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The paper studies convex coradiant sets and their cogauges. While the concave gauge of a convex
coradiant set is superlinear but discontinuous and its Minkowski cogauge is (possibly) continuous but is
not concave, we are interested in those convex coradiant sets which admit a continuous concave cogauge.
These sets are characterized in primal terms using their outer kernel and in dual terms using their reverse
polar set. It is shown that a continuous concave cogauge, if it exists, is not unique; we prove that the
class of continuous concave cogauges of some set C admits a greatest element and characterize its support
set as the intersection of the reverse polar of C and the polar of its outer kernel.
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1. Introduction

This paper is devoted to the study of some properties of a particular class of convex sets,
namely convex coradiant sets. A proper subset C of a vector space X is called coradiant if
it satisfies 0 /∈ C and tc ∈ C for all c ∈ C and t ≥ 1 or equivalently if it is the complement
of a radiant set, where A ⊆ X is said to be radiant (or star-shaped at the origin) if a ∈ A,
t ∈ [0, 1] imply ta ∈ A.

While the importance of convex radiant sets, i.e. convex sets containing the origin, has
always been recognized, and their study in connection with nonnegative sublinear func-
tionals is at the basis of fundamental results of Functional Analysis and of the theory of
normed spaces, on the contrary the study of convex coradiant sets raised less systematic
interest, mainly motivated by applications in different fields. For instance Tind [21] stud-
ies convex coradiant sets as an intermediate step to analyze blocking and antiblocking
sets, which are used in some extremal problems of combinatorics; Ruys and Weddepohl
[16] underline the relevance of convex and aureoled sets (their name for convex coradiant
sets) in Mathematical Economics; more recently Cornuejols and Lemarechal [3], though
not explicitly interested in convex coradiant sets, analyze extensively the use of the re-
verse polar and of the reverse gauge of a set (see the definitions below) in their study
on disjunctive cuts in combinatorial optimization. Theoretical interest seems to be more
recent; Barbara and Crouzeix [2] study the concave gauge of a convex coradiant set; Levin
[7, 6] extensively analyzes semiconic duality for convex sets and functions; Marechal [8]
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introduces a particular analytic operation which associates a subset of Rn+m to a convex
set C of Rn and a convex function on R

m and exploits the assumption that C is radiant
or coradiant in order that the resulting set be convex. Penot [9] uses the reverse polar to
study the conjugate of a quasiconvex function.

Our interest in convex coradiant sets arose in connection with the study of separation
properties of radiant and coradiant sets. It has been noted in [24] that the separation of
some point x from a set A of a normed space X can be described, in a geometric fashion,
by saying that convex coradiant sets separate points from a radiant set and that convex
radiant sets separate points from a coradiant set. To be more precise a set A is closed
and radiant (respectively closed and coradiant) if and only if for every point x /∈ A there
exists an open convex, coradiant (resp. radiant) set G which contains x and is disjoint
from A.

To obtain an analytic form of separation one needs to characterize the convex separating
sets G by means of some simple functional form, which is possibly sub- or super-linear
and continuous. This is very easily done for (open or closed) convex sets containing the
origin, while no such description seems to be available for convex coradiant sets.

Indeed a set C ⊆ X is closed, convex with 0 ∈ C if and only if its Minkowski gauge µC is
sublinear with C = [µC ≤ 1] and if and only if C = C◦◦, where C◦ is the polar set of C.
Moreover it is easy to describe those closed, convex, radiant sets whose Minkowski gauge
is continuous: they have the origin as an interior point and this happens if and only if
the polar set C◦ is bounded.

The situation is more intricate if we want to give an analogous functional description of a
convex coradiant set. For this purpose, we will say that a function p : X → R is a cogauge

of the set C ⊆ X if p is positively homogeneous and C = [p ≥ 1]. Two different instances
are known in the literature, neither of which fits our purposes. Barbara and Crouzeix [2]
introduced the concept of concave gauge (called reverse gauge in [3]) of a convex coradiant
set, that is the function

ϕC(x) = inf{ℓ(x) : ℓ ∈ C⊕},
where the set C⊕ = {ℓ ∈ X ′ : ℓ(c) ≥ 1, ∀c ∈ C} is the reverse polar of C. The function
ϕC is superlinear and upper semicontinuous with ϕC(x) ≥ 0 for all x ∈ cl coneC and
ϕC(x) = −∞ otherwise, and hence it not continuous whatever the set C is.

Rubinov [14] studied the Minkowski cogauge of a coradiant set C, that is the positively
homogeneous function

νC(x) = sup{λ > 0 : x ∈ λC},
and proved its continuity for a particular class of coradiant sets, called coradiative. But
νC is not concave, in that it holds νC(x) = 0 for all x /∈ coneC. The two functions are
related by the equalities C = [ϕC ≥ 1] = [νC ≥ 1], which hold whenever C is closed,
convex and coradiant. More generally νC and ϕC coincide on the set K = cl coneC.
These results are summarized in Section 2.

The main purpose of this paper, as discussed in Section 3, is to single out the class of
convex coradiant sets for which the functions ϕC and νC can be extended from the set
K = cl coneC to a superlinear, continuous function defined on X. We prove that this is
possible provided the origin is an interior point for the outer kernel of C (see Definition
3.2 below). This is quite analogous to the condition used to obtain the continuity of
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the Minkowski gauge of a convex radiant set C, which can be equivalently expressed as
0 ∈ intC or 0 ∈ int kerC, where kerA is the kernel of the set A ⊆ X.

The extension we obtain is not uniquely defined. There is rather an infinite choice of
extensions and the concave gauge ϕC can be seen as the least element of this set. We
show that also the greatest element exists, that is a superlinear continuous function γC
which represents C and is greater than any other continuous concave representation of C.
This is treated in Section 4, together with other side results on the outer kernel of a set.

The section is completed with a result which characterizes the support sets of the greatest
superlinear gauge γC in terms of polar sets. This characterization is very helpful for the
determination of γC and it can be used to show that, in the case where C is a closed
coradiant halfspace (that is a closed halfspace for which 0 /∈ C), then the support set
of γC reduces to a single point and hence γC is linear. Thus the rule for computing the
greatest superlinear gauge gives a way to associate linear functionals to closed, coradiant
halfspaces. Note that both the concave gauge ϕC and the cogauge νC fail to be linear in
this case.

This study underlines the importance in Convex Analysis of some concepts, like the
cogauge νC or the kernel of a radiant set, which initially found their motivation in star-
shaped analysis.

We consider a normed spaceX, in which the closed ball of radius δ centered in x is denoted
by Bδ(x) = B(x, δ); the closure, interior, boundary of some set S ⊆ X are denoted by
clS, intS and bdS respectively; the convex hull and the conic hull of S are denoted,
respectively, as convS and coneS = {y = λx : x ∈ S, λ > 0}. Moreover we use the set
cone0 S = coneS ∪ {0} = {y = λx : x ∈ S, λ ≥ 0}. Let X ′ be the topological dual space
of X and denote by 〈x, ℓ〉 or equivalently ℓ(c) the usual bilinear pairing between x ∈ X
and ℓ ∈ X ′. For a function f : X → R = [−∞,+∞] and k ∈ R we denote by [f ≤ k] the
sublevel set {x ∈ X : f(x) ≤ k} and by [f ≥ k] the superlevel set {x ∈ X : f(x) ≥ k},
while epi f and hyp f stand for the epigraph and, respectively, the hypograph of f .

2. Preliminaries on gauges and polarities

We recall in this section some preliminary concepts, as the ones of radiant and coradiant
sets, and some known results about the description of closed convex radiant sets and
closed, convex, coradiant sets by means of their gauges and of polarity relations.

Definition 2.1. The set A ⊆ X is called radiant if x ∈ A, t ∈ [0, 1] imply that tx ∈ A.
It is called coradiant if its complement AC = X\A is radiant, that is if either A = X or
0 /∈ A and x ∈ A, t ≥ 1 imply that tx ∈ A.

We deduce that the empty set ∅ and the set X are both radiant and coradiant. We
underline that the terms radiant and coradiant have been used previously, with a slightly
different meaning. Rubinov [14] uses t ∈ (0, 1] in the definition of a radiant set, so that the
origin can either belong or not belong to a radiant or to a coradiant set. Penot [9] includes
convexity in the definition of a radiant set. Levin [7] calls a set A ⊆ X semiconic when
x ∈ A, t ≥ 1 imply that tx ∈ A and strictly semiconic if moreover it holds 0 /∈ cl convA.

Of particular importance are those radiant or coradiant sets which are also convex. It
is easy to see that a convex set is radiant if and only if it contains the origin. Let C
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denote the class of nonempty closed convex sets of X containing the origin. Various
characterizations of elements of C are well-known, starting from the following separation
property: a set C ⊆ X belongs to C if and only if for every point x /∈ C there exists some
linear continuous functional ℓ ∈ X ′ such that

〈x, ℓ〉 > 1 and 〈c, ℓ〉 ≤ 1, ∀c ∈ C.

This property can equivalently be described by means of a polarity relation. Let

C◦ = {ℓ ∈ X ′ : ℓ(c) ≤ 1, ∀c ∈ C}
be the polar of the set C ⊆ X and

C◦◦ = (C◦)◦ = {x ∈ X : ℓ(c) ≤ 1, ∀ℓ ∈ C◦} ⊆ X

be the bipolar of C. Then C ∈ C if and only if C = C◦◦. A different characterization, in
primal terms, of elements of C can be given by means of their Minkowski gauge.

Definition 2.2. Given a radiant set A ⊆ X, its Minkowski gauge is the function µA :
X → R given by

µA(x) = inf{λ > 0 : x ∈ λA}.

For a detailed study of the properties of the gauge of a radiant set, see [12, 14]. A
classical result of Functional Analysis sets a one to one correspondence between sets in C
and nonnegative sublinear functions. For our purposes it can be stated as follows.

Proposition 2.3. Let C be a radiant subset of X. Then the following are equivalent:

a) C is closed and convex;

b) C = C◦◦;

c) µC is sublinear and lower semicontinuous, with C = [µC ≤ 1].

The two mentioned characterizations are closely related in that, for any set C ∈ C it holds
that C◦ is the subdifferential of µC at the origin and conversely µC is the support function
of C◦, i.e.

µC(x) = σC◦(x), (1)

where σB(x) = supℓ∈B〈x, ℓ〉 is the support function of a subset B ⊆ X ′. Further conditions
on C are required in order that its gauge be continuous (and hence finite valued on X).
They are expressed in the following proposition whose proof can be given by standard
arguments.

Proposition 2.4. Let C be a closed, convex, radiant subset of X. The following are

equivalent:

a) 0 ∈ intC;

b) C◦ is bounded;

c) µC is continuous.

We turn now our attention to convex coradiant sets, which we will call shady. This
terminology follows Penot [9], but observe that the term shady in [10] does not include
convexity. Given a set A ⊆ X, we call shadow of A the set

shwA = {x ∈ X : x = ta, a ∈ A, t ≥ 1}.
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If 0 /∈ A then the set shwA is coradiant; it is indeed the smallest coradiant set containing
A, that is the coradiant hull of A. It follows from Definition 2.1 that, if 0 ∈ A, then the
coradiant hull of A always coincides with X, while its shadow does not. Our main interest
is in the class K of closed, convex, coradiant sets of X; for their description a different
notion of polarity is needed. Given a nonempty set C ⊆ X we call reverse polar of C the
set

C⊕ = {ℓ ∈ X ′ : 〈c, ℓ〉 ≥ 1, ∀c ∈ C}.
The reverse polar was considered, for instance, in [1, 2, 3, 7, 9, 10, 16, 20, 21]. Different
authors used different names for the same notion and our choice seems to be the one most
frequently used, while the notation comes from [2]. Note that Penot [9] also considers the
analogues of ◦-polarity and of ⊕-polarity with strict inequalities.

We adopt the convention that C⊕ = X ′ if C = ∅. It is easy to see that C⊕ is always
closed, convex and coradiant in X ′ and that, for any nonempty set C ⊆ X, it holds
C⊕ = (cl conv shwC)⊕. More precisely, since C ⊆ X is closed and shady if and only if it
is the intersection of all the halfspaces [ℓ ≥ 1], with ℓ ∈ X ′, which contain C (see, e.g.,
[9]), it is easy to verify that C⊕⊕ = C if and only if C ∈ K. Actually the authors who
studied the reverse polarity gave different characterizations of the class of sets C ⊆ X for
which C = C⊕⊕, in which the relation between C and its conic hull or its recession cone
is emphasized. We collect them in the following proposition. Recall that, the recession
cone of a nonempty convex set C is

RecC = {d ∈ X : x+ td ∈ C, ∀x ∈ C, ∀t > 0}.

The recession cone of a closed set C is closed and, in this case, it holds (see [11])

RecC = {d ∈ X : ∃x ∈ C, such that x+ td ∈ C, ∀t > 0}. (2)

Proposition 2.5. For a nonempty, closed, convex set C ⊆ X, with 0 /∈ C, the following

are equivalent:

a) C is coradiant;

b) C ⊆ RecC;

c) RecC = cl coneC;

d) C + cone0C = C;

e) C = C⊕⊕.

Proof. a) ⇒ b). If c ∈ C and C is coradiant, then

C ∋ αc = c+ (α− 1)c, ∀α ≥ 1,

which shows that c ∈ RecC, using (2).

b) ⇒ c). The relation RecC ⊆ cl coneC is true for all convex set C; the opposite inclusion
follows from C ⊆ RecC, noting that the recession cone of a closed set is closed.

c) ⇒ d). The inclusion C ⊆ C + cone0C is true for all sets C; to prove the opposite
inclusion, note that cone0C ⊆ cl coneC and that the definition of recession cone implies
that C +RecC ⊆ C.

d) ⇒ e). It was proved by Tind [21].

e) ⇒ a). It was proved for instance by Penot [9] or by Levin [6].
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Condition b) was used by Marechal [8] to define one of the classes of convex sets in which
the paper is interested. Tind [21] proves that, for any nonempty set C with 0 /∈ cl convC,
it holds

C⊕⊕ = cl convC + cone0 (cl convC).

The implication a) ⇒ c) was proved in [7] and in [8]. In [18] one can find the proof of a
result quite analogue to c) for nonconvex coradiant sets, that is the equality

cl coneA = AsA

for a nonempty, closed, coradiant set A ⊆ X, where

AsA = {y ∈ X : y = lim tixi, ti ց 0, xi ∈ A}

is the cone of asymptotic directions of a set A and it holds AsC = RecC for any closed
convex set C ⊆ X.

We pass now to the functional characterization of convex coradiant sets, which follows
the same geometric construction on which the radiant case is based. Indeed for a closed,
convex, radiant set C, it holds epiµC = cl cone(C×{1}); if we start from a closed, convex,
coradiant set C, the set cl cone(C × {1}), which is obviously a convex cone in X × R+,
can be seen as the positive part of the hypograph of a superlinear function, whose precise
definition depends on the way the hypograph is completed in X × R. Two instances are
known in the literature and we will propose another one. To ease the comparisons among
these notions we will refer to the concepts of “Concave Analysis�, instead of the more
common convex ones.

Barbara and Crouzeix [2] give the following definition of concave gauge of a set C. Al-
though the definition is meaningful for a larger class of sets, we restrict our interest, here
and in the sequel, to elements of the class K.

Definition 2.6 ([2]). Given a set C ∈ K, the function ϕC : X → R given by

ϕC(x) = inf{ℓ(x) : ℓ ∈ C⊕}

is called the concave gauge of C.

The concave gauge is clearly related to the support function of C⊕. If we let, for any
nonempty set B ⊆ X ′,

iB(x) = inf
ℓ∈B

〈x, ℓ〉

we obtain an upper semicontinuous superlinear function iB : X → R ∪ {−∞}, which is
continuous if and only if B is bounded. Moreover it holds, for all x ∈ X,

iB(x) = icl convB(x) = −σ−B(x).

Without fear of confusion with the ‘convex’ analogue, we will say that iB is the support

function of B and that cl convB is the support set of iB.

Some special features of the concave gauge ϕC are consequences of C⊕ being coradiant.
Indeed ϕC is nonnegative on its effective domain, domϕC = {x : ϕC(x) > −∞}, which
is the set K = cl coneC and positive on K = coneC, while ϕC(x) = −∞ for all x /∈ K.
Moreover C = {x ∈ X : ϕC(x) ≥ 1}. Thus ϕC is an u.s.c. superlinear cogauge of C.
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Clearly the superdifferential of ϕC coincides with C⊕. Here and in the sequel, by superdif-

ferential, denoted ∂ϕ, of an upper semicontinuous superlinear function ϕ : X → R, we
mean its support set, or superdifferential at the origin

∂ϕ(0) = {ℓ ∈ X ′ : ℓ(x) ≥ ϕ(x), ∀x ∈ X}.
Moreover, for all x ∈ domϕ, it holds

∂ϕ(x) = {ℓ ∈ ∂ϕ : ℓ(x) = ϕ(x)}
and ∂ϕ(x) 6= ∅ if ϕ is continuous at x.

A different functional characterization of closed, convex, coradiant sets comes from the
following concept (see [14] for details).

Definition 2.7. Given a coradiant set A, its Minkowski cogauge is the function νA : X →
R ∪ {+∞} given by

νA(x) = sup{λ > 0 : x ∈ λA}.

Since in Definition 2.7 we consider only positive values of λ, it is natural to impose that
sup ∅ = 0. Using the above convention one can see that, for every coradiant set A ⊆ X,
it holds νA(0) = 0 (unless A = X, in which case νA(0) = +∞) and that, for x 6= 0, it
holds νA(x) = 0 if and only if A ∩ Rx = ∅, where Rx = {z ∈ X : λx, λ > 0} is the open
ray defined by x. Moreover νA(x) = +∞ if and only if Rx ⊆ A.

The equality A = [νA ≥ 1] holds for all closed coradiant sets. It is easy to see that, for a
radiant set A and its complement AC = B, which is coradiant, it holds µA = νB.

Both Barbara and Crouzeix [2] and Penot and Zalinescu [10] set νA(x) = −∞ when the set
{λ > 0 : x ∈ λA} is empty. In this case νA lacks upper semicontinuity even for A closed
and shady. To overcome this drawback, in [10] the authors give a modified definition of
cogauge, which is proved to be u.s.c. for all closed, shady sets. Moreover it is proved in
[2, Prop 2.1] that the concave gauge ϕC of a set C ∈ K is the closure (that is the least
u.s.c. majorant) of νC on K. This amounts to say that ϕC coincide with the modified
definition of cogauge in [10] and that ϕC and νC actually coincide on K, since νA is upper
semicontinuous for every closed coradiant set A (see [14] for the proof of this statement
and see also [3] for an independent proof of the equivalence between νC and ϕC on the
set K = coneC).

On the other hand the two functions have a very different behaviour at points x /∈ K.
Indeed it holds ϕC(x) = −∞ and νC(x) = 0 there. Thus we have

hypϕC = cl cone(C × {1}) ∪ {(cl coneC)× R−}
and

hyp νC = cl cone(C × {1}) ∪ {X × R−},
and, unlike the convex case (illustrated by equality (1)), the two representations of a
closed, shady set C, which we obtain following the support idea, namely ϕC , or the
Minkowski idea, νC , do not coincide on X.

We note in passing that the functions ϕC and νC can be defined for nonclosed sets and
may differ in this case even at points belonging to the boundary of K. This happens, for
instance, for the set C = {(x1, x2) : x1 > 0, x2 > 0, x1 + x2 > 1}, for which we have
ϕC(0, 1) = 1 and νC(0, 1) = 0.
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3. Continuous superlinear cogauges

We noted above that both the concave gauge ϕC and the Minkowski co-gauge νC represent
a closed, convex, coradiant sets C ⊆ X since it holds C = [νC ≥ 1] = [ϕC ≥ 1].

We are interested in the following problem: under what further conditions on the set
C can we extend ϕC (and νC) from K = cl coneC to a superlinear continuous function
F defined on all of X, with [F ≥ 1] = C. When a positively homogeneous function
F : X → R satisfy C = [F ≥ 1] we will say that F is a cogauge of C or, equivalently, that
F represents C.

The problem of extending a convex function from a convex set C ⊆ R
n to all Rn is

studied in [19]. For us the problem is more complicated since we also want that the set
C coincides with the level set [F ≥ 1] of its cogauge F . To illustrate the difference, let
C = {(x1, x2) ∈ R

2
+ : x1 + x2 ≥ 1}. Then it holds ϕC(x1, x2) = x1 + x2 if (x1, x2) ∈ R

2
+

and ϕC(x1, x2) = −∞ else. It is easy to see that the linear function ℓ(x1, x2) = x1 + x2

is a continuous extension of ϕC to R
2, but it is not a continuous cogauge of C in that

[ℓ ≥ 1] 6= C.

Barbara and Crouzeix [2] showed partial interest in this issue; they name concave barrier
functions those functions ϕC which vanish on the boundary of coneC. We deduce from
what has been said above, that this property coincides with νC being continuous and
hence one can find in [14] a convenient necessary and sufficient condition for a closed
convex coradiant set to admit a concave barrier gauge, namely that it is a coradiative set.

Definition 3.1. A proper coradiant set A is said to be coradiative if every ray from the
origin has at most one intersection with the boundary of A.

It is proved in [14] that a set A ⊆ X is coradiative if and only if its Minkowski cogauge
νA is continuous. Moreover, for a coradiative set A, it holds bdA = [νA = 1] and hence,
for a convex coradiative set C ⊆ X, it holds

bdC = [νC = 1] = [ϕC = 1] and bdK = [ϕC = 0].

Thus the requirement that C be coradiative is necessary if we want that ϕC be extended
to a continuous function, since we need that F vanishes on the boundary of K. It is not
sufficient though, as shown by the example of the set

C = {(x1, x2) ∈ R
2 : x1 > 0, x1x2 ≥ 1},

whose concave gauge is ϕC(x1, x2) =
√
x1 · x2 for (x1, x2) ∈ R

2
+ and −∞ elsewhere. This

function cannot be extended to a continuous superlinear function defined on R
2 since its

superdifferential is empty at points (0, x2), with x2 ≥ 0 or (x1, 0), with x1 ≥ 0.

To reach our goal we need to remind some concepts from star-shaped analysis.

Definition 3.2. The kernel of a set A ⊆ X is the set of points

kerA = {z ∈ A : z + t(x− z) ∈ A, ∀x ∈ A, ∀t ∈ (0, 1]}.

The outer kernel of a set A ⊆ X, okerA, is the kernel of its complement AC , that is the
set

okerA = {z ∈ X : z + t(x− z) /∈ A, ∀x /∈ A, ∀t ∈ (0, 1]}.
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Definition 3.2 considers only positive values of t and hence does not imply that kerA ⊆ A,
nor that A ∩ okerA = ∅. For instance if A = {x ∈ R

2 : x1 + x2 < 1}, then it holds

kerA = oker (AC) = {x ∈ R
2 : x1 + x2 ≤ 1},

which yields AC ∩ oker (AC) = {x ∈ R
2 : x1 + x2 = 1}. On the other hand it holds

kerA ⊆ clA. A modified definition of kernel, with t ∈ [0, 1], is called stage in [4].

It is obvious that a set A ⊆ X including the origin is radiant if and only if 0 ∈ kerA
and that a proper set A excluding the origin is coradiant if and only if 0 ∈ okerA. It is
easy to see that both the kernel and the outer kernel of a set A ⊆ X are convex sets (if
nonempty) and that a set C is convex if and only if C ⊆ kerC. This means that a closed
nonempty set is convex if and only if C = kerC. The following equivalent description of
the outer kernel of a set is often used in the sequel and straightforward to verify:

okerA = {z ∈ X : z + t(x− z) ∈ A, ∀t ≥ 1, ∀x ∈ A}.
We will see in Theorem 3.6 that the condition to be required to a convex coradiant set
in order that its concave gauge may be extended to a continuous superlinear function is
that the origin be an interior point of its outer kernel.

Definition 3.3. A proper, closed, convex, coradiant set C is called strongly shady if
0 ∈ int okerC.

Since our main interest in this section is to study the sets which can be obtained as level
sets [ϕ ≥ 1], for a continuous superlinear function ϕ : X → R, we will always consider
closed sets. This entails some lack of generality in that some results do not require
closedness. On the other hand we remind that, for a coradiative set A, it holds νA = νcl A.

The assumption that the origin belongs to the interior of the kernel of some radiant set
A (which is the complement of C in the present case) was used in [14] to characterize
those radiant sets whose Minkowski gauge is Lipschitz continuous. It is indeed equivalent
to the requirement that A is the union of convex sets which contain the same open ball
around the origin.

It is possible to prove that every strongly shady set is coradiative. It is indeed a conse-
quence of the following result, for which convexity is not required.

Proposition 3.4. If the set A is coradiant and 0 ∈ int okerA, then A is coradiative.

Proof. Reasoning by contradiction, suppose that the points x and x′ = αx, with 0 < α <
1, belong to the boundary of A, and let Bε, with ε > 0, be contained in okerA. The ball
B(x, s) with s = α−1(1−α)ε/2, contains a point y ∈ X\A and the ball B(x′, αs) contains
a point y′ ∈ A. Then z = (1 − α)−1(y′ − αy) ∈ B(0, ε) and y′ = (1 − α)z + αy ∈ A, a
contradiction with the assumption that z ∈ okerA.

We also need the following further concept.

Definition 3.5. A closed shady set C ⊆ X is said to be reducible if there exists some
M > 0 such that C = shw (C ∩BM(0)).

Definition 3.5 can be rephrased as: for every y ∈ C there exist t ≥ 1 and c ∈ C with
‖c‖ ≤ M and y = tc, so that C can be seen as the shadow of a bounded set. Moreover



334 A. Zaffaroni / Convex Coradiant Sets with a Continuous Concave Cogauge

it holds coneC = cone(C ∩BM(0)) so that C ∩BM(0) is a bounded base for coneC. We
observe that, for a convex coradiant set C, the specifications that C is coradiative and
that C is reducible are mutually exclusive. We are now ready to present the companion
to Proposition 2.4, which is the main result of this section.

Theorem 3.6. Let C be a nonempty, closed, shady set. Then the following are equivalent:

(a) There exists a continuous superlinear function F : X → R such that [F ≥ 1] = C;

(b) 0 ∈ int okerC;

(c) C⊕ is reducible.

Proof. (a) ⇒ (b). Let F be continuous and superlinear with C = [F ≥ 1]; then F (x) ≤ 0
for x /∈ coneC. Since F is superlinear and continuous, its superdifferential ∂F is norm
bounded. Let M > 0 be such that ‖ℓ‖ ≤ M for all ℓ ∈ ∂F and let ε = min(1/M, η),
with Bη(0) ∩ C = ∅. We want to show that for all z ∈ Bε(0) and all t ∈ [0, 1] and for
x /∈ C, we have z+ t(x− z) /∈ C, i.e. z ∈ okerC. Suppose on the contrary that there exist
x̃ /∈ C, z̃ ∈ Bε(0), λ̃ ∈ (0, 1) such that

ỹ = z̃ + λ̃(x̃− z̃) ∈ C.

Then F (ỹ) ≥ 1. On the other hand, it holds

ℓ(z̃) ≤ ‖ℓ‖‖z̃‖ ≤ Mε ≤ 1

for all ℓ ∈ ∂F and, since x̃ /∈ C, there exists some ℓ ∈ ∂F (0) such that ℓ(x̃) < 1. Thus
F (ỹ) ≤ ℓ(ỹ) = (1− λ̃)ℓ(z̃) + λ̃ℓ(x̃) < 1, which is a contradiction.

(b) ⇒ (c). Let Bε(0) ⊆ okerC and M = 1/ε. If ℓ ∈ C⊕ and ‖ℓ‖ > M then set α = M/‖ℓ‖
and ℓ′ = αℓ so that ‖ℓ′‖ = M and sup{ℓ′(z)| z ∈ Bε(0)} = 1. We have to show that
ℓ′ ∈ C⊕. Reasoning by contradiction, suppose that ℓ′(c̄) = b̄ < 1 for some c̄ ∈ C; we can
find z̄ ∈ Bε(0) such that ℓ′(z̄) is as close to 1 as desired, so let 1 ≥ ℓ′(z̄) = k > b̄. Since
z̄ ∈ okerC, it holds, for all t > 1, z̄ + t(c̄− z̄) ∈ C. But also:

ℓ′(z̄ + t(c̄− z̄)) = (1− t)ℓ′(z̄) + tℓ′(c̄) = (1− t)k + tb̄ = k − t(k − b̄) < 1.

Since t can be taken arbitrarily large and k − b̄ > 0, we have that ℓ′ can take negative
values on C. Hence ℓ can also take negative values on C, in contrast to ℓ ∈ C⊕.

(c) ⇒ (a). Let C⊕ be reducible and take M > 0 such that D = C⊕ ∩ BM(0) satisfies
shwD = C⊕. Since D is weak*-compact, the function

F (x) = inf{ℓ(x) : ℓ ∈ D}

is superlinear and continuous on X. To show that F represents C, that is C = [F ≥ 1],
we will first prove that F (x) = ϕC(x) := inf{ℓ(x) : ℓ ∈ C⊕} for all x ∈ K and, second,
that F (x) < 0 for all x /∈ K.

Since x ∈ K is equivalent to ϕC(x) ≥ 0 one has, in this case, that

ϕC(x) = inf{td(x), t ≥ 1, d ∈ D} = inf{d(x) : d ∈ D} = F (x).

To complete the proof, we recall that, since D is weak*-compact and 0 /∈ D, then coneD∪
{0} is closed. Moreover we have that

cl coneC⊕ = K+ := {ℓ ∈ X ′ : ℓ(k) ≥ 0, ∀k ∈ K},
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the positive polar cone of K. But as coneD ∪ {0} = coneC⊕ ∪ {0} is closed, we have
K+ = coneD ∪ {0}.
If x /∈ K there exists some ℓ ∈ X ′ such that ℓ(x) < 0 and ℓ(k) ≥ 0 for all k ∈ K, whence
ℓ ∈ K+ and ℓ′ = αℓ ∈ D for some α > 0. Since it holds D = ∂F and ℓ′(x) < 0 then it is
F (x) ≤ ℓ′(x) < 0.

We wish to underline the analogy between Theorem 3.6 and Proposition 2.4: since for
a convex set C it holds C ⊆ kerC, statement a) in Proposition 2.4 corresponds to 0 ∈
int kerC; the reverse polar cannot be required to be bounded, as it is done for C◦ in c) of
Proposition 2.4, but in our case it is the shadow of a bounded set.

It can be seen that a strongly shady set C ⊆ X has nonempty interior. Indeed by Theorem
3.6 there exists a continuous representation ϕ such that C = [ϕ ≥ 1] and it is easy to see
that the set [ϕ ≥ 1] has nonempty interior. Indeed this is true for all coradiative sets,
since their co-gauge is continuous.

We obtain important instances of strongly shady sets, by considering particular shifts of
convex solid cones. The possibility to obtain a continuous superlinear representation for
these sets was used in [22] to characterize functions with radiant sublevel sets in terms of
Abstract Convexity.

Proposition 3.7. If K 6= X is a closed, convex cone with nonempty interior and x ∈
intK, then C = x+K is strongly shady.

Proof. To see that C is coradiant, let y be some element in C and α ≥ 1. Then y = x+k,
for some k ∈ K and we have

αy = x+ (α− 1)x+ αk ∈ x+K +K ⊆ x+K.

Now we want to show that x−K ⊆ okerC.

To this purpose, take z ∈ x −K, t ≥ 1 and c ∈ x +K. Thus z = x − k and c = x + k′

for some k, k′ ∈ K and

z + t(c− z) = x− k + t(x+ k′ − x+ k) = x+ (t− 1)k + tk′ ∈ x+K = C, ∀t ≥ 1

and therefore z ∈ okerC. To finish note that x ∈ intK implies

0 ∈ x− intK = int (x−K) ⊆ int okerC

and C = x+K is strongly shady.

4. The greatest superlinear continuous cogauge

Simple examples show that the continuous representation of a convex coradiant set C (if
it exists) is not unique. Indeed any of the functions given by

Fα(x) =

{

x for x ≥ 0

αx for x < 0
α ≥ 1

is a continuous superlinear representation of the set C = [1,+∞).

More precisely, we can refine Theorem 3.6 and obtain the following result.
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Theorem 4.1. Let C ⊆ X be strongly shady and ϕ : X → R be a superlinear function.

Then ϕ is a continuous cogauge of C if and only if the superdifferential ∂ϕ is bounded

and satisfies

shw ∂ϕ = C⊕.

Proof. Let’s prove necessity first. Since ϕ is continuous, ∂ϕ is bounded, and since

[ϕC ≥ 1] = C ⊆ [ϕ ≥ 1],

we have
ϕC(x) ≤ ϕ(x), ∀x ∈ C. (3)

Relation (3) can be extended to all x ∈ coneC due to positive homogeneity and to all
x ∈ cl coneC = K due to upper semicontinuity. Moreover ϕC(x) = −∞ for all x /∈ K
and hence we have ϕC ≤ ϕ. This implies ∂ϕ ⊆ C⊕ and shw ∂ϕ ⊆ C⊕.

To prove the opposite inclusion, let ℓ /∈ shw ∂ϕ. Since [ϕ ≥ 1] 6= ∅, it holds 0 /∈ ∂ϕ and
hence we have that [0, 1] · ℓ ∩ ∂ϕ = ∅. As both sets are convex and w∗-compact, there
exists x ∈ X such that

αℓ(x) < 1 < ϕ(x), ∀α ∈ [0, 1]. (4)

Since ϕ(x) > 1, then x ∈ C. Since, in particular, (4) yields ℓ(x) < 1, it holds ℓ /∈ C⊕ and
necessity is proved.

Suppose now that ∂ϕ is bounded with shw ∂ϕ = C⊕. Boundedness of ∂ϕ implies conti-
nuity of ϕ and ∂ϕ ⊆ C⊕ implies that ϕC = iC⊕ ≤ i∂ϕ = ϕ, whence

C = [ϕC ≥ 1] ⊆ [ϕ ≥ 1].

To finish the proof, take ϕ(x) ≥ 1 to prove the opposite inclusion. Indeed we have

1 ≤ ϕ(x) = inf{ℓ(x), ℓ ∈ ∂ϕ} = inf{tℓ(x), t ≥ 1, ℓ ∈ ∂ϕ} = ishw ∂ϕ(x) = iC⊕(x) = ϕC(x),

so that x ∈ C and the proof is finished.

If we compare all u.s.c. concave representations of some set C ∈ K, we see that they all
agree on K and differ outside K. The concave gauge ϕC is the least element of the family,
as it satisfies ϕC(x) = −∞ for all x /∈ K.

We will show in this section that a greatest element also exists, that is a continuous
superlinear representation which is greater than any other continuous concave represen-
tation. We will also give several descriptions of its superdifferential. To this purpose, we
introduce the set of unitary support of a convex coradiant set C, which plays a key role
in what follows.

Definition 4.2. Let the set C ⊆ X be nonempty, closed and shady. The set of unitary
supports of C is the set

ΛC = {ℓ ∈ X ′ : ℓ ∈ C⊕, ℓ(c) = 1, for some c ∈ C}. (5)

It is easy to verify that ΛC is nonempty provided intC 6= ∅ (hence for all strongly shady
sets) and that any support point c belongs to C\intC.

The set ΛC can be characterized by means of supergradients of the concave gauge of C.
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Proposition 4.3. Let C ⊆ X be closed, convex and coradiative. Then it holds

ΛC = Λ′

C = Λ′′

C ,

where

Λ′

C = {ℓ ∈ X ′ : ℓ ∈ ∂ϕC(x) for some x ∈ C} (6)

and

Λ′′

C = {ℓ ∈ X ′ : ℓ ∈ ∂ϕC(x) for some x ∈ K = coneC}. (7)

Proof. The following implications hold:

ℓ ∈ ΛC ⇔ ℓ ∈ C⊕, ∃c ∈ C : ℓ(c) = 1

⇔ ℓ ∈ C⊕, ∃c ∈ bdC : ℓ(c) = 1

⇔ ℓ ∈ ∂ϕC , ∃c ∈ C : ϕC(c) = 1 = ℓ(c)

⇔ ∃c ∈ C : ℓ ∈ ∂ϕC(c) ⇔ ℓ ∈ Λ′

C .

The assumption that C be coradiative is used here to guarantee (see Rubinov [14]) that
any boundary point c of C satisfies ϕC(c) = 1. Morever we have

ℓ ∈ Λ′′

C ⇔ ℓ ∈ ∂ϕC(x), x = αc, α > 0, c ∈ C

⇔ ℓ ∈ ∂ϕC , ℓ(x) = ϕC(x), x = αc, α > 0, c ∈ C

⇔ ℓ ∈ ∂ϕC , ℓ(c) = ϕC(c), c ∈ C ⇔ ℓ ∈ Λ′

C .

The following theorem is useful in the proof of the main result of this section, but it also
has some interest in itself.

Theorem 4.4. Let C ⊆ X be proper, convex, closed and coradiant. Then it holds

okerC =
⋂

c∈C

(c−K) ⊆ (ΛC)
◦ ,

where K = cl coneC. If C is coradiative then it holds

okerC =
⋂

c∈C

(c−K) = (ΛC)
◦ .

Proof. 1. We prove first that okerC ⊆ ⋂

c∈C(c − K). If z /∈ ⋂

c∈C(c − K), then there

exists some c̄ ∈ C such that z /∈ c̄−K, that is

c̄− z /∈ K.

Consequently there exists some ℓ ∈ K+ such that ℓ(c̄− z) < 0.

Now suppose, ab absurdo, that z ∈ okerC. Then it must be

z + t(c̄− z) ∈ C, ∀t ≥ 1
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and
ℓ(z + t(c̄− z)) = ℓ(z) + tℓ(c̄− z) ≥ 0, ∀t ≥ 1. (8)

But since ℓ(c̄− z) < 0 and t can be taken arbitrarily large, we obtain a contradiction to
(8).

2. To prove the opposite inclusion, let z ∈ ∩c∈C(c−K), that is

c− z ∈ K, ∀c ∈ C.

If z /∈ okerC, there exist c̄ ∈ C and τ > 1 such that

y = z + τ(c̄− z) /∈ C. (9)

Since C is convex, this yields

z + t(c̄− z) /∈ C, ∀t ≥ τ.

We obtain from (9) that there exists ℓ̄ ∈ C⊕ such that ℓ̄(y) < 1. The hyperplane H =
{z ∈ X : ℓ̄(z) = 1} cuts the halfline L = {z + α(c̄ − z), α ≥ 0} in two parts. If we
take α = 1, we obtain the point c̄, which satisfies ℓ̄(c̄) ≥ 1 and hence stays in the upper
halfspace H+, and if we take α = τ we obtain the point y, which satisfies ℓ̄(y) < 1 and
stays in the lower halfspace H−. The points in L which lie besides y must also stay in
H− and hence

1 > ℓ̄(z + t(c̄− z)) = ℓ̄(z) + tℓ̄(c̄− z) ∀t ≥ τ. (10)

For the same reason, we have ℓ̄(z) ≥ ℓ̄(c̄) and ℓ̄(c̄− z) ≥ 0. If it is ℓ̄(c̄− z) > 0, we obtain
a contradiction to (10), since t can be taken arbitrarily large. If it is ℓ̄(c̄ − z) = 0, then
ℓ̄(z) = ℓ̄(y) < 1 and ℓ̄(c̄) = ℓ̄(z) against ℓ̄ ∈ C⊕.

3. Now suppose that z /∈ (ΛC)
◦. Thus there exists ℓ ∈ ΛC such that ℓ(z) > 1. Let c ∈ C

be such that ℓ(c) = 1 and suppose that z ∈ (c−K). Since ℓ ∈ C⊕ ⊆ K+, we have

ℓ(z) ≤ ℓ(c) = 1,

which is a contradiction. Hence
⋂

c∈C(c−K) ⊆ (ΛC)
◦ .

4. To conclude the proof we have to show that (ΛC)
◦ ⊆ okerC, when C is radiative. To

this purpose, take z /∈ okerC. Hence there exist c ∈ C and t > 1 such that

z + t(c− z) /∈ C.

Consider the halfline L = {z + α(c − z), α ≥ 0}. Since C is closed and convex, the
intersection between C and L is a nonempty, closed segment, containing the point c.

Suppose first that c is an interior point of C and let c̄ ∈ bdC be the extreme point of
the segment which is closest to z + t(c − z). Then find a linear functional ℓ ∈ X ′ which
separate c̄ from C, with ℓ(c̄) = 1 and ℓ ∈ C⊕, whence ℓ ∈ ΛC . It follows that ℓ(c) > 1
which implies ℓ(z) > ℓ(c) > 1 and hence z /∈ Λ◦

C .

If c ∈ bdC, then, since C is coradiative, c′ = αc ∈ intC for all α > 1. We want
to show that there exists some (sufficiently small) α > 1 and some β ≥ 0 such that
c′ + β(c′ − z) /∈ C.
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Suppose, on the contrary that, for all α > 1 and all β ≥ 0 it holds αc + β(αc − z) ∈ C.
Then the vector αc−z belongs to the recession cone of C, for all α > 1; since α is arbitrary
and RecC is closed, it holds c − z ∈ RecC and z + t(c − z) ∈ C for all t ≥ 1 which is
false.

Hence, for some α > 1 and some β > 0, we have αc ∈ intC and y = αc+ β(αc− z) /∈ C.
As before, the intersection between C and the halfline starting from z and going through
c′ = αx is a nonempty closed interval. Let c̄ ∈ bdC be the extreme point of the segment
which is closest to y and take ℓ ∈ X ′ such that ℓ ∈ C⊕ and ℓ(c̄) = 1. By evaluating ℓ
along the halfline, we have ℓ(αc) > 1 and ℓ(z) > 1 so that z /∈ (ΛC)

◦ and the proof is
finished.

We observe, as a consequence of Theorem 4.4, that the outer kernel of a closed, convex,
coradiant set is closed, besides being convex and radiant.

In view of Proposition 4.3 we denote in the sequel by Λ the set which can be characterized
by any of the conditions (5) to (7). This will cause no mistake since the assumption that
C is strongly shady (and hence coradiative) will always be standing.

We will see that among all continuous superlinear representation of the strongly shady
set C, the greatest is the function γC : X → R given by

γC(x) = inf{λ(x) : λ ∈ Λ} = iΛ(x).

Theorem 4.5. If C is strongly shady, the function γC is a continuous superlinear cogauge

of C.

Proof. Theorem 4.4 yields okerC = Λ◦ and hence 0 ∈ int Λ◦, since C is strongly shady.
This shows that Λ is bounded in X ′. Therefore the support set ∂γC = cl convΛ is weak*-
compact and γC is continuous. It remains to show that C = [γC ≥ 1].

Since Λ ⊆ C⊕ = ∂ϕC , we have, for all x ∈ X

γC(x) = inf{λ(x) : λ ∈ Λ} ≥ inf{λ(x) : λ ∈ C⊕} = ϕC(x)

and this yields
γC(x) ≥ ϕC(x) ≥ 1,

for all x ∈ C, whence C ⊆ [γC ≥ 1].

To prove that C = [γC ≥ 1] we will prove that γC(x) = ϕC(x) for all x ∈ C and that for
all x /∈ C it holds γC(x) < 1.

Thus let x ∈ C. If ℓ ∈ ∂ϕC(x) (which is nonempty, because ϕC is continuous at x), then
it holds ℓ ∈ ∂ϕC and ℓ(x) = ϕC(x), which yields

ϕC(x) = ℓ(x) ≥ inf{λ(x), λ ∈ ∂ϕC(c), c ∈ C} = γC(x)

and
ϕC(x) = γC(x) (11)

for all x ∈ C. Using positive homogeneity and upper semicontinuity of γC and ϕC , we
can extend equality (11) to K = cl coneC. Remind that ϕC(x) ∈ (0, 1) for all x ∈ K\C
and vanishes on the boundary of K. So let now x /∈ K and suppose it holds γC(x) ≥ 1.
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To find a contradiction, take any c ∈ C and consider the line segment tx+ (1− t)c with
t ∈ [0, 1]. It holds γC(x) ≥ 1, γC(c) ≥ 1 and the segment touches the boundary of K,
where γC vanishes, against the concavity of γC .

We show next that γC is indeed the greatest continuous superlinear representation of C.

Theorem 4.6. If C ⊆ X is strongly shady and ϕ : X → R is a continuous superlinear

cogauge of C, then we have

ϕ(x) ≤ γC(x), ∀x ∈ X.

Proof. It is enough to prove that the support set of ϕ satisfies Λ ⊆ ∂ϕ.

Take ℓ ∈ Λ and x ∈ C such that

ℓ(x) = 1 ≤ ℓ(c), ∀c ∈ C. (12)

We have to show that ℓ(z) ≥ ϕ(z) for all z ∈ X, that is ℓ ∈ ∂ϕ. We know from (12)
that {x : ϕ(x) ≥ 1} ⊆ {x : ℓ(x) ≥ 1} and this implies, thanks to positive homogeneity
of both ℓ and ϕ, that the inequality ℓ ≥ ϕ holds on K = {x : ϕ > 0}. By continuity, the
same inequality can be extended to K and further to {x : ℓ ≥ 0}. Hence ϕ(y) ≤ 0 when
y ∈ H = {x ∈ X : ℓ(x) = 0}.
Take now z ∈ X such that ℓ(z) < 0. Since x /∈ H there exist y ∈ H and 0 6= β ∈ R such
that z = y + βx. Since ℓ(z) < 0 and ℓ(x) = 1, it follows β < 0.

Since ϕ is superadditive we have

ϕ(y) = ϕ(y + βx− βx) ≥ ϕ(y + βx) + ϕ(−βx)

whence

ϕ(z) = ϕ(y + βx) ≤ ϕ(y)− ϕ(−βx) ≤ βϕ(x) = β. (13)

Since ℓ(z) = βℓ(x) = β, we deduce that ℓ(z) ≥ ϕ(z).

Thus ℓ ≥ p and ℓ ∈ ∂ϕ.

The set Λ, used to define the greatest superlinear cogauge of C is not convex and the
equalities proved in Proposition 4.3 are not much helpful in describing the function γC or
its superdifferential. To this purpose, the next results offer a useful characterization of
the support set of γC in terms of the reverse polar of C and the polar of its outer kernel.

Theorem 4.7. Let C ⊆ X be a strongly shady set. Then

∂γC = cl convΛ = (okerC)◦ ∩ C⊕,

where the closure is taken in the weak* topology of X ′.

Proof. The inclusion Λ ⊆ C⊕ comes from (5). To see that Λ ⊆ (okerC)◦ take ℓ ∈ Λ and
suppose that some z ∈ okerC exists such that ℓ(z) > 1. Then choose x ∈ C such that
ℓ(x) = 1. We have

z + t(x− z) ∈ C, ∀t ≥ 1
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and, for all t > ℓ(z)/(ℓ(z)− 1) (which is greater than 1), we have

1 ≤ ℓ(z + t(x− z)) = ℓ(z) + t(1− ℓ(z)) < 0,

which is a contradiction.

To prove the inverse inclusion, let Q = (okerC)◦ ∩ C⊕ and take q /∈ cl convΛ. The set Λ
is bounded since it is contained in (okerC)◦, which, being 0 ∈ int okerC, is itself bounded
in X ′. Then there exists x ∈ X and α ∈ R such that

q(x) > α = sup{ℓ(x), ℓ ∈ Λ}.

We have to study three cases:

- if α < 0: take y = −x to find (with β = −α):

q(y) < β ≤ ℓ(y), ∀ℓ ∈ Λ,

which yields

y/β ∈ Λ⊕ = (cl shw convΛ)⊕ = (shw cl convΛ)⊕ = (C⊕)⊕ = C (14)

and q(y/β) < 1, whence q /∈ C⊕, which implies q /∈ Q. The first equality in (14)
comes from the fact that the set Λ and its closed, convex, coradiant hull have the
same reverse polar; the second equality is proved in [7]. For the third, note that γC
is a superlinear representation of C and hence, by Proposition 4.1, it follows that
shw cl convΛ = C⊕.

- if α = 0, then q(x) > 0 and ℓ(x) ≤ 0 for all ℓ ∈ Λ. Since K+ = cl coneΛ, then
ℓ(x) ≤ 0 for all ℓ ∈ K+ and x ∈ −K. Since q(x) > 0 we deduce that q /∈ K+ and
q /∈ Q.

- if α > 0, then for y = x/α we have supΛ ℓ(y) = 1 and ℓ(y) ≤ 1 for all ℓ ∈ Λ, whence
y ∈ Λ◦. From Proposition 4.4 we have y ∈ (okerC)◦◦ = okerC. In view of the
inequality q(y) > 1 we have q /∈ (okerC)◦, which concludes the proof.

Taking Q = C⊕ ∩ (okerC)◦, we know from Theorem 4.7, that the function iQ : X → R

given by
iQ(x) = inf{ℓ(x) : ℓ ∈ Q}

is superlinear and continuous and coincides with γC .

We can exploit the calculus rules for reverse polar sets developed in [7] to obtain the
greatest superlinear cogauge of the set C = x+K, where K is a closed, convex cone, with
x ∈ intK. It holds

C⊕ = (x+K)⊕ = K+ ∩H+

X′(x, 1),

where K+ = {x∗ ∈ X ′ : x∗(k) ≥ 0, ∀k ∈ K} is the positive polar cone of K and
H+

X′(x, 1) = {x∗ ∈ X ′ : x∗(x) ≥ 1} is the upper 1-halfspace defined in X ′ by the vector
x ∈ X. Moreover

(okerC)◦ = (x−K)◦ = K+ ∩H−

X′(x, 1),

which yields
∂γC = (x+K)⊕ ∩ (oker (x+K))◦ = K+ ∩HX′(x, 1).
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In the particular case in which K is a halfspace, K = H+

X(y
∗, 0) = {z ∈ X : y∗(z) ≥ 0}

and x ∈ intH+

X(y
∗, 0), that is y∗(x) > 0, we have K+ = cone0 (y

∗) and ∂γC reduces to a
singleton, which means that γC is indeed linear. This observation is relevant if referred
to the original purpose of this research, that is the continuous representation of convex,
coradiant sets within the framework of superlinear separation of radiant sets, as discussed
in [22, 23, 24]. It implies that if the point x can be separated from the set A ⊆ X by
means of an hyperplane, then the superlinear separation reduces to the classical linear
separation.
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