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We introduce the notion of finitely dentable map, which extends some properties of the uniform convex-
ifying operators of Beauzamy to a non linear frame and provides a characterization of the functions that
can be approximated by differences of convex Lipschitz functions.

1. Introduction

Maps with the point of continuity property appear related to the classical theorem of
Baire. Recall that a map f : X → Y between topological spaces has the point of
continuity property if the restriction of f to any nonempty closed subset C ⊂ X has at
least a point of continuity. In particular, if Y is a metric space, then for every ε > 0 and
every nonempty subset of C ⊂ X there is an open set U such that C ∩ U is nonempty
and the oscillation of f in C ∩ U is less than ε. Modifications of the point of continuity
property involving geometrical notions have been used in the frame of Banach spaces.
Notably, if X is a Banach space with the Radon-Nikodým property and C ⊂ X is a
bounded closed convex set, then the identity map from (C,w) to (C, ‖.‖) has the point
of continuity property, and moreover, the set C is dentable, that is, for every ε > 0 is
possible to find an open halfspace H such that C ∩H is nonempty and has diameter less
than ε.

Let C be a closed convex bounded set of a Banach space X and let (Y, ρ) be a metric
space. We say that a map f : C → Y is dentable if for any nonempty convex closed
subset D ⊂ C and ε > 0 is possible to find an open halfspace H intersecting D such
that ρ-diam(f(D ∩ H)) < ε. For any dentable map f we may consider the following
“derivation�

[D]′ε = {x ∈ D : ρ-diam(f(D ∩H)) > ε, ∀H ∈ H, x ∈ H}.

Here H denotes the set of all the open halfspaces of X. Clearly, [D]′ε is what remains of
D after removing all the slices of ρ-diameter through f less or equal than ε. Consider the
sequence of sets defined by [C]0ε = C and, for every n ∈ N, inductively by

[C]nε = [[C]n−1

ε ]′ε .

Such a process can be extended to transfinite ordinal numbers in a quite natural way, and
for any dentable map the process finishes at the empty set. We are interested in the maps
for which this derivation process ends after finitely many steps.
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Definition 1.1. The map f : C → Y is said to be finitely dentable if for every ε > 0
there is n ∈ N such that [C]nε = ∅.

We shall denote by η(ε) the greatest integer such that [C]nε 6= ∅. If we are dealing with
several functions we shall write [C]nf, ε and η(f, ε) for the sets and index associated with
f .

In the remaining part of this introduction we shall try to motivate the use of the notion
of finitely dentable maps by showing how they appear involved in a few results. We hope
that the unexplained notation is standard.

A linear operator T : X → Y between Banach spaces is said uniformly convex if for
every ε > 0, there is δ > 0 such that ‖T (x) − T (y)‖ < ε whenever x, y ∈ SX and
‖x + y‖ > 2(1 − δ). An operator is said uniformly convexifying if it becomes uniformly
convex for some equivalent norm on X. This class of operators was introduced and
studied by Beauzamy [1]. Our next result shows that finitely dentable maps are a non
linear version of uniformly convexifying operators.

Theorem 1.2. A bounded linear operator T : X → Y between Banach spaces is uniformly
convexifying if, and only if, its restriction to BX is finitely dentable.

A closed convex bounded set C ⊂ X is said finitely dentable if the inclusion map into X
is so. The unit ball of a superreflexive space is a finitely dentable set. That is an easy
consequence of the existence of an equivalent uniformly convex norm on X, but can be
also deduced from properties of X which are closer to the definition of superreflexivity, see
for instance [8, Lemma 3.1]. Another example is the closed convex hull of the canonical
basis in c0(Γ). Indeed, this set is contained in the image of the unit ball of ℓ2(Γ) through
the inclusion operator. The class of finitely dentable sets of a Banach space lies between
the compact and the weakly compact and shares many good properties of those classes.
A compact space is said uniformly Eberlein if it is homeomorphic to a weakly compact
set of a Hilbert space. The next result surveys some properties of convex bounded finitely
dentable sets.

Theorem 1.3. Let C be a closed convex bounded set of a Banach space X which is
finitely dentable. Then C is weakly compact and uniformly Eberlein in its weak topology.
Moreover, there is a uniformly convex linear operator T : E → X defined on a reflexive
Banach space E, such that C ⊂ T (BE).

This last result addresses us again to the work of Beauzamy [1] obtaining benefits from
his results, and maybe some overlapping that we have tried to minimize. Our main moti-
vation for the notion of finite dentability, instead of the tree properties used by Beauzamy,
is that this notion seems to be more suitable in a nonlinear frame. In particular, we shall
also deal with finitely dentable real functions. Haydon, Odell and Rosenthal characterized
the functions on a metric compact space that can be approximated uniformly by differ-
ences of bounded lower semicontinuous functions in terms of indexes related to the Baire
derivation, see Proposition 5.4 for a version of that result. Cepedello [3], see also [2, p.
94], proved that Lipschitz functions on the ball of a uniformly convex Banach space can
be approximated by differences of convex Lipschitz functions (“delta-convex�), and this
property characterizes superreflexivity. Finite dentability allows us to give the following
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characterization for a single Lipschitz function.

Theorem 1.4. A Lipschitz function f : C → R defined on a closed convex bounded set
C ⊂ X can be uniformly approximated by differences of convex Lipschitz functions on C
if, and only if, it is finitely dentable.

Cepedello’s result appears as a corollary using the fact that the unit ball of a superreflexive
Banach space is actually finitely dentable.

The paper is organized as follows. In the second section we prove our main result, Theo-
rem 2.2, which characterizes Lipschitz finitely dentable maps by a renorming, which is
essential for the rest of the paper. The third section is devoted to the general properties
of finitely dentable maps. Convex sets which are finitely dentable are studied in fourth
section, in relation with the uniformly convexifying operators of Beauzamy [1]. The result
about delta-convex approximation for finitely dentable maps is proved in the last section.

2. An adapted renorming

We shall need some arguments which are usual in renorming theory, see for instance [4].
The reader can check easily that for any convex function f the following inequality holds

f(x)2 + f(y)2

2
− f(

x+ y

2
)2 ≥

(

f(x)− f(y)

2

)2

≥ 0.

It implies the following consequence.

Lemma 2.1. Let p be a seminorm defined on X and let (xn) and (yn) be p-bounded
sequences in X. Then the two following conditions are equivalent:

i) limn(2p(xn)
2 + 2p(yn)

2 − p(xn + yn)
2) = 0

ii) limn(p(yn)− p(xn)) = limn(p(
xn+yn

2
)− p(xn)) = 0

The following is a key result for the rest of the paper.

Theorem 2.2. Let C be a closed convex bounded set of a Banach space X and let f :
C → Y be a Lipschitz map into a metric space (Y, ρ). Then the following are equivalent:

i) The map f is finitely dentable.

ii) There is an equivalent norm |||.||| on X verifying limn ρ(f(xn), f(yn)) = 0 whenever
the sequences (xn), (yn) ⊂ C are such that

lim
n
(2|||xn|||2 + 2|||yn|||2 − |||xn + yn|||2) = 0.

iii) There is a convex continuous bounded function Φ : C → R verifying that for every
ε > 0 there is δ > 0 such that ρ(f(x), f(y)) < ε whenever x, y ∈ C are such that

Φ(x) + Φ(y)

2
− Φ(

x+ y

2
) < δ.

iv) There is a convex continuous bounded function Φ : C → R verifying that for every
ε > 0 there is δ > 0 such that for any H ∈ H and any r ≥ 0 such that H ∩ {Φ ≤
r} = ∅ then ρ-diam(f(H ∩ {Φ ≤ r + δ})) < ε.
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Proof. i) ⇒ ii) We shall use arguments of Lancien’s proof of the Enflo-Pisier theorem
[10] as presented by Godefroy in [8, p. 801]. Without loss of generality, we may assume
that C ⊂ BX and f is 1-Lipschitz.

For k, n ∈ N, we take Nk = η(2−k) and Kn
k = [C]n

2−k . We shall show that ρ(f(x), f(y)) <
21−k, if the points x, y ∈ Kn

k are such that the segment [x, y] does not meet Kn+1

k (this is
a non linear version of the midpoint argument of Lancien). Indeed, consider the sets

A = {z ∈ [x, y] : ∃H ∈ H, [x, z] ⊂ H, ρ-diam(f(Kn
k ∩H)) ≤ 2−k},

B = {z ∈ [x, y] : ∃H ∈ H, [z, y] ⊂ H, ρ-diam(f(Kn
k ∩H)) ≤ 2−k}.

Clearly we have A and B are nonempty relatively open subsets of [x, y] with A∪B = [x, y],
therefore there is z ∈ A ∩B. By triangle inequality, we get that ρ(f(x), f(y)) ≤ 21−k.

Consider the 2-Lipschitz (in fact
√
2-Lipschitz) symmetric convex function F defined on

X by the formula

F (x)2 =
∞
∑

k=1

Nk
∑

n=1

2−k

Nk

d(x,Kn
k )

2 +
∞
∑

k=1

Nk
∑

n=1

2−k

Nk

d(x,−Kn
k )

2.

We claim that if x, y ∈ C and ρ(f(x), f(y)) > ε, then

F (
x+ y

2
)2 ≤ F (x)2 + F (y)2

2
− ε3

2048 η3(ε/8)
. (1)

Pick k such that ε/8 ≤ 2−k < ε/4, take γ = ε/4Nk and let n be the maximum integer
such that [x, y] ⊂ Kn

k . Notice that n < Nk since ρ(f(x), f(y)) > ε. We shall show that
inequality (1) can be deduced from the following: there is l ∈ N with 1 ≤ l ≤ Nk − n,
such that

d(x,Kn+l
k )2 + d(y,Kn+l

k )2

2
− d(

x+ y

2
, Kn+l

k )2 ≥ γ2

16
. (2)

Indeed, by convexity we have

F (x)2 + F (y)2

2
− F (

x+ y

2
)2 ≥ 2−k

Nk

γ2

16
≥ (

ε

8Nk

) (
ε

16Nk

)2 ≥ ε3

2048 η3(ε/8)

using for the last step that η(ε/8) ≥ Nk since ε/8 ≤ 2−k. Now we shall show that
inequality (2) can be deduced of the following

Fact. For some l ∈ N with 1 ≤ l ≤ Nk − n, one has

max{d(x,Kn+l
k ), d(y,Kn+l

k )} − d([x, y], Kn+l
k ) ≥ γ. (3)

Indeed, if |d(x,Kn+l
k )− d(y,Kn+l

k )| ≥ γ/2 inequality (2) is automatically true since

d(x,Kn+l
k )2 + d(y,Kn+l

k )2

2
− d(

x+ y

2
, Kn+l

k )2 ≥
(

d(x,Kn+l
k )− d(y,Kn+l

k )

2

)2

.

So we may assume |d(x,Kn+l
k ) − d(y,Kn+l

k )| < γ/2. In this case, together with inequal-
ity (3), we obtain that

d([x, y], Kn+l
k ) < min{d(x,Kn+l

k ), d(y,Kn+l
k )} − γ

2
.
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A simple convexity argument implies the following inequality

d(x,Kn+l
k ) + d(y,Kn+l

k )

2
− d(

x+ y

2
, Kn+l

k ) ≥ γ

4
.

Now, we have

d(x,Kn+l
k )2 + d(y,Kn+l

k )2

2
≥

(

d(x,Kn+l
k ) + d(y,Kn+l

k )

2

)2

≥
(

d(
x+ y

2
, Kn+l

k ) +
γ

4

)2

≥ d(
x+ y

2
, Kn+l

k )2 +
γ2

16
.

and therefore inequality (2) holds.

Finally, we shall prove the Fact. Assume that it is not true to get a contradiction. First
we shall show by induction on l with 1 ≤ l ≤ Nk − n that

max{d(x,Kn+l
k ), d(y,Kn+l

k )} < lγ. (4)

That (4) is true for l = 1 follows from not-(3) together with [x, y] ∩Kn+1

k 6= ∅. If (4) is
true for l, there are x′, y′ ∈ Kn+l

k such that ‖x − x′‖ < lγ and ‖y − y′‖ < lγ. Since f is
1-Lipschitz, we get that ρ(f(x′), f(y′)) > ε/2, so it follows that

[x′, y′] ∩Kn+l+1

k 6= ∅.

Take z′ = λx′ + (1− λ)y′ with λ ∈ [0, 1] such that z′ ∈ Kn+l+1

k and let z = λx+ (1− λ)y.
Since ‖z − z′‖ < lγ, we get that

d([x, y], Kn+l+1

k ) < lγ.

This inequality together with not-(3) implies that (4) holds for l+1, which concludes the
induction. Taking l = Nk − n in (4) we obtain

max{d(x,KNk

k ), d(y,KNk

k )} < (Nk − n)γ ≤ ε

4
.

Using again that f is 1-Lipschitz, we get that there exists points x′, y′ ∈ KNk

k such that
ρ(f(x′), f(y′)) > ε/2. This would imply that [x′, y′] ∩ KNk+1

k 6= ∅, which is impossible
because the last set is empty. This completes the proof of fact above as well as claim (1).

The construction of the norm |||.||| is performed as follows. Consider an enumeration (rn)
of the rational numbers from the interval (F (0), 4] and let gk be the Minkowski functional
of the convex set {x ∈ X : F (x) ≤ rk} which has nonempty interior, and for x ∈ X define

|||x|||2 = ‖x‖2 +
∞
∑

k=1

λkgk(x)
2

where the numbers λk are positive and chosen in such a way that the series converges
uniformly on bounded sets. Suppose we are given sequences (xn), (yn) ⊂ C verifying that

lim
n
(2|||xn|||2 + 2|||yn|||2 − |||xn + yn|||2) = 0.
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To prove that limn ρ(f(xn), f(yn)) = 0 it enough to show that any subsequence of indexes
nk has a further subsequence nkj such that

lim
j

ρ(f(xnkj
), f(ynkj

)) = 0.

To simplify the writing, we shall not use explicit symbols for subsequences. By Lemma 2.1,
passing to a subsequence, we may assume the existence of the following limits and equal-
ities

lim
n

|||xn||| = lim
n

|||yn||| = lim
n

|||xn + yn
2

|||,

lim
n

gk(xn) = lim
n

gk(yn) = lim
n

gk(
xn + yn

2
) = Lk (5)

for every k ∈ N. Passing to a further subsequence we may assume the existence of the
limits

lim
n

F (xn) = α; lim
n

F (yn) = β; lim
n

F (
xn + yn

2
) = γ.

We claim that α = β = γ. Indeed, we shall show that α > β leads to a contradiction and
the other inequalities are similar. Take δ = α − β and a rational r such that α − δ/3 <
r < α. Let k ∈ N such that rk = r and take n ∈ N large enough to have F (xn) > r and
F (yn) < β + δ/3. Let Sk denote the unit sphere of gk. Since F is 2-Lipschitz, we have
d(yn, Sk) > δ/6. Having in mind that ‖yn‖ ≤ 1, we obtain the upper estimation

gk(yn) <
6

6 + δ
.

On the other hand, we have gk(xn) ≥ 1. Since limn gk(xn) = limn gk(yn) we get a contra-
diction which finishes the proof of the claim.

Once we know that

lim
n

F (xn) = lim
n

F (yn) = lim
n

F (
xn + yn

2
)

the inequality (1) above implies that limn ρ(f(xn), f(yn)) = 0 which finishes the proof of
statement ii).

ii) ⇒ iii) Just take Φ(x) = |||x|||2.
iii) ⇒ iv) It is trivial.

iv) ⇒ i) By adding a constant, we may suppose that function Φ is positive. Let M =
sup{Φ(x) : x ∈ C}. It is easy to see that η(ε) ≤ δ−1M .

The following two corollaries are concerned with the adapted renorming for several func-
tions.

Corollary 2.3. Suppose we are given a sequence of Lipschitz finitely dentable maps fk :
C → Yk, for k ∈ N, with the same closed convex bounded domain C ⊂ X. Then there
exists an equivalent norm |||.||| on X such that limn ρk(fk(xn), fk(yn)) = 0 for every k ∈ N

whenever the sequences (xn), (yn) ⊂ C verifies

lim
n
(2|||xn|||2 + 2|||yn|||2 − |||xn + yn|||2) = 0.
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Proof. Let |||.|||k the equivalent norm on X for the map fk given by Theorem 2.2. Define
the norm |||.||| by the formula

|||x|||2 =
∞
∑

k=1

λk |||x|||k2

where the numbers (λk) are positive and such that the series converges uniformly on
bounded sets. A convexity argument implies that the norm |||.||| verifies the desired prop-
erty.

Definition 2.4. Let fi : C → Yi be a family of maps, with i ∈ I, defined on a closed
convex bounded set C with values into metric spaces (Yi, ρi). We say that {fi : i ∈ I} is
finitely equi-dentable if for every ε > 0 there exists a finite sequence of closed convex sets

∅ = C0 ⊂ C1 ⊂ C2 ⊂ · · · ⊂ CN = C

such that if S is a slice of Ck+1 not meeting Ck, where 0 ≤ k < N , then we have
ρi-diam(fi(S)) < ε for every i ∈ I.

Clearly, if a singleton {f} is a finitely equi-dentable family, then f is finitely dentable.
To see that the converse is also true apply iv) of Theorem 2.2 or the first argument of its
proof.

Corollary 2.5. Let fi : C → Yi be an equi-Lipschitz family of maps, with i ∈ I, defined
on a closed convex bounded set C with values into metric spaces. Then the family is
finitely equi-dentable if, and only if, there exists an equivalent norm |||.||| on X such that
limn supi∈I ρi(fk(xn), fk(yn)) = 0 whenever the sequences (xn), (yn) ⊂ C verifies

lim
n
(2|||xn|||2 + 2|||yn|||2 − |||xn + yn|||2) = 0.

Proof. Consider the metric space Y =
∏

i∈I Yi with the metric ρ = supi∈I ρi. The
hypothesis implies that the joint map (fi)i∈I , defined on C with values into Y , is Lipschitz
and finitely dentable. It is clear that the norm |||.||| given by Theorem 2.2 verifies the desired
condition. For the converse, use a suitable version of iv) from Theorem 2.2.

3. Properties of finitely dentable maps

In this section we list properties of finitely dentable maps. Some of them follow from
Theorem 2.2.

Proposition 3.1. Let f : C → Y a map defined on a closed convex bounded set which
can be approximated uniformly by finitely dentable maps. Then f is finitely dentable.

Proof. Given ε > 0, consider a finitely dentable map g such that ‖f − g‖∞ < ε/3. Then
it is easy to se that [D]′f, ε ⊂ [D]′g, ε/3 for any convex D ⊂ C. This implies that η(f, ε) is
finite.

Proposition 3.2. Suppose that the maps fk : C → Yk defined on a closed convex bounded
set are Lipschitz and finitely dentable for k = 1, . . . , n. If h : Y1 × · · · × Yn → Y is
Lipschitz (with some reasonable product metric), then the composition h(f1, . . . , fn) is
finitely dentable.
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Proof. It follows easily from Corollary 2.3.

Corollary 3.3. Let f1, f2 : C → Y be Lipschitz finitely dentable maps from a closed
convex bounded set of a Banach space X into a metric space (Y, ρ) and let ∗ : Y ×Y → Y
be an operation which is Lipschitz on bounded sets. Then the map f = f1 ∗ f2 is finitely
dentable.

Corollary 3.4. The set of Lipschitz finitely dentable maps from a closed convex bounded
set of a Banach space X into a metric space Y inherits the structure of Y for the following
ones: complete metric space, normed linear space, normed algebra and normed lattice.

Proof. It follows from Proposition 3.1 and Corollary 3.3.

Proposition 3.5. If a family {fi : i ∈ I} of Lipschitz finitely dentable maps is relatively
compact in C(C, Y ), then it is finitely equi-dentable.

Proof. First prove that a finite set of maps is finitely equi-dentable. To do that use
the equivalent norm on X given by Corollary 2.3 which satisfies the condition ii) of
Theorem 2.2 for the joint map to the product space endowed with the supremum metric.
Then apply iv) of Theorem 2.2 to get the sequence of convex sets. Since {fi : i ∈ I} is
totally bounded, the result follows applying the idea from the proof of Proposition 3.1.

Remark 3.6. It is easy to see that the finitely equi-dentability of a family is preserved
by the pointwise closure.

Some properties proved in this section allow us to produce new finitely dentable maps
from previous ones. The following result shows that to know if a map is finitely dentable
a reduction to more elementary maps is possible, sometimes.

Proposition 3.7. Let f : K × C → Y be a Lipschitz map, where K ⊂ X1 is compact
convex and C ⊂ X2 is closed convex bounded, X1 and X2 are Banach spaces. Suppose
that for every x ∈ K, the map fx = f(x, ∗) is finitely dentable as a map on C. Then f is
finitely dentable.

Proof. Since K is separable, there is an equivalent norm ‖.‖1 on X1 which is strictly
convex on the linear space spanned by K. Using the compactness of K, it is easy to prove
that ‖.‖1 satisfies ii) of Theorem 2.2 (in particular, we get thatK is finitely dentable). The
family of maps {fx : x ∈ K} defined on C above is compact in C(C, Y ) and thus finitely
equi-dentable by Proposition 3.5. Let ‖.‖2 be the norm on X2 given by Corollary 2.5.
Define an equivalent norm |||.||| on X1 × X2 by |||(r, x)|||2 = ‖r‖21 + ‖x‖21. We claim that
this norm satisfies condition ii) of Theorem 2.2 for f . Indeed, take sequences (rn, xn) and
(sn, yn) such that

lim
n

2|||(rn, xn)|||2 + 2|||(sn, yn)|||2 − |||(rn + sn, xn + yn)|||2 = 0.

By convexity, we have

lim
n

2‖rn‖21 + 2‖sn‖21 − ‖rn + sn‖21 = 0,

lim
n

2‖xn‖22 + 2‖yn‖22 − ‖xn + yn‖22 = 0.
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We deduce that limn ‖rn− sn‖ = 0 and limn ρ(f(p, xn), f(p, yn)) = 0 for every p ∈ K. We
want to prove that lim ρ(f(rn, xn), f(sn, yn)) = 0. Assume that this is false, so passing
to a subsequence ρ(f(rn, xn), f(sn, yn)) > ε. By compactness, we may assume also that
there exists

lim
n

rn = lim
n

sn = p ∈ K.

Since f is Lipschitz, we have ρ(f(p, xn), f(p, yn)) > ε for n large enough, but this is a
contradiction with a former equality.

4. Convex finitely dentable sets

In this section we study the properties of the finitely dentable closed convex bounded
subsets of Banach spaces. It can be show that finite dentability for symmetric convex
sets is equivalent to the finite tree property used by Beauzamy in [1], that we shall not
consider here.

Lemma 4.1. Let C,D ⊂ X be convex weakly compact sets with C ⊂ D such that every
open slice of D which is disjoint with C has diameter less than s > 0. Then every open
slice of D + B[0, r] which is disjoint with C + B[0, r] has diameter less than s + 2r > 0
for any r > 0.

Proof. Put Cr = C + B[0, r] and Dr = D + B[0, r]. Take a slice of the form S1 = {x ∈
Dr : x∗(x) > a}, where ‖x∗‖ = 1, which does not meet Cr. The slice S2 = {x ∈ D :
x∗(x) > a − r} does not meet C because if it is the case then S1 meets Cr. Take points
x, y ∈ S1 and find points x′, y′ ∈ D such that ‖x−x′‖ ≤ r and ‖y−y′‖ ≤ r. We claim that
x′, y′ ∈ S2. Indeed, if x

∗(x′) ≤ a− r, then ‖x− x′‖ > r since x∗(x) > a. As ‖x′ − y′‖ < s,
we deduce that ‖x− y‖ < s+ 2r.

Lemma 4.2. Let C ⊂ X a convex subset such that for every ε > 0 there is finitely
dentable closed convex bounded set D such that C ⊂ D + B[0, ε]. Then C is finitely
dentable.

Proof. Lemma 4.1 implies that every open slice of [D]nε/6+B[0, ε/3] which does not meet

[D]n+1

ε/6 + B[0, ε/3] has diameter less than ε. We deduce that η(C, ε) ≤ η(D, ε/6) and
therefore C is finitely dentable.

Proposition 4.3.

a) Every compact convex set is finitely dentable.

b) Every finitely dentable closed convex bounded set is weakly compact.

Proof. a) Assume that C is compact. Any equivalent strictly convex norm on the closed
span of C satisfies ii) of Theorem 2.2 (this was used in the proof of Proposition 3.7).
We shall provide a direct proof. For every ε > 0 we may take a finite dimensional
compact convex subset D ⊂ C such that C ⊂ D+B[0, ε]. Then C is finitely dentable by
Lemma 4.2.

b) Let C ⊂ X be a finitely dentable closed convex bounded set. Regarding C as a subset

of the bidual X∗∗, we shall show that C
w∗

= C. Take x ∈ C
w∗

and ε > 0. Let n be such

that x ∈ [C]nε
w∗

but x 6∈ [C]n+1
ε

w∗

. There is a weak∗ open half space H such that x ∈ H
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and [C]n+1
ε

w∗

∩H = ∅. By the midpoint argument of Lancien, the diameter of [C]nε ∩H
does not exceed 2ε. We have

diam([C]nε
w∗

∩H) = diam([C]nε ∩H
w∗

) = diam([C]nε ∩H) ≤ 2ε

and thus d(x,C) ≤ 2ε. Since ε was arbitrary x ∈ C.

The following list several facts about finite dentability for sets.

Proposition 4.4.

a) The image of a finitely dentable closed convex bounded set through a bounded linear
operator is finitely dentable.

b) The product of finitely dentable closed convex bounded sets in a finite direct sum of
Banach spaces is finitely dentable.

c) The sum and the convex hull of two finitely dentable closed convex bounded sets
is finitely dentable. The absolutely convex hull of a finitely dentable closed convex
bounded set is also finitely dentable.

Proof. a) Let T : X → Y be a bounded linear operator and C ⊂ X a finitely dentable
convex set. Any slice of T ([C]nε ) not meeting the closed convex set T ([C]n+1

ε ) has diameter
less than 2ε‖T‖.
b) Let Ci ⊂ Xi be finitely dentable closed convex bounded sets for 1 ≤ i ≤ n. Consider
on

⊕n
i=1

Xi the equivalent norm |||.||| defined by

|||(x1, . . . , xn)|||2 =
n

∑

i=1

|||xi|||2i

where |||.|||i is norm on Xi satisfying condition ii) of Theorem 2.2 for the set Ci. It is not
difficult to show using Lemma 2.1 and Theorem 2.2 again that Πn

i=1Ci is finitely dentable.

c) The result for the sum C1 +C2 follows from parts a) and b). For the convex hull of C1

and C2, take points xi ∈ Ci and consider the segments [0,−xi] joining 0 and −xi. Then
apply the previous case to the sums Di = Ci + [0,−xi] and D1 +D2 to obtain a finitely
dentable closed convex bounded set containing both C1 and C2.

The interpolation of uniformly convexifying operators was already considered by Beauza-
my in [1]. We shall proof the following interpolation result for the sake of completeness.

Theorem 4.5. Let C ⊂ X be a finitely dentable closed convex bounded set. Then there
exists a reflexive Banach space E and an injective bounded linear operator T : E → X
such that T (BE) is finitely dentable and contains C.

Proof. By Proposition 4.4 c) there is an absolutely convex weakly compact K ⊂ X
which is finitely dentable and contains C. The interpolation method of Davis-Figiel-
Johnson-Pelzynski, see [7, p. 366] provides a reflexive Banach space E and a bounded
linear injective operator such that

T (BE) ⊂ 2nK +B[0, 2−n]

for every n ∈ N. Lemma 4.2 implies that T (BE) is finitely dentable.
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Theorem 1.2 is a consequence of the following.

Proposition 4.6. For a bounded linear operator T : X → Y between Banach spaces the
following conditions are equivalent:

i) T is uniformly convexifying.

ii) T restricted to BX is finitely dentable.

iii) T (BX) is finitely dentable.

Proof. i) ⇔ ii) Follows from Theorem 2.2.

i) ⇒ iii) Without loss of generality we may assume that the norm ofX makes T uniformly
convex and T has norm one. Given ε > 0, take δ > 0 such that the images by T of the
open slices of BX not meeting (1− δ)BX have diameter less than ε. It is easy to see that
any open slice of T (BX) not meeting (1− δ)T (BX) has diameter less than ε. By iteration
we can deduce that T (BX) is finitely dentable.

iii) ⇒ i) Let ‖.‖u an equivalent norm on Y verifying ii) of Theorem 2.2 for the inclusion
of T (BX) into Y . Define an equivalent norm |||.||| on X by the formula

|||x|||2 = ‖x‖2 + ‖T (x)‖u2.

A simple convexity argument shows that |||.||| verifies ii) of Theorem 2.2 for the map T on
BX .

We shall need these notions. The norm ‖.‖ of a Banach space is said weak uniformly rotund
(WUR) if w-limn(xn−yn) = 0 (limit in the weak topology) provided that ‖xn‖ = ‖yn‖ = 1
and limn ‖xn + yn‖ = 2. Weak∗ uniformly rotund norms (W∗UR) are defined analogously
for dual Banach spaces.

Proof of Theorem 1.3. We already have that C is weakly compact by Proposition 4.3
and the operator T : E → X is given by Theorem 4.5, which is uniformly convex after
a suitable renorming of E by Proposition 4.6. To show that C is uniformly Eberlein,
is enough to prove that for BE since C embeds homeomorphically into BE. Since T is
uniformly convex, we have w-limn(T (xn) − T (yn)) = 0 whenever ‖xn‖ = ‖yn‖ = 1 and
limn ‖xn+ yn‖ = 2. This implies w-limn(xn− yn) = 0 since T restricted to the unit ball is
a weak homeomorphism. Therefore the norm on E is WUR, and thus W∗UR because E
is reflexive. A result of Fabian-Godefroy-Zizler [6] states that a dual Banach space with
a W∗UR norm has weak∗ uniformly Eberlein dual unit ball. This finishes the proof.

A uniformly convex operator may not factor through a superreflexive Banach space [1],
but we at least we have the following.

Corollary 4.7. A uniformly convex operator factors through a reflexive Banach space
with uniformly Eberlein unit ball.

Considering finite dentability with respect to topologies weaker than the weak topology
has no interest since finitely dentable closed convex bounded set are weakly compact. The
situation changes if we measure diameters with respect to a metric coarser than the norm.
For instance we may consider weak∗ dentability of subsets in a dual X∗ with respect to
the uniform convergence on a bounded total subset of X.
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Corollary 4.8. Let X be a Banach space containing a total finitely dentable closed convex
bounded set C. Then (BX∗ , w∗) is uniformly Eberlein and finitely weak∗-dentable for the
norm of uniform convergence on C.

Proof. There is a uniformly convex operator T : E → X from a reflexive space with
dense range. The adjoint operator T ∗ : X∗ → E∗ is injective and uniformly convexifying
by a result of Beauzamy [1]. We may construct an equivalent W∗UR norm on X∗ as in the
proof of Theorem 1.3, therefore (BX∗ , w∗) is uniformly Eberlein by [6]. Observe BX∗ is
finitely weak∗-dentable for the norm of uniform convergence on T (BE∗) which is stronger
than the uniform convergence on C.

We shall finish the section explaining the lack of interest of finitely dentable closed non-
convex bounded sets.

Example 4.9. There exists a reflexive Banach space X and a finitely dentable weakly
compact subset K ⊂ X such that the closed convex hull of K is not finitely dentable.

Proof. Take a reflexive space X such that BX∗ is not uniformly Eberlein. Let {xi, x
∗
i }i∈I

⊂ X × X∗ a Markushevich basis of X with ‖xi‖ = 1. Then K = {xi : i ∈ I} ∪ {0}
is weakly compact and finitely dentable. Indeed, [K]′ε = {0} for any 0 < ε < 1, since
{xi} = K ∩Hi where Hi = {x ∈ X : x∗

i (x) > 1/2}, therefore [K]2ε = ∅. The closed convex
hull of K is not finitely dentable because if it is not the case, then the previous corollary
would imply that BX∗ is uniformly Eberlein.

5. Differences of convex functions

In this section we shall apply the notion of finite dentability to know when a function
defined on a closed convex bounded set can be approximated by differences of Lipschitz
convex functions. Criterions to know if a given function is actually a difference of two
good convex functions can be found in [5].

Proposition 5.1. The difference of two bounded convex lower semicontinuous functions
defined on a closed convex set is finitely dentable.

Proof. Firstly we shall assume that f is convex lower semicontinuous. Take m = infC f ,
M = supC f and fix ε > 0. It is easy to prove that the following inclusion holds

[C]nε ⊂ f−1([m,M − nε])

which implies the finite dentability of f .

Suppose now that f = f1 − f2 where f1 and f2 are bounded convex lower semicontinuous
functions. Without loss of generality we may assume that they are also positive. Consider
the bounded convex lower semicontinuous function g(x) = f1(x)

2 + f2(x)
2. By convexity
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we have the following inequalities

|f(x)− f(y)|2 ≤ (|f1(x)− f1(y)|+ |f2(x)− f2(y)|)2

≤ 2
(

(f1(x)− f1(y))
2 + (f2(x)− f2(y))

2
)

≤ 8

(

f1(x)
2 + f1(y)

2

2
− f1(

x+ y

2
)2
)

+ 8

(

f2(x)
2 + f2(y)

2

2
− f2(

x+ y

2
)2
)

= 8

(

g(x) + g(y)

2
− g(

x+ y

2
)

)

.

The finite dentability of g and this relation imply that f is finitely dentable.

Proof of Theorem 1.4. Differences of Lipschitz convex functions are finitely dentable
by Proposition 5.1, and by Proposition 3.1 we can pass to the uniform closure.

Assume that f is Lipschitz and finitely dentable. Let |||.||| the norm given by ii) of Theo-
rem 2.2. We will follow Cepedello’s construction [3], but the fact that f is bounded will
simplify the proof. Define a sequence of functions

fn(x) = inf
y∈C

{f(y) + n(2|||x|||2 + 2|||y|||2 − |||x+ y|||2)}.

Notice that fn can be decomposed as a difference of convex Lipschitz functions

fn(x) = 2n|||x|||2 − sup
y∈C

{n|||x+ y|||2 − 2n|||y|||2 − f(y)}.

We also have that the sequence (fn) is increasing and fn(x) ≤ f(x). If y ∈ C is such that

f(y) + n(2|||x|||2 + 2|||y|||2 − |||x+ y|||2) ≤ f(x) (6)

we can deduce

0 ≤ 2|||x|||2 + 2|||y|||2 − |||x+ y|||2 ≤ n−1(f(x)− f(y)) ≤ n−1diam(f(C)).

Given ε > 0, if n ∈ N is large enough we have |f(x)− f(y)| < ε for any y ∈ C satisfying
(6). Thus fn(x) ≥ f(x)− ε, which shows that (fn) converges to f uniformly on C.

Remark 5.2. Notice that Proposition 5.1 and Proposition 3.1 do not use the Lipschitz
property. Therefore we actually get that a Lipschitz function f which can be uniformly
approximated by differences of bounded convex lower semicontinuous functions is finitely
dentable, and thus f can be uniformly approximated by differences of Lipschitz convex
functions.

The next corollary extends Cepedello’s result [3].

Corollary 5.3. Let C be a finitely dentable closed convex bounded set. Then any uni-
formly continuous function defined on C can be approximated uniformly by differences of
convex Lipschitz functions.
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Proof. The result is a direct consequence of Theorem 1.4 for Lipschitz functions. If f is
uniformly continuous, then the problem can be reduced to the Lipschitz case using, for
instance, the sequence

fn(x) = inf{f(y) + n‖x− y‖ : y ∈ C}

of Moreau-Yoshida which converges uniformly to f .

We shall briefly sketch the argument to obtain Cepedello’s converse result within the
frame of finitely dentable functions, that is, if X is not superreflexive there exists a
function defined on BX that cannot be approximated uniformly by differences of bounded
convex continuous functions. Indeed, if X is not superreflexive, then there is ε > 0 such
that for every n ∈ N there is a dyadic tree {xs : s ∈ {0, 1}≤n} of height n inside BX . This
tree can be taken ε-discrete, see [2, p. 412] for instance. Let fn be the distance to the
union of the even levels {xs : |s| ∈ 2N}. It is easy to see that η(f, ε) ≥ n − 1. Consider
now a 1/3-discrete sequence (Bn) of balls of radius 1/3 inside BX . By similarity, we may
take a ε/3-discrete dyadic tree of height n inside Bn. The same construction that before
will provide a non finitely dentable function f , which is not uniformly approximated by
differences of bounded convex continuous functions by Theorem 1.4 and Remark 5.2.

To finish we shall give the topological counterpart of Theorem 1.4. Let Z be a topological
space and Y a metric space. Given a map f : Z → Y , for any closed subset D ⊂ Z and
ε > 0 we shall consider the following derivation

(D)′ε = {x ∈ D : ρ-diam(f(D ∩ U)) > ε, ∀U ∈ V(x)}.

Consider the sequence starting by (Z)0ε = Z and, inductively, (Z)nε = ((Z)n−1
ε )′ε for every

n ∈ N. We say that the map f is finitely fragmentable if for every ε > 0 there is n ∈ N

such that (Z)nε = ∅.
The following is a reformulation of a result due to Haydon, Odell and Rosenthal [9].

Theorem 5.4. A bounded function f : Z → R can be approximated uniformly by differ-
ences of bounded lower semicontinuous functions if, and only if, it is finitely fragmentable.

Proof (Sketch). It is not difficult to see that a bounded lower semicontinuous function
is finitely fragmentable and that property is stable by differences and uniform limits.
Let f be bounded and finitely fragmentable. Let ε > 0 and Fε a finite subset of reals
such that d(f(x), Fε) < ε for every x ∈ Z. It is easy to find a finite cover (Uk,j) of
(Z)kε \(Z)k+1

ε made up of relatively open subsets (and therefore they belong to the algebra
A of differences of open subsets of Z) such that d(f(Uk,j), λk,j) < ε for some λk,j ∈ Fε.
The sets Ak,j = Uk,j \

⋃

i<j Uk,i belong to A, and thus its characteristic function χAk,j
is a

difference of lower semicontinuous functions. The construction above allows us to build a
linear combination g =

∑

λk,jχAk,j
with λk,j ∈ Fε such that ‖f − g‖∞ < ε. We get that

g can be expressed as a difference of bounded lower semicontinuous functions.
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