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Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain

Ivan Singer†

Institute of Mathematics,

P.O. Box 1-764, 70700 Bucharest, Romania

Received: November 3, 2006
Revised manuscript received: June 18, 2007

We compare the Fenchel-Moreau second conjugates associated to an arbitrary coupling function ϕ :
X ×W → R = [−∞,+∞] between two sets X and W with the second level set conjugates associated to
the same coupling. For a coupling ϕ : Rn ×Rn → R = (−∞,+∞) that is additively homogeneous in one
(or both) of the variables we also compare the first conjugates associated to the same coupling. We give
an application to the “min-type” coupling function arising in the study of topical functions.

Keywords: Generalized conjugation; Topical functions; Hull operators

2000 Mathematics Subject Classification: 49N15, 26B25, 52A01

1. Introduction

Let us first recall some concepts from abstract convex analysis (see e.g. [8]).

If E and F are two complete lattices (assumed nonempty, throughout the sequel), a
mapping ∆ : E → F is called a polarity (or, as in [8], a “duality�), if for any index set I
(including I = ∅) we have

∆(inf
i∈I
ei) = sup

i∈I
∆(ei), (1)

with the usual conventions infi∈I ∅ = +∞, the least element of E, and supi∈I ∅ = −∞, the
greatest element of F. The dual of any mapping ∆ : E → F is the mapping ∆′ : F → E
defined by

∆′(z) := inf{e ∈ E|∆(e) ≤ z} (z ∈ F ). (2)

If ∆ : E → F is a polarity, then e.g. by [8], Corollary 5.5, the composition ∆′∆ : E → E
is a “hull operator�. We recall that a mapping u : E → E is a hull operator (see e.g. [8],
Definition 1.4) if for any x, x̃ ∈ E we have

(a) x ≤ x̃⇒ u(x) ≤ u(x̃);

(b) u(x) ≤ x;

(c) u(u(x)) = u(x).
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Definition 1.1. Let E and F be two complete lattices and ∆ : E → F a polarity. An
element x ∈ E is said to be ∆-convex if

x = ∆′∆(x). (3)

Also, for each x ∈ E, the element ∆′∆(x) will be called the ∆-convex hull of x, and the
mapping x 7−→ ∆′∆(x) will be called the ∆-convex hull operator.

Remark 1.2. In [8], p. 180, the elements x ∈ E satisfying (3) have been called “∆′∆-
convex�, and for each x ∈ E the element ∆′∆(x) has been called the “∆′∆-convex� hull
of x, but the simpler terms “∆-convex� and “∆-convex hull of x" introduced here, will
lead to no confusion. For the motivation of the terms “hull� and “hull operator�, see e.g.
[8], Definitions 1.4 and 5.4, and Corollary 5.5.

By [8], Definition 5.6 and Proposition 5.7, if E and F are two complete lattices and
∆1 : E → F1 and ∆2 : E → F2 are two polarities, then ∆1 is said to be equivalent to ∆2,
in symbols, ∆1 s ∆2, if

∆′
1∆1 = ∆′

2∆2, (4)

that is, if ∆′
1∆1(x) = ∆′

2∆2(x) for all x ∈ E.

In the present paper we shall consider the particular case of the complete lattice E = R
X
,

the set of all functions f : X → R = [−∞,+∞], where X is any set (assumed nonempty
throughout the sequel, without any special mention) endowed with the partial order ≤
and the lattice operations sup and inf defined pointwise on X, that is, f ≤ h if and only if
f(x) ≤ h(x) (x ∈ X), and (supi∈Ifi)(x) :=supi∈Ifi(x), (infi∈Ifi)(x) :=infi∈Ifi(x) (x ∈ X).
Thus, the elements of E are now functions f : X → R. We recall that if X and W are
two (nonempty) sets, any function ϕ : X ×W → R is called a coupling function. For a

mapping ∆ : R
X

→ R
W

it is usual to denote ∆(f) by f∆. Then, for example, for any

mapping ∆ : R
X
→ R

W
, formula (2) becomes

g∆
′

= inf{h ∈ R
X
|h∆ ≤ g} (g ∈ R

W
). (5)

We shall be concerned with the polarities ∆ = c(ϕ) : R
X

→ R
W
, the “Fenchel-Moreau

conjugation�, and ∆ = L(ϕ) : R
X
→ R

W
, the “level set conjugation�, with respect to a

coupling function ϕ : X ×W → R. For the first one, let us recall that the usual addition
+ on R = (−∞,+∞) admits two natural extensions to R, �+ and +

·
, called upper and

lower addition, respectively, defined by

a �+b = a+
·
b = a+ b if either R ∩ {a, b} 6= ∅ or a = b = ±∞, (6)

a �+b = +∞, a+
·
b = −∞ if a = −b = ±∞; (7)

as usual, we shall keep the notation a+ b also for a, b ∈ R with R∩{a, b} 6= ∅. If X,W are
two sets and ϕ : X ×W → R is a coupling function, then for a function f : X → R the
Fenchel-Moreau conjugate function of f with respect to ϕ is the function f c(ϕ) : W → R
defined by

f c(ϕ)(w) := sup
x∈X

{ϕ(x,w) +
·
−f(x)} (w ∈W ). (8)
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The main example corresponds to the case where X is a Banach space (or more generally,
a locally convex space), W is X∗ (the dual of X), and ϕ is the usual pairing function ([5],
[3]) between X and X∗ :

ϕ(x, x∗) = x∗(x) (x ∈ X, x∗ ∈ X∗).

It is well-known and immediate that the mapping ∆ = c(ϕ) : f 7−→ f c(ϕ) is a polarity

from R
X

into R
W
, and that ϕ is uniquely determined by ∆ = c(ϕ). Indeed (see e.g. [8],

Theorem 8.2), if ϕ : X ×W → R and ψ : X ×W → R are two coupling functions such

that f c(ϕ) = f c(ψ) for all f ∈ R
X
, then by (8), for f = χ{x}, where χA denotes the indicator

function of A, for any set A (that is = 0 on A and = +∞ outside A), we have

ϕ(x,w) = sup
x′∈X

{ϕ(x′, w) +
·
−χ{x}(x

′)} = (χ{x})
c(ϕ)(w) = (χ{x})

c(ψ)(w)

= sup
x′∈X

{ψ(x′, w) +
·
−χ{x}(x

′)} = ψ(x,w) (x ∈ X,w ∈W ).

The Fenchel-Moreau biconjugate of f : X → R with respect to ϕ is the function
f c(ϕ)c(ϕ)′ := (f c(ϕ))c(ϕ)

′

: X → R, and the mapping f 7−→ f c(ϕ)c(ϕ)′ is the correspond-
ing Fenchel-Moreau hull operator. By (5) for ∆ = c(ϕ) and (8), we have

f c(ϕ)c(ϕ)′(x) = sup
w∈W

{ϕ(x,w) +
·
− sup

x′∈X
{ϕ(x′, w)+

·
− f(x′)}} (f ∈ R

X
, x ∈ X). (9)

If X,W are two sets and ϕ : X ×W → R is a coupling function, then for each function
f : X → R one defines fL(ϕ) : W → R, the level set conjugate of f with respect to ϕ, by

fL(ϕ)(w) := sup
x∈X

ϕ(x,w)>0

(−f)(x) (w ∈W ). (10)

The level set biconjugate of f : X → R with respect to ϕ is the function fL(ϕ)L(ϕ)′ :=
(fL(ϕ))L(ϕ)

′

: X → R, and the mapping f 7−→ fL(ϕ)L(ϕ)′ is the corresponding level set hull
operator.

Remark 1.3. In [8], [9] and other papers, the level set conjugate of f with respect to
ϕ was called “conjugate of type Lau� (this term, suggested by the work of Lau [2] and
Crouzeix [1], was motivated in [8], p. 435). This notion was defined (see e.g. [8], Definition
8.5) by the slightly different formula

f L̃(ϕ)(w) := sup
x∈X

ϕ(x,w)>−1

(−f)(x) (w ∈W ); (11)

however the results on L̃(ϕ), given in [8], remain valid also for L(ϕ), mutatis mutandis.
Our present term “level set conjugate�, suggested by some particular cases given in [7],
was also used in the literature (see e.g. [10], [4]).

We recall (see e.g. [8], Theorem 8.15) that for the level set biconjugates we have

fL(ϕ)L(ϕ)
′

(x) = sup
w′∈W

ϕ(x,w′)>0

inf
x′∈X

ϕ(x′,w′)>0

f(x′) (f ∈ R
X
, x ∈ X). (12)
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In the present paper our main focus will be on the comparison of the Fenchel-Moreau
conjugate f c(ϕ) and biconjugate f c(ϕ)c(ϕ)′ with the level set conjugate fL(ϕ) and biconju-
gate fL(ϕ)L(ϕ)

′

respectively, with respect to the same coupling function ϕ : X ×W → R.
Some results in this direction have been obtained in [9]. For example, by [9], Remark 4.1,
if X,W are two sets and ϕ : X ×W → R is a coupling function, then for any function
f : X → R we have

f c(ϕ) ≥ fL(ϕ); (13)

indeed,

f c(ϕ)(w) = sup
x∈X

{ϕ(x,w) +
·
−f(x)} ≥ sup

x∈X
ϕ(x,w)>0

{ϕ(x,w)+
·
− f(x)}

≥ sup
x∈X

ϕ(x,w)>0

(−f(x)) = fL(ϕ)(w) (w ∈W ).

Note that, similarly, for any function g : W → R we have

gc(ϕ)
′

≥ gL(ϕ)
′

; (14)

indeed, by [8], formulas (8.54) and (8.178),

gc(ϕ)
′

(x) = sup
w∈W

{ϕ(x,w) +
·
−g(w)} ≥ sup

w∈W
ϕ(x,w)>0

{ϕ(x,w)+
·
− g(w)}

≥ sup
w∈W

ϕ(x,w)>0

(−g(w)) = gL(ϕ)
′

(x) (x ∈ X).

Every level set conjugation L(ϕ) is also a Fenchel-Moreau conjugation with respect to
another coupling function, and hence a polarity. Indeed, we have

Lemma 1.4 (see e.g. [8], Corollary 8.12). Let X,W be two sets and ϕ : X×W → R

a coupling function. Then for the level set conjugation L(ϕ) : R
X

→ R
W

there exists a
unique coupling function ϕ1 : X ×W → {0,−∞} such that

L(ϕ) = c(ϕ1), (15)

namely
ϕ1 := −χP , (16)

where
P := {(x,w) ∈ X ×W | ϕ (x,w) > 0}. (17)

Therefore, we shall use the following

Basic observation: The problem of comparing f c(ϕ) and fL(ϕ)) respectively, f c(ϕ)c(ϕ)
′

and fL(ϕ)L(ϕ)′) amounts to the problem of comparing the two Fenchel-Moreau conjugates
f c(ϕ) and f c(ϕ1) (respectively, biconjugates f c(ϕ)c(ϕ)

′

and f c(ϕ1)c(ϕ1)′), with ϕ1 of (16), (17).

According to Definition 1.1 above, applied to ∆ = c(ϕ), we shall say that a function
f : X → R is c(ϕ)-convex, if

f = f c(ϕ)c(ϕ)
′

. (18)

We recall the following well-known result, which we shall use in the sequel:
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Lemma 1.5 (see e.g. [8], Corollary 8.5 and Remark 1.1(c)). Let X,W be two sets
and ϕ : X × W → R a coupling function. For a function f : X → R the following
statements are equivalent:

1 ◦. f is c(ϕ)-convex.

2 ◦. There exists a subset M of W ×R such that

f = sup
(w,d)∈M

{ϕ(., w) + d}. (19)

3 ◦. We have
f = sup

w∈W,d∈R
ϕ(.,w)+d≤f

{ϕ(., w) + d}. (20)

We have the following useful consequence of Lemma 1.5:

Corollary 1.6. Let X,W be two sets and ϕ : X×W → R a coupling function. Then for
each w ∈W, the function ϕ(., w) : X → R is c(ϕ)-convex.

Proof. For any w ∈W, we have

ϕ(., w) = sup
(w′,d)∈{(w,0)}

{ϕ(., w′) + d},

that is, (19) for f = ϕ(., w), with M ⊂ W × R defined by M = {(w, 0)}. Hence, by
Lemma 1.5, the conclusion follows.

2. Comparison of Fenchel-Moreau hull operators with level set hull operators

We have the following result on comparison of Fenchel-Moreau hull operators with respect
to two different coupling functions:

Proposition 2.1. Let X,W1,W2 be three sets and ϕ : X ×W1 → R,ψ : X ×W2 → R
two coupling functions. The following statements are equivalent:

1 ◦. We have c(ϕ)′c(ϕ) ≤ c(ψ)′c(ψ), that is,

f c(ϕ)c(ϕ)
′

≤ f c(ψ)c(ψ)
′

(f ∈ R
X
). (21)

2 ◦. For each w ∈W1, the function ϕ(., w) is c(ψ)-convex.

Proof. 1 ◦ ⇒ 2 ◦. Assume 1 ◦ and let w ∈ W1. Then, by Corollary 1.6 and 1 ◦ (for
f = ϕ(., w)), we have

ϕ(., w) = ϕ(., w)c(ϕ)c(ϕ)
′

≤ ϕ(., w)c(ψ)c(ψ)
′

≤ ϕ(., w),

whence ϕ(., w)c(ψ)c(ψ)
′

= ϕ(., w).

2 ◦ ⇒ 1 ◦. Assume 2 ◦ and let f ∈ R
X
. Then, since f c(ϕ)c(ϕ)

′

is c(ϕ)-convex (indeed,
f c(ϕ)c(ϕ)

′c(ϕ)c(ϕ)′ = f c(ϕ)c(ϕ)
′

), by Lemma 1.5 there exists a subset P of W1 ×R such that

f c(ϕ)c(ϕ)
′

= sup
(w,d)∈P

{ϕ(., w) + d}. (22)
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But, by 2 ◦ and Lemma 1.5, for each w ∈W1 there exists a subset Pw of W2×R such that

ϕ(., w) = sup
(w′,d′)∈Pw

{ψ(., w′) + d′}. (23)

Consequently, by (22) and (23),

f c(ϕ)c(ϕ)
′

= sup
(w,d)∈P

(w′,d′)∈Pw

{ψ(., w′) + d′ + d}. (24)

Therefore, again by Lemma 1.5, f c(ϕ)c(ϕ)
′

is c(ψ)-convex. Hence, since f c(ϕ)c(ϕ)
′

≤ f, it
follows that f c(ϕ)c(ϕ)

′

is less than or equal to the greatest c(ψ)-convex function majorized
by f, i.e., f c(ϕ)c(ϕ)

′

≤ f c(ψ)c(ψ)
′

.

Remark 2.2. The above conditions are equivalent to the following one:

3◦. Every c(ϕ)-convex function is c(ψ)-convex.

Indeed, more generally, the equivalence 1 ◦ ⇔ 3◦ holds for any two hull operators on a
complete lattice. For, let us recall that if u is a hull operator on a complete lattice E, an
element x ∈ E is said to be u-convex (see e.g. [8], Definition 1.9) if u(x) = x. For any
two hull operators u1, u2 : E → E the following statements are equivalent:

1′. We have u1 ≤ u2 (that is, u1(x) ≤ u2(x) for all x ∈ E).

2′. Every u1-convex element x ∈ E is u2-convex (that is, u1(x) = x ⇒ u2(x) = x).

Indeed, if 1′ holds and x ∈ E, u1(x) = x, then x = u1(x) ≤ u2(x) ≤ x, whence u2(x) = x.
Conversely, if 2′ holds and x ∈ E, then since u1(u1(x)) = u1(x), by 2′ applied to u1(x) we
have u2(u1(x)) = u1(x). But, since u1(x) ≤ x, we have u2(u1(x)) ≤ u2(x). Hence, finally,

u1(x) ≤ u2(x). Applying this fact to E = R
X

(with the natural order ≤) and the hull
operators u1 = c(ϕ)′c(ϕ), u2 = c(ψ)′c(ψ), we obtain the equivalence 1 ◦ ⇔ 3◦ mentioned
above.

Corollary 2.3. Let X,W1,W2 be three sets and ϕ : X ×W1 → R,ψ : X ×W2 → R two
coupling functions. The following statements are equivalent:

1 ◦. We have c(ϕ)′c(ϕ) = c(ψ)′c(ψ), that is,

f c(ϕ)c(ϕ)
′

= f c(ψ)c(ψ)
′

(f ∈ R
X
). (25)

2 ◦. For each w ∈ W1, the function ϕ(., w) is c(ψ)-convex, and for each w ∈ W2, the
function ψ(., w) is c(ϕ)-convex.

Remark 2.4. By Remark 2.2 the above conditions are equivalent to the following one:

3◦. The classes of c(ϕ)-convex functions and of c(ψ)-convex functions coincide.

In the next two propositions we shall apply Proposition 2.1 to the particular case where
W1 = W2 = W , the first one of the conjugates is a Fenchel-Moreau conjugate and the
second one is a level set conjugate (which, as was observed above, is also a Fenchel-Moreau
conjugate).

Proposition 2.5. Let X,W be two sets and ϕ : X ×W → R a coupling function. For a
function f : X → R the following statements are equivalent:
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1 ◦. We have c(ϕ)′c(ϕ) ≤ L(ϕ)′L(ϕ), that is,

f c(ϕ)c(ϕ)
′

≤ fL(ϕ)L(ϕ)
′

(f ∈ R
X
). (26)

2 ◦. We have
ϕ(x,w) = sup

w′∈W
ϕ(x,w′)>0

inf
x′∈X

ϕ(x′,w′)>0

ϕ(x′, w) ((x,w) ∈ X ×W ). (27)

3 ◦. For each w ∈W the function ϕ(., w) : X → R is L(ϕ)-convex, that is, we have

ϕ(., w) = ϕ(., w)L(ϕ)L(ϕ)
′

. (28)

Proof. 1 ◦ ⇔ 2 ◦. By Lemma 1.4, we have (15), with ϕ1 : X ×W → {0,−∞} of (16), so
(26) can be written as

f c(ϕ)c(ϕ)
′

≤ f c(ϕ1)c(ϕ1)′ (f ∈ R
X
). (29)

Hence, by Proposition 2.1 (with ψ = ϕ1), we have 1 ◦ if and only if for each w ∈ W the
function ϕ(., w) is c(ϕ1)-convex, that is (by (18), mutatis mutandis),

ϕ(., w) = ϕ(., w)c(ϕ1)c(ϕ1)′ . (30)

But, by (15) and (12) (applied to f = ϕ(., w)), formula (30) is equivalent to

ϕ(x,w) = sup
w′∈W

ϕ(x,w′)>0

inf
x′∈X

ϕ(x′,w′)>0

ϕ(x′, w) (x ∈ X). (31)

2 ◦ ⇔ 3 ◦. By (12) applied to f = ϕ(., w) we have

ϕ(x,w)L(ϕ)L(ϕ)
′

= sup
w′∈W

ϕ(x,w′)>0

inf
x′∈X

ϕ(x′,w′)>0

ϕ(x′, w) ((x,w) ∈ X ×W ), (32)

and hence 2 ◦ ⇔ 3 ◦.

In order to consider the opposite inequality to (26), it will be convenient to introduce the
following definition:

Definition 2.6. Let X,W be two sets and ϕ : X×W → R. We shall say that an element
w ∈ W is strictly positive if ϕ (x,w) > 0 (that is, χP (x,w) = 0, with P of (17)), for all
x ∈ X.

Remark 2.7. An element w ∈W is not strictly positive if and only if one of the following
equivalent conditions holds:

∃x′ ∈ X, (x′, w) /∈ P ⇔ ∃x′ ∈ X,χP (x
′, w) = +∞ ⇔ sup

x∈X
χP (x,w) = +∞. (33)

Proposition 2.8. Let X and W be two sets and ϕ : X × W → R a finite coupling
function. The following statements are equivalent:

1 ◦. We have L (ϕ)′ L (ϕ) ≤ c (ϕ)′ c (ϕ) , that is,

fL(ϕ)L(ϕ)
′

≤ f c(ϕ)c(ϕ)
′

(
f ∈ R

X
)
. (34)
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2 ◦. The following two conditions hold:
(a) For any w ∈ W, either w is strictly positive or we have ϕ (x,w) ≤ 0 for every

x ∈ X.
(b) If there exists some strictly positive element in W then

sup
w∈W

{
ϕ (x,w)− sup

x′∈X
ϕ (x′, w)

}
= 0 (x ∈ X) . (35)

Proof. By Lemma 1.4, we have (15), with ϕ1 : X ×W → {0,−∞} of (16), so (34) can
be written as

f c(ϕ1)c(ϕ1)′ ≤ f c(ϕ)c(ϕ)
′

(f ∈ R
X
). (36)

Hence, by Proposition 2.1 (with ϕ and ψ replaced by ϕ1 and ϕ respectively), we have 1 ◦

if and only if for each w ∈ W the function ϕ1(., w) is c(ϕ)-convex, that is (by (16), with
P of (17)),

−χP (·, w) = [−χP (·, w)]c(ϕ)c(ϕ)
′

(w ∈W ) . (37)

1 ◦ ⇒ 2 ◦. Assume that (37) holds and that w ∈W is not strictly positive, and let x ∈ X.
Then, by (37), (9) for f = −χP , and (33), we have

−χP (x,w) = [−χP (·, w)] (x) = [−χP (·, w)]c(ϕ)c(ϕ)
′

(x)

= sup
w′∈W

{
ϕ (x,w′)− sup

x′∈X
{ϕ (x′, w′) + χP (x′, w)}

}

= sup
w′∈W

{ϕ (x,w′)− (+∞)} = −∞.

Hence χP (x,w) = +∞, that is, (x,w) /∈ P, which means that ϕ (x,w) ≤ 0. This proves
(a).

To prove (b), assume that there is some strictly positive w0 ∈W and let x ∈ X. Then, by
χP (x′, w0) = 0 for all x′ ∈ X, (37), and (9) for f = −χP , we have

0 = −χP (x,w0) = sup
w∈W

{
ϕ (x,w)− sup

x′∈X
{ϕ (x′, w) + χP (x′, w0)}

}

= sup
w∈W

{
ϕ (x,w)− sup

x′∈X
ϕ (x′, w)

}
,

which proves (35).

2 ◦ ⇒ 1 ◦. Let w ∈ W and x ∈ X. Assume first that w is not strictly positive. In this
case, by (a) of 2 ◦, we have ϕ(x′, w) ≤ 0, so χP (x

′, w) = +∞, for all x′ ∈ X. Hence, by
(9) for f = −χP , we obtain

[−χP (·, w)]c(ϕ)c(ϕ)
′

(x) = sup
w′∈W

{
ϕ (x,w′)− sup

x′∈X
{ϕ (x′, w′) + χP (x′, w)}

}

= sup
w′∈W

{ϕ (x,w′) + (−∞)} = −∞ = −χP (x,w)

= −χP (·, w) (x) .
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Assume now that w is strictly positive, and let x ∈ X. Then by (9) for f = −χP , (b) of

2 ◦, and since f ≥ f c(ϕ)c(ϕ)
′

for all f ∈ R
X
, we obtain

[−χP (·, w)]c(ϕ)c(ϕ)
′

(x) = sup
w′∈W

{
ϕ (x,w′)− sup

x′∈X
{ϕ (x′, w′) + χP (x′, w)}

}

= sup
w′∈W

{
ϕ (x,w′)− sup

x′∈X
ϕ (x′, w′)

}
= 0

≥ −χP (x,w) = −χP (·, w) (x)

≥ [−χP (·, w)]c(ϕ)c(ϕ)
′

(x) ;

therefore, in both cases, −χP (·, w) (x) = [−χP (·, w)]c(ϕ)c(ϕ)
′

(x) . We have thus proved
(37).

Here are some examples of the situation of Proposition 2.8, which have applications in
optimization:

Example 2.9 (see [4], Example 6.3). Let X be a Hilbert space, W = (0,+∞) × X,
and

ϕ(x, (ρ, y)) := −ρ ‖x− y‖2 ((x, (ρ, y)) ∈ X ×W ). (38)

Example 2.10 (see [4], Example 6.4). Let X = W = Rn, 0 < α ≤ 1, N > 0, and

ϕ(x,w) = −N ‖x− w‖α ((x,w) ∈ X ×W ). (39)

Example 2.11 (see [4], Example 6.9). Let X = W = [0,+∞), and

ϕ(x,w) := − max
1≤i≤n

xiwi (x = (x1, ..., xn), w = (w1, ..., wn) ∈ X). (40)

In these examples ϕ : X ×W → R satisfies conditions 2 ◦(a) and (vacuously) 2 ◦(b) of
Proposition 2.8, since it takes nonpositive values. In contrast with the above examples,
the situation of Proposition 2.8 does not hold in the convex analytic case where X is a
locally convex space, W is its dual and ϕ is the usual pairing function between X and
X∗.

3. Conjugates and biconjugates of a function f : Rn → R

In this section we shall consider the particular case where

X = W = Rn, (41)

and, for simplicity, ϕ : Rn ×Rn → R is a finite coupling function.

We recall (see e.g. [6], [8]) that a function f : Rn → R is called

(a) plus-homogeneous (or, homogeneous with respect to addition), if

f(x+ λ1) = f(x) + λ (x ∈ Rn, λ ∈ R), (42)

where 1 = (1, ..., 1) is the vector of dimension n with all coordinates equal to one;
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(b) increasing, if
x′, x′′ ∈ X, x′ ≤ x′′ ⇒ f(x′) ≤ f(x′′); (43)

(c) topical, if it is both plus-homogeneous and increasing.

Proposition 3.1. Let ϕ : Rn×Rn → R. If for each x ∈ Rn the function ϕ(x, .) : Rn → R
is plus-homogeneous, then we have (27), or, equivalently, (26).

Proof. Clearly, we have the inequality ≥ in (27). To prove the opposite inequality, let
(x,w) ∈ Rn ×Rn and ε > 0 be arbitrary, and let

wε := w − (ϕ(x,w)− ε)1. (44)

Then, by (44) and since ϕ(x, .) is plus-homogeneous, we have

ϕ(x,wε) = ϕ(x,w − (ϕ(x,w)− ε)1) (45)

= ϕ(x,w)− ϕ(x,w) + ε = ε > 0,

whence, by (45), (44), and since ϕ(x, .) is plus-homogeneous,

sup
w′∈Rn

ϕ(x,w′)>0

inf
x′∈Rn

ϕ(x′,w′)>0

ϕ(x′, w) ≥ inf
x′∈Rn

ϕ(x′,wε)>0

ϕ(x′, wε + (ϕ(x,w)− ε)1)

= inf
x′∈Rn

ϕ(x′,wε)>0

{ϕ(x′, wε) + ϕ(x,w)− ε}

≥ ϕ(x,w)− ε.

Consequently, since ε > 0 was arbitrary, we obtain the inequality ≤ in (27), and hence
the equality.

Proposition 3.2. Let ϕ : Rn×Rn → R. If for each w ∈ Rn the function ϕ(., w) : Rn → R
is plus-homogeneous, then for every plus-homogeneous function f : Rn → R we have

f c(ϕ) = fL(ϕ). (46)

Proof. Let x,w ∈ Rn, and ε > 0, be arbitrary, and let

xε := x− (ϕ(x,w)− ε)1. (47)

Then, since by our assumption ϕ(., w) is plus-homogeneous,

ϕ(xε, w) = ϕ(x− (ϕ(x,w)− ε)1, w) = ϕ(x,w)− (ϕ(x,w)− ε) > 0,

and hence, for any plus-homogeneous function f : Rn → R,

ϕ(x,w)− f(x) = ϕ(x,w)− f(xε + (ϕ(x,w)− ε)1)

= ϕ(x,w)− [f(xε) + ϕ(x,w)− ε] = −f(xε) + ε

≤ sup
x∈Rn

ϕ(x,w)>0

(−f(x)) + ε = fL(ϕ) + ε.

Consequently, since x ∈ Rn was arbitrary, we obtain f c(ϕ)(w) ≤ fL(ϕ)(w) + ε, whence,
since w ∈W and ε > 0 were arbitrary,

f c(ϕ) ≤ fL(ϕ),

which, together with (13), yields (46).
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Remark 3.3. (a) Concerning the assumption of Proposition 3.2, let us observe that for
any ϕ : Rn ×Rn → R, the following statements are equivalent:

1◦. For each w ∈W the function ϕ(., w) is plus-homogeneous.

2◦. Every c(ϕ)-convex function f : Rn → R is plus-homogeneous.

Indeed, if for each w ∈W the function ϕ(., w) is plus-homogeneous, then so is the function
ϕ(., w) + d, for each d ∈ R. Consequently, by Lemma 1.5 and since the supremum of any
family of plus-homogeneous functions is plus-homogeneous, it follows that every c(ϕ)-
convex function f : Rn → R is plus-homogeneous. Thus, 1◦ ⇒ 2◦. The reverse implication
2◦ ⇒ 1◦ follows from Corollary 1.6.

(b) In the particular case where ϕ = µ, the so-called “min-type coupling function� µ :
Rn ×Rn → R defined by

µ(x,w) := min
1≤i≤n

(xi + wi) (x = (x1, ..., xn), w = (w1, ..., wn) ∈ Rn), (48)

and f is a topical function, Proposition 3.2 was proved, with a different method, in [9],
Theorem 4.2.

From Proposition 3.2 and Remark 3.3(a) we obtain:

Corollary 3.4. Under the assumptions of Proposition 3.2, for every c(ϕ)-convex function
f : Rn → R we have (46).

Theorem 3.5. Let ϕ : Rn×Rn → R. If for each x,w ∈ Rn the functions ϕ(x, .) : Rn → R
and ϕ(., w) : Rn → R are plus-homogeneous, then for any function f : Rn → R the
following statements are equivalent:

1 ◦. We have (46).

2 ◦. We have
f c(ϕ)c(ϕ)

′

= fL(ϕ)L(ϕ)
′

. (49)

3 ◦. fL(ϕ)L(ϕ)
′

is c(ϕ)-convex.

4 ◦. We have
fL(ϕ)L(ϕ)

′c(ϕ) = fL(ϕ). (50)

Proof. 1 ◦ ⇒ 2 ◦. Assume 1 ◦. Then by the plus-homogeneity of ϕ(x, .) for each x ∈ Rn,
Proposition 3.1, (46) and (14) applied to g = f c(ϕ), we have

f c(ϕ)c(ϕ)
′

≤ fL(ϕ)L(ϕ)
′

= f c(ϕ)L(ϕ)
′

≤ f c(ϕ)c(ϕ)
′

,

and hence (49).

2 ◦ ⇒ 3 ◦. If 2 ◦ holds, then

fL(ϕ)L(ϕ)
′

= f c(ϕ)c(ϕ)
′

= f c(ϕ)c(ϕ)
′c(ϕ)c(ϕ)′ = fL(ϕ)L(ϕ)

′c(ϕ)c(ϕ)′ .

3 ◦ ⇒ 4 ◦. If 3 ◦ holds, then by the plus-homogeneity of ϕ(., w) for each w ∈ Rn and
Proposition 3.2 applied to the c(ϕ)-convex function fL(ϕ)L(ϕ)

′

, we have

fL(ϕ)L(ϕ)
′c(ϕ) = fL(ϕ)L(ϕ)

′L(ϕ) = fL(ϕ).
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4 ◦ ⇒ 1 ◦. Assume 4 ◦. Then, by fL(ϕ)L(ϕ)
′

≤ f, 4 ◦, and (13), we obtain

f c(ϕ) ≤ fL(ϕ)L(ϕ)
′c(ϕ) = fL(ϕ) ≤ f c(ϕ),

and hence (46).

Remark 3.6. There exist some useful coupling functions satisfying the assumptions of
Theorem 3.5 (and hence those of Propositions 3.1 and 3.2), for example, the “min-type�
coupling function ϕ = µ of (48), and the “max-type� coupling function ϕmax : R

n×Rn →
R defined by

ϕmax(x,w) := max
1≤i≤n

(xi + wi) (x = (x1, ..., xn), w = (w1, ..., wn) ∈ Rn). (51)

Let us recall that by [6], Remark 5.4(c) and [9], Proposition 3.1(b), for the min-type
coupling function ϕ = µ of (48) and any function f : Rn → R, f c(µ)c(µ)

′

is the topical hull
of f (i.e., the greatest topical minorant of f), and

fL(µ)L(µ)
′

= f≤, (52)

the increasing lower semicontinuous hull of f. Hence, by Proposition 2.5 for ϕ = µ (or,
alternatively, since by [6], Corollary 5.2, every topical function is increasing and lower
semicontinuous), we have

f c(µ)c(µ)
′

≤ fL(µ)L(µ)
′

, (53)

for all functions f : Rn → R. Concerning the equality, from Theorem 3.5 for ϕ = µ we
obtain:

Corollary 3.7. For any function f : Rn → R the following statements are equivalent:

1 ◦. We have
f c(µ) = fL(µ). (54)

2 ◦. We have
f c(µ)c(µ)

′

= fL(µ)L(µ)
′

. (55)

3 ◦. The increasing lower semicontinuous hull f≤ of f is topical.

4 ◦. f≤ satisfies

(f≤)
c(µ) = (f≤)

L(µ). (56)
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