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Let Ω ⊂ RP be a nonempty closed and convex set and f : RP → RP be a function. The inverse variational
inequality is to find x∗ ∈ RP such that

f(x∗) ∈ Ω, 〈f ′ − f(x∗), x∗〉 ≥ 0, ∀f ′ ∈ Ω.

The purpose of this paper is to investigate the well-posedness of the inverse variational inequality. We
establish some characterizations of its well-posedness. We prove that under suitable conditions, the
well-posedness of an inverse variational inequality is equivalent to the existence and uniqueness of its
solution. Finally, we show that the well-posedness of an inverse variational inequality is equivalent to the
well-posedness of an enlarged classical variational inequality.
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1. Introduction and Preliminaries

Throughout this paper, unless otherwise specified, we always suppose that Ω ⊂ RP is
a nonempty, closed and convex set, K ⊂ Rm is a nonempty, closed and convex set,
f : RP → RP , and F : K → Rm. Denote by 〈·, ·〉 the standard inner product. The
classical variational inequality (denoted by V I(K,F )) is to determine a vector u∗ ∈ K

such that
〈F (u∗), u− u∗〉 ≥ 0, ∀u ∈ K.

The classical variational inequality has many important applications in different fields
and has been studied intensively (see e.g. [1, 2, 4, 11, 14, 15, 17]). Especially, the well-
posedness issues of variational inequalities have been attracting attentions of researchers
in the fields of mathematics and economics. Lucchetti and Patrone [17] introduced in the
literature the first notion of well-posedness for a variational inequality. Lignola and Mor-
gan [14] introduced the parametric well-posedness for a family of variational inequalities
and investigated its links with the extended well-posedness [19, 20] of the correspond-
ing minimization problems. Lignola and Morgan [15] further introduced the concept of
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α-well-posedness for variational inequalities. Recently, Fang and Hu [2] studied the well-
posedness of variational inequalities by means of estimate functions for approximating
solutions. For other results on the well-posedness of variational inequalities, we refer the
readers to [1, 3, 16].

In this paper we consider the well-posedness of the following inverse variational inequality
(denoted by IV I(Ω, f)): find x∗ ∈ RP such that

f(x∗) ∈ Ω, 〈f ′ − f(x∗), x∗〉 ≥ 0, ∀f ′ ∈ Ω.

Clearly, if f has a single-valued inverse function f−1, IV I(Ω, f) can be translated into
the classical variational inequality V I(Ω, F ) by setting u∗ = f(x∗) and F (u∗) = f−1(u∗).
This motivates the name of inverse variational inequalities. However, f(x) does not allow
measurements, and only F (u) is available in some practical applications. In addition, an
inverse variational inequality also arises in some practical problems. In fact, the primary
motivation of study on inverse variational inequalities originates from the fact that the
equilibrium state control problem can be interpreted as an inverse variational inequality.
For details, we refer the readers to [9, 10]. Another motivation lies in the fact that an
inverse variational inequality can be regarded as a special case of a general variational
inequality formulated as: find x∗ ∈ RP such that

f(x∗) ∈ Ω, 〈y − f(x∗), g(x∗)〉 ≥ 0, ∀y ∈ Ω.

where g : RP → RP , which has been studied intensively (see e.g., [7, 18]). Compared with
variational inequalities, there are only a few results on the inverse variational inequality
in the literature. Recently, some numerical methods have been developed to solve the
inverse variational inequality (see e.g. [5, 6, 8]). The fact that well-posedness issue is
closely related to numerical methods motivates us to investigate the well-posedness of
inverse variational inequalities. We generalize the concept of well-posedness to an inverse
variational inequality and establish some characterizations of its well-posedness. We prove
that under suitable conditions, the well-posedness of an inverse variational inequality is
equivalent to the existence and uniqueness of its solution. We also prove that the well-
posedness of an inverse variational inequality is equivalent to the well-posedness of an
enlarged classical variational inequality.

In the sequel we always suppose that α is a nonnegative number.

Definition 1.1. A sequence {xn} ⊂ RP is called an α-approximating sequence for
IV I(Ω, f) iff there exists ǫn > 0 with ǫn → 0 such that

f(xn) ∈ Ω, 〈f(xn)− f ′, xn〉 ≤
α

2
‖f(xn)− f ′‖2 + ǫn, ∀f ′ ∈ Ω,∀n ∈ N.

When α = 0, we say that {xn} is an approximating sequence for IV I(Ω, f).

Definition 1.2. We say that IV I(Ω, f) is α-well-posed iff IV I(Ω, f) has a unique solu-
tion and every α-approximating sequence converges to the unique solution. If α1 > α2 ≥ 0,
then α1-well-posedness implies α2-well-posedness. In the sequel 0-well-posedness is always
called well-posedness.

Definition 1.3. We say that IV I(Ω, f) is α-well-posed in the generalized sense iff
IV I(Ω, f) has a nonempty solution set S and every α-approximating sequence has some
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subsequence which converges to some point of S. In the sequel 0-well-posedness in the
generalized sense is always called well-posedness in the generalized sense.

Definition 1.4. A function f : RP → RP is said to be monotone iff

〈f(x)− f(y), x− y〉 ≥ 0, ∀x, y ∈ RP .

Definition 1.5. A function f : RP → RP is said to be hemicontinuous iff for any x, y ∈
RP , the function t 7→ 〈f(x+ t(y − x)), y − x〉 from [0, 1] to R is continuous at 0+.

Denote by PΩ(z) the metric projection of z on Ω, i.e.,

PΩ(z) = argmin{‖z − x‖ : x ∈ Ω}, ∀z ∈ RP .

It is known that u = PΩ(z) if and only if

〈u− z, v − u〉 ≥ 0, ∀v ∈ Ω.

We need the following lemma and concepts to deal with α-well-posedness of IV I(Ω, f).

Lemma 1.6. Let α ≥ 0, x∗ ∈ RP with f(x∗) ∈ Ω, and let Ω ⊂ RP be a nonempty convex

set. Then

〈f(x∗)− f ′, x∗〉 ≤ 0, ∀f ′ ∈ Ω

if and only if

〈f(x∗)− f ′, x∗〉 ≤
α

2
‖f(x∗)− f ′‖2, ∀f ′ ∈ Ω.

Proof. The necessity holds trivially. For the sufficiency, suppose that

〈f(x∗)− f ′, x∗〉 ≤
α

2
‖f(x∗)− f ′‖2, ∀f ′ ∈ Ω.

For given g ∈ Ω and t ∈ [0, 1], we have f(x∗) + t(g − f(x∗)) ∈ Ω since Ω is convex and
f(x∗) ∈ Ω. It follows that

t〈f(x∗)− g, x∗〉 = 〈f(x∗)− (f(x∗) + t(g − f(x∗))), x∗〉

≤
α

2
‖f(x∗)− (f(x∗) + t(g − f(x∗)))‖2

=
αt2

2
‖f(x∗)− g‖2.

This yields

〈f(x∗)− g, x∗〉 ≤
αt

2
‖f(x∗)− g‖2.

Letting t → 0 in the above inequality, we get

〈f(x∗)− g, x∗〉 ≤ 0, ∀g ∈ Ω.
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Definition 1.7 ([13]). LetA be a nonempty subset ofRP . The noncompactness measure
µ of the set A is defined by

µ(A) = inf{ǫ > 0 : A ⊂ ∪n

i=1Ai, diamAi < ǫ, i = 1, 2, · · · , n},

where diam means the diameter of a set.

Definition 1.8. Let A,B be nonempty subsets of RP . The Hausdorff distance H(·, ·)
between A and B is defined by

H(A,B) = max{e(A,B), e(B,A)},

where e(A,B) = supa∈A d(a,B) with d(a,B) = infb∈B ‖a − b‖. Let {An} be a sequence
of nonempty subsets of RP . We say that An converges to A in the sense of Hausdorff if
H(An, A) → 0. It is easy to see that e(An, A) → 0 if and only if d(an, A) → 0 for all
selection an ∈ An. For more details on this topic, we refer the readers to [12, 13].

2. Metric Characterizations

Let α, f,Ω be defined as in the previous section. In this section we derive some metric
characterizations of α-well-posedness and α-well-posedness in the generalized sense for
IV I(Ω, f).

Consider the α-approximating solution set Tα(ǫ) of IV I(Ω, f):

Tα(ǫ) = {x ∈ RP : f(x) ∈ Ω, 〈f(x)− f ′, x〉 ≤
α

2
‖f(x)− f ′‖2 + ǫ,∀f ′ ∈ Ω}, ∀ǫ ≥ 0.

We first give a metric characterization of α-well-posedness for IV I(Ω, f).

Theorem 2.1. Let Ω be nonempty, closed and convex, and let f : RP → RP be continu-

ous. Then IV I(Ω, f) is α-well-posed if and only if

Tα(ǫ) 6= ∅, ∀ǫ > 0 and diamTα(ǫ) → 0 as ǫ → 0. (1)

Proof. Suppose that IV I(Ω, f) is α-well-posed. Then IV I(Ω, f) has a unique solution
x∗. Clearly, x∗ ∈ Tα(ǫ) for all ǫ > 0. If diamTα(ǫ) 6→ 0 as ǫ → 0, then there exist l > 0,
ǫn > 0 with ǫn → 0, and un, vn ∈ Tα(ǫn) such that

‖un − vn‖ > l, ∀n ∈ N. (2)

Since un, vn ∈ Tα(ǫn), both {un} and {vn} are α-approximating sequences for IV I(Ω, f).
By the α-well-posedness of IV I(Ω, f), they have to converge to the unique solution x∗ of
IV I(Ω, f), a contradiction to (2).

Conversely, suppose that condition (1) holds. Let {xn} ⊂ RP be an α-approximating
sequence for IV I(Ω, f). Then there exists ǫn > 0 with ǫn → 0 such that

f(xn) ∈ Ω, 〈f(xn)− f ′, xn〉 ≤
α

2
‖f(xn)− f ′‖2 + ǫn, ∀f ′ ∈ Ω,∀n ∈ N. (3)

This yields that xn ∈ Tα(ǫn). From (1), we know that {xn} is a Cauchy sequence and so
it converges to a point x̄ ∈ RP . Since f is continuous and Ω is closed, we have

f(x̄) ∈ Ω, 〈f(x̄)− f ′, x̄〉 ≤
α

2
‖f(x̄)− f ′‖2, ∀f ′ ∈ Ω.
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It follows from Lemma 1.6 that

f(x̄) ∈ Ω, 〈f(x̄)− f ′, x̄〉 ≤ 0, ∀f ′ ∈ Ω.

Thus x̄ is a solution of IV I(Ω, f). To complete the proof, we need only to prove that
IV I(Ω, f) has a unique solution. Assume by contradiction that IV I(Ω, f) has two distinct
solution x1 and x2. Then it is easy to see that x1, x2 ∈ Tα(ǫ) for all ǫ > 0 and so

0 < ‖x1 − x2‖ ≤ diamTα(ǫ) → 0,

a contradiction to (1).

Next we establish a metric characterization of α-well-posedness in the generalized sense
by considering the noncompact measure of Tα(ǫ).

Theorem 2.2. Let Ω ⊂ RP be nonempty, closed and convex and let f : RP → RP be

continuous. Then IV I(Ω, f) is α-well-posed in the generalized sense if and only if

Tα(ǫ) 6= ∅, ∀ǫ > 0 and µ(Tα(ǫ)) → 0 as ǫ → 0. (4)

Proof. Suppose that IV I(Ω, f) is α-well-posed in the generalized sense. Let S be the
solution set of IV I(Ω, f). Then S is nonempty and compact. Indeed, let {xn} be any
sequence in S. Clearly {xn} is an α-approximating sequence for IV I(Ω, f). By the α-well-
posedness in the generalized sense of IV I(Ω, f), {xn} has a subsequence which converges
to some point of S. Thus S is compact. Further we have Tα(ǫ) ⊃ S 6= ∅ for all ǫ > 0.
Next we shall show that

µ(Tα(ǫ)) → 0 as ǫ → 0.

Observe that for every ǫ > 0,

H(Tα(ǫ), S) = max{e(Tα(ǫ), S), e(S, Tα(ǫ))} = e(Tα(ǫ), S).

Taking into account the compactness of S, we get

µ(Tα(ǫ)) ≤ 2H(Tα(ǫ), S) + µ(S) = 2e(Tα(ǫ), S).

To prove (4), it is sufficient to show

e(Tα(ǫ), S) → 0 as ǫ → 0.

If e(Tα(ǫ), S) 6→ 0 as ǫ → 0, then there exist l > 0, ǫn > 0 with ǫn → 0, and xn ∈ Tα(ǫn)
such that

xn 6∈ S +B(0, l), ∀n ∈ N, (5)

where B(0, l) is the closed ball centered at 0 with radius l. Being xn ∈ Tα(ǫn), {xn} is
an α-approximating sequence for IV I(Ω, f). By the α-well-posedness in the generalized
sense of IV I(Ω, f), there exists a subsequence {xnk

} of {xn} converging to some point of
S. This contradicts to (5) and so

e(Tα(ǫ), S) → 0 as ǫ → 0.
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Conversely, assume that (4) holds. Since f is continuous and Ω is closed, Tα(ǫ) is nonempty
closed for all ǫ > 0. Consider

S ′ := ∩ǫ>0Tα(ǫ) = {x ∈ RP : f(x) ∈ Ω, 〈f(x)− f ′, x〉 ≤
α

2
‖f(x)− f ′‖2,∀f ′ ∈ Ω}.

This together with Lemma 1.6 yields

S = S ′ = ∩ǫ>0Tα(ǫ).

Since µ(Tα(ǫ)) → 0, the Theorem on page 412 of [13] can be applied and one concludes
that S is nonempty, compact and

e(Tα(ǫ), S) = H(Tα(ǫ), S) → 0 as ǫ → 0.

Let {un} ⊂ RP be an α-approximating sequence for IV I(Ω, f). Then there exists ǫn > 0
with ǫn → 0 such that

f(un) ∈ Ω, 〈f(un)− f ′, un〉 ≤
α

2
‖f(un)− f ′‖2 + ǫn, ∀f ′ ∈ Ω,∀n ∈ N.

This means that un ∈ Tα(ǫn). It follows that

d(un, S) ≤ e(Tα(ǫn), S) → 0.

Since S is compact, there exists x̄n ∈ S such that

‖un − x̄n‖ = d(un, S) → 0.

Again from the compactness of S, {x̄n} has a subsequence {x̄nk
} converging to x̄ ∈ S.

Hence the corresponding subsequence {unk
} of {un} converges to x̄. Thus IV I(Ω, f) is

α-well-posed in the generalized sense.

3. Conditions for Well-Posedness

In this section we shall prove that under suitable conditions, the well-posedness of an
inverse variational inequality is equivalent to the existence and uniqueness of its solutions.

Theorem 3.1. Let Ω ⊂ RP be nonempty, closed and convex. Let f : RP → RP be

hemicontinuous and monotone. Then, IV I(Ω, f) is well-posed if and only if it has a

unique solution.

Proof. The necessity holds trivially. For the sufficiency, suppose that IV I(Ω, f) has a
unique solution x∗. Then

f(x∗) ∈ Ω, 〈f(x∗)− f ′, x∗〉 ≤ 0, ∀f ′ ∈ Ω.

Since f is monotone, we get

〈f(x)− f ′, x∗ − x〉+ 〈x, f(x∗)− f ′〉 ≤ 〈x∗, f(x∗)− f ′〉 ≤ 0, ∀x ∈ RP ,∀f ′ ∈ Ω. (6)

Let {xn} ⊂ RP be an approximating sequence for IV I(Ω, f). Then there exists ǫn > 0
with ǫn → 0 such that

f(xn) ∈ Ω, 〈f(xn)− f ′, xn〉 ≤ ǫn, ∀f ′ ∈ Ω,∀n ∈ N.
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Since f is monotone, it follows that

〈f(x)− f ′, xn − x〉+ 〈x, f(xn)− f ′〉 ≤ 〈xn, f(xn)− f ′〉 ≤ ǫn, ∀x ∈ RP ,∀f ′ ∈ Ω. (7)

Take
u∗ := (x∗, f(x∗)) and un := (xn, f(xn)), ∀n ∈ N.

If {un} is unbounded, without loss of generality, we can suppose that ‖un‖ → +∞. Set

tn :=
1

‖un − u∗‖
, wn = (zn, gn) := u∗ + tn(un − u∗)

= (x∗ + tn(xn − x∗), f(x∗) + tn(f(xn)− f(x∗))).

Without loss of generality, we can suppose that tn ∈ (0, 1] and wn → w = (z, g) 6= u∗.
Further we have g ∈ Ω since Ω is closed and convex. For any f ′ ∈ Ω and any x ∈ RP , it
follows that

〈f(x)− f ′, z − x〉+ 〈x, g − f ′〉

= 〈f(x)− f ′, z − zn〉+ 〈f(x)− f ′, zn − x∗〉+ 〈f(x)− f ′, x∗ − x〉

+〈x, g − gn〉+ 〈x, gn − f(x∗)〉+ 〈x, f(x∗)− f ′〉

= {〈f(x)− f ′, z − zn〉+ 〈x, g − gn〉}+ {〈f(x)− f ′, x∗ − x〉+ 〈x, f(x∗)− f ′〉}

+tn{〈f(x)− f ′, xn − x∗〉+ 〈x, f(xn)− f(x∗)〉}

= {〈f(x)− f ′, z − zn〉+ 〈x, g − gn〉}+ (1− tn){〈f(x)− f ′, x∗ − x〉+ 〈x, f(x∗)− f ′〉}

+tn{〈f(x)− f ′, xn − x〉+ 〈x, f(xn)− f ′)〉}. (8)

It follows from (6)-(8) that

〈f(x)− f ′, z − x〉+ 〈x, g − f ′〉

≤ 〈f(x)− f ′, z − zn〉+ 〈x, g − gn〉+ tnǫn,∀f
′ ∈ Ω, ∀x ∈ RP ,∀n ∈ N.

Letting n → ∞ in the above inequality, we get

〈f(x)− f ′, z − x〉+ 〈x, g − f ′〉 ≤ 0, ∀f ′ ∈ Ω,∀x ∈ RP . (9)

For any x′ ∈ RP and any g′ ∈ Ω, define z(t) := z + t(x′ − z) and g(t) := g + t(g′ − g) for
all t ∈ [0, 1]. It follows from (9) that

〈f(z(t))− g(t), z − z(t)〉+ 〈z(t), g − g(t)〉 ≤ 0,

which leads to
〈f(z(t))− g(t), z − x′〉+ 〈z(t), g − g′〉 ≤ 0.

Since f is hemicontinuous, letting t → 0+ in the above inequality, we get

〈f(z)− g, z − x′〉+ 〈z, g − g′〉 ≤ 0, ∀x′ ∈ RP ,∀g′ ∈ Ω. (10)

From (10), since x′ is arbitrary, it follows that

s〈f(z)− g, r〉 ≤ constant (11)
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for every real s and every r. From (11) we get f(z) = g, so that

〈z, f(z)− g′〉 ≤ 0, ∀g′ ∈ Ω. (12)

From (12), we know that z solves IV I(Ω, f) and so z = x∗ since x∗ is the unique solution
of IV I(Ω, f). This is a contradiction to (x∗, f(x∗)) 6= (z, f(z)).

So we can suppose that {un} is bounded. Let {unk
} be any subsequence of {un} such

that unk
→ (x̄, ḡ) as k → ∞. It follows from (7) that

〈f(x)− f ′, xnk
− x〉+ 〈x, f(xnk

)− f ′〉 ≤ ǫnk
, ∀x ∈ RP ,∀f ′ ∈ Ω.

Letting k → ∞ in the above inequality, we get

〈f(x)− f ′, x̄− x〉+ 〈x, ḡ − f ′〉 ≤ 0, ∀x ∈ RP ,∀f ′ ∈ Ω.

By same arguments as in (9)-(12), we have

f(x̄) = ḡ ∈ Ω, 〈x̄, f(x̄)− f ′〉 ≤ 0, ∀f ′ ∈ Ω.

Thus x̄ solves IV I(Ω, f). We have x̄ = x∗ since IV I(Ω, f) has a unique solution x∗.
Therefore xn converges to x∗ and so IV I(Ω, f) is well-posed.

The following simple example can illustrate the conclusion of Theorem 3.1.

Example 3.2. Let Ω = R2
+ and f(x) = (x2, x4) for all x ∈ R2. Clearly Ω is closed

and convex, f is hemicontinuous and monotone, and x∗ = (0, 0) is the unique solution of
IV I(Ω, f). By Theorem 3.1, IV I(Ω, f) is well-posed.

4. Links with Well-Posedness of Classical Variational Inequalities

In this section we shall prove that the well-posedness of an inverse variational inequality
is equivalent to the well-posedness of an enlarged classical variational inequality.

Let K ⊂ Rm be a nonempty, closed and convex set and F : K → Rm. Consider the
classical variational inequality (denoted by V I(K,F )): find u∗ ∈ K such that

〈F (u∗), u− u∗〉 ≥ 0, ∀u ∈ K.

Definition 4.1 ([14]). A sequence {un} ⊂ K is said to be an approximating sequence
for V I(K,F ) iff there exists ǫn > 0 with ǫn → 0 such that

〈F (un), un − v〉 ≤ ǫn, ∀v ∈ K,∀n ∈ N.

Definition 4.2 ([14]). We say that V I(K,F ) is well-posed iff V I(K,F ) has a unique
solution and every approximating sequence converges to the unique solution. We say that
V I(K,F ) is well-posed in the generalized sense iff V I(K,F ) has a nonempty solution set
S and every approximating sequence has a subsequence which converges to some point of
S.
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Let K = RP × Ω and F : K → R2P be defined by

F (u) =

(

f(x)− y

x

)

, ∀u = (x, y) ∈ K.

In what follows we always suppose that F and K are defined as above. The follow-
ing lemma shows that every inverse variational inequality IV I(Ω, f) is equivalent to an
enlarged variational inequality V I(K,F ).

Lemma 4.3 ([8]). Let x∗ ∈ RP and u∗ = (x∗, f(x∗)) ∈ K = RP × Ω. Then x∗ is a

solution of IV I(Ω, f) if and only if u∗ is a solution of V I(K,F ).

Theorem 4.4. Let Ω ⊂ RP be closed and let f : RP → RP be continuous. Then,

IV I(Ω, f) is well-posed if and only if V I(K,F ) is well-posed.

Proof. Let IV I(Ω, f) be well-posed. Then IV I(Ω, f) has a unique solution x∗ ∈ RP . By
Lemma 4.3, u∗ = (x∗, f(x∗)) is the unique solution of V I(K,F ). Let un = (xn, yn) ∈ K

be an approximating sequence for V I(K,F ). Then there exists ǫn > 0 with ǫn → 0 such
that

〈F (un), un − v〉 ≤ ǫn, ∀v = (x, y) ∈ K,∀n ∈ N.

This implies
〈f(xn)− yn, xn − x〉+ 〈yn − y, xn〉 ≤ ǫn

hence

〈f(xn)− yn, xn − x〉 ≤ ǫn + 〈y − yn, xn〉, ∀x ∈ RP ,∀y ∈ Ω,∀n ∈ N.

Fix y ∈ Ω, z ∈ RP and consider x = xn − sz, then

s〈f(xn)− yn, z〉 ≤ constant

where s is arbitrary. Then f(xn) = yn, hence

〈xn, yn − y〉 = 〈xn, f(xn)− y〉 ≤ ǫn, ∀y ∈ Ω,∀n ∈ N.

This means that {xn} ⊂ RP is an approximating sequence for IV I(Ω, f). By the well-
posedness of IV I(Ω, f), xn → x∗. Therefore, un = (xn, f(xn)) → (x∗, f(x∗)) and so
V I(K,F ) is well-posed.

Conversely, assume that V I(K,F ) is well-posed. Then it has a unique solution u∗ =
(x∗, y∗) with y∗ = f(x∗). By Lemma 4.3, x∗ is the unique solution of IV I(Ω, f). Let
{xn} ⊂ RP be an approximating sequence for IV I(Ω, f). Then there exists ǫn > 0 with
ǫn → 0 such that

f(xn) ∈ Ω, 〈f(xn)− y, xn〉 ≤ ǫn, ∀y ∈ Ω,∀n ∈ N. (13)

Take
yn := f(xn) and un := (xn, yn).

It follows from (13) that

un ∈ K, 〈F (un), un − v〉 ≤ ǫn, ∀v = (x, y) ∈ K,∀n ∈ N.

This means that {un} is an approximating sequence for V I(K,F ). By the well-posedness
of V I(K,F ), un = (xn, f(xn)) → (x∗, f(x∗)). Thus xn converges to x∗ and so IV I(Ω, f)
is well-posed.
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For the well-posedness in the generalized sense, we have the following analogous result:

Theorem 4.5. Let Ω ⊂ RP be closed and let f : RP → RP be continuous. Then,

IV I(Ω, f) is well-posed in the generalized sense if and only if V I(K,F ) is well-posed in

the generalized sense.

Proof. The conclusion follows from analogous arguments as in Theorem 4.4.
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