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1. Introduction
Let us first recall some concepts from abstract convex analysis (see e.g. [8]).

If £ and F are two complete lattices (assumed nonempty, throughout the sequel), a
mapping A : F — F is called a polarity (or, as in [8], a “duality”), if for any index set [
(including I = @) we have

A(infe;) = sup A(e;), (1)
el icl
with the usual conventions inf;c; ) = +o00, the least element of E, and sup,;.; ) = —oc, the

greatest element of F. The dual of any mapping A : F — F' is the mapping A’ : I — E
defined by
A'(z) :=inf{e € E| A(e) < 2} (z € F). (2)

If A: E — F is a polarity, then e.g. by [8], Corollary 5.5, the composition A'A : E — E
is a “hull operator”. We recall that a mapping v : F — E is a hull operator (see e.g. [8],
Definition 1.4) if for any =, 7 € E we have

(a) = <Z=u(x) <uT);
(b) u(zr) < ;
(¢) ulu(x)) = ulz).
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Definition 1.1. Let E and F' be two complete lattices and A : E — F a polarity. An
element z € F is said to be A-convex if

r=AA(z). (3)

Also, for each x € E, the element A’A(x) will be called the A-convezr hull of x, and the
mapping x — A’A(z) will be called the A-convex hull operator.

Remark 1.2. In [8], p. 180, the elements = € F satisfying (3) have been called “A’A-
convex”, and for each x € E the element A’A(x) has been called the “A’A-convex” hull
of x, but the simpler terms “A-convex” and “A-convex hull of z" introduced here, will

lead to no confusion. For the motivation of the terms “hull” and “hull operator”, see e.g.
8], Definitions 1.4 and 5.4, and Corollary 5.5.

By [8], Definition 5.6 and Proposition 5.7, if £ and F are two complete lattices and
A : E — Fyand A, : E — F5 are two polarities, then A, is said to be equivalent to A,
in symbols, A} ~ Ay, if

AllAl — A,ZAQ’ (4)

that is, if AJA;(x) = ALAy(x) for all z € E.

In the present paper we shall consider the particular case of the complete lattice £ = FX,
the set of all functions f : X — R = [~00, +00], where X is any set (assumed nonempty
throughout the sequel, without any special mention) endowed with the partial order <
and the lattice operations sup and inf defined pointwise on X, that is, f < h if and only if

f(z) < h(z) (x € X), and (supse;r f;)(x) :=supser fi(z), (infier fi)(x) :=infic; fi(x) (z € X).

Thus, the elements of E are now functions f : X — R. We recall that if X and W are
two (nonempty) sets, any function ¢ : X x W — R is called a coupling function. For a

mapping A : B = R" it is usual to denote A(f) by f2. Then, for example, for any

mapping A : P EW, formula (2) becomes

A =int{he R 1A <g} (geR"). (5)

We shall be concerned with the polarities A = ¢(yp) : R = }_%W, the “Fenchel-Moreau

conjugation”, and A = L(yp) : }_Bf — }_BW, the “level set conjugation”, with respect to a
coupling function ¢ : X x W — R. For the first one, let us recall that the usual addition
+ on R = (—00,+00) admits two natural extensions to R, + and +, called upper and

lower addition, respectively, defined by
a+b=a+b=a-+0b if either RN{a,b} #0 or a = b= +o0, (6)

a+b=+oo, at+b=—o0c ifa=—b=+oo; (7)

as usual, we shall keep the notation a+b also for a,b € R with RN{a,b} # 0. If X, W are
two sets and ¢ : X x W — R is a coupling function, then for a function f : X — R the

Fenchel-Moreau conjugate function of f with respect to ¢ is the function f°% : W — R
defined by

FEO(w) = sup {p(z,w) + —f(2)}  (weW). (8)

zeX
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The main example corresponds to the case where X is a Banach space (or more generally,
a locally convex space), W is X* (the dual of X), and ¢ is the usual pairing function ([5],
[3]) between X and X* :

olx,x")=a"(zr) (reX,z2"eX").

It is well-known and immediate that the mapping A = c(p) : f —— f¥) is a polarity
from R into RW, and that ¢ is uniquely determined by A = ¢(p). Indeed (see e.g. 8],
Theorem 8.2), if o : X x W — Rand ¢ : X x W — R are two coupling functions such

that fe@) = e for all f € FX, then by (8), for f = x{.}, where x4 denotes the indicator
function of A, for any set A (that is =0 on A and = 400 outside A), we have

ple,w) = sup {p(@',w) + —x( (@)} = (xy) ¥ (w) = ()™ ()
- o {v(2',w) + —X23 (@)} =(z,w) (reX,weW).

The Fenchel-Moreau biconjugate of f : X — R with respect to ¢ is the function
fe@lel@) = (felene@) . X — R, and the mapping f —— f¢®)¢®) is the correspond-
ing Fenchel-Moreau hull operator. By (5) for A = ¢(y) and (8), we have

FO (@) = sup {p(e,w) + — sup{p(a’ w)t — f@)}) (FER .xeX). (9)

weW : z’'eX

It X, W are two sets and ¢ : X x W — R is a coupling function, then for each function
f: X — R one defines fX¥) : W — R, the level set conjugate of f with respect to o, by

A (w) = sup (—f)(x) (weW). (10)
w(z,w)>0

The level set biconjugate of f : X — R with respect to ¢ is the function fL@)L)" .=
(fLeNE@)" . X — R, and the mapping f —— X)) is the corresponding level set hull
operator.

Remark 1.3. In [8], [9] and other papers, the level set conjugate of f with respect to
¢ was called “conjugate of type Lau” (this term, suggested by the work of Lau [2] and
Crouzeix [1], was motivated in [8], p. 435). This notion was defined (see e.g. [8], Definition
8.5) by the slightly different formula

@) = sup (=) (wEW); (11)
p(z,w)>—1

however the results on L(y), given in [8], remain valid also for L(), mutatis mutandis.
Our present term “level set conjugate”, suggested by some particular cases given in [7],
was also used in the literature (see e.g. [10], [4]).

We recall (see e.g. [8], Theorem 8.15) that for the level set biconjugates we have

FEOLEY () = sup inf  f(z') (f€ Rz e X). (12)

w'eW

W
() >0 P& W) >0
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In the present paper our main focus will be on the comparison of the Fenchel Moreau
conjugate ¢ and biconjugate f¢¢)" with the level set conjugate fX) and biconju-
gate fLALEP) respectively, with respect to the same coupling function ¢ : X x W — R.
Some results in this direction have been obtained in [9]. For example, by [9], Remark 4.1,
if X, W are two sets and ¢ : X x W — R is a coupling function, then for any function
f: X — R we have

FoO) > f9), (13)
indeed,
9w = sup{e(e,w) +—f@} 2 s {pla )t - 1)
p(z,w)>0
> sup (—f(x) =) (weW).
@(;”fj;o

Note that, similarly, for any function g : W — R we have

g > g (14)
indeed, by [8], formulas (8.54) and (8.178),
9@ (z) = sup {p(z,w) +—g(w)} = sup {p(z,w)+ —g(w)}
weW weW
p(z,w)>0
> oub (—g(w)) = ¢"¥'(z) (z € X).
we
o(z,w)>0

Every level set conjugation L(p) is also a Fenchel-Moreau conjugation with respect to
another coupling function, and hence a polarity. Indeed, we have

Lemma 1.4 (see e.g. [8], Corollary 8.12). Let X, W be two sets and p : X xW — R

a coupling function. Then for the level set conjugation L(p) : RY = R there exists a
unique coupling function o1 : X x W — {0, —oc} such that

L(p) = c(¢1), (15)
namely
©1 = —Xp, (16)
where
P:={(z,w) € X x W | ¢ (z,w) > 0}. (17)

Therefore, we shall use the following

Basic observation: The problem of comparing f¥) and fX¥)) respectively, fo@)e()
and fYOUL) ) amounts to the problem of comparing the two Fenchel-Moreau conjugates
9 and fe1) (respectively, biconjugates foLP)" and fee)ele)) with @, of (16), (17).

According to Definition 1.1 above, applied to A = ¢(¢), we shall say that a function
f:X — Ris ¢(p)-convex, if
f=feoeer, (18)

We recall the following well-known result, which we shall use in the sequel:
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Lemma 1.5 (see e.g. [8], Corollary 8.5 and Remark 1.1(c)). Let X, W be two sets
and ¢ : X X W — R a coupling function. For a function f : X — R the following
statements are equivalent:

1°. f is c(yp)-conver.
2°.  There exists a subset M of W x R such that

f= sup {p(,w)+d}. (19)
(w,d)eM
3°.  We have
f= sup {o(,w)+d}. (20)
weW,deR
(- w)+d<f

We have the following useful consequence of Lemma 1.5:
Corollary 1.6. Let X, W be two sets and o : X x W — R a coupling function. Then for
each w € W, the function p(.,w) : X — R is c¢(p)-conver.

Proof. For any w € W, we have

o(,w)= sup  {e(,w')+d},
(w d)e{(w,0)}

that is, (19) for f = ¢(.,w), with M C W x R defined by M = {(w,0)}. Hence, by
Lemma 1.5, the conclusion follows. Il

2. Comparison of Fenchel-Moreau hull operators with level set hull operators

We have the following result on comparison of Fenchel-Moreau hull operators with respect
to two different coupling functions:

Proposition 2.1. Let X, Wy, W, be three sets and ¢ : X x Wy — R0 : X x Wy — R

two coupling functions. The following statements are equivalent:

1°. We have c(¢)'c(v) < c(v)'c(v), that is,

fc(cp)c(tp)/ < fc(w)c(w), (f c EX) (21>

2°. For each w € Wy, the function (., w) is c(y)-conver.

Proof. 1° = 2°. Assume 1° and let w € Wj. Then, by Corollary 1.6 and 1° (for
f=p(,w)), we have

o, w) = @(ww)c(@)c(%)/ < g0('711})8(%1))0(%0)/ < (., w),
whence ¢(., w) W) = (. w).

2° = 1° Assume 2° and let f € R Then, since f)®) is ¢(p)-convex (indeed,
felelerelple(e)” — fel@)el@)) by Lemma 1.5 there exists a subset P of W, x R such that

JEOE = sup {o(.,w) + d}. (22)
(w,d)eP
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But, by 2° and Lemma 1.5, for each w € W there exists a subset P,, of W5 x R such that

o(,w)=sup {Y(,w')+d}. (23)

(w,d")€Py
Consequently, by (22) and (23),
fO = sup {y(,w') +d +d}. (24)

(w,d)eP
(w,7d,)EPw

Therefore, again by Lemma 1.5, f€¥)<¢) is ¢(¢))-convex. Hence, since fe9)@) < f it

follows that fe®)(?)" is less than or equal to the greatest c()-convex function majorized
by f, Le., fAP) < pe)etv) .

Remark 2.2. The above conditions are equivalent to the following one:
3°.  Ewvery c(p)-convex function is c(v)-conver.

Indeed, more generally, the equivalence 1° < 3° holds for any two hull operators on a
complete lattice. For, let us recall that if « is a hull operator on a complete lattice E, an
element x € E is said to be u-convez (see e.g. [8], Definition 1.9) if u(z) = . For any
two hull operators uy,us : E — E the following statements are equivalent:

1. We have uy < uy (that is, ui(x) < us(x) for all x € E).
2", Every uy-convez element x € E is ug-convex (that is, ui(x) = z = ug(z) = x).
Indeed, if 1" holds and = € F,u;(x) = x, then = uy(z) < ug(z , whence ug(z) = .

)<z
Conversely, if 2’ holds and = € E, then since u; (u1(x)) = ui(x), by 2" applied to u(x) we
have ug(uy(z)) = ui(x). But, since ui(z) < z, we have ug(uq(x)) < ug(z). Hence, finally,

uy(z) < us(x). Applying this fact to £ = I (with the natural order <) and the hull
operators u; = c(p)'c(p),us = c(v) c(1)), we obtain the equivalence 1° < 3° mentioned
above.

Corollary 2.3. Let X, Wy, W, be three sets and p: X x Wy — R,vp : X x Wy — R two
coupling functions. The following statements are equivalent:

1°. We have c(p) c(p) = c(v) c(¥), that is,
felee) — pelie@) (£ B, (25)

2°. For each w € Wy, the function p(.,w) is c(1))-convex, and for each w € Wy, the
function ¥(.,w) is c¢(p)-convez.

Remark 2.4. By Remark 2.2 the above conditions are equivalent to the following one:

3°.  The classes of c(p)-convex functions and of c(¢)-convez functions coincide.

In the next two propositions we shall apply Proposition 2.1 to the particular case where
Wy = Wy = W, the first one of the conjugates is a Fenchel-Moreau conjugate and the
second one is a level set conjugate (which, as was observed above, is also a Fenchel-Moreau
conjugate).

Proposition 2.5. Let X, W be two sets and ¢ : X X W — R a coupling function. For a
function f : X — R the following statements are equivalent:
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1°. We have c(¢)'c(¢) < L(v)' L(p), that is,

FEOR) < pLALE) (e Y. (26)

2°.  We have
o(z,w) = sup inf (', w) ((z,w) e X xW). (27)

w' eW z'eX
p(a,w')>0 ¢z’ w)>0

3°. For each w € W the function ¢(.,w) : X — R is L(yp)-convex, that is, we have
Pl w) = (. w) A, (28)

Proof. 1° < 2°. By Lemma 1.4, we have (15), with 1 : X x W — {0, —oo} of (16), so
(26) can be written as

fc(go)c(cp)/ < fC(Wl)C(Wl)/ (f c RX> (29)

Hence, by Proposition 2.1 (with ¢ = 1), we have 1° if and only if for each w € W the
function (., w) is ¢(p1)-convex, that is (by (18), mutatis mutandis),

(- w) = (., w) I (30)
But, by (15) and (12) (applied to f = ¢(.,w)), formula (30) is equivalent to

o(x,w) = sup inf (2, w) (ze€X). (31)
w'ew z'eX
plzw')>0 $(@'w)>0

2° & 3°. By (12) applied to f = ¢(.,w) we have

plo,w) MM — sup il lalw) (o) € X x W), (32)
w(ﬁ,ﬁ’v)‘;o p(a’;w)>0

and hence 2° & 3°. ]
In order to consider the opposite inequality to (26), it will be convenient to introduce the

following definition:

Definition 2.6. Let X, W be two sets and ¢ : X xW — R. We shall say that an element
w € W is strictly positive if ¢ (z,w) > 0 (that is, xp(z,w) = 0, with P of (17)), for all
r e X.

Remark 2.7. An element w € W is not strictly positive if and only if one of the following
equivalent conditions holds:

d2’ € X, (¢/,w) ¢ P& 32’ € X, xp(2',w) = +00 < sup xp(x,w) = +00. (33)
rzeX

Proposition 2.8. Let X and W be two sets and ¢ : X x W — R a finite coupling
function. The following statements are equivalent:

1°. We have L () L(p) < c(p) c(p), that is,

fL(go)L(t,D)/ < fC(SD)C(SO)/ (f c EX) . (34>
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2°.  The following two conditions hold:
(a) For any w € W, either w is strictly positive or we have ¢ (x,w) < 0 for every
r e X.
(b) If there exists some strictly positive element in W then

sup {go(x,w)—sup gp(a:’,w)}zo (x e X). (35)
weW z'eX
Proof. By Lemma 1.4, we have (15), with ¢; : X x W — {0, —oo} of (16), so (34) can

be written as
fc(gm)(:(ﬂpl)/ < fC(QO)C(‘P)/ (f € EX) (36)

Hence, by Proposition 2.1 (with ¢ and 1 replaced by ¢; and ¢ respectively), we have 1°
if and only if for each w € W the function ¢, (., w) is ¢(¢)-convex, that is (by (16), with
P of (17)),

—xp (w) = [~xp ()P (wew). (37)

1° = 2°. Assume that (37) holds and that w € W is not strictly positive, and let x € X.
Then, by (37), (9) for f = —xp, and (33), we have

—xp (zw) = [~xp ()] (2) = [~xp (- w)] P (2)
= sup fo o) = sup o) e (0}
— sup {p(z,0') — (+00)} = —oc.
w'eWw

Hence xp (z,w) = +00, that is, (z,w) ¢ P, which means that ¢ (z,w) < 0. This proves
(a).

To prove (b), assume that there is some strictly positive wy € W and let x € X. Then, by
xp (2';w) =0 for all 2’ € X, (37), and (9) for f = —xp, we have

0= —xp (z,wy) = sup {gp(m,w) — sup {¢ (', w) + xp (x’,wo)}}
weW r’eX

— sup {go(:v,w) — sup 90(56',710},

weW r’eX

which proves (35).

2° = 1° Let w € W and = € X. Assume first that w is not strictly positive. In this
case, by (a) of 2°, we have p(2’',w) < 0, so xp(z',w) = +oo, for all ' € X. Hence, by
(9) for f = —xp, we obtain

—xp ()P (z) = sup {cp (e, ) — sup {o (o, 0) + xo (&, w)}}
w eWw z'eX

= sup {p(@,u) + (—00)} = 00 = —xp (w,w)

= —Xp ("w> (CL’) :
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Assume now that w is strictly positive, and let z € X. Then by (9) for f = —xp, (b) of
2° and since f > fe@)e@) for all f € }_%X, we obtain

[_XP (.’w)]c(w)c(w)/ (35) — 5}61% {90 (.’I?,U)/) _ j‘él))( {90 (.%/, w/) +xp (a:',w)}}

sup {w(rv,w’) — sup w(x’,w’)} =0

w'eWw r’'eX

> —xp(r,w) = —xp(,w)(z)

> [—xp (- w) P (2);
therefore, in both cases, —yp (-, w) (z) = [—xp (-, )] (z). We have thus proved
(37). O

Here are some examples of the situation of Proposition 2.8, which have applications in
optimization:

Example 2.9 (see [4], Example 6.3). Let X be a Hilbert space, W = (0, +00) x X,
and

oz, (p,y) = —pllz —ylI* (2. (p,y) € X x W), (38)
Example 2.10 (see [4], Example 6.4). Let X =W =R" 0 <a <1,N >0, and
plz,w) = =Nz —w|®  ((z,w) € X xW). (39)
Example 2.11 (see [4], Example 6.9). Let X = W = [0, +00), and

oz, w) = — max z;w; (x = (21,0, ), w = (W, ..., w,) € X). (40)

In these examples ¢ : X x W — R satisfies conditions 2°(a) and (vacuously) 2°(b) of
Proposition 2.8, since it takes nonpositive values. In contrast with the above examples,
the situation of Proposition 2.8 does not hold in the convex analytic case where X is a
locally convex space, W is its dual and ¢ is the usual pairing function between X and
X*

3. Conjugates and biconjugates of a function f: R* — R

In this section we shall consider the particular case where
X=W=R", (41)

and, for simplicity, ¢ : R" x R" — R is a finite coupling function.
We recall (see e.g. [6], [8]) that a function f: R® — R is called

(a) plus-homogeneous (or, homogeneous with respect to addition), if
flx+A1)=f(z)+ X (xr€R", A€R), (42)

where 1 = (1,...,1) is the vector of dimension n with all coordinates equal to one;
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(b) increasing, if
$/7x// GX,SL’/ S (E//:>f(.’13'/) S f(l‘//), (43)

(¢) topical, if it is both plus-homogeneous and increasing.

Proposition 3.1. Let ¢ : R"XR" — R. If for each x € R" the function p(z,.) : R* — R
is plus-homogeneous, then we have (27), or, equivalently, (26).

Proof. Clearly, we have the inequality > in (27). To prove the opposite inequality, let
(r,w) € R" x R™ and £ > 0 be arbitrary, and let

we == w — (p(x,w) —e)l. (44)
Then, by (44) and since ¢(z,.) is plus-homogeneous, we have

plz,w:) = p(@,w—(p(z,w) —e)1) (45)
= p(z,w) —p(r,w)+ec=¢>0,

whence, by (45), (44), and since ¢(z, .) is plus-homogeneous,
sup inf (2, w) > inf (2, w. + (p(x,w) —e)1)

e pn z'eR™ z'€R™
w&j}gw (@’ w)>0 w(x' we)>0
. /
= inf {p(@,w) + p(z,w) — €}
z'eR™
p(x' we)>0

> p(a,w) — e
Consequently, since ¢ > 0 was arbitrary, we obtain the inequality < in (27), and hence

the equality. [

Proposition 3.2. Letp: R"XR" — R. If for eachw € R" the function (., w) : R" — R
1s plus-homogeneous, then for every plus-homogeneous function f : R™ — R we have

fC(sO) _ fL(w)' (46)
Proof. Let z,w € R", and € > 0, be arbitrary, and let
e :=x — (p(z,w) —e)l. (47)

Then, since by our assumption ¢(.,w) is plus-homogeneous,

Qp(xsaw) - SO(I - (Sp(wi) - 6)1,11}) = Qp(wi) - (gp(x,w) - 5) >0,

and hence, for any plus-homogeneous function f : R* — R,

@(I,w)—f(l‘) = gp(x,w)—f(xg—i—((p(x,w)—s)l)
= @('ruw)_ [f(:l,’s)—l-(p(SE,UJ) —g] = —f(SCE)—FE
< sup (—f(x))+e=fr9 pe

zeR™
p(z,w)>0

Consequently, since © € R"™ was arbitrary, we obtain f°¥)(w) < fL®)(w) + &, whence,
since w € W and € > 0 were arbitrary,

fC(so) < fL(w)

)

which, together with (13), yields (46). O
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Remark 3.3. (a) Concerning the assumption of Proposition 3.2, let us observe that for
any ¢ : R x R" — R, the following statements are equivalent:

1°. For each w € W the function (., w) is plus-homogeneous.
2°.  Fvery c(p)-conver function f: R" — R is plus-homogeneous.

Indeed, if for each w € W the function ¢(., w) is plus-homogeneous, then so is the function
(., w) 4 d, for each d € R. Consequently, by Lemma 1.5 and since the supremum of any
family of plus-homogeneous functions is plus-homogeneous, it follows that every c(p)-
convex function f : R™ — R is plus-homogeneous. Thus, 1° = 2°. The reverse implication
2° = 1° follows from Corollary 1.6.

(b) In the particular case where ¢ = p, the so-called “min-type coupling function” p :

R"™ x R" — R defined by

p(z,w) = min (x; +w;) (v = (x1,...,2,), w = (w1, ..., w,) € R"), (48)

1<i<n

and f is a topical function, Proposition 3.2 was proved, with a different method, in [9],
Theorem 4.2.

From Proposition 3.2 and Remark 3.3(a) we obtain:

Corollary 3.4. Under the assumptions of Proposition 3.2, for every c(p)-convex function
f: R"— R we have (46).

Theorem 3.5. Letp : R"xR" — R. If for eachx,w € R" the functions p(z,.) : R" — R
and p(.,w) : R* — R are plus-homogeneous, then for any function f : R™ — R the
following statements are equivalent:

1°. We have (46).

2°.  We have

felele) — pLip)LE), (49)
30, fHOLE) s ¢(p)-conver.
4°. We have

L) ele) — pL(o), (50)

Proof. 1° = 2°. Assume 1°. Then by the plus-homogeneity of ¢(z,.) for each z € R",
Proposition 3.1, (46) and (14) applied to g = f°¥), we have

fC(sO)C(sO)’ < fL(w)L(sa)’ — fC(SO)L(SO)/ < fC(sa)C(w)”

and hence (49).
2° = 3°. If 2° holds, then

/

L(p)L(p) _ re(p)e(p) — re(p)c(p) cle)e(p) — £L(9)L(p) c(p)c(p)
f f f f :

3° = 4°. If 3° holds, then by the plus-homogeneity of ¢(.,w) for each w € R" and
Proposition 3.2 applied to the ¢(p)-convex function fX#)E®) we have

fL(sD)L(w)’C(%’) fL(w)L(w)’L(w) _ fL(w).
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4° = 1°. Assume 4°. Then, by fLOL)" < £ /° and (13), we obtain

fC(w) < fL(w)L(so)’C(so) — fL(w) < fr:(so)7

and hence (46). O

Remark 3.6. There exist some useful coupling functions satisfying the assumptions of
Theorem 3.5 (and hence those of Propositions 3.1 and 3.2), for example, the “min-type”
coupling function ¢ = p of (48), and the “max-type” coupling function @p.x : R" X R" —
R defined by

Pmax (T, W) = max (x; +w;) (= (21, ..., 2,),w = (wq,...,w,) € R"). (51)

Let us recall that by [6], Remark 5.4(c) and [9], Proposition 3.1(b), for the min-type
coupling function ¢ = u of (48) and any function f : R" — R, f"e®)" is the topical hull
of f (i.e., the greatest topical minorant of f), and

fL(u)L(u)’ — 7§, (52)

the increasing lower semicontinuous hull of f. Hence, by Proposition 2.5 for ¢ = p (or,
alternatively, since by [6], Corollary 5.2, every topical function is increasing and lower
semicontinuous), we have

femet) < pLU L)’ (53)

for all functions f : R® — R. Concerning the equality, from Theorem 3.5 for ¢ = u we
obtain:

Corollary 3.7. For any function f : R* — R the following statements are equivalent:

1°.  We have
fC(u) — fL(u)‘ (54)

2°.  We have
fC(u)C(u)’ — fL(u)L(u)’_ (55)

3°. The increasing lower semicontinuous hull ?S of f is topical.
4°. fg satisfies
(7§)C(M) = (TS)L(N)- (56)
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