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A definition of the minimality of an upper (lower) exhauster is discussed; necessary conditions for the
minimality of exhausters are formulated along with a sufficient condition for the minimality of sets in an
exhauster.

1. Introduction

Upper and lower exhausters of a positively homogeneous function h : Rn → R were
first introduced by Demyanov in [1]. The notions of exhausters are closely related to
exhaustive families of upper convex and lower concave approximations of the function h.
For an arbitrary function f : Rn → R exhausters can be employed to effectively study its
(upper or lower) directional derivatives. For more details and historical background we
refer the reader to [1], [2] and [6].

We say that a family of compact convex sets E∗(h) is an upper exhauster of a p.h. function
h, if h can be represented in the form

h(g) = inf
C∈E∗(h)

max
v∈C

(v, g) ∀g ∈ Rn. (1)

Analogously, if h can be represented as

h(g) = sup
C∈E∗(h)

min
v∈C

(v, g) ∀g ∈ Rn, (2)

where E∗(h) is a family of compact convex sets from Rn, then E∗(h) is called a lower

exhauster of h. The pair [E∗(h), E∗(h)] is called a biexhauster of h.

Exhausters can be employed to describe necessary optimality conditions and to find steep-
est ascent and descent directions. One needs to use an upper (lower) exhauster for the
necessary conditions for a minimum (maximum) and to find steepest descent (ascent) di-
rections. Moreover, it was shown recently (See [4, 5]) that an upper exhauster can be also
employed to formulate conditions for the maximality and a lower one for the minimality,
but in this case we can’t find the steepest directions. An upper exhauster is called proper
for minimality conditions and adjoint for the conditions of maximality. Analogously, a
lower exhauster is a proper one for maximality and adjoint for minimality.

What is also important is that exhausters have a well-developed calculus – that is, if
biexhausters of corresponding functions are known, one is able to calculate a biexhauster
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of a linear combination, product, quotient, superposition, max- and min-functions (e.g.
see [1], Section 4 and [2], Section 12).

It is not difficult to observe that exhausters are not uniquely defined, hence, the problem
of minimality naturally arises (see [2], Section 13). The problems of minimality and
reduction of set-valued tools are quite common in nonsmooth optimization, since very
often these tools are not uniquely defined. For example, see [3], [7] and [8]. An attempt
for reduction of exhausters was undertaken in [10], but still there is no algorithm for
reduction or minimization of exhausters.

In the current paper we provide a definition and state necessary conditions for the min-
imality of upper and lower exhausters. We also provide sufficient conditions for the
minimality of sets in an exhauster. The paper contains numerous examples.

Exhausters in abstract spaces were studied in [11], but in this paper we limit ourselves to
a finite-dimensional case only.

Throughout the paper we assume that h is positively homogeneous (p.h.) if

h(λx) = λh(x) ∀λ ≥ 0.

By Sn
1 we denote a unit sphere in Rn, that is,

Sn
1 = {g ∈ Rn | ||g|| = 1}.

Note that if the representations (1) or (2) are valid for every g ∈ Sn
1 , then they are valid

for all g ∈ Rn since h is positively homogeneous. This would be implied throughout the
paper.

The paper is organized as follows: in Section 2 we provide definitions of minimality of
exhausters and state necessary conditions for the minimality; in Section 3 we discuss
sufficient conditions for minimality of sets in exhausters. In Section 4 a short summary
is given.

2. Necessary conditions for the minimality of exhausters

The definition of a minimal biexhauster by inclusion was given in [2], Section 13. Since
we are not intended to operate with a biexhauster as a whole throughout this paper, we
provide the definitions for the minimality of upper and lower exhausters separately.

Definition 2.1 (Minimal exhauster by inclusion). We say that an upper (lower) ex-
hauster E(h) of a p.h. function h is minimal by inclusion, if there exists no other upper
(lower) exhauster Ẽ(h) of h such that Ẽ(h) ⊂ E(h) and Ẽ(h) 6= E(h).

It is not difficult to observe that the above definition of minimality deals only with the
quantity of sets in an exhauster, but has nothing to do with the shape of the sets. The
following example demonstrates that in some cases the exhauster which is minimal in
this definition, can be made much smaller by modifying the shape of the sets of which it
consists.

Example 2.2. Consider a real-valued function from R1: h1(x) = |x|. It is not difficult
to see that

E∗
1(h1) = {[−2, 1], [−1, 2]}
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is an upper exhauster of h1. Note that if we remove one of the sets from E∗
1(h1), it will

not be an upper exhauster of h1 any more. However, we can modify the shape of the
sets in the exhauster. Both of the sets in E∗

1(h1) can be reduced to [−1, 1], which is
the subdifferential of the function h1. Since the subdifferential of a convex function is
uniquely defined (See [9]), there’s exactly one upper exhauster consisting of a single set:
E∗

2(h1) = {[−1, 1]}. Note that this exhauster also satisfies Definition 2.1, but is much
"smaller" than E∗

1(h1).

The example provided above demonstrates the need for another definition of a minimal
exhauster, which covers not only minimality by the inclusion, but also the minimality of
the shape of sets in an exhauster. We provide such definition below.

Definition 2.3. We say that an upper(lower) exhauster E(h) of h is a minimal one, if
there exists no other upper (lower) exhauster Ẽ(h) of h such that

∀C̃ ∈ Ẽ(h) ∃C ∈ E(h) | C̃ ⊂ C.

Note that if an upper (lower) exhauster is minimal in the sense of Definition 2.3, then it
is also minimal by inclusion (Definition 2.1), but the converse is not true, as it was shown
in Example 2.2.

Let C be any arbitrary set from an upper exhauster. Construct a set

M∗(C) = cl co {v0 ∈ C | ∃g ∈ Sn
1 , v0 = argmax

v∈C
(v, g); (v0, g) = h(g)}.

Analogously, for any arbitrary set from a lower exhauster we put

M∗(C) = cl co {v0 ∈ C | ∃g ∈ Sn
1 , v0 = argmin

v∈C
(v, g); (v0, g) = h(g)}.

Theorem 2.4. Let E∗ be an upper exhauster of a p.h. function h. If M∗(C0) = ∅ for

some C0 ∈ E∗, then Ẽ∗ = E∗ \ {C0} is also an upper exhauster of h.

Proof. Let E∗ be an upper exhauster of a p.h. function h and C0 ∈ E∗ be such that
M∗(C0) = ∅. Then for every g ∈ Sn

1 we have maxv∈C0
(v, g) > h(g), hence, for every g ∈ Sn

1

there exists Cg ∈ E∗ such that maxv∈C0
(v, g) > maxv∈Cg

(v, g) (obviously, C0 6= Cg).
Hence, for every g ∈ Sn

1 we have

max
v∈C0

(v, g) > max
v∈Cg

(v, g) ≥ inf
C∈E∗\{C0}

max
v∈C

(v, g),

hence,

h(g) = min{ inf
C∈E∗\{C0}

max
v∈C

(v, g),max
v∈C0

(v, g)} = inf
C∈E∗\{C0}

max
v∈C

(v, g) ∀g ∈ Sn
1 ,

and the family of sets Ẽ∗ = E∗ \ {C0} is again an upper exhauster of h.

The following theorem is a corollary of Theorem 2.4 and provides a necessary condition
for the minimality of an upper exhauster by inclusion.

Theorem 2.5. If E∗ is a minimal by inclusion upper exhauster of a p.h. function h, then

∀C ∈ E∗ M∗(C) 6= ∅.
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Proof. Assume the opposite, that is, let E∗ be a minimal upper exhauster by inclusion
and C0 ∈ E∗ be such that M∗(C0) = ∅. It follows from Theorem 2.4, that the family of
sets E∗ \ {C0} is also an upper exhauster of h and is smaller than E∗, which contradicts
the assumption.

The symmetric theorems are valid for a lower exhauster. We omit the proofs, since they
are similar to the proofs of Theorems 2.4 and 2.5.

Theorem 2.6. Let E∗ be a lower exhauster of a p.h. function h. If M∗(C0) = ∅ for some

C0 ∈ E∗, then Ẽ∗ = E∗ \ {C0} is also a lower exhauster of h.

Theorem 2.7. If E∗ is a minimal by inclusion lower exhauster of a p.h. function h, then

∀C ∈ E∗ M∗(C) 6= ∅.

Remark 2.8. Note that since the minimality of an exhauster in the sense of Definition
2.3 implies the minimality by inclusion, the necessary conditions for the minimality by
inclusion provided by Theorems 2.5 and 2.7 are also necessary for the minimality in the
sense of Definition 2.3.

We will need the below lemma in what follows.

Lemma 2.9. Let C be a compact convex set in Rn, a ∈ Sn
1 . For any d ∈ R1 denote

Cd = {v ∈ C | (a, v) ≤ d}, d∗ = max
v∈C

(a, v), d∗ = min
v∈C

(a, v). (3)

Then if d∗ < d∗,

max
v∈Cd

(v, g)−−−−−−−−→
d→d∗,

d∗<d<d∗

max
v∈C

(v, g) ∀g ∈ Sn
1 . (4)

Proof. Assume the opposite, that is, there exist g0 ∈ Sn
1 , a sequence {dn}, dn ⊂ (d∗, d

∗),
dn−−−−→n→∞ d∗, and a constant c ∈ R1 such that

max
v∈C

(v, g0)− max
v∈Cdn

(v, g0) ≥ c > 0 ∀n ∈ 1 : ∞. (5)

Let v0 ∈ C be such that v0 = argmaxv∈C(v, g0) and let w0 ∈ Cd∗ . Note that (a, v0) = d∗,
otherwise v0 ∈ Cdn for sufficiently large n and maxv∈C(v, g0) = maxv∈Cdn

(v, g0), which

makes (5) impossible. Put vn = (1−αn)v0+αnw0, where αn = d∗−dn
d∗−d∗

. Note that for every
n ∈ N, α ∈ (0, 1), hence, vn ∈ C for all n ∈ N. Moreover,

(a, vn) = (a, (1− αn)v0 + αnw0)

= (a, v0) + αn[(a, w0)− (a, v0)] = d∗ + αn(d∗ − d∗) = dn,

hence, vn ∈ Cdn . Note that (v0, g0)− (vn, g0) = αn(v0 − w0, g). We have

max
v∈C

(v, g)− max
v∈Cdn

(v, g) = (v0, g)− max
v∈Cdn

(v, g) ≤ (v0, g)− (vn, g) = αn(g, v0 − w0).

Noticing that αn goes to zero as n goes to infinity, we get a contradiction with the initial
assumption.
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Lemma 2.10. Let E∗ be an upper exhauster of a p.h. function h. If for some C0 ∈ E∗

M∗(C0) 6= C0 and M∗(C0) 6= ∅,

then there exists a set C1 ⊂ C0, C1 6= C0 such that Ẽ∗ = (E∗ \ {C0}) ∪ {C1} is an upper

exhauster of h, that is, there exists a smaller upper exhauster.

Proof. Let E∗ be an upper exhauster of a p.h. function h and C ∈ E∗ be such that
M∗(C) 6= C and M∗(C) 6= ∅. Take any v0 ∈ C \ M∗(C). Since M∗(C) is a compact
convex set, by the separation theorem (see [9]) there exist d0 ∈ R1 and a ∈ Sn

1 , such that

(a, v) < d0 ∀v ∈ M∗(C) and (a, v0) > d0. (6)

We shall prove that there exists d̃ < d∗ such that for every g ∈ Sn
1

max
v∈C

d̃

(v, g) ≥ h(g),

where Cd̃ and d∗ are defined by (3), and, hence, Ẽ∗ = (E∗ \ {C}) ∪ {Cd̃} is an up-
per exhauster of h. Suppose that this is not true, then there exists a sequence {dn},
dn → d∗, dn ∈ (d∗, d

∗), such that for every n ∈ N there is a point gn ∈ Sn
1 satisfying

maxv∈Cdn
(v, gn) < h(gn). Denote vn = argmaxv∈Cdn

(v, gn). Since the sequences {gn} and
{vn} are bounded and C is compact, without loss of generality we may assume that

gn−−−−−→n→∞ g∗ ∈ Sn
1 , vn−−−−−→n→∞ v∗ ∈ C.

There might be two cases: (a, v∗) < d∗ and (a, v∗) = d∗. Consider the first case. Then
there exists d̄ < d∗, such that for sufficiently large N1 we have

(a, vn) < d̄ ∀n > N1. (7)

Since for N2 large enough for every n > N2 we have dn > d̄, it follows from (7) that

(vn, gn) = max
v∈Cd̄

(v, gn) = max
v∈Cdn

(v, gn) = max
v∈C

(v, gn) ≥ h(gn) ∀n > N = max{N1, N2},

(8)
which contradicts the assumption. So the only possibility is that (a, v∗) = d∗.

Since (vn, gn) < h(gn) and h(g) is upper semicontinuous as an infimum of continuous
functions, we have

lim
n→∞

(vn, gn) = (v∗, g∗) ≤ h(g∗). (9)

Denote un = argmaxv∈Cdn
(v, g∗). We have

(vn, gn)−max
v∈C

(v, g∗) =
(

(vn, gn)− (un, g
∗)
)

+
(

(un, g
∗)−max

v∈C
(v, g∗)

)

.

The first summand goes to zero when n → ∞ due to the continuity of the max-function,
the second one goes to zero by Lemma 2.9. Hence,

(v∗, g∗) = max
v∈C

(v, g∗) ≥ h(g∗). (10)

It follows from (9) and (10), that (v∗, g∗) = h(g∗), hence, v∗ ∈ M∗(C), which is impossible,
since (a, v∗) = d∗ > d0. Then our assumption is wrong and there exists d̃ < d∗ such that
Ẽ∗ = (E∗ \ {C}) ∪ {Cd̃} is an upper exhauster of h.



864 V. Roshchina / On Conditions for the Minimality of Exhausters

The symmetric lemma is true for a lower exhauster. The proof is omitted due to its
similarity to the proof of Lemma 2.10.

Lemma 2.11. Let E∗ be a lower exhauster of a p.h. function h. If for some C0 ∈ E∗

M∗(C0) 6= C0 and M∗(C0) 6= ∅,

then there exists a set C1 ⊂ C0, C1 6= C0 such that Ẽ∗ = (E∗ \ {C0}) ∪ {C1} is a lower

exhauster of h, that is, there exists a smaller lower exhauster.

Theorem 2.12. Let E∗ be an upper exhauster of a p.h. function h. If E∗ is a minimal

upper exhauster, then for every C ∈ E∗ we have M∗(C) = C.

Proof. Assume the opposite, that is, the exhauster is minimal, but there exists a set
C0 ∈ E∗ such that C0 \M

∗(C0) 6= ∅. Since the exhauster is minimal, by Theorem 2.5 we
have M∗(C0) 6= 0. Then by Lemma 2.10 there exists an exhauster which is smaller than
E∗, which contradicts the assumption.

The symmetric result for a lower exhauster also holds.

Theorem 2.13. Let E∗ be a lower exhauster of a p.h. function h. If E∗ is a minimal

lower exhauster, then for every C ∈ E∗ we have M∗(C) = C.

It could be expected that the conditions provided in Theorems 2.12 and 2.13 are also
sufficient for the minimality, however, this is not true. The following example illustrates
it.

Example 2.14. Consider a function h2 : R
2 → R,

h2(x1, x2) = max{x1,−x1, x2,−x2} ∀ (x1, x2) ∈ R2.

This function is subdifferentiable as a maximum of linear functions and

∂h2 = co {(−1, 0), (1, 0), (0,−1), (0, 1)}.

Hence, E∗
1(h2) = {C1}, C1 = ∂h2 is a minimal upper exhauster of h2. In this case

M∗(C1) = C1 and the necessary condition is satisfied. But what if we add one more set
to this exhauster, for example, C2 = co {(−1,−1), (−1, 1), (1,−1), (1, 1)} (see Fig. 2.1)?
Since C1 ⊂ C2, for every g ∈ S2

1 we have maxv∈C2
(g, v) ≥ maxv∈C1

(g, v) = h2(g), hence,

1

1

-1

-1

0

C1

C2

x1

x2

Figure 2.1: Example 2.14
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E∗
2(h2) = {C1, C2} is also an upper exhauster of h. One can check that the necessary

condition for the minimality of an upper exhauster is satisfied, but E∗
2(h2) is obviously

not a minimal exhauster.

Remark 2.15. When it comes to reduction of an exhauster, it seems quite tempting to
replace C byM∗(C) for every set in an exhauster and immediately get a smaller exhauster.
However, this wouldn’t work. The following example demonstrates it.

Example 2.16. Consider the same function h2 as in Example 2.14. It is not difficult to
see that E∗

3(h2) = {C1, C3}, where

C1 = co {(−1, 0), (1, 0), (0,−1), (0, 1)}, C3 = co {(−1, 0), (1, 0), (0,−2), (0, 2)},

is an upper exhauster of h (Not a minimal one, since M∗(C3) = co {(−1, 0), (1, 0)} 6= C3).
It can be easily verified that the family of sets {M∗(C1),M

∗(C3)} is not an upper exhauster
of h2.

3. Sufficient conditions for the minimality of sets in an exhauster

Let h : Rn → R be a p.h. function with E∗(h) being its upper exhauster. For every g ∈ Sn
1

and C ∈ E∗(h) put

mC(g) = {v0 ∈ C | v0 = argmax
v∈C

(v, g); (v0, g) = h(g)}

and construct a set

M̃∗(C) = cl co {mC(g) | g ∈ Sn
1 , mC(g) is a singleton}.

There’s an example shown on Figure 3.1 of the sets M∗(C) and M̃∗(C) for a simple
upper exhauster consisting of two sets C1 and C2. Here M

∗(Ci) = Mi and M̃∗(Ci) = M̃i,
i ∈ 1 : 2.

a) b) c)

C1

C2

M1

M2

M̃1

M̃2

Figure 3.1: Difference between M∗(C) and M̃∗(C)

Theorem 3.1. Let E∗ be an upper exhauster of a p.h. function h. If for some C0 ∈ E∗

we have M̃∗(C0) = C0, then it is impossible to replace C0 with a smaller set C1 6= ∅, such
that Ẽ∗ = (E∗ \ {C0}) ∪ {C1} is again an upper exhauster of h.
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Proof. Consider the opposite, that is, there exists a set C0 ∈ E∗ such that M̃∗(C0) = C0,
but a smaller compact convex set C1 ⊂ C0 exists such that Ẽ∗ = (E∗\{C0})∪{C1} is also
an upper exhauster of h. Since C1 is smaller than C0, the set C0 \C1 is nonempty. Choose
any point v0 ∈ C0 \C1. Since C1 is convex and compact, it can be strictly separated from
v0. That is, there exist a ∈ Rn, d ∈ R1, such that

(a, v0) > d, (a, v) ≤ d ∀v ∈ C1.

For the sake of convenience we denote

m(C) = ∪{mC(g) | g ∈ Sn
1 , mC(g) is a singleton}; m̃(C) = co {m(C)}, C ∈ E∗.

Note that M̃∗(C) = cl m̃(C). Since v0 ∈ M̃∗(C0), there exists a point v̄ ∈ m̃(C) close
enough to v0 to satisfy

(a, v̄) > d. (11)

Recall that then by the Carathéodory theorem there exist p ≤ n+ 1, vi ∈ m(C), αi ∈ R1

for i ∈ 1 : p such that

v̄ =

p
∑

i=1

αivi,

p
∑

i=1

αi = 1, αi > 0 ∀i ∈ 1 : p.

It is not difficult to see that for at least one index i0 ∈ 1 : p we have (a, vi0) > d (otherwise
we would have (a, v̄) ≤ d, which contradicts (11). Put u = vi0 . Since u ∈ m(C), there
exists g ∈ Sn

1 such that (u, g) = h(g) and (g, v) < h(g) for all v ∈ {C0} \ {u}. Since
C1 ⊂ {C0} \ {u} and C1 is compact, we have

max
v∈C1

(v, g) < h(g),

which contradicts our assumption that Ẽ∗ is an upper exhauster of h.

Denote
nC(g) = {v0 ∈ C | v0 = argmin

v∈C
(v, g); (v0, g) = h(g)} ∀g ∈ Sn

1 ;

M̃∗(C) = cl co {nC(g) | g ∈ Sn
1 , nC(g) is a singleton}.

The result similar to Theorem 3.1 is true for a lower exhauster.

Theorem 3.2. Let E∗ be a lower exhauster of a p.h. function h. If for some C0 ∈ E∗

we have M̃∗(C0) = C0, then it is impossible to replace C0 with a smaller set C1 6= ∅, such
that Ẽ∗ = (E∗ \ {C0}) ∪ {C1} is again a lower exhauster of h.

Remark 3.3. The question of whether the conditions of Theorems 3.1 and 3.2 are nec-
essary for the minimality of sets in an upper or lower exhauster or not is still open.

The following example shows that the conditions in Theorems 3.1 and 3.2 are not sufficient
for the minimality of an exhauster, they only ensure the minimality of sets in an exhauster.

Example 3.4. Let a p.h. function h1 : R
2 → R be defined by its upper exhauster E∗

1 =
{C1, C2, C3}, where C1 = co {(−2, 3), (1, 0), (−2,−3)}, C2 = co {(2, 3), (−1, 0), (2,−3)}
and C3 = co {(1, 0), (0, 3), (−1, 0), (0,−3)} (See Fig. 3.2).
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1-1 2-2

3

-3

C1 C2C3

x1

x1

Figure 3.2: Example 3.4

It is not difficult to see that E∗
1 satisfies the sufficient conditions for the minimality of sets

in an exhauster, however, one can check that E∗
2 = {C1, C2} is also an upper exhauster

of h. Hence, the sufficient conditions for the minimality of sets are not sufficient for the
minimality of an exhauster itself.

4. Summary

In this article we have provided certain conditions for the minimality of exhausters. How-
ever, there are still many open questions. For example, if a minimal exhauster exists,
we do not know whether it is unique or not, and there is no algorithm for minimization
or even reduction of exhausters. Moreover, it appears that in some cases a minimal ex-
hauster doesn’t exist (for example, consider the function h(g) = −||g||, g ∈ R2, and try
to find its minimal upper exhauster). All these questions need careful consideration and
are subjects to further study.
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