Comparing Fenchel-Moreau Conjugates with Level Set Conjugates

Juan-Enrique Martínez-Legaz*

Departament d'Economia i d'Història Econòmica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain

Ivan Singer[†]

Institute of Mathematics, P.O. Box 1-764, 70700 Bucharest, Romania

Received: November 3, 2006 Revised manuscript received: June 18, 2007

We compare the Fenchel-Moreau second conjugates associated to an arbitrary coupling function φ : $X \times W \to \overline{R} = [-\infty, +\infty]$ between two sets X and W with the second level set conjugates associated to the same coupling. For a coupling φ : $R^n \times R^n \to R = (-\infty, +\infty)$ that is additively homogeneous in one (or both) of the variables we also compare the first conjugates associated to the same coupling. We give an application to the "min-type" coupling function arising in the study of topical functions.

Keywords: Generalized conjugation; Topical functions; Hull operators

2000 Mathematics Subject Classification: 49N15, 26B25, 52A01

1. Introduction

Let us first recall some concepts from abstract convex analysis (see e.g. [8]).

If E and F are two complete lattices (assumed nonempty, throughout the sequel), a mapping $\Delta : E \to F$ is called a polarity (or, as in [8], a "duality"), if for any index set I (including $I = \emptyset$) we have

$$\Delta(\inf_{i\in I} e_i) = \sup_{i\in I} \Delta(e_i),\tag{1}$$

with the usual conventions $\inf_{i \in I} \emptyset = +\infty$, the least element of E, and $\sup_{i \in I} \emptyset = -\infty$, the greatest element of F. The dual of any mapping $\Delta : E \to F$ is the mapping $\Delta' : F \to E$ defined by

$$\Delta'(z) := \inf\{e \in E | \Delta(e) \le z\} \qquad (z \in F).$$
(2)

If $\Delta : E \to F$ is a polarity, then e.g. by [8], Corollary 5.5, the composition $\Delta'\Delta : E \to E$ is a "hull operator". We recall that a mapping $u : E \to E$ is a hull operator (see e.g. [8], Definition 1.4) if for any $x, \tilde{x} \in E$ we have

- (a) $x \leq \tilde{x} \Rightarrow u(x) \leq u(\tilde{x});$
- (b) $u(x) \leq x;$
- (c) u(u(x)) = u(x).

*The research of this author has been partially supported by the Ministerio de Ciencia y Tecnología, Project MTM2005-08572-C03-03, and by the Barcelona Economics Program of XREA.

[†]The research of this author has been partially supported by grant CEx05-D11-23/2005.

ISSN 0944-6532 / \$ 2.50 © Heldermann Verlag

Definition 1.1. Let E and F be two complete lattices and $\Delta : E \to F$ a polarity. An element $x \in E$ is said to be Δ -convex if

$$x = \Delta' \Delta(x). \tag{3}$$

Also, for each $x \in E$, the element $\Delta' \Delta(x)$ will be called the Δ -convex hull of x, and the mapping $x \mapsto \Delta' \Delta(x)$ will be called the Δ -convex hull operator.

Remark 1.2. In [8], p. 180, the elements $x \in E$ satisfying (3) have been called " $\Delta'\Delta$ -convex", and for each $x \in E$ the element $\Delta'\Delta(x)$ has been called the " $\Delta'\Delta$ -convex" hull of x, but the simpler terms " Δ -convex" and " Δ -convex hull of x" introduced here, will lead to no confusion. For the motivation of the terms "hull" and "hull operator", see e.g. [8], Definitions 1.4 and 5.4, and Corollary 5.5.

By [8], Definition 5.6 and Proposition 5.7, if E and F are two complete lattices and $\Delta_1 : E \to F_1$ and $\Delta_2 : E \to F_2$ are two polarities, then Δ_1 is said to be *equivalent to* Δ_2 , in symbols, $\Delta_1 \sim \Delta_2$, if

$$\Delta_1' \Delta_1 = \Delta_2' \Delta_2, \tag{4}$$

that is, if $\Delta'_1 \Delta_1(x) = \Delta'_2 \Delta_2(x)$ for all $x \in E$.

In the present paper we shall consider the particular case of the complete lattice $E = \overline{R}^X$, the set of all functions $f: X \to \overline{R} = [-\infty, +\infty]$, where X is any set (assumed nonempty throughout the sequel, without any special mention) endowed with the partial order \leq and the lattice operations sup and inf defined pointwise on X, that is, $f \leq h$ if and only if $f(x) \leq h(x)$ ($x \in X$), and $(\sup_{i \in I} f_i)(x) := \sup_{i \in I} f_i(x)$, $(\inf_{i \in I} f_i)(x) := \inf_{i \in I} f_i(x)$ ($x \in X$). Thus, the elements of E are now functions $f: X \to \overline{R}$. We recall that if X and W are two (nonempty) sets, any function $\varphi: X \times W \to \overline{R}$ is called a *coupling function*. For a mapping $\Delta: \overline{R}^X \to \overline{R}^W$ it is usual to denote $\Delta(f)$ by f^{Δ} . Then, for example, for any mapping $\Delta: \overline{R}^X \to \overline{R}^W$, formula (2) becomes

$$g^{\Delta'} = \inf\{h \in \overline{R}^X | h^{\Delta} \le g\} \quad (g \in \overline{R}^W).$$
(5)

We shall be concerned with the polarities $\Delta = c(\varphi) : \overline{R}^X \to \overline{R}^W$, the "Fenchel-Moreau conjugation", and $\Delta = L(\varphi) : \overline{R}^X \to \overline{R}^W$, the "level set conjugation", with respect to a coupling function $\varphi : X \times W \to \overline{R}$. For the first one, let us recall that the usual addition + on $R = (-\infty, +\infty)$ admits two natural extensions to \overline{R} , + and +, called *upper* and *lower addition*, respectively, defined by

$$a + b = a + b = a + b$$
 if either $R \cap \{a, b\} \neq \emptyset$ or $a = b = \pm \infty$, (6)

$$a \dot{+} b = +\infty, \quad a + b = -\infty \quad \text{if } a = -b = \pm\infty;$$
(7)

as usual, we shall keep the notation a + b also for $a, b \in \overline{R}$ with $R \cap \{a, b\} \neq \emptyset$. If X, W are two sets and $\varphi : X \times W \to \overline{R}$ is a coupling function, then for a function $f : X \to \overline{R}$ the *Fenchel-Moreau conjugate function of* f with respect to φ is the function $f^{c(\varphi)} : W \to \overline{R}$ defined by

$$f^{c(\varphi)}(w) := \sup_{x \in X} \{\varphi(x, w) + -f(x)\} \quad (w \in W).$$
(8)

The main example corresponds to the case where X is a Banach space (or more generally, a locally convex space), W is X^* (the dual of X), and φ is the usual pairing function ([5], [3]) between X and X^* :

$$\varphi(x, x^*) = x^*(x) \quad (x \in X, x^* \in X^*)$$

It is well-known and immediate that the mapping $\Delta = c(\varphi) : f \longmapsto f^{c(\varphi)}$ is a polarity from \overline{R}^X into \overline{R}^W , and that φ is uniquely determined by $\Delta = c(\varphi)$. Indeed (see e.g. [8], Theorem 8.2), if $\varphi : X \times W \to \overline{R}$ and $\psi : X \times W \to \overline{R}$ are two coupling functions such that $f^{c(\varphi)} = f^{c(\psi)}$ for all $f \in \overline{R}^X$, then by (8), for $f = \chi_{\{x\}}$, where χ_A denotes the indicator function of A, for any set A (that is = 0 on A and = + ∞ outside A), we have

$$\begin{aligned} \varphi(x,w) &= \sup_{x' \in X} \left\{ \varphi(x',w) + -\chi_{\{x\}}(x') \right\} = (\chi_{\{x\}})^{c(\varphi)}(w) = (\chi_{\{x\}})^{c(\psi)}(w) \\ &= \sup_{x' \in X} \left\{ \psi(x',w) + -\chi_{\{x\}}(x') \right\} = \psi(x,w) \quad (x \in X, w \in W). \end{aligned}$$

The Fenchel-Moreau biconjugate of $f : X \to \overline{R}$ with respect to φ is the function $f^{c(\varphi)c(\varphi)'} := (f^{c(\varphi)})^{c(\varphi)'} : X \to \overline{R}$, and the mapping $f \longmapsto f^{c(\varphi)c(\varphi)'}$ is the corresponding *Fenchel-Moreau hull operator*. By (5) for $\Delta = c(\varphi)$ and (8), we have

$$f^{c(\varphi)c(\varphi)'}(x) = \sup_{w \in W} \{\varphi(x, w) + -\sup_{x' \in X} \{\varphi(x', w) + -f(x')\}\} \quad (f \in \overline{R}^X, x \in X).$$
(9)

If X, W are two sets and $\varphi : X \times W \to \overline{R}$ is a coupling function, then for each function $f: X \to \overline{R}$ one defines $f^{L(\varphi)}: W \to \overline{R}$, the *level set conjugate of* f with respect to φ , by

$$f^{L(\varphi)}(w) := \sup_{\substack{x \in X\\\varphi(x,w) > 0}} (-f)(x) \quad (w \in W).$$
(10)

The level set biconjugate of $f: X \to \overline{R}$ with respect to φ is the function $f^{L(\varphi)L(\varphi)'} := (f^{L(\varphi)})^{L(\varphi)'}: X \to \overline{R}$, and the mapping $f \longmapsto f^{L(\varphi)L(\varphi)'}$ is the corresponding *level set hull operator*.

Remark 1.3. In [8], [9] and other papers, the level set conjugate of f with respect to φ was called "conjugate of type Lau" (this term, suggested by the work of Lau [2] and Crouzeix [1], was motivated in [8], p. 435). This notion was defined (see e.g. [8], Definition 8.5) by the slightly different formula

$$f^{L(\varphi)}(w) := \sup_{\substack{x \in X\\\varphi(x,w) > -1}} (-f)(x) \quad (w \in W);$$
(11)

however the results on $\widetilde{L}(\varphi)$, given in [8], remain valid also for $L(\varphi)$, mutatis mutandis. Our present term "level set conjugate", suggested by some particular cases given in [7], was also used in the literature (see e.g. [10], [4]).

We recall (see e.g. [8], Theorem 8.15) that for the level set biconjugates we have

$$f^{L(\varphi)L(\varphi)'}(x) = \sup_{\substack{w' \in W \\ \varphi(x,w') > 0}} \inf_{\substack{x' \in X \\ \varphi(x',w') > 0}} f(x') \quad (f \in \overline{R}^X, x \in X).$$
(12)

In the present paper our main focus will be on the comparison of the Fenchel-Moreau conjugate $f^{c(\varphi)}$ and biconjugate $f^{c(\varphi)c(\varphi)'}$ with the level set conjugate $f^{L(\varphi)}$ and biconjugate $f^{L(\varphi)L(\varphi)'}$ respectively, with respect to the same coupling function $\varphi : X \times W \to \overline{R}$. Some results in this direction have been obtained in [9]. For example, by [9], Remark 4.1, if X, W are two sets and $\varphi : X \times W \to \overline{R}$ is a coupling function, then for any function $f : X \to \overline{R}$ we have

$$f^{c(\varphi)} \ge f^{L(\varphi)};\tag{13}$$

indeed,

$$f^{c(\varphi)}(w) = \sup_{x \in X} \{\varphi(x, w) + -f(x)\} \ge \sup_{\substack{x \in X \\ \varphi(x, w) > 0}} \{\varphi(x, w) + -f(x)\}$$
$$\ge \sup_{\substack{x \in X \\ \varphi(x, w) > 0}} (-f(x)) = f^{L(\varphi)}(w) \quad (w \in W).$$

Note that, similarly, for any function $g: W \to \overline{R}$ we have

$$g^{c(\varphi)'} \ge g^{L(\varphi)'};\tag{14}$$

indeed, by [8], formulas (8.54) and (8.178),

$$g^{c(\varphi)'}(x) = \sup_{w \in W} \{\varphi(x, w) + -g(w)\} \ge \sup_{\substack{w \in W \\ \varphi(x, w) > 0}} \{\varphi(x, w) + -g(w)\}$$
$$\ge \sup_{\substack{w \in W \\ \varphi(x, w) > 0}} (-g(w)) = g^{L(\varphi)'}(x) \quad (x \in X).$$

Every level set conjugation $L(\varphi)$ is also a Fenchel-Moreau conjugation with respect to another coupling function, and hence a polarity. Indeed, we have

Lemma 1.4 (see e.g. [8], Corollary 8.12). Let X, W be two sets and $\varphi : X \times W \to \overline{R}$ a coupling function. Then for the level set conjugation $L(\varphi) : \overline{R}^X \to \overline{R}^W$ there exists a unique coupling function $\varphi_1 : X \times W \to \{0, -\infty\}$ such that

$$L(\varphi) = c(\varphi_1),\tag{15}$$

namely

$$\varphi_1 := -\chi_P,\tag{16}$$

where

$$P := \{ (x, w) \in X \times W \mid \varphi(x, w) > 0 \}.$$

$$(17)$$

Therefore, we shall use the following

Basic observation: The problem of comparing $f^{c(\varphi)}$ and $f^{L(\varphi)}$) respectively, $f^{c(\varphi)c(\varphi)'}$ and $f^{L(\varphi)L(\varphi)'}$) amounts to the problem of comparing the two Fenchel-Moreau conjugates $f^{c(\varphi)}$ and $f^{c(\varphi_1)}$ (respectively, biconjugates $f^{c(\varphi)c(\varphi)'}$ and $f^{c(\varphi_1)c(\varphi_1)'}$), with φ_1 of (16), (17).

According to Definition 1.1 above, applied to $\Delta = c(\varphi)$, we shall say that a function $f: X \to \overline{R}$ is $c(\varphi)$ -convex, if

$$f = f^{c(\varphi)c(\varphi)'}.$$
(18)

We recall the following well-known result, which we shall use in the sequel:

Lemma 1.5 (see e.g. [8], Corollary 8.5 and Remark 1.1(c)). Let X, W be two sets and $\varphi : X \times W \to \overline{R}$ a coupling function. For a function $f : X \to \overline{R}$ the following statements are equivalent:

- 1°. f is $c(\varphi)$ -convex.
- 2° . There exists a subset M of $W \times R$ such that

$$f = \sup_{(w,d)\in M} \{\varphi(.,w) + d\}.$$
 (19)

 3° . We have

$$f = \sup_{\substack{w \in W, d \in R\\\varphi(.,w)+d \le f}} \{\varphi(.,w)+d\}.$$
(20)

We have the following useful consequence of Lemma 1.5:

Corollary 1.6. Let X, W be two sets and $\varphi : X \times W \to \overline{R}$ a coupling function. Then for each $w \in W$, the function $\varphi(., w) : X \to \overline{R}$ is $c(\varphi)$ -convex.

Proof. For any $w \in W$, we have

$$\varphi(.,w) = \sup_{(w',d) \in \{(w,0)\}} \{\varphi(.,w') + d\},\$$

that is, (19) for $f = \varphi(., w)$, with $M \subset W \times R$ defined by $M = \{(w, 0)\}$. Hence, by Lemma 1.5, the conclusion follows.

2. Comparison of Fenchel-Moreau hull operators with level set hull operators

We have the following result on comparison of Fenchel-Moreau hull operators with respect to two different coupling functions:

Proposition 2.1. Let X, W_1, W_2 be three sets and $\varphi : X \times W_1 \to \overline{R}, \psi : X \times W_2 \to \overline{R}$ two coupling functions. The following statements are equivalent:

1°. We have
$$c(\varphi)'c(\varphi) \leq c(\psi)'c(\psi)$$
, that is,

$$f^{c(\varphi)c(\varphi)'} \le f^{c(\psi)c(\psi)'} \quad (f \in \overline{R}^X).$$
 (21)

2°. For each $w \in W_1$, the function $\varphi(., w)$ is $c(\psi)$ -convex.

Proof. $1^{\circ} \Rightarrow 2^{\circ}$. Assume 1° and let $w \in W_1$. Then, by Corollary 1.6 and 1° (for $f = \varphi(., w)$), we have

$$\varphi(.,w) = \varphi(.,w)^{c(\varphi)c(\varphi)'} \le \varphi(.,w)^{c(\psi)c(\psi)'} \le \varphi(.,w),$$

whence $\varphi(., w)^{c(\psi)c(\psi)'} = \varphi(., w).$

 $2^{\circ} \Rightarrow 1^{\circ}$. Assume 2° and let $f \in \overline{R}^{X}$. Then, since $f^{c(\varphi)c(\varphi)'}$ is $c(\varphi)$ -convex (indeed, $f^{c(\varphi)c(\varphi)'c(\varphi)c(\varphi)'} = f^{c(\varphi)c(\varphi)'}$), by Lemma 1.5 there exists a subset P of $W_1 \times R$ such that

$$f^{c(\varphi)c(\varphi)'} = \sup_{(w,d)\in P} \{\varphi(.,w) + d\}.$$
(22)

But, by 2° and Lemma 1.5, for each $w \in W_1$ there exists a subset P_w of $W_2 \times R$ such that

$$\varphi(.,w) = \sup_{(w',d')\in P_w} \{\psi(.,w') + d'\}.$$
(23)

Consequently, by (22) and (23),

$$f^{c(\varphi)c(\varphi)'} = \sup_{\substack{(w,d)\in P\\(w',d')\in P_w}} \{\psi(.,w') + d' + d\}.$$
(24)

Therefore, again by Lemma 1.5, $f^{c(\varphi)c(\varphi)'}$ is $c(\psi)$ -convex. Hence, since $f^{c(\varphi)c(\varphi)'} \leq f$, it follows that $f^{c(\varphi)c(\varphi)'}$ is less than or equal to the greatest $c(\psi)$ -convex function majorized by f, i.e., $f^{c(\varphi)c(\varphi)'} \leq f^{c(\psi)c(\psi)'}$.

Remark 2.2. The above conditions are equivalent to the following one:

3°. Every $c(\varphi)$ -convex function is $c(\psi)$ -convex.

Indeed, more generally, the equivalence $1^{\circ} \Leftrightarrow 3^{\circ}$ holds for any two hull operators on a complete lattice. For, let us recall that if u is a hull operator on a complete lattice E, an element $x \in E$ is said to be *u*-convex (see e.g. [8], Definition 1.9) if u(x) = x. For any two hull operators $u_1, u_2 : E \to E$ the following statements are equivalent:

1'. We have $u_1 \leq u_2$ (that is, $u_1(x) \leq u_2(x)$ for all $x \in E$).

2'. Every u_1 -convex element $x \in E$ is u_2 -convex (that is, $u_1(x) = x \Rightarrow u_2(x) = x$).

Indeed, if 1' holds and $x \in E$, $u_1(x) = x$, then $x = u_1(x) \leq u_2(x) \leq x$, whence $u_2(x) = x$. Conversely, if 2' holds and $x \in E$, then since $u_1(u_1(x)) = u_1(x)$, by 2' applied to $u_1(x)$ we have $u_2(u_1(x)) = u_1(x)$. But, since $u_1(x) \leq x$, we have $u_2(u_1(x)) \leq u_2(x)$. Hence, finally, $u_1(x) \leq u_2(x)$. Applying this fact to $E = \overline{R}^X$ (with the natural order \leq) and the hull operators $u_1 = c(\varphi)'c(\varphi), u_2 = c(\psi)'c(\psi)$, we obtain the equivalence $1^\circ \Leftrightarrow 3^\circ$ mentioned above.

Corollary 2.3. Let X, W_1, W_2 be three sets and $\varphi : X \times W_1 \to \overline{R}, \psi : X \times W_2 \to \overline{R}$ two coupling functions. The following statements are equivalent:

1°. We have $c(\varphi)'c(\varphi) = c(\psi)'c(\psi)$, that is,

$$f^{c(\varphi)c(\varphi)'} = f^{c(\psi)c(\psi)'} \quad (f \in \overline{R}^X).$$
(25)

2°. For each $w \in W_1$, the function $\varphi(., w)$ is $c(\psi)$ -convex, and for each $w \in W_2$, the function $\psi(., w)$ is $c(\varphi)$ -convex.

Remark 2.4. By Remark 2.2 the above conditions are equivalent to the following one:

3°. The classes of $c(\varphi)$ -convex functions and of $c(\psi)$ -convex functions coincide.

In the next two propositions we shall apply Proposition 2.1 to the particular case where $W_1 = W_2 = W$, the first one of the conjugates is a Fenchel-Moreau conjugate and the second one is a level set conjugate (which, as was observed above, is also a Fenchel-Moreau conjugate).

Proposition 2.5. Let X, W be two sets and $\varphi : X \times W \to \overline{R}$ a coupling function. For a function $f : X \to \overline{R}$ the following statements are equivalent:

J.-E. Martínez-Legaz, I. Singer / Comparing Fenchel-Moreau Conjugates with ... 291

1°. We have $c(\varphi)'c(\varphi) \leq L(\varphi)'L(\varphi)$, that is,

$$f^{c(\varphi)c(\varphi)'} \le f^{L(\varphi)L(\varphi)'} \quad (f \in \overline{R}^X).$$
(26)

 2° . We have

$$\varphi(x,w) = \sup_{\substack{w' \in W \\ \varphi(x,w') > 0}} \inf_{\substack{x' \in X \\ \varphi(x',w') > 0}} \varphi(x',w) \quad ((x,w) \in X \times W).$$
(27)

3°. For each $w \in W$ the function $\varphi(., w) : X \to R$ is $L(\varphi)$ -convex, that is, we have

$$\varphi(.,w) = \varphi(.,w)^{L(\varphi)L(\varphi)'}.$$
(28)

Proof. $1^{\circ} \Leftrightarrow 2^{\circ}$. By Lemma 1.4, we have (15), with $\varphi_1 : X \times W \to \{0, -\infty\}$ of (16), so (26) can be written as

$$f^{c(\varphi)c(\varphi)'} \le f^{c(\varphi_1)c(\varphi_1)'} \quad (f \in \overline{R}^X).$$
⁽²⁹⁾

Hence, by Proposition 2.1 (with $\psi = \varphi_1$), we have 1° if and only if for each $w \in W$ the function $\varphi(., w)$ is $c(\varphi_1)$ -convex, that is (by (18), mutatis mutandis),

$$\varphi(.,w) = \varphi(.,w)^{c(\varphi_1)c(\varphi_1)'}.$$
(30)

But, by (15) and (12) (applied to $f = \varphi(., w)$), formula (30) is equivalent to

$$\varphi(x,w) = \sup_{\substack{w' \in W \\ \varphi(x,w') > 0}} \inf_{\substack{x' \in X \\ \varphi(x',w') > 0}} \varphi(x',w) \quad (x \in X).$$
(31)

 $\mathcal{Z}^{\circ} \Leftrightarrow \mathcal{Z}^{\circ}$. By (12) applied to $f = \varphi(., w)$ we have

$$\varphi(x,w)^{L(\varphi)L(\varphi)'} = \sup_{\substack{w' \in W \\ \varphi(x,w') > 0}} \inf_{\substack{x' \in X \\ \varphi(x',w') > 0}} \varphi(x',w) \qquad ((x,w) \in X \times W), \tag{32}$$

and hence $2^{\circ} \Leftrightarrow 3^{\circ}$.

In order to consider the opposite inequality to (26), it will be convenient to introduce the following definition:

Definition 2.6. Let X, W be two sets and $\varphi : X \times W \to \overline{R}$. We shall say that an element $w \in W$ is strictly positive if $\varphi(x, w) > 0$ (that is, $\chi_P(x, w) = 0$, with P of (17)), for all $x \in X$.

Remark 2.7. An element $w \in W$ is not strictly positive if and only if one of the following equivalent conditions holds:

$$\exists x' \in X, (x', w) \notin P \Leftrightarrow \exists x' \in X, \chi_P(x', w) = +\infty \Leftrightarrow \sup_{x \in X} \chi_P(x, w) = +\infty.$$
(33)

Proposition 2.8. Let X and W be two sets and $\varphi : X \times W \to R$ a finite coupling function. The following statements are equivalent:

1°. We have $L(\varphi)' L(\varphi) \leq c(\varphi)' c(\varphi)$, that is,

$$f^{L(\varphi)L(\varphi)'} \le f^{c(\varphi)c(\varphi)'} \quad \left(f \in \overline{R}^X\right).$$
 (34)

- 2°. The following two conditions hold:
 - (a) For any $w \in W$, either w is strictly positive or we have $\varphi(x, w) \leq 0$ for every $x \in X$.
 - (b) If there exists some strictly positive element in W then

$$\sup_{w \in W} \left\{ \varphi\left(x, w\right) - \sup_{x' \in X} \varphi\left(x', w\right) \right\} = 0 \quad (x \in X).$$
(35)

Proof. By Lemma 1.4, we have (15), with $\varphi_1 : X \times W \to \{0, -\infty\}$ of (16), so (34) can be written as

$$f^{c(\varphi_1)c(\varphi_1)'} \le f^{c(\varphi)c(\varphi)'} \quad (f \in \overline{R}^X).$$
(36)

Hence, by Proposition 2.1 (with φ and ψ replaced by φ_1 and φ respectively), we have 1° if and only if for each $w \in W$ the function $\varphi_1(., w)$ is $c(\varphi)$ -convex, that is (by (16), with P of (17)),

$$-\chi_P(\cdot, w) = \left[-\chi_P(\cdot, w)\right]^{c(\varphi)c(\varphi)'} \quad (w \in W).$$
(37)

 $1^{\circ} \Rightarrow 2^{\circ}$. Assume that (37) holds and that $w \in W$ is not strictly positive, and let $x \in X$. Then, by (37), (9) for $f = -\chi_P$, and (33), we have

$$-\chi_P(x,w) = \left[-\chi_P(\cdot,w)\right](x) = \left[-\chi_P(\cdot,w)\right]^{c(\varphi)c(\varphi)'}(x)$$
$$= \sup_{w'\in W} \left\{\varphi(x,w') - \sup_{x'\in X} \left\{\varphi(x',w') + \chi_P(x',w)\right\}\right\}$$
$$= \sup_{w'\in W} \left\{\varphi(x,w') - (+\infty)\right\} = -\infty.$$

Hence $\chi_P(x, w) = +\infty$, that is, $(x, w) \notin P$, which means that $\varphi(x, w) \leq 0$. This proves (a).

To prove (b), assume that there is some strictly positive $w_0 \in W$ and let $x \in X$. Then, by $\chi_P(x', w_0) = 0$ for all $x' \in X$, (37), and (9) for $f = -\chi_P$, we have

$$0 = -\chi_P(x, w_0) = \sup_{w \in W} \left\{ \varphi(x, w) - \sup_{x' \in X} \left\{ \varphi(x', w) + \chi_P(x', w_0) \right\} \right\}$$
$$= \sup_{w \in W} \left\{ \varphi(x, w) - \sup_{x' \in X} \varphi(x', w) \right\},$$

which proves (35).

 $2^{\circ} \Rightarrow 1^{\circ}$. Let $w \in W$ and $x \in X$. Assume first that w is not strictly positive. In this case, by (a) of 2° , we have $\varphi(x', w) \leq 0$, so $\chi_P(x', w) = +\infty$, for all $x' \in X$. Hence, by (9) for $f = -\chi_P$, we obtain

$$\left[-\chi_{P}\left(\cdot,w\right)\right]^{c(\varphi)c(\varphi)'}\left(x\right) = \sup_{w'\in W} \left\{\varphi\left(x,w'\right) - \sup_{x'\in X} \left\{\varphi\left(x',w'\right) + \chi_{P}\left(x',w\right)\right\}\right\}$$
$$= \sup_{w'\in W} \left\{\varphi\left(x,w'\right) + \left(-\infty\right)\right\} = -\infty = -\chi_{P}\left(x,w\right)$$
$$= -\chi_{P}\left(\cdot,w\right)\left(x\right).$$

Assume now that w is strictly positive, and let $x \in X$. Then by (9) for $f = -\chi_P$, (b) of 2° , and since $f \ge f^{c(\varphi)c(\varphi)'}$ for all $f \in \overline{R}^X$, we obtain

$$[-\chi_{P}(\cdot,w)]^{c(\varphi)c(\varphi)'}(x) = \sup_{w'\in W} \left\{ \varphi(x,w') - \sup_{x'\in X} \left\{ \varphi(x',w') + \chi_{P}(x',w) \right\} \right\}$$
$$= \sup_{w'\in W} \left\{ \varphi(x,w') - \sup_{x'\in X} \varphi(x',w') \right\} = 0$$
$$\geq -\chi_{P}(x,w) = -\chi_{P}(\cdot,w)(x)$$
$$\geq [-\chi_{P}(\cdot,w)]^{c(\varphi)c(\varphi)'}(x);$$

therefore, in both cases, $-\chi_P(\cdot, w)(x) = [-\chi_P(\cdot, w)]^{c(\varphi)c(\varphi)'}(x)$. We have thus proved (37).

Here are some examples of the situation of Proposition 2.8, which have applications in optimization:

Example 2.9 (see [4], Example 6.3). Let X be a Hilbert space, $W = (0, +\infty) \times X$, and

$$\varphi(x,(\rho,y)) := -\rho \, \|x - y\|^2 \quad ((x,(\rho,y)) \in X \times W).$$
(38)

Example 2.10 (see [4], Example 6.4). Let $X = W = R^n, 0 < \alpha \le 1, N > 0$, and

$$\varphi(x,w) = -N \|x - w\|^{\alpha} \quad ((x,w) \in X \times W).$$
(39)

Example 2.11 (see [4], Example 6.9). Let $X = W = [0, +\infty)$, and

$$\varphi(x,w) := -\max_{1 \le i \le n} x_i w_i \quad (x = (x_1, ..., x_n), w = (w_1, ..., w_n) \in X).$$
(40)

In these examples $\varphi : X \times W \to R$ satisfies conditions $2^{\circ}(a)$ and (vacuously) $2^{\circ}(b)$ of Proposition 2.8, since it takes nonpositive values. In contrast with the above examples, the situation of Proposition 2.8 does not hold in the convex analytic case where X is a locally convex space, W is its dual and φ is the usual pairing function between X and X^* .

3. Conjugates and biconjugates of a function $f: \mathbb{R}^n \to \overline{\mathbb{R}}$

In this section we shall consider the particular case where

$$X = W = R^n, \tag{41}$$

and, for simplicity, $\varphi: R^n \times R^n \to R$ is a finite coupling function.

We recall (see e.g. [6], [8]) that a function $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ is called

(a) *plus-homogeneous* (or, homogeneous with respect to addition), if

$$f(x + \lambda \mathbf{1}) = f(x) + \lambda \quad (x \in \mathbb{R}^n, \lambda \in \mathbb{R}),$$
(42)

where $\mathbf{1} = (1, ..., 1)$ is the vector of dimension n with all coordinates equal to one;

294 J.-E. Martínez-Legaz, I. Singer / Comparing Fenchel-Moreau Conjugates with ...

(b) *increasing*, if

$$x', x'' \in X, x' \le x'' \Rightarrow f(x') \le f(x''); \tag{43}$$

(c) *topical*, if it is both plus-homogeneous and increasing.

Proposition 3.1. Let $\varphi : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$. If for each $x \in \mathbb{R}^n$ the function $\varphi(x, .) : \mathbb{R}^n \to \mathbb{R}$ is plus-homogeneous, then we have (27), or, equivalently, (26).

Proof. Clearly, we have the inequality \geq in (27). To prove the opposite inequality, let $(x, w) \in \mathbb{R}^n \times \mathbb{R}^n$ and $\varepsilon > 0$ be arbitrary, and let

$$w_{\varepsilon} := w - (\varphi(x, w) - \varepsilon)\mathbf{1}. \tag{44}$$

Then, by (44) and since $\varphi(x, .)$ is plus-homogeneous, we have

$$\varphi(x, w_{\varepsilon}) = \varphi(x, w - (\varphi(x, w) - \varepsilon)\mathbf{1})$$

$$= \varphi(x, w) - \varphi(x, w) + \varepsilon = \varepsilon > 0,$$
(45)

whence, by (45), (44), and since $\varphi(x, .)$ is plus-homogeneous,

$$\sup_{\substack{w' \in R^n \\ \varphi(x,w') > 0}} \inf_{\substack{x' \in R^n \\ \varphi(x',w') > 0}} \varphi(x',w) \geq \inf_{\substack{x' \in R^n \\ \varphi(x',w_\varepsilon) > 0}} \varphi(x',w_\varepsilon + (\varphi(x,w) - \varepsilon)\mathbf{1})$$

$$= \inf_{\substack{x' \in R^n \\ \varphi(x',w_\varepsilon) > 0}} \{\varphi(x',w_\varepsilon) + \varphi(x,w) - \varepsilon\}$$

$$\geq \varphi(x,w) - \varepsilon.$$

Consequently, since $\varepsilon > 0$ was arbitrary, we obtain the inequality \leq in (27), and hence the equality.

Proposition 3.2. Let $\varphi : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$. If for each $w \in \mathbb{R}^n$ the function $\varphi(., w) : \mathbb{R}^n \to \overline{\mathbb{R}}$ is plus-homogeneous, then for every plus-homogeneous function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ we have

$$f^{c(\varphi)} = f^{L(\varphi)}.$$
(46)

Proof. Let $x, w \in \mathbb{R}^n$, and $\varepsilon > 0$, be arbitrary, and let

$$x_{\varepsilon} := x - (\varphi(x, w) - \varepsilon)\mathbf{1}.$$
(47)

Then, since by our assumption $\varphi(., w)$ is plus-homogeneous,

$$\varphi(x_{\varepsilon}, w) = \varphi(x - (\varphi(x, w) - \varepsilon)\mathbf{1}, w) = \varphi(x, w) - (\varphi(x, w) - \varepsilon) > 0$$

and hence, for any plus-homogeneous function $f: \mathbb{R}^n \to \overline{\mathbb{R}}$,

$$\begin{aligned} \varphi(x,w) - f(x) &= \varphi(x,w) - f(x_{\varepsilon} + (\varphi(x,w) - \varepsilon)\mathbf{1}) \\ &= \varphi(x,w) - [f(x_{\varepsilon}) + \varphi(x,w) - \varepsilon] = -f(x_{\varepsilon}) + \varepsilon \\ &\leq \sup_{\substack{x \in R^n \\ \varphi(x,w) > 0}} (-f(x)) + \varepsilon = f^{L(\varphi)} + \varepsilon. \end{aligned}$$

Consequently, since $x \in \mathbb{R}^n$ was arbitrary, we obtain $f^{c(\varphi)}(w) \leq f^{L(\varphi)}(w) + \varepsilon$, whence, since $w \in W$ and $\varepsilon > 0$ were arbitrary,

$$f^{c(\varphi)} \le f^{L(\varphi)},$$

which, together with (13), yields (46).

Remark 3.3. (a) Concerning the assumption of Proposition 3.2, let us observe that for any $\varphi : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, the following statements are equivalent:

1°. For each $w \in W$ the function $\varphi(., w)$ is plus-homogeneous.

2°. Every $c(\varphi)$ -convex function $f: \mathbb{R}^n \to \mathbb{R}$ is plus-homogeneous.

Indeed, if for each $w \in W$ the function $\varphi(., w)$ is plus-homogeneous, then so is the function $\varphi(., w) + d$, for each $d \in R$. Consequently, by Lemma 1.5 and since the supremum of any family of plus-homogeneous functions is plus-homogeneous, it follows that every $c(\varphi)$ -convex function $f : \mathbb{R}^n \to \mathbb{R}$ is plus-homogeneous. Thus, $1^\circ \Rightarrow 2^\circ$. The reverse implication $2^\circ \Rightarrow 1^\circ$ follows from Corollary 1.6.

(b) In the particular case where $\varphi = \mu$, the so-called "min-type coupling function" μ : $R^n \times R^n \to R$ defined by

$$\mu(x,w) := \min_{1 \le i \le n} (x_i + w_i) \quad (x = (x_1, ..., x_n), w = (w_1, ..., w_n) \in \mathbb{R}^n),$$
(48)

and f is a topical function, Proposition 3.2 was proved, with a different method, in [9], Theorem 4.2.

From Proposition 3.2 and Remark 3.3(a) we obtain:

Corollary 3.4. Under the assumptions of Proposition 3.2, for every $c(\varphi)$ -convex function $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ we have (46).

Theorem 3.5. Let $\varphi : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$. If for each $x, w \in \mathbb{R}^n$ the functions $\varphi(x, .) : \mathbb{R}^n \to \mathbb{R}$ and $\varphi(., w) : \mathbb{R}^n \to \mathbb{R}$ are plus-homogeneous, then for any function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ the following statements are equivalent:

1°. We have (46).
 2°. We have

$$f^{c(\varphi)c(\varphi)'} = f^{L(\varphi)L(\varphi)'}.$$
(49)

3°. $f^{L(\varphi)L(\varphi)'}$ is $c(\varphi)$ -convex. 4°. We have

$$f^{L(\varphi)L(\varphi)'c(\varphi)} = f^{L(\varphi)}.$$
(50)

Proof. $1^{\circ} \Rightarrow 2^{\circ}$. Assume 1° . Then by the plus-homogeneity of $\varphi(x, .)$ for each $x \in \mathbb{R}^n$, Proposition 3.1, (46) and (14) applied to $g = f^{c(\varphi)}$, we have

$$f^{c(\varphi)c(\varphi)'} \leq f^{L(\varphi)L(\varphi)'} = f^{c(\varphi)L(\varphi)'} \leq f^{c(\varphi)c(\varphi)'}$$

and hence (49).

 $2^{\circ} \Rightarrow 3^{\circ}$. If 2° holds, then

$$f^{L(\varphi)L(\varphi)'} = f^{c(\varphi)c(\varphi)'} = f^{c(\varphi)c(\varphi)'c(\varphi)c(\varphi)'} = f^{L(\varphi)L(\varphi)'c(\varphi)c(\varphi)'}$$

 $3^{\circ} \Rightarrow 4^{\circ}$. If 3° holds, then by the plus-homogeneity of $\varphi(., w)$ for each $w \in \mathbb{R}^n$ and Proposition 3.2 applied to the $c(\varphi)$ -convex function $f^{L(\varphi)L(\varphi)'}$, we have

$$f^{L(\varphi)L(\varphi)'c(\varphi)} = f^{L(\varphi)L(\varphi)'L(\varphi)} = f^{L(\varphi)}.$$

296 J.-E. Martínez-Legaz, I. Singer / Comparing Fenchel-Moreau Conjugates with ...

 $4^{\circ} \Rightarrow 1^{\circ}$. Assume 4° . Then, by $f^{L(\varphi)L(\varphi)'} \leq f, 4^{\circ}$, and (13), we obtain

$$f^{c(\varphi)} \leq f^{L(\varphi)L(\varphi)'c(\varphi)} = f^{L(\varphi)} \leq f^{c(\varphi)}$$

and hence (46).

Remark 3.6. There exist some useful coupling functions satisfying the assumptions of Theorem 3.5 (and hence those of Propositions 3.1 and 3.2), for example, the "min-type" coupling function $\varphi = \mu$ of (48), and the "max-type" coupling function $\varphi_{\max} : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ defined by

$$\varphi_{\max}(x,w) := \max_{1 \le i \le n} (x_i + w_i) \quad (x = (x_1, ..., x_n), w = (w_1, ..., w_n) \in \mathbb{R}^n).$$
(51)

Let us recall that by [6], Remark 5.4(c) and [9], Proposition 3.1(b), for the min-type coupling function $\varphi = \mu$ of (48) and any function $f : \mathbb{R}^n \to \overline{\mathbb{R}}, f^{c(\mu)c(\mu)'}$ is the topical hull of f (i.e., the greatest topical minorant of f), and

$$f^{L(\mu)L(\mu)'} = \overline{f}_{<},\tag{52}$$

the increasing lower semicontinuous hull of f. Hence, by Proposition 2.5 for $\varphi = \mu$ (or, alternatively, since by [6], Corollary 5.2, every topical function is increasing and lower semicontinuous), we have

$$f^{c(\mu)c(\mu)'} \le f^{L(\mu)L(\mu)'},$$
(53)

for all functions $f: \mathbb{R}^n \to \overline{\mathbb{R}}$. Concerning the equality, from Theorem 3.5 for $\varphi = \mu$ we obtain:

Corollary 3.7. For any function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ the following statements are equivalent:

1°. We have

$$f^{c(\mu)} = f^{L(\mu)}.$$
 (54)

 2° . We have

$$f^{c(\mu)c(\mu)'} = f^{L(\mu)L(\mu)'}.$$
(55)

- 3°. The increasing lower semicontinuous hull \overline{f}_{\leq} of f is topical.
- 4° . \overline{f}_{\leq} satisfies

$$(\overline{f}_{<})^{c(\mu)} = (\overline{f}_{<})^{L(\mu)}.$$
(56)

References

- [1] J.-P. Crouzeix: Contributions à l'Étude des Fonctions Quasi-Convexes, Thèse, Univ. de Clermont (1977).
- [2] L. J. Lau: Duality and the structure of utility functions, J. Econ. Theory 1 (1970) 374–396.
- [3] I. Ekeland, R. Temam: Convex Analysis and Variational Problems, North-Holland, Amsterdam (1976).
- [4] J. E. Martínez-Legaz: Generalized convex duality and its economic applications, in: Handbook of Generalized Convexity and Generalized Monotonicity, N. Hadjisavvas et al. (ed.), Nonconvex Optim. Appl. 76, Springer, New York (2005) 237–292.
- [5] R. T. Rockafellar: Convex Analysis, Princeton University Press, Princeton (1970).

- [6] A. M. Rubinov, I. Singer: Topical and sub-topical functions, downward sets and abstract convexity, Optimization 50 (2001) 307–351.
- [7] I. Singer: Conjugate functionals and level sets, Nonlinear Anal., Theory Methods Appl. 8 (1984) 313–320.
- [8] I. Singer: Abstract Convex Analysis, Wiley, New York (1997).
- [9] I. Singer: Further applications of the additive min-type coupling function, Optimization 51 (2002) 471–485.
- [10] M. Volle: Conjugaison par tranches, Ann. Mat. Pura Appl., IV. Ser. 139 (1985) 279–311.