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A lower semicontinuity result is proved in the space of special functions of bounded deformation for a
fracture energetic model according to Barenblatt’s theory, i.e.

∫

Ju

ϕ([u] · νu)dH
N−1, [u] · νu ≥ 0 HN−1-a.e. on Ju

Keywords: Lower semicontinuity, fracture, special functions of bounded deformation, convexity, subad-
ditivity

2000 Mathematics Subject Classification: 49J45, 26B25, 26B30, 26D10, 39B62, 74A45, 74B20, 74R99

1. Introduction

We consider a surface energy, appearing in the context of Barenblatt’s model of fracture
mechanics (see [7]), which takes into account the fractures appearing under the regime of
linearized elasticity. It depends on the normal component of the opening of the fracture
and includes a constraint which prevents infinitesimal interpenetration (cf. the energy (1)
below).

More precisely, the aim of this paper consists of finding sufficient conditions for the semi-
continuity of the functional below, by seeking suitable properties on the energy surface
density ϕ,

F(u) :=

{

∫

Ju
ϕ([u] · νu)dH

N−1 if [u] · νu ≥ 0 HN−1-a.e. on Ju,

+∞ otherwise,
(1)

where the deformation u belongs to SBD(Ω), Ω being a bounded open set in R
N , [u]

denotes the jump of u, Ju the jump set, and νu is the normal to the jump set.

The surface integral in (1) represents the energy dissipated in the fracture process and the
constraint [u]·νu ≥ 0 HN−1-a.e. on Ju takes into account infinitesimal noninterpenetration.

By virtue of the by now classical compactness result quoted in Theorem 2.1 below (see
Theorem 1.1 in [8]), a natural requirement is to investigate the lower semicontinuity of
the energy (1) with respect to the convergences (11) ÷ (13) below.
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To this end we introduce the family

Φ := {ϕ : [0,+∞[→ [0,+∞[, ϕ convex, subadditive and nondecreasing} (2)

Indeed our main result is the following theorem.

Theorem 1.1. Let Ω be a bounded open subset of RN , and let θ : [0,+∞[→ [0,+∞[ be
a non-decreasing function verifying (9). Let ϕ be in Φ in (2). Let {uh} be a sequence
in SBD(Ω), such that [uh] · νuh

≥ 0 HN−1-a.e. on Juh
for every h, converging to u in

L1(Ω;RN) satisfying (10). Then

[u] · νu ≥ 0 HN−1-a.e. on Ju (3)

and
∫

Ju

ϕ([u] · νu)dH
N−1 ≤ lim inf

h→+∞

∫

Juh

ϕ([uh] · νuh
)dHN−1 (4)

We remark that our conclusions cannot be obtained by mere extension to SBD of the
results already avalaible in the framework of SBV spaces.

Furthermore we stress that our result (see Theorem 1.1) can be considered as a first step
towards an extension to linearized elasticity of well known semicontinuity results in SBV
due to Ambrosio (see [1], [3] and [4]) (see also [6] for more extensive and detailed results)
and we do not regard it as optimal.

We also provide a characterization, in terms of Convex Analysis, of the surface energy
densities ϕ in (1) which ensure lower semicontinuity.

To this aim, given two families {aα}α∈A and {bα}α∈A in [0,+∞[, we consider the function
ϕ defined by

ϕ(s) := sup
α∈A

(aαs+ bα) (5)

for every s ∈ [0,+∞[ and we assume that ϕ(s) < +∞ for every s ∈ [0,+∞[.

It is worthwhile to observe that since R is second countable and by virtue of Lindelöff
Theorem, one can assume without loss of generality that A in (5) is countable.

The following result will be proved.

Theorem 1.2. Let ϕ : [0,+∞[→ [0 +∞[. The following conditions are equivalent:

(1) ϕ belongs to Φ.

(2) ϕ is defined by (5) for some families {aα}α∈A, and {bα}α∈A in [0,∞[.

(3) ϕ is convex and nondecreasing, and s 7→ ϕ(s)
s

is nonincreasing.

(4) ϕ is convex and nondecreasing, and

ϕ(s)

s
≥ ϕ′

+(s) for every s > 0. (6)

(5) ϕ is convex and nondecreasing, and the polar function ϕ∗ (extending ϕ to +∞ in
]−∞, 0[) is nonpositive on its effective domain.
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An example of functions in Φ is given by

ϕ : s ∈ R
+ 7→ (1 + sp)

1
p .

We remark that the class of functions described by (3) in Theorem 1.2 above, is known in
the literature in the context of ODE’s as the class of functions of ’softening characteristic’,
see for instance [15].

The paper is organized as follows: in Section 2 we recall the definition and main properties
of functions of bounded deformation and some results of Measure Theory that will be
exploited in the proof of Theorem 1.1 and Theorem 1.2 respectively. Section 3 is essentially
devoted to the proof of Theorem 1.1; at the same time several applications to minimum
problems are presented in the case where volume energy terms are added to the surface
energy in (1). In Section 4 several characterizations of the classes of surface integrands
that provide lower semicontinuity to the functional (1) are given.

2. Notations and Preliminaries

We start by recalling the fundamental properties of functions of bounded deformation.

Here and in the sequel, let Ω be a bounded open subset of RN . The space BD(Ω) of vector
fields with bounded deformation in a bounded open set Ω of RN is defined as the set of
vector fields u = (u1, . . . , uN) ∈ L1(Ω;RN) whose distributional gradient Du = {Diu

j}
has the symmetric part

Eu = {Eiju}, Eiju = (Diu
j +Dju

i)/2

which belongs to Mb(Ω;M
N×N
sym ), the space of bounded Radon measures in Ω with values

in MN×N
sym , the space of symmetric N×N matrices.

For u ∈ BD(Ω), the jump set Ju is defined as the set of points x ∈ Ω where u has two
different one sided Lebesgue limits u+(x) and u−(x), with respect to a suitable direction
νu(x) ∈ SN−1 = {ξ ∈ R

N : |ξ| = 1}, i.e.

lim
̺→0+

1

̺N

∫

B±
̺ (x,νu(x))

|u(y)− u±(x)|dy = 0, (7)

where B±
̺ (x, νu(x)) = {y ∈ R

N : |y − x| < ̺, (y − x,±νu(x)) > 0}.

In [5] it has been proved that for every u ∈ BD(Ω) the jump set Ju is Borel measurable
and countably (HN−1, N − 1) rectifiable and νu(x) is normal to the approximate tangent
space to Ju at x for HN−1-a.e. x ∈ Ju, where HN−1 is the (N − 1)-dimensional Hausdorff
measure (see [6] and [13]).

Let u ∈ BD(Ω), the Lebesgue decomposition of Eu is written as

Eu = Eau+ Esu

with Eau the absolutely continuous part and Esu the singular part with respect to the
Lebesgue measure LN .

The density of Eau with respect to LN is denoted by Eu, i.e. Eau = EuLN .
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We recall that Esu can be further decomposed as

Esu = Eju+ Ecu

with Eju, the jump part of Eu, i.e. the restriction of Esu to Ju and Ecu the Cantor part
of Eu, i.e. the restriction of Esu to Ω \ Ju.

In [5] it has been proved that

Eju = (u+ − u−)⊙ νuH
N−1 ⌊Ju (8)

where⊙ denotes the symmetric tensor product, defined by a⊙b := (a⊗b+b⊗a)/2 for every
a, b ∈ R

N , and HN−1 ⌊Ju denotes the restriction of HN−1 to Ju, i.e. (H
N−1 ⌊Ju )(B) =

HN−1(B ∩ Ju) for every Borel set B ⊆ Ω. Moreover in [5] it has been also proved that
|Ecu|(B) = 0 for every Borel set B ⊆ Ω such that HN−1(B) < +∞, where | · | stands for
the total variation.

The space SBD(Ω) of special vector fields with bounded deformation is defined as the set
of all u ∈ BD(Ω) such that Ecu = 0, or, in other words

Eu = EuLN + (u+ − u−)⊙ νuH
N−1 ⌊Ju .

In the sequel, for every u ∈ L1
loc(Ω;R

N) we denote by [u] the vector u+ − u−, according
to the notations introduced in (7).

We recall the following compactness result, proved in [8], (cf. Theorem 1.1 and Remark
2.3 therein) that will be exploited in the sequel.

Theorem 2.1. Let θ : [0,+∞[→ [0,+∞[ be a non-decreasing function such that

lim
t→+∞

θ(t)

t
= +∞. (9)

Let {uh} be a sequence in SBD(Ω) such that

‖uh‖L∞(Ω;RN ) +

∫

Ω

θ(|Euh|)dx+HN−1(Juh
) ≤ K (10)

for some constant K independent of h. Then there exists a subsequence, still denoted by
{uh}, and a function u ∈ SBD(Ω) such that

uh → u strongly in L1
loc(Ω;R

N), (11)

Euh ⇀ Eu weakly in L1(Ω;MN×N
sym ), (12)

Ejuh ⇀ Eju weakly* in Mb(Ω;M
N×N
sym ), (13)

HN−1(Ju) ≤ lim inf
h→+∞

HN−1(Juh
) (14)

We also recall the following result from Measure Theory that will be exploited in the
sequel, (cf. [6] and [9]).
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Theorem 2.2. Let λ be a positive σ-finite Borel measure in Ω and let ϕi : Ω → [0,∞],
i ∈ N, be Borel functions. Then

∫

Ω

sup
i

ϕidλ = sup

{

∑

i∈I

∫

Ai

ϕidλ

}

where the supremum ranges over all finite sets I ⊂ N and all families {Ai}i∈I of pairwise
disjoint open sets with compact closure in Ω.

3. Lower Semicontinuity Results

This section is devoted to the proof of the lower semicontinuity Theorem 1.1. The proof
of Theorem 1.1 relies on the two Lemmas below.

Lemma 3.1. Let {uh} be a sequence in SBD(Ω) converging to u ∈ SBD(Ω) in L1(Ω;RN),
such that [uh] · νuh

≥ 0 HN−1-a.e. on Juh
for every h, and verifying (13), then (3) holds.

Proof. We observe that for every u ∈ SBD(Ω) the measure [u] · νuH
N−1 ⌊Ju can be

written also as tr(Eju), where tr(Eju) denotes the trace of the matrix of measures Eju.

By virtue of this fact, the convergence (13) stated in Theorem 2.1 and the linearity of the
trace tr entail that

tr(Ejuh)⇀ tr(Eju) weakly* in Mb(Ω;R), (15)

consequently, since [uh] · νuh
≥ 0 HN−1-a.e. on Juh

, and hence tr(Ejuh) is a nonnegative
measure, we deduce that tr(Eju) is a nonnegative measure which gives (3).

The next result has to be considered just a step towards the proof of the main semicon-
tinuity theorem.

Lemma 3.2. Let a ≥ 0 and b ≥ 0, and let {uh} be a sequence in SBD(Ω), converging to
u ∈ SBD(Ω) in L1(Ω;RN), satisfying (13) and (14). Suppose that [uh]·νuh

≥ 0 HN−1-a.e.
on Juh

for every h. Then

∫

Ju

(a[u] · νu + b)dHN−1 ≤ lim inf
h→+∞

∫

Juh

(a[uh] · νuh
+ b)dHN−1. (16)

Proof. Since [uh] · νuh
HN−1⌊Juh

= tr(Ejuh) ≥ 0 and, by virtue of Lemma 3.1, (3) holds,
from (13) we obtain

∫

Ju

[u] · νudH
N−1 = (tr(Eju))(Ω) ≤ lim inf

h→∞
(tr(Ejuh))(Ω) = lim inf

h→∞

∫

Juh

[uh] · νuh
dHN−1.

Since a ≥ 0 and b ≥ 0, (16) follows from this inequality and from (14)

Proof of Theorem 1.1. The constraint is preserved in the limit as proven in Lemma
3.1. It remains to prove the lower semicontinuity of the surface term. To this aim we
observe that the proof below relies on Theorem 1.2, i.e. we adopt the representation (5)
for the energy density ϕ.
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As observed after (5) we may assume A countable. Clearly if A is a singleton, the
statement follows from Lemma 3.2. The general case can be proved essentially by applying
Theorem 2.2. Indeed, if ϕ admits the representation (5), by superadditivity of liminf:

lim inf
h

∫

Juh

ϕ([uh] · νuh
)dHN−1 ≥

∑

α

lim inf
h

∫

Juh∩Aα

(aα[uh] · νuh
+ bα)dH

N−1

for any finite family of pairwise disjoint open sets Aα ⊂ Ω.

By Lemma 3.2 we have

lim inf
h→+∞

∫

Juh

(aα[uh] · νuh
+ bα)dH

N−1 ≥

∫

Ju∩Aα

(aα[u] · νu + bα)dH
N−1.

Therefore

lim inf
h→+∞

∫

Juh

ϕ([uh] · νuh
)dHN−1 ≥

∑

α

∫

Ju∩Aα

(aα[u] · νu + bα)dH
N−1

for any finite family of pairwise disjoint open sets Aα ⊂ Ω.

By Theorem 2.2 we can interchange integration and supremum over all such families, thus
getting

lim inf
h→+∞

∫

Juh

ϕ([uh] · νuh
)dHN−1 ≥

∫

Ju

ϕ([u] · νu)dH
N−1,

whence (4) follows.

3.1. Applications to Minimum Problems

The lower semicontinuity results proven above, together with some known lower semi-
continuity results for volume energies of the kind

∫

Ω
f(x, Euh)dx, (under suitable sets of

assumptions on the function f) can be used to prove the existence of solutions to the fol-
lowing minimum problems dealing with the equilibrium of cracked elastic bodies, subject
to volume forces, with Neumann boundary conditions.

Theorem 3.3. Let θ : [0,+∞[→ [0,+∞[ be a non-decreasing function verifying (9) and
let f : Ω×MN×N

sym → [0,+∞] be such that

i) f(x, ·) is convex and lower semicontinuous on M
N×N
sym , for a.e. x ∈ Ω,

ii) f is L(Ω)⊗ B(MN×N
sym )-measurable,

iii) f(x,A) ≥ θ(|A|) for every x ∈ Ω and A ∈ M
N×N
sym ,

where L(Ω) and B(MN×N
sym ) represent respectively the Lebesgue σ-algebra on Ω and the

Borel σ-algebra on M
N×N
sym . Let h ∈ L1(Ω;RN) and let {H(x)}x∈Ω be a uniformly bounded

family of closed subsets of RN . Let ϕ be as in Theorem 1.1 and assume that ϕ(0) > 0.
Then the constrained minimum problem

min
u∈SBD(Ω)

u(x)∈H(x) a.e. in Ω

(u+−u−)·νu≥0HN−1 a.e. on Ju

{
∫

Ω

f(x, Eu)dx+

∫

Ju

ϕ([u] · νu)dH
N−1 +

∫

Ω

h · udx

}

(17)
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has a solution.

Proof. The assumptions on H(x) provide an L∞ bound on every minimizing sequence
{uh} for (17). Consequently, since iii) holds and ϕ(0) > 0, Theorem 2.1 and Theo-
rem 1.1 apply. Moreover, since Euh ⇀ Eu in L1, the functional w ∈ L1(Ω;MN×N

Sym ) →
∫

Ω
f(x,w(x))dx is lower semicontinuous with respect to the weak L1 convergence under

the above set of assumption on f , and the term describing the volume forces in (17) is
linear, the Direct Methods of the Calculus of Variations ensure the existence of a solu-
tion.

We observe that the hypotheses made on f in Theorem 3.3 are crucial for the lower
semicontinuity of the volume term. On the other hand a lack of convexity on the function
f requires more refined tecniques and other type of assumptions which guarantee lower
semicontinuity. To this end we exploit the results contained in [11] (see Theorem 1.2 and
Example 4.2 therein).

Theorem 3.4. Let p > 1 and f : Ω × M
N×N
Sym → [0,∞[ be a Carathéodory function

satisfying the following assumptions:

(i) for a.e. x ∈ Ω, for every ξ ∈ M
N×N
Sym ,

1

C
|ξ|p ≤ f(x, ξ) ≤ Ψ(x) + C(1 + |ξ|p)

for some constant C > 0 and Ψ ∈ L1(Ω),

(ii) for a.e. x0 ∈ Ω f(x0, ·) is symmetric quasiconvex, i.e.

f(x0, ξ) ≤
1

|D|

∫

D

f(x0, ξ + Eψ(x))dx

for every bounded open set D of RN and every ψ ∈W 1,∞
0 (D;RN) and ξ ∈ M

N×N
Sym .

Let K be a non empty, not necessarily closed subset of Ω, such that 0 < HN−1(K) < +∞,
{H(x)}x∈Ω and ϕ as in Theorem 3.3, then the following minimum problem admits a
solution

min
u∈SBD(Ω)

Ju⊂K

u(x)∈H(x) a.e. in Ω

(u+−u−)·νu≥0HN−1 a.e. on Ju

{
∫

Ω

f(x, Eu)dx+

∫

Ju

ϕ([u] · νu)dH
N−1

}

. (18)

Proof. We preliminarily recall that, as emphasized in [11], the assumption that K is not
necessarily closed has been made to avoid trivial cases that can be solved with simpler
methods and tools.

We observe that the set where the minimum is undertaken in (18) and the fact that
ϕ(0) > 0 guarantee that Theorem 2.1 applies. Consequently both the assumptions of
Theorem 1.2 in [11] and of Theorem 1.1 are fulfilled and the lower semicontinuity follows
both for the bulk and for the surface energies in (18). The Direct Methods of Calculus of
Variations and Example 4.2 in [11] lead us to the existence of a solution for (18).
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4. The class of surface integrands which ensure lower semicontinuity

This section is devoted to charachterize the class (2), by proving Theorem 1.2.

Proof of Theorem 1.2. We preliminarily observe that all the functions in Φ are con-
tinuous. For the sake of convenience we arrange the proof as (2) ⇒ (1) ⇒ (3) ⇒ (4) ⇒
(5) ⇒ (2).

(2) ⇒ (1) Since aα ≥ 0 and bα ≥ 0, the function s → aαs + bα is nonnegative, convex,
subadditive, and nondecreasing, by virtue of (5), the same properties hold for ϕ since
these properties are closed under suprema.

(1) ⇒ (3) Let 0 < s ≤ t and consider the following convex combination

t =
s

t
· s+

(

1−
s

t

)

(s+ t).

The convexity of ϕ entails that

ϕ(t) ≤
s

t
ϕ(s) +

(

1−
s

t

)

ϕ(s+ t).

By the subadditivity of ϕ, it follows

ϕ(t) ≤
s

t
ϕ(s) +

(

1−
s

t

)

(ϕ(s) + ϕ(t))

i.e.
ϕ(t)

t
≤
ϕ(s)

s
,

which proves that ϕ(s)
s

is nonincreasing.

(3) ⇒ (4) We recall that convexity entails the existence of right derivatives for every

s > 0. Hence taking the right derivative of ϕ(s)
s

we soon get ϕ(s)
s

≥ ϕ′
+(s).

(4) ⇒ (5) We preliminarily observe that ϕ∗ is nondecreasing, since

ϕ∗(r) = sup
s≥0

{rs− ϕ(s)}. (19)

is the supremum of nondecreasing functions.

Furthermore we observe that (6), the monotonicity and the convexity of ϕ entail also that

lim
s→0+

(ϕ(s)− sϕ′
+(s)) ≥ 0.

If r = ϕ′
+(s) for some s ∈ [0,+∞[, then, well know facts of Convex Analysis (see for

instance Theorem 23.5 in [16]) ensure that ϕ′
+(s) belongs to the subdifferential of ϕ at s

and

ϕ∗(ϕ′
+(s)) = sϕ′

+(s)− ϕ(s) ≤ 0. (20)

Since ϕ∗ is nondecreasing, this means that if r ≤ ϕ′
+(s) for some s ≥ 0, then ϕ∗(r) ≤ 0.

Since ϕ∗ is lower semicontinuous, this holds for r ≤ sups≥0 ϕ
′
+(s) = β.
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On the other hand, if r > β, the right derivative of s 7→ rs−ϕ(s) is larger than a positive
constant, and this clearly implies

ϕ∗(r) = sup
s≥0

{rs− ϕ(s)} = lim
s→+∞

(rs− ϕ(s)) = +∞

(5) ⇒ (2) Well known properties of convex functions, allow us to write ϕ as

ϕ(s) = sup
r∈dom(ϕ∗)

{rs− ϕ∗(r)} (21)

Since ϕ∗(r) = ϕ∗(0) = −ϕ(0) for r ≤ 0 by (19) and by the monotonicity of ϕ , the right
hand side of (21) (before taking the supremum) is rs − ϕ∗(0) for every r ≤ 0 which is
less than or equal to −ϕ∗(0). Hence the supremum is unaltered if we take r ≥ 0 and this
proves the claim.
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