epigraph of h is defined by

epih := {(x, r) ∈ X × R | x ∈ domh, h(x) =< r}.

The set (possibly empty)

∂h(a) := {v ∈ X∗ | h(x)− h(a) => v(x− a),∀x ∈ domh}

is the subdifferential of the convex function h at a ∈ domh. For a closed convex subset D of
X, the indicator function δD is defined as δD(x) = 0 if x ∈ D and δD(x) = +∞ if x /∈ D.
The support function δ∗D is defined by δ∗D(u) = supx∈D u(x). Then ∂δD(x) = ND(x), which
is known as the normal cone of D of x. If h is proper lower semicontinuous and sublinear (i.e.,
convex and positively homogeneous of degree one), then epi g∗ = ∂g(0)× R+.

For proper lower semicontinuous convex functions g, h : X → R∪{+∞}, the infimal convolution
of g with h, denoted g�h, is defined by

(g�h)(x) = inf
x1+x2=x

{g(x1) + h(x2)}.

The lower semicontinuous envelope and lower semicontinuous convex hull of g are denoted re-
spectively by cl g and cl co g. That is, epi(cl g) = cl(epi g) and epi(cl co g) = cl co (epi g). For
details, see [21].

Let g, h and gi, i ∈ I (where I is an arbitrary index set) be proper lower semicontinuous convex
functions. It is well known from the dual operation (see [20], [21]) that if dom g ∩ domh 6= ∅,
then

(g�h)∗ = g∗ + h∗, (g + h)∗ = cl(g∗�h∗)
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and if supi∈I gi is proper, then

(sup
i∈I

gi)
∗ = cl co (inf

i∈I
g∗i ).

So, one can check that

epi(g + h)∗ = cl(epi g∗ + epih∗) and epi ( sup
i∈I

gi)
∗ = cl co (

⋃

i∈I

epi g∗i ).

The closure in the first equation is superfluous if one of g and h is continuous at some x0 ∈
dom g ∩ domh (see [4, 21] for details).

Let Y be another normed linear space with topological dual Y ∗ and let S be a closed convex
cone in Y . Denote by S+ the dual cone of S, defined as

S+ = {y∗ ∈ Y ∗ | y∗(y) => 0 for any y ∈ S}.

We say that the map g : X → Y is S−convex if for any x1, x2 ∈ X and any λ ∈ [0, 1],

g(λx1 + (1− λ)x2) ∈ λg(x1) + (1− λ)g(x2)− S

and that g is S−sublinear if g is S−convex and positively homogeneous of degree 1. Note that
g−1(−S) := {x ∈ X | − g(x) ∈ S}.

3. Necessary and Sufficient Conditions for Farkas’ Lemma

In this section we present several characterizations of Farkas lemma for cone-convex systems.
In particular, we show that the well known closed convex cone condition for sublinear systems
completely characterize the Farkas lemma.

Theorem 3.1. Suppose that g : X → Y is a continuous and S−convex function with
g−1(−S) 6= ∅. Let A = {l | l : X → R is continuous and convex}. Then the following
statements are equivalent:

(i) For each f ∈ A,

[−g(x) ∈ S ⇒ f(x) => 0] ⇔ (∃λ ∈ S+)(∀x ∈ X) f(x) + (λ ◦ g)(x) => 0. (1)

(ii) For each f ∈ A,

[−g(x) ∈ S ⇒ f(x) => 0] ⇔ (∃λ ∈ S+) (0, 0) ∈ epi f∗ + epi(λ ◦ g)∗. (2)

(iii) For each f ∈ A,

(∃λ ∈ S+) inf
x∈X

{f(x) + (λ ◦ g)(x)} = inf
x∈g−1(−S)

f(x). (3)

(iv) The convex cone,
⋃

λ∈S+

epi(λ ◦ g)∗ is w∗ − closed. (4)
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Proof. [(ii) ⇐⇒ (i)]. Assume that (ii) holds. Let f ∈ A. Suppose that f(x) => 0 for each
x ∈ g−1(−S). Then, by (ii), there exists λ ∈ S+ such that (0, 0) ∈ epi f∗ +epi(λ ◦ g)∗. So, there
exists (v, r) ∈ epi(λ ◦ g)∗ such that −(v, r) ∈ epi f∗. Now, for each x ∈ X, v(x)− (λ ◦ g)(x) =< r,
and for each x ∈ X, −v(x) − f(x) =< − r. Adding the two inequalities, we get that for each
x ∈ X, f(x) + (λ ◦ g)(x) => 0. The converse implication in (1) always holds.

Conversely, assume that (i) holds. Let f ∈ A. Suppose that f(x) => 0 for each x ∈ g−1(−S).
Then, by (i), there exists λ ∈ S+ such that for each x ∈ X, f(x) + (λ ◦ g)(x) => 0. So, (f +
λ ◦ g)∗(0) =< 0 and hence (0, 0) ∈ epi(f + λ ◦ g)∗. Since f is continuous, epi(f + λ ◦ g)∗ =
epi f∗ + epi(λ ◦ g)∗, and consequently (0, 0) ∈ epi f∗ + epi(λ ◦ g)∗.
[(iii) ⇐⇒ (i)]. Suppose that (iii) holds. Let f ∈ A. If f(x) => 0 for each x ∈ g−1(−S) then
infx∈g−1(−S) f(x) =

> 0 and so, from (iii), there exists λ ∈ S+ such that

inf
x∈X

{f(x) + (λ ◦ g)(x)} => 0.

Hence (i) holds as the converse implication always holds.

Suppose now that (i) holds. Let f ∈ A. If infx∈g−1(−S) f(x) = −∞, then

inf
x∈X

{f(x) + (0 ◦ g)(x)} = inf
x∈g−1(−S)

f(x) = −∞.

Since g−1(−S) 6= ∅, we may assume that r := infx∈g−1(−S) f(x) is finite. Since f(·) − r ∈ A, it
follows from (i) that there exists λ ∈ S+such that f(x) + (λ ◦ g)(x) => r for each x ∈ X. Thus,

inf
x∈X

{f(x) + (λ ◦ g)(x)} => inf
x∈g−1(−S)

f(x).

Since f(x) => f(x) + (λ ◦ g)(x), for each x ∈ g−1(−S), we have

inf
x∈g−1(−S)

f(x) => inf
x∈X

{f(x) + (λ ◦ g)(x)}.

Hence, (iii) holds.

[(ii) ⇐⇒ (iv)]. Suppose that (ii) holds. Let (v, r) ∈ cl
⋃

λ∈S+ epi(λ ◦ g)∗. Then there exist
nets {λα} ⊂ S+, {(vα, rα)} ⊂ epi(λα ◦ g)∗ such that (vα, rα) → (v, r). We can easily check that
vα(x) =< rα for each x ∈ g−1(−S). Letting α → ∞, we get that v(x) =< r, for each x ∈ g−1(−S).
Let f(x) = −v(x) + r. Then for each x ∈ g−1(−S), f(x) => 0. Moreover,

epi f∗ = {(−v,−r + α) | α => 0}.

So, it follows from (ii) that there exist λ ∈ S+ and α => 0 such that (v, r−α) ∈ epi(λ ◦ g)∗. This
gives us that (v, r) ∈ epi(λ ◦ g)∗. Hence ⋃λ∈S+ epi(λ ◦ g)∗ is w∗-closed.

Conversely, assume that (iv) holds. Since (S+)+ = S, for each x ∈ X,

sup
λ∈S+

(λ ◦ g)(x) = δg−1(−S)(x).

So,

epi δ∗g−1(−S) = cl co (
⋃

λ∈S+

epi(λ ◦ g)∗).

As the set
⋃

λ∈S+ epi(λ ◦ g)∗ is a convex cone [15], it follows from (iv),

epi δ∗g−1(−S) =
⋃

λ∈S+

epi(λ ◦ g)∗.
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Now,

f(x) => 0 for each x ∈ g−1(−S)

⇐⇒ (f + δg−1(−S))
∗(0) =< 0

⇐⇒ (0, 0) ∈ epi(f + δg−1(−S))
∗

⇐⇒ (0, 0) ∈ epi f∗ + epi δ∗g−1(−S)

⇐⇒ (0, 0) ∈ epi f∗ +
⋃

λ∈S+

epi(λ ◦ g)∗.

Hence (ii) holds.

The following examples illustrate the significance of the closed cone condition (iv) in Theorem
3.1 for Farkas lemma for cone-convex systems.

Example 3.2. Let g(x) := max{0, x}, S = R+ andA = {l | l : R → R is convex}. Then g : R →
R is a convex function and g−1(−S) = (−∞, 0]. We can easily check that

⋃

λ∈S+

epi(λ◦ g)∗ = R
2
+.

For each f ∈ A, we can choose λ ∈ R such that λ => max{−v, 0}, where v ∈ ∂f(0). Now, if,
for each x ∈ g−1(−S), f(x) => 0, then for each x ∈ R, f(x) + λg(x) => 0. Indeed, if x =< 0, then
f(x) + λg(x) = f(x) => 0; if x => 0, then

f(x) + λg(x) => vx+ λg(x) => (v + λ)x => 0.

On the other hand, if, for some λ => 0, f(x)+λg(x) => 0, for each x ∈ R, then, clearly, f(x) => 0,
for each x ∈ g−1(−S). Now, let r := infx∈g−1(−S) f(x). If r is finite, then f − r ∈ A and so, for
each x ∈ IR, f(x)+λg(x) => r. This gives us that infx∈IR f(x)+λg(x) => r. By the weak duality,
r = maxµ∈IR+ infx∈R f(x)+µg(x). If r = −∞ then this equality trivially holds. Hence Theorem
3.1 holds. It is worth noting that the Slater condition that g(x0) < 0 for some x0 ∈ R, does not
hold for this Example.

Example 3.3. Let g(x) := [max{0, x}]2, S = R+. Then g : R → R is a convex function
and g−1(−S) = (−∞, 0]. Then if λ = 0, epi(λ ◦ g)∗ = {0} × R+, and if λ > 0, epi(λ ◦ g)∗ =

{(v, α) ∈ R
2 | v => 0, v2

4λ =< α}, and hence
⋃

λ∈S+

epi(λ ◦ g)∗ is not closed. Let f(x) = −x. Then

epi f∗ = {−1} × R+, and hence we can not find λ => 0 such that (0, 0) ∈ epi f∗ + epi(λ ◦ g)∗.
Thus, Theorem 3.1 fails to hold.

The generalized Farkas lemma for cone-sublinear systems has been well known under the closed
cone condition that

⋃

λ∈S+ ∂(λ ◦ g)(0) is w∗-closed. For details, see [8, 12] and other references
therein. We now show that this closed cone condition completely characterizes the Farkas lemma
for the cone-sublinear systems.

Corollary 3.4. Let g : X → Y be a continuous and S-sublinear function. Let B = {l | l :
X → R is continuous and sublinear}. Then the following statements are equivalent:

(i) For each f ∈ B,

[−g(x) ∈ S ⇒ f(x) => 0] ⇔ (∃λ ∈ S+) 0 ∈ ∂f(0) + ∂(λ ◦ g)(0).

(ii)
⋃

λ∈S+ ∂(λ ◦ g)(0) is w∗-closed.
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Proof. Since g is S−sublinear,
⋃

λ∈S+

epi(λ ◦ g)∗ =
⋃

λ∈S+

∂(λ ◦ g)(0)× R
+

and hence (iv) of Theorem 3.1 holds if and only if
⋃

λ∈S+ ∂(λ ◦ g)(0) is w∗-closed. Since f is
sublinear and g is S-sublinear,

f(x) + (λ ◦ g)(x) => 0 ∀x ∈ X ⇔ 0 ∈ ∂f(0) + ∂(λ ◦ g)(0).
Thus the conclusion follows from Theorem 3.1.

Corollary 3.5. Let A : X → Y be continuous and linear. Then the following statements
are equivalent:

(i) ∀c ∈ X∗,
[

−Ax ∈ S ⇒ c(x) => 0
]

⇔ (∃λ ∈ S+) c+ATλ = 0.

(ii) AT (S+) is w∗-closed.

Proof. Let g(x) = Ax. Then
⋃

λ∈S+ ∂(λ ◦ g)(0) = AT (S+). Then, the conclusion follows from
Corollary 3.4.

Remark 3.6. When Y = R
m and S is a polyhedral convex cone in Y , then AT (S+) is a finitely

generated cone and hence AT (S+) is closed. So, from Corollary 3.5, the original Farkas lemma
follows (see [5]).

The following corollary, which can be used to study convex vector optimization problems, pro-
vides solvability conditions for systems involving convex vector functions f . See [16, 14] for
recent results for convex vector optimization problems.

Corollary 3.7. Let g : X → Y be a continuous and S-convex function with g−1(−S) 6= ∅.
Let C = {l | l : X → R

p is continuous and R
p
+- convex }. Let Λp = {x ∈ R

p | Σp
i=1xi = 1}.

Then the following statements are equivalent:

(i) For each f ∈ C,
[−g(x) ∈ S ⇒ f(x) 6∈ −intRp

+]

⇔ (∃θ ∈ Λp)(∃λ ∈ S+)(∀x ∈ X) θT f(x) + (λ ◦ g)(x) => 0.

(ii) For each f ∈ C,
[−g(x) ∈ S ⇒ f(x) 6∈ −intRp

+]

⇔ (∃θ ∈ Λp)(∃λ ∈ S+) (0, 0) ∈ epi(θT f)∗ + epi(λ ◦ g)∗.

(iii)
⋃

λ∈S+ epi(λ ◦ g)∗ is w∗-closed.

Proof. Let f ∈ C. The Hahn-Banach separation theorem [20] ensures that

[−g(x) ∈ S ⇒ f(x) 6∈ −intRp
+] ⇔ (∃θ ∈ Λp) [−g(x) ∈ S ⇒ θT f(x) => 0].

Now, from Theorem 3.1, (i) is equivalent to (ii), and (iii) implies (ii).

To establish that (ii) implies (iii) suppose that (ii) holds. Let (v, r) ∈ ⋃λ∈S+ epi(λ ◦ g)∗. Then
v(x) =< r for each x ∈ g−1(−S). Let f(x) = (r − v(x), · · · , r − v(x)). Then f(x) 6∈ −intRp

+, and
from (ii), there exist θ ∈ Λp and λ ∈ S+ such that (0, 0) ∈ epi(θT f)∗ + epi(λ ◦ g)∗. Noting that
θT f(x) = r − v(x), the same arguments of the proof of Theorem 3.1 lead to the condition that
(v, r) ∈ epi(λ ◦ g)∗. Hence (iii) holds.
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4. Characterizations of Duality in Cone Programming

In this section, we examine second-order cone programming problems which arise in various
application areas (see e.g. [2, 17]). As an application of our Farkas lemma, we first present
a constraint qualification which completely characterizes the strong duality of a second-order
cone programming problem. We then derive a necessary and sufficient condition for the strong
min-max duality whenever the given problem attains its infimum.

Consider the following convex second-order cone program:

(SOCP ) inf f(x)

subject to x ∈ M := {x ∈ R
n | ‖Hx+ b‖ =< cTx+ d },

where f : Rn → R is a convex function and H is an (m − 1) × n matrix, b ∈ R
m−1, c ∈ R

n,
d ∈ R and ‖z‖ =

√
zT z, z ∈ R

m−1.

Suppose that M 6= ∅. Let K = {(y, t)T ∈ R
m−1 × R | ‖y‖ =< t }, that is, K is a second-order

cone in R
m. Then K is self-dual, that is, K = K+.

Theorem 4.1. Let A = {l | l : Rn → R is convex }. Then the following statements are
equivalent:

(i) For each f ∈ A,

max
λ∈K

inf
x∈Rn

{

f(x)− λT

(

Hx+ b
cTx+ d

)}

= inf
x∈M

f(x).

(ii)
⋃

λ∈K

{(

−
(

H
cT

)T

λ,

(

b
d

)T

λ

)}

+ {0} × R
+ is closed.

Proof. Note that

‖Hx+ b‖ =< cTx+ d ⇔
(

Hx+ b
cTx+ d

)

∈ K.

Let g(x) = −
(

Hx+ b
cTx+ d

)

. Then we have,

⋃

λ∈K

(λ ◦ g)∗ =
⋃

λ∈K

{(

−
(

H
cT

)T

λ,

(

b
d

)T

λ

)}

+ {0} × R
+.

Hence the conclusions follow from Theorem 3.1.

Remark 4.2. In Theorem 4.1, if b = 0 and d = 0, then (ii) is equivalent to the fact that
(HT , c)(K) is closed. Moreover, if m = n and the n× n matrix (HT , c) is nonsingular, then the
set (HT , c)(K) is closed.

Now we derive a new condition for the min-max Lagrangian duality for (SOCP), where
infx∈M f(x) is attained.

Theorem 4.3. Let A = {l | l : Rn → R is convex }. Then the following statements are
equivalent:
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(i) For each x ∈ M ,

NM (x) =

{

−
(

H
cT

)T

λ | λ ∈ K, λT

(

Hx+ b
cTx+ d

)

= 0

}

.

(ii) For each f ∈ A,

min
x∈M

f(x) = max
λ∈K

inf
x∈Rn

{

f(x)− λT

(

Hx+ b
cTx+ d

)}

.

Proof. Suppose that (i) holds. Let f ∈ A. Assume that x ∈ M and that f(x) = miny∈Mf(y).
Then, by optimality condition, 0 ∈ ∂f(x)+NM (x) and so from (i), there exists λ ∈ K such that

0 ∈ ∂f(x)−
(

H
cT

)T

λ and λT

(

Hx+ b
cTx+ d

)

= 0.

This gives us that

inf
y∈Rn

{

f(y)− λT

(

Hy + b
cT y + d

)}

=> f(x).

Hence, by weak duality, (ii) holds.

Conversely, assume that (ii) holds. Let Ω be the right side of the equality in (i). Let x ∈ M
and u ∈ NM (x). Then −uTx = miny∈M (−uT y). So, it follows from (ii) that there exists λ ∈ K
such that, for each y ∈ R

n

−uTx =< − uT y − λT

(

Hy + b
cT y + d

)

.

This gives us that

λT

(

Hx+ b
cTx+ d

)

= 0 and u = −
(

H
cT

)T

λ.

Thus u ∈ Ω. On the other hand, the inclusion Ω ⊂ NM (x) always holds. Hence (i) holds.
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