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We study regularity properties of the subdifferential of proper lower semicontinuous convex functions
in Hilbert spaces. More precisely, we investigate the metric regularity and subregularity, the strong
regularity and subregularity of such a subdifferential. We characterize each of these properties in terms
of a growth condition involving the function.
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1. Introduction

Let H be a real Hilbert space endowed with the inner product 〈· , ·〉, we denote by Γ(H)
the space of all proper lower semicontinuous convex functions from H into R∪{∞}. The
subdifferential, in the sense of convex analysis, is denoted by ∂ and for any function f in
Γ(H) and any point x in the domain of f it is defined by:

∂f(x) := {u ∈ H | 〈u, y − x〉 ≤ f(y)− f(x), ∀y ∈ H}.

In this work, we study local properties of ∂f around the points of its graph (recall that
∂f(x) is the empty set whenever x is not in the domain of f). More precisely, we in-
vestigate the link between the regularity properties of the subdifferential of f around a
point (x̄, v̄) in the graph of ∂f and the behavior of the function f around the point x̄. We
consider several regularity concepts, namely, the subregularity, the strong subregularity,
the metric regularity, the strong regularity of the subdifferential operator and the Lips-
chitz continuity of its inverse. We show that each of these properties corresponds, and
is actually equivalent, to a growth condition on the function f near the point x̄. When
v̄ = 0, i.e., when x̄ is a critical point of f satisfying ∂f(x̄) ∋ 0 it turns out that these
regularity properties can be expressed in terms of a so-called quadratic growth condition
involving the function f .
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The concepts of metric regularity and subdifferentials are closely tied and have been
studied by several authors in the very last decades, we mention here the works of Ioffe
[16], Jourani and Thibault [17, 18], Borwein and Zhu [8], Durea [15] and Lahrech and
Benbrik [20]; see also the references therein.

A contribution to the topic we are concerned with, dating from the mid-nineteen nineties,
is due to Zhang and Treiman [28] who studied functions with upper-Lipschitz inverse
subdifferentials. Given an extended real-valued and lower semicontinuous function f on
R

n, they consider the subdifferential of f in the sense of Mordukhovich (see, e.g., [22]),
denoted by ∂−f , and they provide a necessary condition for the upper-Lipschitz continuity
of the inverse of the subdifferential of f at 0. We recall that, according to Robinson [24],
a set-valued mapping F : Rm →→ R

n is upper-Lipschitz continuous at ȳ ∈ R
m if there exist

a neighborhood V of ȳ and a constant c ≥ 0 such that

F (y) ⊂ F (ȳ) + c‖y − ȳ‖IB, ∀y ∈ V, (1)

where IB denotes the closed unit ball in R
n. Zhang and Treiman proved the following

statement:

Theorem 1.1 ([28]). If the multifunction (∂−f)−1 is upper-Lipschitz at 0, then for every
C ⊂ (∂−f)−1(0) there exist c > 0 and δ > 0 such that

f(z) ≥ inf f + cd2(z, (C + 2δIB) ∩ (∂−f)−1(0)), ∀z ∈ C + δIB. (2)

When f is a convex functional they proved that the necessary condition (2) turns out to
be also sufficient whenever (∂−f)−1(0) 6= ∅ and can be rewritten as

f(z) ≥ inf f + cd2(z, (∂−f)−1(0)), ∀z ∈ (∂−f)−1(0) + δIB. (3)

Our approach is somewhat different since we focus on convex functions. Nevertheless, the
interest of our study lies in two main points: first, we explore several regularity properties
of the subdifferential itself (and not only its inverse) and second, we work in an infinite
dimensional Hilbert space.

This work is organized as follows: in Section 2 we present briefly the metric regularity
properties we will consider in the paper while we provide, in Section 3, several characteri-
zations of these properties for the subdifferential of a proper lower semicontinuous convex
function on H. In addition, as an illustration, we apply our results to a problem of convex
optimization.

2. Background material

Throughout, X and Y stand for real Banach spaces. The closed unit ball is denoted by
IB while IBr(a) stands for the closed ball of radius r centered at a. We denote by d(x,C)
the distance from a point x to a set C, that is, d(x,C) = inf

y∈C
‖x− y‖.

Let F be a set-valued mapping from X into the subsets of Y , indicated by F : X →→ Y .
Here gphF = {(x, y) ∈ X × Y | y ∈ F (x)} is the graph of F and the range of F is the
set rge F = {y ∈ Y | ∃x, F (x) ∋ y}. The inverse of F , denoted by F−1, is defined as
x ∈ F−1 (y) ⇔ y ∈ F (x).
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Our study is organized around four key notions: metric regularity, strong metric regularity,
metric subregularity and strong metric subregularity. We start with the metric regularity.

Definition 2.1. A mapping F : X →→ Y is said to be metrically regular at x̄ for ȳ if
F (x̄) ∋ ȳ and there exist some positive constants κ, a and b such that

d(x, F−1(y)) ≤ κd(y, F (x)) for all x ∈ IBa(x̄), y ∈ IBb(ȳ). (4)

The infimum of κ for which (4) holds is the regularity modulus denoted regF (x̄| ȳ); the
case when F is not metrically regular at x̄ for ȳ corresponds to regF (x̄| ȳ) = ∞. The
inequality (4) has direct use in providing an estimate for how far a point x is from being
a solution to the variational inclusion F (x) ∋ y; the expression d(y, F (x)) measures the
residual when F (x) 6∋ y. Smaller values of κ correspond to more favorable behavior.
The metric regularity of a mapping F at x̄ for ȳ is known to be equivalent to the Aubin
property of the inverse F−1 at ȳ for x̄. Recall that a set-valued map Γ : Y →→ X has the
Aubin property at (ȳ, x̄) (see, e.g., [1]) if there exist positive constants κ, a and b such
that

e(Γ(y′) ∩ IBa(x̄),Γ(y)) ≤ κ‖y′ − y‖ for all y, y′ ∈ IBb(ȳ), (5)

where e(A,B) denotes the excess from a set A to a set B and is defined as e(A,B) =
supx∈A d(x,B). For more details on metric regularity and applications to variational
problems one can refer to [3, 14, 16] and the monographs [23, 26].

In order to introduce the next regularity property, we need the notion of graphical local-
ization. A graphical localization of a mapping F : X →→ Y at (x̄, ȳ) ∈ gphF is a mapping
F̃ : X →→ Y such that gph F̃ = (U × V )∩ gphF for some neighborhood U × V of (x̄, ȳ).

Definition 2.2. A mapping F : X →→ Y is strongly metrically regular at x̄ for ȳ if the
metric regularity condition in Definition 2.1 is satisfied by some κ and neighborhoods U
of x and V of y and, in addition, the graphical localization of F−1 with respect to U
and V is single-valued. Equivalently, the graphical localization V ∋ y 7→ F−1(y) ∩ U is a
Lipschitz continuous function whose Lipschitz constant is equal to κ.

Strong regularity implies metric regularity by definition. The simplest case is the linear
and bounded mapping from R

n to itself represented by an n×n matrix A. This mapping
is strongly regular precisely when the matrix A is nonsingular, and metrically regular
when A is merely surjective. But if a square matrix is surjective, that is, of full rank,
it must be nonsingular. We see here an instance of a mapping when metric regularity
automatically implies strong regularity, that is, metric regularity and strong regularity are
equivalent. It turns out, see [13], that this equivalence holds for more general mappings of
the form of the sum of a smooth function and the normal cone mapping over a polyhedral
convex set.

For any set-valued mapping that is locally monotone near the reference point metric
regularity at that point implies, and hence is equivalent to, strong regularity (see [11]).
This is a consequence of a deeper result by Kenderov [19] regarding single-valuedness of
lower semicontinuous monotone mappings. Recall that a mapping F : X →→ X∗ is said to
be locally monotone at (x̄, ȳ) ∈ gphF if there is a neighborhood W of (x̄, ȳ) such that

〈y1 − y2, x1 − x2〉 ≥ 0 whenever (x1, y1), (x2, y2) ∈ gphF ∩W.
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We will say that F is monotone if the last inequality is valid for any pair of points in
the graph. A generalization of the result obtained in [11] was shown in [21] where the
equivalence between strong regularity and metric regularity together with premonotonicity
(which is an extension of the notion of monotonicity) was established.

Definition 2.3. A mapping F : X →→ Y is said to be metrically subregular at x̄ for ȳ if
(x̄, ȳ) ∈ gphF and there exists a constant κ > 0 along with neighborhoods U of x̄ and V
of ȳ such that

d(x, F−1(ȳ)) ≤ κd(ȳ, F (x) ∩ V ) for all x ∈ U. (6)

Obviously, metric regularity forces metric subregularity. Moreover, it is worth noting that
the subregularity of a set-valued mapping F at x̄ for ȳ is equivalent to the calmness of its
inverse F−1 at ȳ for x̄, see [14], where the constant κ in (6) might be slightly bigger when
gphF is not locally closed. Let us recall that the mapping F−1 : Y →→ X is calm at ȳ for
x̄ if there exists a constant κ ∈ (0,∞) along with neighborhoods U of x̄ and V of ȳ such
that

F−1(y) ∩ U ⊂ F−1(ȳ) + κ‖y − ȳ‖IB for all y ∈ V. (7)

Hence, the calmness of F−1 at ȳ for x̄ is a localized version of Robinson’s property of upper-
Lipschitz continuity that we mentioned in Section 1. Actually, relation (1) corresponds
to (7) when U = X. In [24], Robinson showed that when X and Y are finite-dimensional
and gphF is the union of finitely many convex sets that are polyhedral then F−1 is
upper-Lipschitz continuous at every ȳ ∈ domF−1.

Now we present briefly the strong subregularity which is the last regularity property we
consider here.

Definition 2.4. A mapping F : X →→ Y is said to be strongly subregular at x̄ for ȳ if
(x̄, ȳ) ∈ gphF and there exists a constant κ > 0 along with neighborhoods U of x̄ and V
of ȳ such that

‖x− x̄‖ ≤ κd(ȳ, F (x) ∩ V ) for all x ∈ U.

An equivalent description is that F is metrically subregular at x̄ for ȳ and, in addition, x̄
is an isolated point of F−1(ȳ).

This property is equivalent to the “local Lipschitz property at a point� of the inverse
mapping, a property first formally introduced in [10].

3. Characterization of metric regularity

Our setting, for this section, is an arbitrary Hilbert space H equipped with an inner
product 〈·, ·〉. In order to establish our results we use the following version of the well
known Ekeland’s variational principle.

Theorem 3.1 (Ekeland’s variational principle). Let (X, d) be a complete metric
space and let f : X → R ∪ {+∞} be a lower semicontinuous function bounded from
below. Suppose that for some ε > 0 and z ∈ X, f(z) < inf f + ε. Then for any λ > 0
there exists y ∈ X such that

(i) d(z, y) ≤ λ,

(ii) f(y) + (ε/λ)d(z, y) ≤ f(z), and
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(iii) f(x) + (ε/λ)d(x, y) > f(y), for all x ∈ X \ {y}.

The following very simple lemma will be helpful in simplifying the proofs of our main
results.

Lemma 3.2. Consider a function f in Γ(H) and two points x̄ and v̄ in H with v̄ ∈ ∂f(x̄).
Defining the function g(·) := f(·)− 〈v̄, ·〉, we have

(1) ∂f is metrically subregular at x̄ for v̄ if and only if ∂g is metrically subregular at x̄
for 0.

(2) ∂f is metrically regular at x̄ for v̄ if and only if ∂g is metrically regular at x̄ for 0.

Proof. (1) The mapping ∂f is metrically subregular at x̄ for v̄ if and only if there exist
positive numbers a, b and κ such that

d(x, (∂f)−1(v̄)) ≤ κd(v̄, ∂f(x) ∩ IBb(v̄)) for all x ∈ IBa(x̄).

Since (∂f)−1(v̄) = (∂g)−1(0), the above relation is clearly equivalent to

d(x, (∂g)−1(0)) ≤ κd(v̄, (∂g(x) + v̄) ∩ (v̄ + IBb(0))) = κd(0, ∂g(x) ∩ IBb(0)),

whenever x ∈ IBa(x̄); that is, ∂g is metrically subregular at x̄ for 0.

(2) The mapping ∂f is metrically regular at x̄ for v̄ if and only if there exist positive
numbers a, b and κ such that

d(x, (∂f)−1(v)) ≤ κd(v, ∂f(x)) for all x ∈ IBa(x̄), v ∈ IBb(v̄).

This last inequality is equivalent to

d(x, (∂g)−1(v − v̄)) ≤ κd(v, ∂g(x) + v̄) = κd(v − v̄, ∂g(x)),

for all x ∈ IBa(x̄) and v ∈ IBb(v̄), or likewise

d(x, (∂g)−1(w)) ≤ κd(w, ∂g(x)) for all x ∈ IBa(x̄), w ∈ IBb(0),

which is exactly the definition of the metric regularity of ∂g at x̄ for 0.

The following theorem characterizes the subregularity of the subdifferential of a convex
lower semicontinuous function on H.

Theorem 3.3. Consider a function f in Γ(H) and points x̄ and v̄ in H such that v̄ ∈
∂f(x̄). Then ∂f is metrically subregular at x̄ for v̄ if and only if there exist a neighborhood
U of x̄ and a positive constant c such that

f(x) ≥ f(x̄)− 〈v̄, x̄− x〉+ cd2(x, (∂f)−1(v̄)) whenever x ∈ U. (8)

Proof. We first prove the theorem in the case when v̄ = 0. Suppose first that f has the
property (8) with v̄ = 0. We can assume without loss of generality that U is a closed
ball centered at x̄. Let x ∈ U , if d(x, (∂f)−1(0)) = 0 we are done. Hence suppose that
d(x, (∂f)−1(0)) > α, for some α > 0. We are going to show that d(0, ∂f(x)) ≥ cα.
Consider v ∈ ∂f(x) (if ∂f(x) = ∅ there is nothing to prove). Let x0 be the projection
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of x on the closed convex set (∂f)−1(0), that is, ‖x − x0‖ = d(x, (∂f)−1(0)). Let x1 be
a point in the segment line from x to x0 such that ‖x1 − x0‖ = α. Since v ∈ ∂f(x),
〈v, x− x0〉 ≥ f(x)− f(x0). Moreover, since x0 and x̄ are respectively the projections of x
and x̄ on (∂f)−1(0), we have ‖x0 − x̄‖ ≤ ‖x− x̄‖ (because of the Lipschitz property with
modulus 1 of the projection). Hence x0 belongs to U and so does x1. Using these facts,
the convexity of the function f and the property (8) we obtain

‖v‖ ≥
〈v, x− x0〉

‖x− x0‖
≥

f(x)− f(x0)

‖x− x0‖
≥

f(x1)− f(x0)

‖x1 − x0‖
≥ cα,

and thus d(x, (∂f)−1(0)) ≤ (1/c)d(0, ∂f(x)). Then, for any neighborhood V of 0, we have

d(x, (∂f)−1(0)) ≤
1

c
d(0, ∂f(x) ∩ V ),

that is, ∂f is metrically subregular at x̄ for 0 with growth constant 1/c.

Now assume that ∂f has the property (6) at x̄ for 0 with growth constant κ > 0 and
neighborhoods U of x̄ and V of 0. If (8) is not true, then for all n ∈ N\{0}, there exists
zn ∈ x̄+ (1/n)IB such that

f(zn) < f(x̄) +
1

5k
d2(zn, (∂f)

−1(0)).

Hence 0 < d(zn, (∂f)
−1(0)) ≤ 1/n. If we take λn := (1/2)d(zn, (∂f)

−1(0)), by the Eke-
land’s variational principle (see Theorem 3.1), there exists xn such that ‖xn − zn‖ ≤ λn

and for all x ∈ H,

f(x) ≥ f(xn)−
1

5kλn

d2(zn, (∂f)
−1(0))‖x− xn‖

≥ f(xn)−
2

5k
d(zn, (∂f)

−1(0))‖x− xn‖.

Thus xn minimizes the convex function f(·)+2/(5κ)d(zn, (∂f)
−1(0))‖·−xn‖, and therefore

0 ∈ ∂

(

f(·) +
4

5κ
λn‖ · −xn‖

)

(xn)

⊂ ∂f(xn) +
4

5κ
λn∂(‖ · −xn‖)(xn)

⊂ ∂f(xn) +
4

5κ
λnIB

Then there exists vn ∈ ∂f(xn) such that ‖vn‖ ≤ 2/(5κ)d(zn, (∂f)
−1(0)) ≤ 2/(5κn). Since

d(zn, (∂f)
−1(0)) ≤ ‖zn − xn‖+ d(xn, (∂f)

−1(0))

≤ λn + d(xn, (∂f)
−1(0)) =

1

2
d(zn, (∂f)

−1(0)) + d(xn, (∂f)
−1(0)),

one has d(zn, (∂f)
−1(0)) ≤ 2d(xn, (∂f)

−1(0)), and thus

‖vn‖ ≤ 2/(5κ)d(zn, (∂f)
−1(0)) ≤ 4/(5κ)d(xn, (∂f)

−1(0)).
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Hence for all positive integer n there exist vn ∈ 2/(5κn)IB and xn ∈ (∂f)−1(vn) such that
d(xn, (∂f)

−1(0)) ≥ (5κ/4)‖vn‖. Therefore,

d(xn, (∂f)
−1(0)) ≥

5

4
κd(0, ∂f(xn) ∩ V ) eventually.

Since 0 < d(zn, (∂f)
−1(0)) ≤ 2d(xn, (∂f)

−1(0)), we have d(0, ∂f(xn) ∩ V ) > 0, and from

‖xn − x̄‖ ≤ ‖xn − zn‖+ ‖zn − x̄‖ ≤
1

2
d(zn, (∂f)

−1(0)) +
1

n
≤

3

2n
,

we obtain a contradiction with (6).

Now we prove Theorem 3.3 for any v̄ 6= 0. Consider a function f ∈ Γ(H) and a point x̄ ∈ H
such that v̄ ∈ ∂f(x̄). Set g(·) := f(·)− 〈v̄, ·〉, then g ∈ Γ(H), and since ∂g(·) = ∂f(·)− v̄
we have 0 ∈ ∂g(x̄). Then we can apply Theorem 3.3, in the case when v̄ = 0, to the
function g. We obtain that ∂g is metrically subregular at x̄ for 0 if and only if there exist
a neighborhood U of x̄ and a positive number c such that

g(x) ≥ g(x̄) + cd2(x, (∂g)−1(0)) whenever x ∈ U.

Keeping in mind that ∂g is metrically subregular at x̄ for 0 if and only if ∂f is metrically
subregular at x̄ for v̄ (see Lemma 3.2) and noting that (∂g)−1(0) = (∂f)−1(v̄), we complete
the proof.

In the same way that metric subregularity ‘localizes’ the concept of upper-Lipschitz con-
tinuity the characterization given in Theorem 3.3 corresponds (in the case when ȳ = 0)
to a local of version of the one established in [28] (see relation (3)).

Moreover, let us mention that ∂f may be subregular with constant κ but assertion (8) can
be false for c = 1/κ. For example, take κ = 2 and let f(x) = x2. Then ∂f is metrically
subregular at 0 for 0 with constant 1/2, but relation (8) doesn’t hold for c = 2.

Remark 3.4. A consequence of the proof of this theorem is that, in our case, the defini-
tion of subregularity (6) is valid for any neighborhood V of v̄ and thus can be simplified
in the following way

d(x, (∂f)−1(v̄)) ≤ κd(v̄, ∂f(x)) for all x ∈ U. (9)

Actually, this is the simplifying criterion given by Dontchev and Rockafellar in [14] for
the metric subregularity of a mapping F : X →→ Y having

lim inf
x→x̄

x∈domF

F (x) ∋ ȳ. (10)

Nevertheless condition (10) is not valid in general in our case (for instance, take f(x) = |x|
and xn = 1/n). In fact, it turns out that, even in the general case, the definition of
subregularity can be simplified in the following way:

A mapping F : X →→ Y is metrically subregular at (x̄, ȳ) ∈ gphF with constant κ if and
only if there is some neighborhood U of x̄ such that

d(x, F−1(ȳ)) ≤ κd(ȳ, F (x)) for all x ∈ U. (11)
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Indeed, if F satisfies (11) for some κ > 0 and some neighborhood U of x̄, then F is
metrically subregular at (x̄, ȳ) with constant κ and neighborhoods U and V , for any
neighborhood V of ȳ. Conversely, if F is metrically subregular at (x̄, ȳ) with constant
κ > 0, then there are some neighborhoods U of x̄ and V of ȳ such that

d(x, F−1(ȳ)) ≤ κd(ȳ, F (x) ∩ V ) for all x ∈ U. (12)

Let δ > 0 be such that V ′ := ȳ + δIB ⊂ V . Take U ′ := U ∩ (x̄ + δκIB). Pick x ∈ U ′. If
F (x) ∩ V ′ 6= ∅, then d(ȳ, F (x) ∩ V ′) = d(ȳ, F (x)) and thus x verifies the inequality (11).
Otherwise, F (x) ∩ V ′ = ∅ and hence

d(ȳ, F (x)) ≥ δ ≥
1

κ
‖x− x̄‖ ≥

1

κ
d(x, F−1(ȳ)),

and (11) holds for all x ∈ U ′.

It is worth writing explicitly the following direct consequence of Theorem 3.3. It concerns
the metric subregularity of ∂f near a critical point x̄ of the function f (i.e., a point
satisfying ∂f(x̄) ∋ 0). More precisely, we have that ∂f is metrically subregular at x̄ for 0
if and only if the mapping f satisfies:

f(x) ≥ inf f + cd2(x, (∂f)−1(0)) for x close to x̄.

Such a condition is called a quadratic growth condition. Recall that if S denotes a
nonempty set of minimum points of a function f , i.e., S ⊂ argminf then we say that
f satisfies the quadratic growth condition on S if there exists a positive constant c such
that

f(x) ≥ inf f + cd2(x, S) for all x in a neighborhood of S. (13)

Particular forms of relation (13) are known to be equivalent to the second order sufficient
condition in nonlinear programming problems with qualified constraints (see e.g., [4]).
Such a condition has also proved to be a key tool in sensitivity analysis (see [27]); for
more details about the notion of quadratic growth condition one can refer to [2, 5, 9] and
the references therein.

Now we examine the case when the subdifferential operator is strongly subregular.

Theorem 3.5. Consider a function f in Γ(H) and points x̄ and v̄ in H such that v̄ ∈
∂f(x̄). Then ∂f is strongly subregular at x̄ for v̄ if and only if there exist a neighborhood
U of x̄ and a positive constant c such that

f(x) ≥ f(x̄)− 〈v̄, x̄− x〉+ c‖x− x̄‖2 whenever x ∈ U. (14)

Proof. It is a straightforward consequence of Theorem 3.3. If ∂f is strongly subregular
at x̄ for v̄, then it is subregular at x̄ for v̄ and, in addition, (∂f)−1(v̄)∩U = {x̄} for some
neighborhood U of x̄. But because of the convexity of f we have (∂f)−1(v̄) = {x̄}, and
thus (8) gives (14).
Conversely, the property (14) implies (8) and then ∂f is metrically subregular at x̄ for v̄.
Moreover, relation (14) yields in particular that x̄ is an isolated point of (∂f)−1(v̄) and
therefore the mapping ∂f is strongly metrically subregular at x̄ for v̄.
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As in Remark 3.4 the definition of strong subregularity can be simplified in our case.
Actually this holds true in general:

A mapping F : X →→ Y is strongly subregular at (x̄, ȳ) ∈ gphF with constant κ if and
only if there is some neighborhood U of x̄ such that

‖x− x̄‖ ≤ κd(ȳ, F (x)) for all x ∈ U.

This can be shown by repeating the same arguments we used to prove the simplified
criterion (11) in Remark 3.4.

Next comes a result about the metric regularity of the subdifferential of a proper lower
semicontinuous convex function on H.

Theorem 3.6. Consider a function f in Γ(H) and points x̄ and v̄ in H such that v̄ ∈
∂f(x̄). Then ∂f is metrically regular at x̄ for v̄ if and only if there exist neighborhoods U
of x̄ and V of v̄ and a positive constant c such that for all v ∈ V

(∂f)−1(v) 6= ∅, and (15)

f(x) ≥ f(x̃)− 〈v, x̃− x〉+ cd2(x, (∂f)−1(v)), (16)

for all x ∈ U and x̃ ∈ (∂f)−1(v).

Proof. Here again, we only present the proof for the case v̄ = 0, the general case being
a straightforward consequence of the particular case v̄ = 0 and Lemma 3.2.

Assume that ∂f is metrically regular at x̄ for 0, that is, it verifies (4) for some κ > 0 and
neighborhoods U of x̄ and V of 0. We are going to prove that there is some δ > 0 and
c > 0 such that

f(x̃)− 〈v, x̃− x〉 ≤ f(x)− cd2(x, (∂f)−1(v)), (17)

for all v ∈ (δ/κ)IB, x ∈ (x̄ + δIB) ∩ ((∂f)−1(v) + 2δIB) and x̃ ∈ (∂f)−1(v). If this is not
true, then for all n ∈ N\{0}, there exist vn ∈ 1/(κn)IB, zn ∈ (x̄+(1/n)IB)∩((∂f)−1(vn)+
(2/n)IB) and x̃n ∈ (∂f)−1(vn) such that

f(zn) < f(x̃n)− 〈vn, x̃n − zn〉+
1

5κ
d2(zn, (∂f)

−1(vn)). (18)

Since vn ∈ ∂f(x̃n), we have 〈vn, x̃n − zn〉 ≥ f(x̃n) − f(zn). Combining this very last
inequality with relation (18) we get

0 < f(x̃n)− f(zn)− 〈vn, x̃n − zn〉+
1

5κ
d2(zn, (∂f)

−1(vn)) ≤
1

5κ
d2(zn, (∂f)

−1(vn)).

Therefore 0 < d(zn, (∂f)
−1(vn)) ≤ 2/n. Moreover, since vn ∈ ∂f(x̃n), we have 〈vn, x̃n −

x〉 ≥ f(x̃n)− f(x) for all x ∈ H, i.e.,

f(x̃n)− 〈vn, x̃n〉 ≤ f(x)− 〈vn, x〉 for all x ∈ H.

Let gn(·) := f(·)− 〈vn, ·〉. Then inf
x∈H

gn(x) = gn(x̃n) and from (18) we have

gn(zn) < inf
x∈H

gn(x) +
1

5κ
d2(zn, (∂f)

−1(vn)).
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Taking λn := (1/2)d(zn, (∂f)
−1(vn)), the Ekeland’s variational principle ensures that there

is xn such that ‖xn − zn‖ ≤ λn and for all x ∈ H,

gn(x) ≥ gn(xn)−
1

5κλn

d2(zn, (∂f)
−1(vn))‖x− xn‖

≥ gn(xn)−
2

5κ
d(zn, (∂f)

−1(vn))‖x− xn‖.

Thus xn minimize the convex function gn(·) + 2/(5κ)d(zn, (∂f)
−1(vn))‖ ·−xn‖. Therefore

0 ∈ ∂

(

gn(·) +
4

5κ
λn‖ · −xn‖

)

(xn)

⊂ ∂gn(xn) +
4

5κ
λn∂(‖ · −xn‖)(xn)

⊂ ∂f(xn)− vn +
4

5κ
λnIB.

Then there exists wn ∈ ∂f(xn) such that ‖wn − vn‖ ≤ 4λn/(5κ). Since

d(zn, (∂f)
−1(vn)) ≤ ‖zn − xn‖+ d(xn, (∂f)

−1(vn))

≤
1

2
d(zn, (∂f)

−1(vn)) + d(xn, (∂f)
−1(vn)),

we obtain d(zn, (∂f)
−1(vn)) ≤ 2d(xn, (∂f)

−1(vn)), and thus

‖wn − vn‖ ≤
2

5κ
d(zn, (∂f)

−1(vn)) ≤
4

5κ
d(xn, (∂f)

−1(vn)).

Therefore

d(xn, (∂f)
−1(vn)) ≥

5κ

4
‖wn − vn‖ ≥

5κ

4
d(vn, ∂f(xn)). (19)

Since 2d(xn, (∂f)
−1(vn)) ≥ d(zn, (∂f)

−1(vn)) > 0, we have d(vn, ∂f(xn)) > 0, and thus (19)
is a contradiction with (4) because ‖vn‖ ≤ 1/(κn) and

‖xn − x̄‖ ≤ ‖xn − zn‖+ ‖zn − x̄‖ ≤
1

2
d(zn, (∂f)

−1(vn)) +
1

n
≤

2

n
. (20)

Hence (17) holds true for some δ > 0 and c > 0. Make δ smaller if necessary so that
(δ/κ)IB ⊂ V . Then if v ∈ (δ/κ)IB and x ∈ x̄+ δIB,

d(x, (∂f)−1(v)) ≤ ‖x− x̄‖+ d(x̄, (∂f)−1(v)) ≤ δ + κd(v, ∂f(x̄)) ≤ δ + κ‖v‖ ≤ 2δ. (21)

Thus (x̄ + δIB) ∩ ((∂f)−1(v) + 2δIB) = x̄ + δIB for all v ∈ (δ/κ)IB and therefore (17)
implies (16) for U ′ := x̄+ δIB and V ′ := (δ/κ)IB. Also (21) yields in particular (15).

For the converse, suppose that properties (15) and (16) are satisfied for some neighbor-
hoods U of x̄ and V of 0. Then, thanks to (15), we have that d(x, (∂f)−1(v)) < ∞ for
any x ∈ U and v ∈ V . Fix x ∈ U and v ∈ V , we are going to show that

d(x, (∂f)−1(v)) ≤
1

c
d(v, ∂f(x)).



F. J. Aragón Artacho, M. H. Geoffroy / Characterization of Metric Regularity of ... 375

If d(x, (∂f)−1(v)) = 0 then there is nothing to prove. Otherwise, there exist a positive
number α such that d(x, (∂f)−1(v)) = α. Consider any v′ ∈ ∂f(x) (if ∂f(x) = ∅ we are
done). Let x0 be the projection of x over (∂f)−1(v), that is, ‖x−x0‖ = α. Applying (16)
to x, v and x0 ∈ (∂f)−1(v), we get

f(x)− f(x0) ≥ −〈v, x0 − x〉+ cd2(x, (∂f)−1(v)).

Keeping in mind that v′ ∈ ∂f(x) and using this last inequality we obtain

‖v′ − v‖ ≥
〈v′ − v, x− x0〉

‖x− x0‖
≥

f(x)− f(x0)− 〈v, x− x0〉

‖x− x0‖
≥ cα.

Therefore, d(v, ∂f(x)) ≥ cα = cd(x, (∂f)−1(v)), and thus ∂f is metrically regular at x̄ for
0 with growth constant 1/c.

Condition (15) is necessary in order to have the metric regularity, in the sense that it is
not implied by the other assumptions. For instance, consider the function f : R → R

defined as f(x) = 0 for all x ∈ R. This function satisfies all the hypotheses of Theorem 3.6
but (15), since ∂f(x) = {0} for all x ∈ R, and ∂f is not metrically regular at any x ∈ R

for 0.

For mappings with closed and convex graph we have the following result that extends the
Banach open mapping principle and characterizes metric regularity.

Theorem 3.7 (Robinson-Ursescu). For a mapping F : X →→ Y and (x̄, ȳ) ∈ gphF , if
F has closed convex graph, then F is metrically regular at (x̄, ȳ) if and only if ȳ ∈ int rgeF .

The condition ȳ ∈ int rgeF given by this theorem is equivalent in our case to (15).
Nevertheless, gph(∂f) is not convex in general, and (15) is not sufficient for having metric
regularity. Indeed, let f : R → R defined by

f(x) =











−x for x < −1,

1 for x ∈ [−1, 1],

x for x > 1.

A simple computation gives us

∂f(x) =































−1 for x < −1,

[-1,0] for x = −1,

0 for x ∈ (−1, 1),

[0,1] for x = 1,

1 for x > 1.

Then, condition (15) is fulfilled but ∂f is not metrically regular at 0 for 0. Hence condi-
tion (16) is not implied in general by the other assumptions of Theorem 3.6.

It is well known that ∂f is monotone for any f ∈ Γ(X), and this fact will serve us to
simplify the conditions in Theorem 3.6. Moreover, as we mentioned in Section 2, strong
regularity is equivalent to metric regularity for monotone mappings.
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Proposition 3.8. Let f ∈ Γ(X). Then ∂f is metrically regular at x̄ for v̄ if and only if
∂f is strongly regular at x̄ for v̄.

Note that, for monotone mappings, the equivalence between strong subregularity and
metric subregularity is not valid, as we can see for instance for the zero function (which
is metrically subregular at 0 for 0 but not strongly subregular).

This last proposition leads us to the following reformulation of Theorem 3.6.

Corollary 3.9. Consider a function f ∈ Γ(H) and points x̄ and v̄ in H such that v̄ ∈
∂f(x̄). Then ∂f is (strongly) metrically regular at x̄ for v̄ if and only if there exist
neighborhoods U of x̄ and V of v̄ and a positive constant c such that, for any v ∈ V there
is x̃ ∈ H such that (∂f)−1(v) = {x̃} and

f(x) ≥ f(x̃)− 〈v, x̃− x〉+ c‖x− x̃‖2 whenever x ∈ U. (22)

Proof. It is clear that condition (22) implies both assertions (15) and (16). Conversely,
if ∂f is metrically regular at x̄ for v̄, by Corollary 3.8, ∂f is strongly regular. Then, by
Theorem 3.6, there are some positive a and b such that (∂f)−1(v) ∩ (int IBa(x̄)) is single-
valued whenever v ∈ IBb(v̄) and f verifies (15) and (16) for U = IBa(x̄) and V = IBb(v̄).
But from the convexity of f we have that (∂f)−1(v) is a convex set for any v ∈ H. Thus
(∂f)−1(v) must be single-valued for any v ∈ IBb(v̄). This together with (15) and (16) give
us (22).

A straightforward consequence of Theorem 3.6 is a result concerning the Lipschitz con-
tinuity of the inverse of the subdifferential of a convex lower semicontinuous function
around the origin. Recall that a set-valued mapping T : Y →→ X is Lipschitz continuous
at ȳ ∈ Y with a constant κ > 0 if there is a neighborhood V of ȳ such that

d(x, T (y)) ≤ κd(y, T−1(x)) for all x ∈ X, y ∈ V, (23)

which can be viewed as a global version of the metric regularity of the mapping T−1.

Theorem 3.10. Consider a function f ∈ Γ(H) and points x̄ and v̄ in H such that v̄ ∈
∂f(x̄). Then (∂f)−1 is Lipschitz continuous at v̄ if and only if there exist a neighborhood
V of v̄ and a positive constant c such that, for any v ∈ V there is (only one) x̃ ∈ H with

f(x) ≥ f(x̃)− 〈v, x̃− x〉+ c‖x− x̃‖2 for any x ∈ H, (24)

which implies in particular that (∂f)−1(v) = {x̃}.

Proof. The proof is twofold but since it may be performed in much the same way as the
one of Theorem 3.6 we only give its main ideas. First, we prove that (∂f)−1 is Lipschitz
continuous at v̄ if and only if there is a neighborhood V of v̄ such that

(∂f)−1(v) 6= ∅, and (25)

f(x̃)− 〈v, x̃− x〉 ≤ f(x)− cd2(x, (∂f)−1(v)), (26)

for all x ∈ H, v ∈ V and x̃ ∈ (∂f)−1(v). The “only if� part can be shown using the same
arguments given in the proof of Theorem 3.6. The major difference here is that the point zn
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lies in the whole spaceH instead of belonging to (x̄+(1/n)IB)∩((∂f)−1(vn)+(2/n)IB) and
consequently we only have the boundedness condition 0 < d(zn, (∂f)

−1(vn)) ≤ ‖zn − x̃n‖.
Since we do not need relation (20) we are done after establishing (19). For the converse,
it suffices to replace U by H in the argument.

Finally, proceeding analogously to the proof of Corollary 3.9, we obtain (24).

As an illustration, consider the following optimization problem

min f(x)
s.t. x ∈ K,

(27)

where f ∈ Γ(H) and K is a nonempty closed convex subset of H. Under one of the
following regularity conditions

f is finite at some point of intK, (28)

f is finite and continuous at some point of K, (29)

a necessary and sufficient condition for x̄ ∈ H to be globally optimal is

∂f(x̄) +NK(x̄) ∋ 0, (30)

where NK(x̄) is the normal cone to K at x̄ (for more details, see e.g. [7]). Let us consider
the convex function f(·) + δK(·), where

δK(x) =

{

0 for x ∈ K,

∞ for x 6∈ K,

is the indicator function of K. Since ∂δK(x) = NK(x) for any x ∈ K, under (28) or (29),
we have

∂(f + δK)(x) = ∂f(x) +NK(x) for any x ∈ H.

Thus we can apply all the previous results to the function f + δK . In particular, from
Theorem 3.5 we obtain

Corollary 3.11. Let f ∈ Γ(H), let K be a closed convex subset of H such that (28)
or (29) holds, and let x̄ ∈ H be a solution of (27). Then ∂f +NK is strongly subregular
at x̄ for 0 if and only if there exist a neighborhood U of x̄ and a positive constant c such
that

f(x) ≥ f(x̄) + c‖x− x̄‖2 whenever x ∈ U ∩K. (31)

For a (possibly nonconvex) function f : H → R which is twice continuously differen-
tiable everywhere, it has been shown (see [6, Theorem 3.70]) that the quadratic growth
condition (31) is equivalent to the second-order sufficient condition

〈u,∇2f(x̄)u〉 ≥ β‖u‖2 for all x ∈ C(x̄), (32)

where β is some positive constant and C(x̄) is the critical cone to K associated with x̄
defined by

C(x̄) = TK(x̄) ∩ (∇f(x̄))⊥,

and TK(x̄) is the tangent cone to K at x̄. Therefore, by applying Corollary 3.11, we have
the following characterization.
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Corollary 3.12. Let f ∈ Γ(H) be a twice continuously differentiable function, let K be
a closed convex subset of H, and let x̄ ∈ H be a point verifying (30). Then ∇f + NK

is strongly subregular at x̄ for 0 if and only if the second-order sufficient condition (32)
holds at x̄ for some β > 0.

In fact, when K is a polyhedral subset of Rn and f : Rn → R is a (possibly nonconvex)
function which is twice continuously differentiable, condition (32) reduces to

〈u,∇2f(x̄)u〉 > 0 for all nonzero x ∈ C(x̄), (33)

and we have the following result, where the convexity of f is not a necessary condition
(see [12] for details).

Proposition 3.13. Let f : Rn → R be a twice continuously differentiable function, let K
be a nonempty polyhedral subset of Rn and x̄ be a (stationary) point verifying (30). Then
the second-order sufficient condition (33) holds at x̄ if and only if x̄ is a local minimizer
of (27) and the mapping ∇f +NK is strongly subregular at x̄ for 0.

The following strong second-order sufficient condition for local optimality has proved to
be a key notion in optimization:

〈u,∇2f(x̄)u〉 > 0 for all nonzero x ∈ C(x̄)− C(x̄), (34)

where, because of the convexity of the critical cone, the critical subspace C(x̄)− C(x̄) is
the smallest subspace that contains C(x̄). It turns out, see [12], that (34) is equivalent to
the strong regularity of ∇f +NK .

Proposition 3.14. Let f : Rn → R be a twice continuously differentiable function, let
K be a nonempty polyhedral subset of Rn and x̄ be a (stationary) point verifying (30).
Then the strong second-order sufficient condition (34) holds at x̄ if and only if x̄ is a local
minimizer of (27) and the mapping ∇f +NK is strongly regular at x̄ for 0.

As a direct consequence of this result and Corollary 3.9 we have

Corollary 3.15. Let f ∈ Γ(Rn) be a twice continuously differentiable function, let K be
a nonempty polyhedral subset of Rn and x̄ be a (stationary) point verifying (30). Then
the strong second-order sufficient condition (34) holds at x̄ if and only if there exist neigh-
borhoods U of x̄ and V of 0 and a positive constant c such that, for any v ∈ V there is
x̃ ∈ K such that (∇f +NK)

−1(v) = {x̃} and

f(x) ≥ f(x̃)− 〈v, x̃− x〉+ c‖x− x̃‖2 whenever x ∈ U ∩K. (35)
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