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1. Introduction and main results

The study of the existence and the structure of solutions of optimal control problems
defined on infinite intervals and on sufficiently large intervals has recently been a rapidly
growing area of research. See, for example, [4, 5, 7, 9, 12, 14, 18, 19, 22-25, 29-33] and
the references mentioned therein. These problems arise in engineering [1, 15], in models
of economic growth [2, 6, 7, 10, 11, 13, 17, 20, 21, 25-27, 33], in infinite discrete models
of solid-state physics related to dislocations in one-dimensional crystals [3, 28] and in
the theory of thermodynamical equilibrium for materials [16, 18, 19]. In this paper we
study the structure of solutions of a continuous-time optimal control system describing a
general model of economic dynamics. More precisely, we consider the following variational
problem

∫ T

0

f(v(t), v′(t))dt→ min, (P)

v : [0, T ] → Rn is an absolutely continuous (a.c.) function such that v(0) = x,

where x ∈ Rn. Here Rn is the n-dimensional Euclidean space with the Euclidean norm
| · | and f : Rn ×Rn → R1 ∪ {∞} is an extended-valued integrand.

We are interested in a turnpike property of the approximate solutions of (P) which is
independent of the length of the interval T , for all sufficiently large intervals. To have
this property means, roughly speaking, that the approximate solutions of the variational
problems are determined mainly by the integrand f , and are essentially independent of
T and x. Turnpike properties are well known in mathematical economics. The term was
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first coined by Samuelson in 1948 (see [26]) where he showed that an efficient expanding
economy would spend most of the time in the vicinity of a balanced equilibrium path
(also called a von Neumann path). This property was further investigated for optimal
trajectories of models of economic dynamics (see, for example, [2, 10, 11, 17, 20, 21, 25,
27, 33] and the references mentioned there). In the classical turnpike theory the function
f has the turnpike property (TP) if there exists x̄ ∈ Rn (a turnpike) which satisfies the
following condition:

For each M, ǫ > 0 there is a natural number L such that for each number T ≥ 2L, each
x ∈ Rn satisfying |x| ≤ M and each solution v : [0, T ] → Rn of the problem (P) the
inequality |v(t)− x̄| ≤ ǫ holds for all t ∈ [L, T − L].

Note that L depends neither on T nor on x.

In the classical turnpike theory [2, 11, 20, 21] the cost function f is strictly convex. Under
this assumption the turnpike property can be established and the turnpike x̄ is a unique
solution of the minimization problem f(x, 0) → min, x ∈ Rn. In this situation it is shown
that for each a.c. function v : [0,∞) → Rn either the function

T →

∫ T

0

f(v(t), v′(t))dt− Tf(x̄, 0), T ∈ (0,∞)

is bounded (in this case the function v is called (f)-good) or it diverges to ∞ as T → ∞.
Moreover, it is also established that any (f)-good function converges to the turnpike x̄.
In the sequel this property is called as the asymptotic turnpike property.

Recently it was shown that the turnpike property is a general phenomenon which holds for
large classes of variational and optimal control problems without convexity assumptions.
(See, for example, [18, 29, 30, 32, 33] and the references mentioned therein). For these
classes of problems a turnpike is not necessarily a singleton but may instead be an non-
stationary trajectory (in the discrete time nonautonomous case) [32, 33] or an absolutely
continuous function on the interval [0,∞) (in the continuous time nonautonomous case)
[33] or a compact subset of the space X (in the autonomous case) [19, 29, 30, 33]. Note
that all of these recent results were obtained for finite-valued integrands f (in other words,
for unconstrained variational problems). In this paper we study the problems (P) with
an extended-valued integrand f : Rn×Rn → R1∪{∞} (in other words, constrained vari-
ational problems). Clearly, these constrained problems with extended-valued integrands
are more difficult and less understood than their unconstrained prototypes in [29-33].
They are also more realistic from the point of view of mathematical economics. As we
have mentioned before in general a turnpike is not necessarily a singleton. Nevertheless
problems of the type (P) for which the turnpike is a singleton are of great importance
because of the following reasons: there are many models of economic growth for which
a turnpike is a singleton; if a turnpike is a singleton, then approximate solutions of (P)
have very simple structure and this is very important for applications; if a turnpike is a
singleton, then it can be easily calculated as a solution of the problem f(x, 0) → min,
x ∈ Rn.

In this paper our goal is to understand when the turnpike property holds with the turnpike
being a singleton. We will show that the turnpike property follows from the asymptotic
turnpike property. More precisely, we assume that any (f)-good function converges to
a unique solution x̄ of the problem f(x, 0) → min, x ∈ Rn and show that the turnpike
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property holds and x̄ is the turnpike (see Theorem 1.3). Note that we do not use convexity
assumptions. It should be mentioned that analogous results which show that turnpike
properties follow from asymptotic turnpike properties for unconstrained variational prob-
lems with finite-valued integrands were obtained in [18, 33].

We denote by mes(E) the Lebesgue measure of a Lebesgue measurable set E ⊂ R1, denote
by | · | the Euclidean norm of the space Rn and by 〈·, ·〉 the inner product of Rn.

Let a > 0, ψ : [0,∞) → [0,∞) be an increasing function such that

lim
t→∞

ψ(t) = ∞ (1)

and let f : Rn ×Rn → R1 ∪ {∞} be a lower semicontinuous function such that the set

dom(f) := {(x, y) ∈ Rn ×Rn : f(x, y) <∞} (2)

is nonempty, convex and closed and that

f(x, y) ≥ max{ψ(|x|), ψ(|y|)|y|} − a for each x, y ∈ Rn. (3)

For each x ∈ Rn and each number T > 0 set

σ(f, T, x) = inf

{
∫ T

0

f(v(t), v′(t))dt : v : [0, T ] → Rn

is an absolutely continuous (a.c.) function satisfying v(0) = x

}

,

(4)

σ(f, T ) = inf

{
∫ T

0

f(v(t), v′(t))dt : v : [0, T ] → Rn is an a.c. function

}

. (5)

We suppose that there exists x̄ ∈ Rn such that

f(x̄, 0) ≤ f(x, 0) for each x ∈ Rn (6)

and that the following assumptions hold:

(A1) (x̄, 0) is an interior point of the set dom(f) and f is continuous at (x̄, 0);

(A2) for each M > 0 there exists cM > 0 such that

σ(f, T, x) ≥ Tf(x̄, 0)− cM

for each x ∈ Rn satisfying |x| ≤M and each T > 0;

(A3) for each x ∈ Rn the function f(x, ·) : Rn → R1 ∪ {∞} is convex.

Remark 1.1. By (A3) for each a.c. function v : [0,∞) → Rn the function

T →

∫ T

0

f(v(t), v′(t))dt− Tf(x̄, 0), T ∈ (0,∞)

is bounded from below.

Note that the relation (6) and the assumptions (A1)-(A3) are common in the literature
and hold for many infinite horizon optimal control problems [7, 33]. In particular, we need
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(6) and (A2) in the cases when the problem (P) possesses the turnpike property and x̄ is
its turnpike. The assumption (A2) means that the constant function v̄(t) = x̄, t ∈ [0,∞)
is an approximate solution of the infinite horizon variational problem with the integrand
f related to the problem (P).

We say that an a.c. function v : [0,∞) → Rn is called (f)-good [11, 33] if

sup

{
∣

∣

∣

∣

∫ T

0

f(v(t), v′(t))dt− Tf(x̄, 0)

∣

∣

∣

∣

: T ∈ (0,∞)

}

<∞.

The following result will be proved in Section 3.

Proposition 1.2. Let v : [0,∞) → Rn be an a.c. function. Then either v is (f)-good or
∫ T

0

f(v(t), v′(t))dt− Tf(x̄, 0) → ∞ as T → ∞.

Moreover, if v is (f)-good, then sup{|v(t)| : t ∈ [0,∞)} <∞.

For each T1 ∈ R1, T2 > T1 and each a.c. function v : [T1, T2] → Rn set

If (T1, T2, v) =

∫ T2

T1

f(v(t), v′(t))dt. (7)

For each M > 0 denote by XM the set of all x ∈ Rn such that |x| ≤ M and there exists
an a.c. function v : [0,∞) → Rn which satisfies

v(0) = x, If (0, T, v)− Tf(x̄, 0) ≤M for each T ∈ (0,∞). (8)

In this paper we will establish the following turnpike result.

Theorem 1.3. Suppose that the following assumption holds:

(A4) (the asymptotic turnpike property) for each (f)-good function v : [0,∞) → Rn,
limt→∞ |v(t)− x̄| = 0.

Let ǫ,M > 0. Then there exist a natural number L and a positive number δ such that for
each real T > 2L and each a.c. function v : [0, T ] → Rn which satisfies

v(0) ∈ XM and If (0, T, v) ≤ σ(f, T, v(0)) + δ

there exist τ1 ∈ [0, L] and τ2 ∈ [T − L, T ] such that

|v(t)− x̄| ≤ ǫ for all t ∈ [τ1, τ2]

and if |v(0)− x̄| ≤ δ, then τ1 = 0.

Theorem 1.3 will be proved in Section 5.

In the sequel we use a notion of an overtaking optimal function introduced in [2, 11, 27].

An a.c. function v : [0,∞) → Rn is called (f)-overtaking optimal if for each a.c. function
u : [0,∞) → Rn satisfying u(0) = v(0)

lim sup
T→∞

[

If (0, T, v)− If (0, T, u)
]

≤ 0.

The following result establishes the existence of an overtaking optimal function.



A. J. Zaslavski / A Turnpike Result 873

Theorem 1.4. Suppose that (A4) holds. Assume that x ∈ Rn and there exists an (f)-
good function v : [0,∞) → Rn satisfying v(0) = x. Then there exists an (f)-overtaking
optimal function u∗ : [0,∞) → Rn such that u∗(0) = x.

Theorem 1.4 will be proved in Section 6. Examples of integrands f satisfying (A1)–(A4)
are considered in Section 7.

2. Preliminaries

Proposition 2.1. Let M0,M1 be positive numbers. Then there exists M2 > 0 such that
for each T > 0 and each a.c. function v : [0, T ] → Rn which satisfies

|v(0)| ≤M0, If (0, T, v) ≤ Tf(x̄, 0) +M1 (9)

the following inequality holds:

|v(t)| ≤M2 for all t ∈ [0, T ]. (10)

Proof. By (1) there exists Γ > M0 + 1 such that

ψ(Γ) > 2|f(x̄, 0)|+ 4 + a. (11)

By (A2) there exists c(Γ) > 0 such that

σ(f, T, x) ≥ Tf(x̄, 0)− c(Γ) for each T > 0 and each x ∈ Rn satisfying |x| ≤ Γ. (12)

Choose a positive number M2 such that

M2 > 4Γ + 4 + (M1 + 2c(Γ))(4Γ + 2a+ 1 + |f(x̄, 0)|). (13)

Assume that T > 0 and that an a.c. function v : [0, T ] → Rn satisfies (9). We will show
that (10) holds. Let us assume the contrary. Then there exists t0 ∈ [0, T ] such that

|v(t0)| > M2. (14)

In view of (14), (9), (13) and the inequality Γ > M0 + 1

t0 ∈ (0, T ]. (15)

By (14), (15), (9), (13) and the inequality Γ > M0 + 1 there exists t1 ∈ (0, t0) such that

|v(t1)| = Γ and |v(t)| > Γ for each t ∈ (t1, t0). (16)

There are two cases:
|v(t)| ≥ Γ, t ∈ [t0, T ]; (17)

inf{|v(t)| : t ∈ [t0, T ]} < Γ. (18)

If (17) holds, then we set t2 = T . If (18) is true, then there exists

t2 ∈ (t0, T ) (19)
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for which
|v(t2)| = Γ and |v(t)| > Γ for each t ∈ (t0, t2). (20)

By (4), the choice of t2, (20) and (12),

If (t2, T, v) ≥ σ(f, T − t2, v(t2)) ≥ (T − t2)f(x̄, 0)− c(Γ). (21)

In view of (4), (16) and (12)

If (0, t1, v) ≥ σ(f, t1, v(0)) ≥ t1f(x̄, 0)− c(Γ). (22)

Relations (9) and (21) imply that

If (0, t2, v)− t2f(x̄, 0) = If (0, T, v)− Tf(x̄, 0)− If (t2, T, v) + (T − t2)f(x̄, 0)

≤ M1 −
[

If (t2, T, v)− (T − t2)f(x̄, 0)
]

≤M1 + c(Γ).
(23)

It follows from (23) and (22) that

If (t1, t2, v)− (t2 − t1)f(x̄, 0)

= If (0, t2, v)− t2f(x̄, 0)−
[

If (0, t1, v)− t1f(x̄, 0)
]

≤M1 + 2c(Γ).
(24)

In view of (16) and the choice of t2 (see (17), (20))

|v(t)| ≥ Γ for all t ∈ [t1, t2]. (25)

Together with (3) and (11) the inequality above implies that for t ∈ [t1, t2] (a.e.)

f(v(t), v′(t)) ≥ ψ(|v(t)|)− a ≥ ψ(Γ)− a ≥ 2|f(x̄, 0)|+ 4

and
If (t1, t2, v)− (t2 − t1)f(x̄, 0) ≥ 4(t2 − t1). (26)

Combined with (24) this inequality implies that

t2 − t1 ≤M1 + c(Γ). (27)

Set
E1 = {t ∈ [t1, t0] : |v′(t)| ≥ Γ} , E2 = [t1, t0] \ E1. (28)

Relations (16) and (28) imply that

M2 − Γ ≤ |v(t0)| − |v(t1)| ≤ |v(t0)− v(t1)| ≤

∫ t0

t1

|v′(t)|t

=

∫

E1

|v′(t)|dt+

∫

E2

|v′(t)|dt ≤

∫

E1

|v′(t)|dt+ (t0 − t1)Γ.

Together with (27) and the choice of t2 this relation implies that

∫

E1

|v′(t)|dt ≥M2 − Γ− Γ(M1 + c(Γ)). (29)
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By (3), (28), (11), (27), the choice of t2 and (29)

∫

E1

f(v(t), v′(t))dt

≥

∫

E1

[ψ(|v′(t)|)|v′(t)| − a] dt ≥

∫

E1

ψ(|v′(t)|)|v′(t)|dt− a(t0 − t1)

≥ 4

∫

E1

|v′(t)|dt− a(M1 + c(Γ)) ≥ 4(M2 − Γ)− 4Γ(M1 + c(Γ))− a(M1 + c(Γ)).

(30)

It follows from the choice of t2 (see (17), (19)), (28), (3), (13), (30) and (27) that

∫ t2

t1

f(v(t), v′(t))dt

=

∫

E1

f(v(t), v′(t))dt+

∫

E2

f(v(t), v′(t))dt+

∫ t2

t0

f(v(t), v′(t))dt

≥

∫

E1

f(v(t), v′(t))dt− a(mes(E2))− a(t2 − t0) ≥

∫

E1

f(v(t), v′(t))dt− a(t2 − t1)

≥ 2M2 − (M1 + c(Γ))(4Γ + a)− a(M1 + c(Γ)).

Combined with (24) and (27) this inequality implies that

2M2 ≤ (M1 + c(Γ))(4Γ + 2a) + If (t1, t2, v)

≤ (M1 + c(Γ))(4Γ + 2a) +M1 + 2c(Γ) + (t2 − t1)f(x̄, 0)

≤ (M1 + 2c(Γ))(4Γ + 2a+ 1) + |f(x̄, 0)|(M1 + c(Γ))

≤ (M1 + 2c(Γ))(4Γ + 2a+ 1 + |f(x̄, 0)|).

This inequality contradicts (13). The contradiction we have reached proves that (10)
holds. Proposition 2.1 is proved.

Proposition 2.2 (8, Chapter 10). Let T > 0 and let vk : [0, T ] → Rn, k = 1, 2, . . .
be a sequence of a.c. functions such that the sequence {If (0, T, vk)}

∞

k=1 is bounded and
that the sequence {vk(0)}

∞

k=1 is bounded. Then there exist a strictly increasing sequence
of natural numbers {ki}

∞

i=1 and an a.c. function v : [0, T ] → Rn such that

vki(t) → v(t) as i→ ∞ uniformly on [0, T ],

If (0, T, v) ≤ lim inf
i→∞

If (0, T, vki).

Proposition 2.3. Let ǫ > 0. Then there exists δ > 0 such that if an a.c. function
v : [0, 1] → Rn satisfies |v(0)− x̄|, |v(1)− x̄| ≤ δ, then

If (0, 1, v) ≥ f(x̄, 0)− ǫ.

Proof. In view of (A2) the following property holds:

(P1) If (0, 1, u) ≥ f(x̄, 0) for each a.c. function u : [0, 1] → Rn satisfying u(0) = u(1) = x̄.
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Assume that the proposition is wrong. Then for each integer i ≥ 1 there is an a.c. function
vi : [0, 1] → Rn such that

|vi(0)− x̄|, |vi(1)− x̄| ≤ 1/i, If (0, 1, vi) < f(x̄, 0)− ǫ. (31)

By Proposition 2.2 extracting a subsequence and re-indexing if necessary we may assume
that there is an a.c. function v : [0, 1] → Rn such that

vi(t) → v(t) as i→ ∞ uniformly on [0, 1],

If (0, 1, v) ≤ lim inf
i→∞

If (0, 1, vi) ≤ f(x̄, 0)− ǫ.

Together with (31) this implies that

v(0) = x̄, v(1) = x̄, If (0, 1, v) ≤ f(x̄, 0)− ǫ.

These relations contradict (P1). The contradiction we have reached proves Proposition
2.3.

3. Proof of Proposition 1.2

By Remark 1.1 there is c0 > 0 such that

∫ T

0

f(v(t), v′(t))dt− Tf(x̄, 0) ≥ −c0 for each T > 0. (32)

Assume that there exists a strictly increasing sequence of positive numbers {Tk}
∞

k=1 such
that

Tk ≥ k for each integer k ≥ 1, (33)

sup{If (0, Tk, v)− Tkf(x̄, 0) : k is a natural number} <∞. (34)

In order to prove the proposition it is sufficient to show that v is (f)-good and that
sup{|v(t)| : t ∈ [0,∞)} <∞. By (1) and (3) there is a number M0 such that

M0 > |v(0)|+ 1, (35)

f(y, z) ≥ 2(|f(x̄, 0)|+ 1) for each y, z ∈ Rn satisfying |y| ≥ 4−1M0.

We show that lim inft→∞ |v(t)| < M0. Let us assume the contrary. Then there exists
S0 > 0 such that

|v(t)| ≥ 2−1M0 for each t ≥ S0. (36)

By (3), (36) and (35) for each natural number k such that Tk > S0,

∫ Tk

0

f(vk(t), v
′

k(t))dt− Tkf(x̄, 0)

=

∫ S0

0

f(v(t), v′(t))dt− S0f(x̄, 0) +

∫ Tk

S0

f(v(t), v′(t))dt− (Tk − S0)f(x̄, 0)

≥ S0(−a− f(x̄, 0)) + (Tk − S0)[2(|f(x̄, 0)|+ 1)− f(x̄, 0)] → ∞ as k → ∞.
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This contradicts (34). The contradiction we have reached proves that

lim inf
t→∞

|v(t)| < M0. (37)

By (A2) there is c1 > 0 such that

σ(f, T, x) ≥ Tf(x̄, 0)− c1 for each T > 0 and each x ∈ Rn satisfying |x| ≤M0. (38)

In view of (34) there is c2 > 0 such that

If (0, Tk, v)− Tkf(x̄, 0) ≤ c2 for each natural number k. (39)

Let T > 0. By(37) there exists τ ≥ T such that:

|v(τ)| ≤M0;

if a number t satisfies T ≤ t < τ, then |v(t)| > M0. (40)

In view of (40)

If (0, T, v)− Tf(x̄, 0)

= If (0, τ, v)− τf(x̄, 0)− If (T, τ, v) + (τ − T )f(x̄, 0)

≤ If (0, τ, v)− τf(x̄, 0)− (τ − T )[2(|f(x̄, 0)|+ 1)− f(x̄, 0)]

≤ If (0, τ, v)− τf(x̄, 0).

(41)

Choose a natural number k such that

Tk > τ + 1. (42)

Relations (40) and (38) imply that

If (τ, Tk, v) ≥ σ(f, Tk − τ, v(τ)) ≥ (Tk − τ)f(x̄, 0)− c1. (43)

It follows from (41), (39) and (43) that

If (0, T, v)− Tf(x̄, 0)

≤ If (0, τ, v)− τf(x̄, 0)

≤ If (0, Tk, v)− Tkf(x̄, 0)− If (τ, Tk, v) + (Tk − τ)f(x̄, 0)

≤ c2 − If (τ, Tk, v) + (Tk − τ)f(x̄, 0)

≤ c2 − (Tk − τ)f(x̄, 0) + c1 + (Tk − τ)f(x̄, 0) = c2 + c1.

Thus we have shown that for each T > 0

If (0, T, v)− Tf(x̄, 0) ≤ c2 + c1 (44)

and v is (f)-good. It follows from (44) and Proposition 2.1 that sup{|v(t)| : t ∈ [0,∞)} <
∞. Proposition 1.2 is proved.
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4. Auxiliary results

In this section we assume that (A4) holds. Namely, for each (f)-good function v : [0,∞) →
Rn,

lim
t→∞

|v(t)− x̄| = 0. (45)

Lemma 4.1. Let M, ǫ > 0. Then there exists a number T > 0 such that for each a.c.
function v : [0, T ] → Rn which satisfies

|v(0)| ≤M, If (0, T, v) ≤ Tf(x̄, 0) +M

the following inequality holds:

min{|v(t)− x̄| : t ∈ [0, T ]} ≤ ǫ.

Proof. Let us assume the contrary. Then for each integer k ≥ 1 there exists an a.c.
function vk : [0, k] → Rn such that

|vk(0)| ≤M, If (0, k, vk) ≤ kf(x̄, 0) +M, (46)

min{|vk(t)− x̄| : t ∈ [0, k]} > ǫ. (47)

By Proposition 2.1 and (46) there is a number M1 > 0 such that for each integer k ≥ 1

|vk(t)| ≤M1, t ∈ [0, k]. (48)

By (A2) there is c1 > 0 such that

σ(f, T, x) ≥ Tf(x̄, 0)− c1 for each T > 0 and each x ∈ Rn satisfying |x| ≤M1. (49)

Let q ≥ 1 be an integer. It follows from (46), (48) and (49) that for each integer k > q

If (0, q, vk)− qf(x̄, 0)

= If (0, k, vk)− kf(x̄, 0)−
[

If (q, k, vk)− (k − q)f(x̄, 0)
]

≤ M −
[

If (q, k, vk)− (k − q)f(x̄, 0)
]

≤ M − [σ(f, k − q, vk(q))− (k − q)f(x̄, 0)] ≤M + c1

and
If (0, q, vk) ≤ qf(x̄, 0) +M + c1 for each integer k > q. (50)

In view of (50), (48) and Proposition 2.2 there exist a subsequence {vki}
∞

i=1 and an a.c.
function v : [0,∞) → Rn such that for each natural number q

vki(t) → v(t) as i→ ∞ uniformly on [0, q], (51)

If (0, q, v) ≤ qf(x̄, 0) +M + c1. (52)

Proposition 1.2 and (52) imply that v is an (f)-good function. In view of (A4) limt→∞ v(t)
= x̄. Therefore there is τ > 0 such that |v(τ)− x̄| < ǫ/4. Combined with (51) this implies
that there is an integer i ≥ 1 such that ki > τ and

|vki(τ)− v(τ)| < ǫ/4.

Now we have
|vki(τ)− x̄| ≤ |vki(τ)− v(τ)|+ |v(τ)− x̄| < ǫ/2.

This inequality contradicts (47). The contradiction we have reached proves Lemma 4.1.
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Lemma 4.2. Let M, ǫ > 0. Then there exists L0 > 0 such that for each number T ≥ L0,
each a.c. function v : [0, T ] → Rn satisfying

|v(0)| ≤M, If (0, T, v) ≤ Tf(x̄, 0) +M (53)

and each s ∈ [0, T − L0],

min{|v(t)− x̄| : t ∈ [s, s+ L0]} ≤ ǫ.

Proof. By Proposition 2.1 there exists M0 > M such that for each T > 0 and each a.c.
function v : [0, T ] → Rn which satisfies (53) the following inequality holds:

|v(t)| ≤M0, t ∈ [0, T ]. (54)

In view of (A2) there is c0 > 0 such that

σ(f, T, x) ≥ Tf(x̄, 0)− c0 for each T > 0 and each x ∈ Rn satisfying |x| ≤M0. (55)

Lemma 4.1 implies that there is a number L0 > 0 such that for each a.c. function v :
[0, L0] → Rn which satisfies

|v(0)| ≤M0, If (0, L0, v) ≤ L0f(x̄, 0) +M + 2c0

the following inequality holds:

min{|v(t)− x̄| : t ∈ [0, L0]} ≤ ǫ. (56)

Assume that T ≥ L0, an a.c. function v : [0, T ] → Rn satisfies (53) and that S ∈ [0, T−L0].
By the choice of M0

|v(S)| ≤M0, |v(S + L0)| ≤M0. (57)

In view of the choice of c0, (55), (53) and (57)

If (0, S, v) ≥ σ(f, S, v(0)) ≥ Sf(x̄, 0)− c0, (58)

If (S + L0, T, v) ≥ σ(f, T − (S + L0), v(S + L0)) ≥ (T − (S + L0))f(x̄, 0)− c0. (59)

By (53), (58) and (59)

If (S, S + L0, v)

= If (0, T, v)− If (0, S, v)− If (S + L0, T, v)

≤ Tf(x̄, 0) +M − Sf(x̄, 0) + c0 − (T − S − L0)f(x̄, 0) + c0

= L0f(x̄, 0) +M + 2c0.

(60)

It follows from (60), (57) and the choice of L0 (see (56)) that

min{|v(t)− x̄| : t ∈ [S, L0 + S]} ≤ ǫ.

Lemma 4.2 is proved.
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For each T > 0 and each x, y ∈ Rn define

σ(f, T, x, y) = inf
{

If (0, T, v) : v : [0, T ] → Rn is an a.c. function

such that v(0) = x, v(T ) = y
}

.
(61)

(We recall that infimum over empty set is ∞). By (A1) there exists r̄ ∈ (0, 1) such that:

Ω0 := {(x, y) ∈ Rn ×Rn : |x− x̄| ≤ r̄ and |y| ≤ r̄} ⊂ dom(f); (62)

f is bounded on the set Ω0. (63)

It is not difficult to see that σ(f, T, x, y) is finite for each T ≥ 1 and each x, y ∈ Rn such
that |x− x̄|, |y − x̄| ≤ r̄/2.

Lemma 4.3. Let ǫ > 0. Then there exists δ ∈ (0, r̄/2) such that for each T ≥ 2 and each
a.c. function v : [0, T ] → Rn which satisfies

|v(0)− x̄|, |v(T )− x̄| ≤ δ,

If (0, T, v) ≤ σ(f, T, v(0), v(T )) + δ

the inequality |v(t)− x̄| ≤ ǫ holds for all t ∈ [0, T ].

Proof. By (A1) for each natural number k there exists

δk ∈ (0, 4−kr̄) (64)

such that
|f(x, y)− f(x̄, 0)| ≤ 4−k (65)

for each x, y ∈ Rn satisfying
|x− x̄|, |y| ≤ 2δk. (66)

We may assume without loss of generality that δk+1 < δk for all integers k ≥ 1.

Assume that the lemma is wrong. Then for each natural number k there exist Tk ≥ 2 and
an a.c. function vk : [0, Tk] → Rn such that

|vk(0)− x̄|, |vk(Tk)− x̄| ≤ δk, (67)

If (0, Tk, vk) ≤ σ(f, Tk, vk(0), vk(Tk)) + δk, (68)

max{|vk(t)− x̄| : t ∈ [0, Tk]} > ǫ. (69)

Let k ≥ 1 be an integer. Define an a.c. function uk : [0, Tk] → Rn as follows:

uk(t) = vk(0) + t(x̄− vk(0)), t ∈ [0, 1], uk(t) = x̄, t ∈ (1, Tk − 1],

uk(t) = x̄+ (Tk − t− 1)(vk(Tk)− x̄), t ∈ (Tk − 1, Tk]. (70)

By (70) and (67) for each t ∈ [0, 1] ∪ [Tk − 1, Tk]

|uk(t)− x̄|, |u′k(t)| ≤ δk. (71)
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Together with (65) this implies that for t ∈ [0, 1] ∪ [Tk − 1, Tk] a.e.

|f(uk(t), u
′

k(t))− f(x̄, 0)| ≤ 4−k. (72)

It follows from (68), (70), (72) and (54) that

If (0, Tk, vk) ≤ σ(f, Tk, vk(0), vk(Tk)) + δk ≤ If (0, Tk, uk) + δk

= If (0, 1, uk) + If (Tk − 1, Tk, uk) + (Tk − 2)f(x̄, 0) + δk

≤ Tkf(x̄, 0) + 2 · 4−k + δk ≤ Tkf(x̄, 0) + 3 · 4−k.

(73)

Set

v̄k(t) = vk(t), t ∈ [0, Tk], v̄k(Tk + t) = vk(Tk) + t(vk+1(0)− vk(Tk)), t ∈ (0, 1]. (74)

Clearly, v̄k : [0, Tk + 1] → Rn is an a.c. function,

v̄k(0) = vk(0), v̄k(Tk + 1) = vk+1(0). (75)

By (74), (67) and the inequality δk+1 < δk for t ∈ [Tk, Tk + 1]

|v̄k(t)− x̄| = |(1− t+ Tk)vk(Tk) + (t− Tk)vk+1(0)− x̄|

≤ (1− t+ Tk)|vk(Tk)− x̄|+ (t− Tk)|vk+1(0)− x̄|

≤ (1− t+ Tk)δk + (t− Tk)δk+1 ≤ δk,

(76)

|v̄′k(t)| = |vk+1(0)− vk(Tk)| ≤ |vk+1(0)− x̄|+ |x̄− vk(Tk)| ≤ δk+1 + δk ≤ 2δk. (77)

In view of (76), (77), (65) and (66) for t ∈ [Tk, Tk + 1] a.e.

|f(v̄k(t), v̄
′

k(t))− f(x̄, 0)| ≤ 4−k. (78)

By (74), (73) and (78)

If (0, Tk + 1, v̄k) = If (0, Tk, vk) + If (Tk, Tk + 1, v̄k)

≤ Tkf(x̄, 0) + 3 · 4−k + f(x̄, 0) + 4−k = (Tk + 1)f(x̄, 0) + 4−k+1.
(79)

By (75) there exists an a.c. function u : [0,∞) → Rn such that

u(t) = v̄1(t), t ∈ [0, T1 + 1] (80)

and that for each integer k ≥ 1

u(
k

∑

i=1

(Ti + 1) + t) = v̄k+1(t), t ∈ [0, Tk+1 + 1]. (81)

In view of (80), (81) and (79) for each integer k ≥ 1

If (0,
k+1
∑

i=1

(Ti + 1), u) =
k

∑

i=1

If (
i

∑

j=1

(Tj + 1),
i+1
∑

j=1

(Tj + 1), u) + If (0, T1 + 1, u)

=
k

∑

i=1

If (0, 1 + Ti+1, v̄i+1) + If (0, T1 + 1, v̄1)

=
k+1
∑

i=1

If (0, Ti + 1, v̄i)

≤
k+1
∑

i=1

[(Ti + 1)f(x̄, 0) + 4−i+1] ≤
k+1
∑

i=1

(Ti + 1)f(x̄, 0) + 4.
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Since this relation holds for any integer k ≥ 1 it follows from Proposition 1.2 that the
function u is (f)-good. Together with (A4) this implies that

lim
t→∞

|u(t)− x̄| = 0.

On the other hand by (80), (81), (74) and (69) lim supt→∞
|u(t)−x̄| ≥ ǫ. The contradiction

we have reached proves Lemma 4.3.

5. Completion of the proof of Theorem 1.3

Let r̄ ∈ (0, 1) satisfy (62) and (63). We may assume without loss of generality that
ǫ < r̄/2. By Lemma 4.3 there exists a positive number δ < ǫ/2 such that the following
property holds:

(P2) For each T ≥ 2 and each a.c. function v : [0, T ] → Rn which satisfies |v(0) − x̄|,
|v(T )− x̄| ≤ δ and

If (0, T, v) ≤ σ(f, T, v(0), v(T )) + δ

the inequality |v(t)− x̄| ≤ ǫ holds for all t ∈ [0, T ].

By Lemma 4.2 there exists L0 > 0 such that the following property holds:

(P3) For each T ≥ L0, each a.c. function v : [0, T ] → Rn satisfying

|v(0)| ≤M, If (0, T, v) ≤ Tf(x̄, 0) +M + 1

and each S ∈ [0, T − L0]

min{|v(t)− x̄| : t ∈ [S, S + L0]} ≤ δ.

Choose a natural number
L > 4L0 + 4. (82)

Assume that T > 2L and an a.c. function v : [0, T ] → Rn satisfies

v(0) ∈ XM , If (0, T, v) ≤ σ(f, T, v(0)) + δ. (83)

In view of (83)
|v(0)| ≤M (84)

and there exists an ac. function u : [0,∞) → Rn such that

u(0) = v(0), If (0, τ, u)− τf(x̄, 0) ≤M for each τ ∈ (0,∞). (85)

By (83) and (85)

If (0, T, v) ≤ δ + σ(f, T, v(0)) ≤ 1 + If (0, T, u) ≤ Tf(x̄, 0) +M + 1. (86)

It follows from (84), (86), (82) and the property (P3) that there exist

τ1 ∈ [0, L0], τ2 ∈ [T − L0, T ] (87)

such that
|v(τi)− x̄| ≤ δ, i = 1, 2. (88)

If |v(0)− x̄| ≤ δ, then set τ1 = 0. Clearly, τ2 − τ1 ≥ T − 2L0 > 4. By (83)

If (τ1, τ2, v) ≤ σ(f, τ2 − τ1, v(τ1), v(τ2)) + δ. (89)

It follows from (89), (88) and the relation τ2− τ1 > 4 that |v(t)− x̄| ≤ ǫ for all t ∈ [τ1, τ2].
Theorem 1.3 is proved.
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6. Proof of Theorem 1.4

Let x ∈ Rn and let v : [0,∞) → Rn be an (f)-good function satisfying v(0) = x. Let
{Tk}

∞

k=1 be a strictly increasing sequence of natural numbers. By definition there is c0 > 0
such that

|If (0, S, v)− Sf(x̄, 0)| ≤ c0 for each T ∈ (0,∞). (90)

By Proposition 2.2 for each natural number Tk there exists an a.c. function vk : [0, Tk] →
Rn such that

vk(0) = x, If (0, Tk, vk) = σ(f, Tk, x). (91)

In view of (90) and (91) for each integer k ≥ 1

If (0, Tk, vk) ≤ If (0, Tk, v) ≤ Tkf(x̄, 0) + c0. (92)

It follows from (92), (91) and Proposition 2.1 that there exists M0 > 0 such that for each
integer k ≥ 1

|vk(t)| ≤M0, t ∈ [0, Tk]. (93)

By (A2) there is c1 > 0 such that

σ(f, S, z) ≥ Sf(x̄, 0)− c1 for each S > 0 and each z ∈ Rn satisfying |z| ≤M0. (94)

Relations (93) and (94) imply that for each integer k ≥ 1 and each S ∈ [0, Tk)

If (S, Tk, vk) ≥ (Tk − S)f(x̄, 0)− c1. (95)

Together with (92) this inequality implies that for each integer k ≥ 1 and each S ∈ (0, Tk)

If (0, S, vk) = If (0, Tk, vk)− If (S, Tk, vk)

≤ Tkf(x̄, 0) + c0 − (Tk − S)f(x̄, 0) + c1 = Sf(x̄, 0) + c0 + c1.
(96)

By (96) for each integer m ≥ 1 the sequence {If (0,m, vk)}
∞

k=m is bounded. Together
with Proposition 2.2 this implies that there exist a strictly increasing sequence of natural
numbers {ki}

∞

i=1 and an a.c. function u : [0,∞) → Rn such that for each integer m ≥ 1

vki(t) → u(t) as i→ ∞ uniformly on [0,m], (97)

If (0,m, u) ≤ lim inf
i→∞

If (0,m, vki). (98)

In view of (98) and (96) for each integer m ≥ 1

If (0,m, u) ≤ mf(x̄, 0) + c0 + c1. (99)

Therefore u is an (f)-good function and

lim
t→∞

|u(t)− x̄| = 0. (100)

We show that u is an (f)-overtaking optimal function. Let us assume the contrary. Then
there exists an a.c. function w : [0,∞) → Rn such that

w(0) = u(0), lim sup
T→∞

[If (0, T, u)− If (0, T, w)] > ∆, (101)
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where ∆ is a positive constant. Since u is (f)-good it follows from (101) and Proposition
1.2 that w is an (f)-good function. Hence

lim
t→∞

|w(t)− x̄| = 0. (102)

By (A1) and Proposition 2.3 there is δ ∈ (0, 1) such that:

{(y, z) ∈ Rn ×Rn : |y − x̄| ≤ 4δ, |z| ≤ 4δ} ⊂ dom(f), (103)

|f(y, z)− f(x̄, 0)| ≤ ∆/16 (104)

for each y ∈ Rn satisfying |y − x̄| ≤ 4δ and each z ∈ Rn satisfying |z| ≤ 4δ;

for each a.c. function v : [0, 1] → Rn satisfying |v(0)− x̄|, |v(1)− x̄| ≤ 4δ we have

If (0, 1, v) ≥ f(x̄, 0)−∆/16. (105)

Relations (100) and (102) imply that there exists τ0 ≥ 4 such that

|w(t)− x̄|, |u(t)− x̄| ≤ δ/4 for all numbers t ≥ τ0. (106)

By (101) there exists an integer τ1 ≥ 4(τ0 + 4) such that

If (0, τ1, u)− If (0τ1, w) > ∆. (107)

In view of (97) and (98) there exists a natural number q such that

Tq > 4(τ1 + 4), (108)

|vq(t)− u(t)| ≤ δ/16, t ∈ [0, 4τ1 + 4], (109)

If (0, τ1, u) ≤ If (0, τ1, vq) + ∆/64. (110)

Define an a.c. function ṽ : [0, Tq] → Rn as follows:

ṽ(t) = w(t), t ∈ [0, τ1], (111)

ṽ(t) = w(τ1) + (t− τ1)(vq(τ1 + 1)− w(τ1)), t ∈ (τ1, τ1 + 1],

ṽ(t) = vq(t), t ∈ (τ1 + 1, Tq].

By (111), (110) and (107)

If (0, Tq, ṽ)− If (0, Tq, vq)

= If (0, τ1 + 1, ṽ)− If (0, τ1 + 1, vq)

= If (0, τ1, w)− If (0, τ1, vq) + If (τ1, τ1 + 1, ṽ)− If (τ1, τ1 + 1, vq)

≤ If (0, τ1, w)− If (0, τ1, u) + ∆/64 + If (τ1, τ1 + 1, ṽ)− If (τ1, τ1 + 1, vq)

≤ −∆+∆/64 + If (τ1, τ1 + 1, ṽ)− If (τ1, τ1 + 1, vq).

(112)

In view of (109) and (106) for s = τ1, τ1 + 1

|vq(s)− x̄| ≤ |vq(s)− u(s)|+ |u(s)− x̄| ≤ δ/16 + δ/4. (113)
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Combined with (105) this inequality implies that

If (τ1, τ1 + 1, vq) ≥ f(x̄, 0)−∆/16. (114)

Relations (111), (113) and (106) imply that for all t ∈ (τ1, τ1 + 1)

|ṽ(t)− x̄| ≤ (1− t+ τ1)|w(τ1)− x̄|+ (t− τ1)|vq(τ1 + 1)− x̄|

≤ (1− t+ τ1)δ/4 + (t− τ1)δ/16 + (t− τ1)δ/4 < δ/2.
(115)

It follows from (111), (109) and (106) that for all t ∈ (τ1, τ1 + 1)

|ṽ′(t)| = |vq(τ1 + 1)− w(τ1)|

≤ |vq(τ1 + 1)− u(τ1 + 1)|+ |u(τ1 + 1)− x̄|

+ |x̄− w(τ1)| ≤ δ/16 + δ/4 + δ/4 < (3/4)δ.

(116)

In view of (115), (116) and (104) for all t ∈ (τ1, τ1 + 1), f(ṽ(t), ṽ′(t)) ≤ f(x̄, 0) + ∆/16
and

If (τ1, τ1 + 1, ṽ) ≤ f(x̃, 0) + ∆/16.

Combined with (112) and (114) this inequality implies that

If (0, Tq, ṽ)− I(0, Tq, vq)

≤ −∆+∆/64 + f(x̃, 0) + ∆/16− f(x̄, 0) + ∆/16 < −∆/2.

Since ṽ(0) = w(0) = u(0) = x = vq(0) the inequality above contradicts (91). The contra-
diction we have reached shows that u is an (f)-overtaking optimal function. Theorem 1.4
is proved.

7. Examples

Example 7.1. Let a0 > 0, ψ0 : [0,∞) → [0,∞) be an increasing function satisfying

lim
t→∞

ψ0(t) = ∞

and let L : Rn ×Rn → [0,∞] be a lower semicontinuous function such that

dom(L) := {(x, y) ∈ Rn ×Rn : L(x, y) <∞} (117)

is nonempty, convex, closed set and

L(x, y) ≥ max{ψ0(|x|), ψ0(|y|)|y|} − a0 for each x, y ∈ Rn. (118)

Assume that for each x ∈ Rn the function L(x, ·) : Rn → R1 ∪ {∞} is convex and that
there exists x̄ ∈ Rn such that

L(x, y) = 0 if and only if (x, y) = (x̄, 0), (119)

(x̄, 0) is an interior point of dom(L) and that L is continuous at (x̄, 0).

Let µ ∈ R1 and l ∈ Rn. Define

f(x, y) = L(x, y) + µ+ 〈l, y〉, x, y ∈ Rn. (120)
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We will show that all the assumptions introduced in Section 1 hold for f .

First note that the function f is lower semicontinuous and that dom(f) =dom(L). Set
ψ(t) = (3/4)ψ0(t), t ∈ [0,∞). Clearly, there exists K0 > 1 such that

ψ0(K0) > 4|l|+ 4. (121)

Set
a = a0 + |µ|+ |l|K0. (122)

We show that (3) holds. Let x, y ∈ Rn. If |y| ≤ K0, then by (120) and (118)

f(x, y) = L(x, y) + µ+ 〈l, y〉

≥ max{ψ0(|x|), ψ0(|y|)|y|} − a0 − |l||y| − |µ|

≥ max{ψ0(|x|), ψ0(|y|)|y|} − a0 − |µ| − |l|K0

≥ max{ψ(|x|), ψ(|y|)|y|} − a.

Thus (3) holds if |y| ≤ K0. Assume that

|y| > K0. (123)

There are two cases:
ψ0(|x|) ≥ ψ0(|y|)|y|; (124)

ψ0(|x|) < ψ0(|y|)|y|. (125)

Assume that (124) holds. By (123), (121) and (124)

|〈l, y〉| ≤ |l||y| ≤ 4−1ψ0(K0)|y| ≤ 4−1ψ0(|y|)|y| ≤ 4−1ψ0|(x)|.

Together with (120), (118) and (122) this implies that

f(x, y) = L(x, y) + µ+ 〈l, y〉

≥ max{ψ0(|x|), ψ0(|y|)|y|} − a0 − |µ| − |〈l, y〉|

≥ max{ψ0(|x|), ψ0(|y|)|y|} − a0 − |µ| − 4−1max{ψ0(|y|)|y|, ψ0(|x|)}

= (3/4)max{ψ0(|x|), ψ0(|y|)|y|} − a0 − |µ|

≥ max{ψ(|x|), ψ(|y|)|y|} − a.

Thus (3) holds if (124) is valid.

Assume that (125) holds. Then by (121) and (123)

|〈l, y〉| ≤ |l||y| ≤ 4−1ψ0(K0)|y| ≤ 4−1ψ0(|y|)|y|.

Together with (120), (118) and (125) this inequality implies that

f(x, y) = L(x, y) + µ+ 〈l, y〉 ≥ ψ0(|y|)|y| − a0 − |µ| − 4−1ψ0(|y|)|y|

≥ − a0 − |µ|+ (3/4)ψ0(|y|)|y|

≥ − a0 − |µ|+ (3/4)ψ0(|x|).

Together with (122) and the definition of ψ this implies that

f(x, y) ≥ (3/4)max{ψ0(|x|), ψ0(|y|)|y|} − a0 − |µ| ≥ max{ψ(|x|), ψ(|y)|y|} − a.
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Thus (3) holds if (125) is valid and

f(x, y) ≥ max{ψ(|x|), ψ(|y|)|y|} − a for all x, y ∈ Rn.

By (120) and (119),
µ = f(x̄, 0) ≤ f(x, 0) for each x ∈ Rn.

Clearly, (A1) and (A3) hold.

Proposition 7.2. (A2) holds.

Proof. Let M > 0. By definition of ψ there is M0 > M + 1 such that

ψ(M0) > |µ|+ 1 + a. (126)

Set
cM = (|l|+ 1)(2M0 + 1). (127)

Let T > 0 and x ∈ Rn satisfy |x| ≤M . We will show that

σ(f, T, x) ≥ Tf(x̄, 0)− cM = Tµ− cM . (128)

We may assume without loss of generality that σ(f, T, x) is finite. There exists an a.c.
function v : [0, T ] → Rn such that

v(0) = x,

∫ T

0

f(v(t), v′(t))dt ≤ σ(f, T, x) + 1 (129)

By the relation |x| ≤M and (129) there exists T0 ∈ (0, T ] such that

|v(T0)| ≤M0, |v(t)| > M0 if t satisfies T0 < t ≤ T. (130)

By (130), (128), (126), (120) and (129)

∫ T

0

f(v(t), v′(t))dt =

∫ T0

0

f(v(t), v′(t))dt+

∫ T

T0

f(v(t), v′(t))dt

≥

∫ T0

0

f(v(t), v′(t))dt+ (T − T0)(ψ(M0)− a)

≥

∫ T0

0

f(v(t), v′(t))dt+ (T − T0)|µ| ≥

∫ T0

0

[µ+ 〈l, v′(t)〉]dt+ (T − T0)|µ|

≥ Tµ+ 〈l, v(T0)− v(0)〉 ≥ Tµ− |l|2M0,

σ(f, T, x) ≥ Tµ− 2|l|M0 − 1.

Proposition 7.2 is proved.

The next result shows that (A4) holds for the integrand f .

Proposition 7.3. Let v : [0,∞) → Rn be an (f)-good function. Then

lim
t→∞

|v(t)− x̄| = 0.
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Proof. By Proposition 1.2 and (130),

sup{|v(t)| : t ∈ [0,∞)} <∞, (131)

lim
T→∞

∫ T

0

L(v(t), v′(t))dt <∞. (132)

For each integer i ≥ 0 set

vi(t) = v(t+ i), t ∈ [0, 1]. (133)

Assume that the assertion of the proposition does not hold. Then there exist ǫ > 0 and
a strictly increasing sequence of natural numbers {ik}

∞

k=1 such that for all integers k ≥ 1

sup{|vik(t)− x̄| : t ∈ [0, 1]} ≥ ǫ. (134)

By Proposition 2.2 and (131)–(133), extracting a sequence and re-indexing if necessary,
we may assume without loss of generality that there exists an a.c. function u : [0, 1] → Rn

such that

vik(t) → u(t) as k → ∞ uniformly on [0, 1], (135)

If (0, 1, u) ≤ lim inf
k→∞

If (0, 1, vik). (136)

Relations (134) and (135) imply that

sup{|u(t)− x̄| : t ∈ [0, 1]} ≥ ǫ/4. (137)

In view of (120), (136), (135), (133) and (132)

∫ 1

0

L(u(t), u′(t))dt =

∫ 1

0

f(u(t), u′(t))dt− µ−

∫ 1

0

〈l, u′(t)〉dt

≤ lim inf
k→∞

∫ 1

0

f(vik(t), v
′

ik
(t))dt− µ− lim

k→∞

∫ 1

0

〈l, v′ik(t)〉dt

≤ lim inf
k→∞

∫ 1

0

L(vik(t), v
′

ik
(t))dt = 0.

Therefore L(u(t), u′(t)) = 0, t ∈ [0, 1], (a.e.) and in view of (119) u(t) = x̄ for all t ∈ [0, 1].
This contradicts (137). The contradiction we have reached proves Proposition 7.3.

Thus all the assumptions introduced in Section 1 hold for f .

Example 7.4. Let a > 0, ψ : [0,∞) → [0,∞) be an increasing function such that
limt→∞ ψ(t) = ∞ and let f : Rn × Rn → R1 ∪ {∞} be a convex lower semicontinuous
function such that the set dom(f) is nonempty, convex and closed and that

f(x, y) ≥ max{ψ(|x|), ψ(|y|)|y|} − a for each x, y ∈ Rn.

We assume that there exists x̄ ∈ Rn such that

f(x̄, 0) ≤ f(x, 0) for each x ∈ Rn
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and that (x̄, 0) is an interior point of the set dom(f). It is known that f is continuous at
(x̄, 0). It is well-known fact of convex analysis that there is l ∈ Rn such that

f(x, y) ≥ f(x̄, 0) + 〈l, y〉 for each x, y ∈ Rn.

We assume that for each (x1, y1), (x2, y2) ∈ dom(f) satisfying (x1, y1) 6= (x2, y2) and each
α ∈ (0, 1)

f(α(x1, y1) + (1− α)(x2, y2)) < αf(x1, y1) + (1− α)f(x2, y2).

Set

L(x, y) = f(x, y)− f(x̄, 0)− 〈l, y〉 for each x, y ∈ Rn.

It is not difficult to see that there exist a0 > 0 and an increasing function ψ0 : [0,∞) →
[0,∞) such that

L(x, y) ≥ max{ψ0(|x|), ψ0(|y|)|y|} − a0 for all x, y ∈ Rn.

It is also clear that L is a convex, lower semicontinuous functon and L(x, y) = 0 if and
only if (x, y) = (x̄, 0). Now it is easy to see that our example is a particular case of
Example 7.1 and all the assumptions introduced in Section 1 hold for f .
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[27] C. C. von Weizsäcker: Existence of optimal programs of accumulation for an infinite horizon,
Rev. Econ. Stud. 32 (1965) 85–104.

[28] A. J. Zaslavski: Ground states in Frenkel-Kontorova model, Math. USSR, Izv. 29 (1987)
323–354.

[29] A. J. Zaslavski: Optimal programs on infinite horizon. I, SIAM J. Control Optimization 33
(1995) 1643–1660.

[30] A. J. Zaslavski: Optimal programs on infinite horizon. II, SIAM J. Control Optimization
33 (1995) 1661–1686.

[31] A. J. Zaslavski: Turnpike theorem for convex infinite dimensional discrete-time control
systems, J. Convex Analysis 5 (1998) 237–248.

[32] A. J. Zaslavski: Turnpike theorem for nonautonomous infinite dimensional discrete-time
control systems, Optimization 48 (2000) 69–92.

[33] A. J. Zaslavski: Turnpike Properties in the Calculus of Variations and Optimal Control,
Springer, New York (2006).


