
Journal of Convex Analysis

Volume 15 (2008), No. 2, 411–426

An Evolutionary Structure of Convex Quadrilaterals

Anastasios N. Zachos
University of Patras, Department of Mathematics, 26500 Rion, Greece

zaxos@master.math.upatras.gr

Gerasimos Zouzoulas
Gerasimos Zouzoulas Ltd, Meintani 25, 11741 Athens, Greece

pantarei@zouzoulas.gr

Received: January 23, 2007

We solve the problem of evolution of convex quadrilaterals by applying the inverse weighted Fermat-
Torricelli problem, the invariance property of the weighted Fermat-Torricelli point in the plane R2,
two-dimensional sphere S2 and the two- dimensional hyperboloid H2. This means that the property
of plasticity is inherited by some evolutionary convex quadrilaterals. An important application is the
connection of the Fermat-Torricelli point with the fundamental equation of P. de Fermat.
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1. Introduction

Pierre de Fermat in 1643 raised the question: given three points in the Euclidean plane,
find the point that the sum of distances to these three points is minimized. Contributions
to the problem have been made by E. Torricelli, J. Steiner and this is the main reason that
we have named the corresponding point the Fermat-Torricelli point due to the first two
contributors. E. Weiszfeld found the generalized weighted Fermat-Torricelli point (A0)
for n given non-collinear points Ai(xi, yi) with non negative weights Bi, i = 1, 2, . . . , n
by using an algorithm that minimizes the function f(x, y) corresponding to the coordi-
nates of A0(x, y) (see [5] and [4]). The weighted “Fermat-TorricelliÔ point of a plane
triangle and the inverse weighted “Fermat-TorricelliÔ problem have been studied in [3].
A unified approach for the weighted “Fermat-TorricelliÔ point of a given plane, spherical
or hyperbolic triangle ∇A1A2A3 with non-negative weights Bi that correspond to each
vertex Ai respectively is studied in [7]. Concerning the floating case and absorbed case
(see below) of the weighted “Fermat-TorricelliÔ point in RN , see [4] and Chapter II of
[1]. For the solution of the problem in any regular surface of R3 we refer to the indirect
method of [6]. The invariance property of the weighted “Fermat-TorricelliÔ point holds
for any given spherical, hyperbolic and planar (Euclidean) triangle (see [7]) and the in-
verse weighted “Fermat-TorricelliÔ problem in R2 was also studied in [3]. For the case
of the two-dimensional sphere S2 and two-dimensional hyperboloid H2 you can consult
[7]. In this paper we derive the evolutionary structure of some weighted convex quadri-
laterals A1A2A3A4 in R2, S2, H2 under some conditions. The crucial point is to apply
the invariance property of the weighted Fermat-Torricelli point and the inverse weighted
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Fermat-Torricelli problem of four lines that meet at the weighted Fermat-Torricelli point
at A0. The connection of the weighted “Fermat-Torricelli pointÔ in R2 with the fundamen-
tal equation of P. de Fermat is a remarkable result that comes from the inverse weighted
Fermat-Torricelli problem of four lines in R2.

2. The weighted Fermat-Torricelli point of a convex quadrilateral

Suppose that we have the convex quadrilateral A1A2A3A4 such that Bi is the positive
weight that corresponds to the vertex Ai, i = 1, 2, 3, 4. We start with the notations: let ai
be the variable that represents the length of the geodesic segment A0Ai, aij be the length
of the geodesic segment AiAj and αij be the angle between the two geodesics AiAk, AkAj

for i, j, k = 1, 2, 3, 4, i 6= j 6= k. The angles α3, α
′
3, α

′′
3, α

′′′
3 are defined in Figure 2.1 and

their role is vital for the concluding results (see Figure 2.1).

Y. S. Kupitz and H. Martini gave an elegant proof of existence and uniqueness of the
generalized Fermat-Torricelli point in Rd for d = 2, . . . , n and also derived conditions for
the floating case and absorbed case that exist at the interior of the polygon or at a vertex.
We start by stating the problem:

Problem 2.1. Find the weighted Fermat-Torricelli point of a given weighted convex
quadrilateral A1A2A3A4 with non-negative weights Bi that correspond to the vertex Ai,
and the floating case occurs regarding the weights Bi

‖
4

∑

j=1

Bj~u(Ai, Aj)‖ > Bi, i 6= j

for i, j = 1, 2, 3, 4.

Solution 2.2. The minimum function that corresponds to the weighted Fermat-Torricelli
point A0 is:

B1a1 +B2a2 +B3a3 +B4a4 = minimum. (1)

The weighted Fermat-Torricelli point will be found by calculating the angles a012, a023,
a034, a041. Let a2, a3, a4 the functions that depend on the variables a1 and α3: we assume
that the floating case of the weighted Fermat-Torricelli point A0 occurs, in order to locate
it in the interior of the convex quadrilateral A1A2A3A4 (see [4]) with non-negative weights
Bi, i = 1, 2, 3, 4. The idea is to calculate the angles α012, α023, α034, α041 of A0. The
intersection of at least two segments of the cycles with lengths for instance α012, α023 that
corresponds to the sides a12, a23 is the weighted Fermat-Torricelli point A0. Let a2, a3,
a4 the functions that depend on the variables a1 and α3:

a2 = a2(a1, α3), a3 = a3(a1, α3), a4 = a4(a1, α3). (2)

By differentiating the minimum function with respect to the variables α3, a1, two condi-
tions are deduced:

B2
∂a2
∂α3

+B3
∂a3
∂α3

+B4
∂a4
∂α3

= 0

B1 +B2
∂a2
∂a1

+B3
∂a3
∂a1

+B4
∂a4
∂a1

= 0.



A. N. Zachos, G. Zouzoulas / An Evolutionary Structure of Convex Quadrilaterals 413

A4

A2

A1

A3

A0

23a

34a

12a

4a

5a
41a

31a

2a

1a

3a

012a

023a

034a

041a

3a

23a
34a

3a ¢

3a ¢¢

3a ¢¢¢

54321 BBBBB >>>>

Figure 2.1

By calculating ∂a2
∂α3

, ∂a3
∂α3

, ∂a4
∂α3

and by applying the “cosine lawÔ and “sine lawÔ to the
corresponding triangles ∇A2A1A0, ∇A3A1A0, ∇A4A1A0, we derive the equation:

−B2 sin(α012) +B3 sin(α034 + α041) +B4 sin(α041) = 0. (3)

Similarly, from the differentiation with respect to the variable a1, the second condition
takes the form:

B1 +B2 cos(α012) +B3 cos(α034 + α041) +B4 cos(α041) = 0. (4)

From (3), (4) two equations are derived:

cot(α034 + α041) =
B1 +B2 cos(α012) +B4 cos(α041))

B4 sin(α041)−B2 sin(α012)
(5)

B2
3 = B2

1 +B2
2 +B2

4 + 2B2B4 cos(α041 + α012) + 2B1B2 cos(α012) + 2B1B4 cos(α041). (6)

Two geometrical equations are used that depend on the angles α012, α041 and they appear
by applying the “sine lawÔ to the triangles ∇A1A0A3, ∇A1A0A2, ∇A1A0A4:

cot(α3) =
sin(α23)− cos(α23) cot(α012)− a31

a12
cot(α034 + α041)

− cos(α23)− sin(α23) cot(a012) +
a31
a12

(7)

cot(α3) =
sin(α34)− cos(α34) cot(α041) +

a31
a41

cot(α034 + α041)

cos(α34) + sin(α34) cot(α041)− a31
a41

. (8)

From (7), (8) and taking into account (5), we get the equation:

f2(α012, α041) = 0. (9)

The system of the two implicit equations (9), (6) give the angles α012, α041. If these values
are replaced to equation (5), then α034 is obtained. Finally,

α023 = 2π − α012 − α034 − α41.



414 A. N. Zachos, G. Zouzoulas / An Evolutionary Structure of Convex Quadrilaterals

Remark 2.3. The Newton method may be selected and the initial conditions for the
values of the two angles are taken from the inequalities between Bi, i = 1, 2, 3, 4. The
angle α3 plays a vital role in the implementation of the computational approach of the
generalized weighted “Fermat-TorricelliÔ point. By selecting different weights from Figure
2.1 modifications of signs will occur in equations (7), (8), by using the same method to
calculate the cot(α3).

Example 2.4. For the case of tetragon the derived equations depend only on the values
of the non-negative weights Bi, i = 1, 2, 3, 4.

− cot(α041 − α012) + cot(α034 + α041) =
cot(α012) + cot(α041)

cot(α041)− cot(α012)

and

cot(α034 + α041) =
B1 +B2 cos(α012) +B4 cos(α041)

B4 sin(α041)−B2 sin(α012)
.

The second equation of the variables α012, α041 is the equation 6. The first equation
depends on the orientation of the angle α3 and it was taken as it appears in Figure 2.1.
This means that by selecting different weights B1, B2, B3, B4, the signs of the first equation
could change.

3. The invariance property of the weighted Fermat-Torricelli point.

Proposition 3.1. Suppose that there is an n-convex polygon A1A2 . . . An in R2 and each
vertex Ai has a non-negative weight Bi for i = 1, 2, . . . , n. Assume that the floating case
of the generalized weighted Fermat-Torricelli point A0 point is valid:
for each Ai ∈ A1, . . . , An

‖
n

∑

j=1

Bj~u(Ai, Aj)‖ > Bi, i 6= j.

If A0 is connected with every vertex Ai for i = 1, 2, . . . , n and a point A′
i is selected

randomly with non-negative weight Bi of the line that is defined by the line segment A0Ai

and the n convex polygon A′
1A

′
2 . . . A

′
n is constructed such that:

‖
n

∑

j=1

Bj~u(A
′
i, A

′
j)‖ > Bi, i 6= j.

Then the generalized weighted Fermat-Torricelli point A′
0 is identical with A0 (see Figure

3.1). This is the invariance property of the weighted Fermat-Torricelli point.

Proof. The existence and uniqueness of the generalized weighted Fermat-Torricelli point
given n non-collinear points A1, . . . , An ∈ Rd was studied in [4]. Furthermore, if for each
point Ai ∈ A1, . . . , An

‖
n

∑

j=1

Bj~u(Ai, Aj)‖ > Bi, i 6= j

holds, then
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Figure 3.1

(a) the weighted minimum point A0 does not belong to Ai ∈ A1, . . . , An

(b)
n

∑

i=1

Bi~u(A0, Ai) = 0, i 6= j

(weighted floating case).

We consider the particular case for d=2, regarding the n-convex polygon A1(x1, y1), . . . ,
An(xn, yn). Let A0(x0, y0) be the coordinates of the weighted Fermat Torricelli point
(critical).

The minimum conditions are:

∂f

∂x
=

n
∑

i=1

Bi
(x− xi)

√

(x − xi)2 + (y − yi)2
= 0

∂f

∂y
=

n
∑

i=1

Bi
(y − yi)

√

(x − xi)2 + (y − yi)2
= 0.

If θi is the angle between the line segment (xi − x0) with the distance A0Ai, then the
conditions that minimizes f(x,y) are:

∂f

∂x
=

n
∑

i=1

Bi cos(θi) = 0

∂f

∂y
=

n
∑

i=1

Bi sin(θi) = 0.

The invariance property of the generalized weighted Fermat-Torricelli point in R2 was
well known by V. Viviani ([2]).
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4. The inverse weighted Fermat-Torricelli problem

Definition 4.1. Given the generalized weighted Fermat-Torricelli point A0 of the
weighted n-convex polygon A1A2 . . . An find the ratios between the non negative weights
Bi

Bj
, i, j = 1, . . . , n such that:

n
∑

i=1

Bi = constant.

This is the inverse generalized weighted Fermat-Torricelli problem.

We proceed with the case for n = 4 of the convex quadrilateral A1A2A3A4 with non-
negative weights Bi, i = 1, 2, 3, 4. Let a1, a3, a4 be functions that depend on a2 and
α′
3.

a1 = a1(a2, α
′
3), a3 = a3(a2, α

′
3), a4 = a4(a2, α

′
3). (10)

By differentiating (1) with respect to the variables α′
3 and a2, two equations are derived:

B1
∂a1
∂α′

3

+B3
∂a3
∂α′

3

+B4
∂a4
∂α′

3

= 0

B1
∂a1
∂a2

+B2 +B3
∂a3
∂a2

+B4
∂a4
∂a2

= 0.

By calculating ∂a2
∂α′

3
, ∂a3

∂α′
3
, ∂a4
∂α′

3
and by applying the “cosine lawÔ and the “sine lawÔ to the

corresponding triangles ∇A1A2A0, ∇A3A2A0, ∇A4A2A0, we have the equation:

−B1 sin(α012) +B3 sin(α023) +B4 sin(α034 + α023) = 0. (11)

Additionally, by differentiating with respect to the variable a2, the equation takes the
form:

B1 cos(α012) +B2 +B3 cos(α023) +B4 cos(α034 + α023) = 0. (12)

Similarly, we differentiate the minimum function (1) with respect to the variables (α′′
3),

(α3) (see Figure 2.1), in order to get correspondingly the equations:

−B1 sin(α034 + α041) +B2 sin(α023)−B4 sin(α034) = 0 (13)

−B2 sin(α012) +B3 sin(α041 + α034) +B4 sin(α041) = 0 (14)

and

α012 + α023 + α034 + α041 = 2π. (15)

Corollary 4.2. Concerning the inverse 4-weighted Fermat-Torricelli problem if α012 =
α034, α023 = α041 then B1 = B3, B2 = B4.

It follows from the fact that sin(α041 + α034) = 0, sin(α034 + α041) = 0 and sin(α012) =
sin(α034) = sin(α023) = sin(α041). Equations (11), (14) imply that:

B1 = B3, B2 = B4.
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Corollary 4.3. Referring to the inverse weighted Fermat-Torricelli problem for the tri-
angle n = 3 (B4 = 0). From the equations (14), (11) and given the angles α012, α023, α031

and the weight B4 = 0 the ratio of the three weights is:

B1 : B2 : B3 = sin(α023) : sin(α031) : sin(α012).

This result was also proved in [3] and [7].

We conclude with a fundamental result that deals with the plasticity of the inverse 4-
weighted Fermat-Torricelli problem.

Proposition 4.4. Consider the inverse 4-weighted Fermat-Torricelli problem such that
the angles α0ij are given i, j = 1, .., 4, i 6= j. The following equations point out the
plasticity of the system:

(
B2

B1
)1234 = (

B2

B1
)123[1− (

B4

B1
)1234(

B1

B4
)134] (16)

(
B3

B1
)1234 = (

B3

B1
)123[1− (

B4

B1
)1234(

B1

B4
)124]. (17)

The weight (Bi)1234 corresponds to the vertex Ai that lie in the line A0Ai, i = 1, 2, 3, 4 and
the weight (Bj)jkl corresponds to the vertex Aj that lie in the A0Aj regarding the triangle
∇AjAkAl, j, k, l = 1, 2, 3, 4.

Proof. The equation (13) implies that:

(
B2

B1
)1234 =

sin(α034 + α041)

sin(α023)
[(
B4

B1
)1234

sin(α034)

sin(α034 + α041)
+ 1].

Referring to Corollary 4.3, from the triangle ∇A1A2A3:

sin(α034 + α041)

sin(α023)
=

sin(α031)

sin(α023)
= (

B2

B1
)123.

Similarly, from the vague triangle ∇A1A3A4∗ (A4∗ is the projection of A4 corresponding
to the Fermat-Torricelli point A0):

−(
B1

B4
)134 =

sin(α034)

sin(α034 + α041)

and equation (16) is proved. To deduce the equation (17), (11) is used and the following
ratio is calculated:

(
B3

B1
)1234 =

sin(α012)

sin(α023)
(1− B4

B1

sin(α034 + α023)

sin(α012)
).

From the triangles ∇A1A2A3, ∇A1A2A4 and Corollary 4.3, two ratios are used:

(
B3

B1
)123 =

sin(α012)

sin(α023)
, (

B1

B4
)124 =

sin(α034 + α023)

sin(α012)
.
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Corollary 4.5. Set
∑

1234 B := (B1)1234(1 +
B2
B1

+ B3
B1

+ B4
B1
)1234. If

∑

1234 B =
∑

123 B =
∑

124 B =
∑

134 B, then

(Bi)1234 = xi(B4)1234 + yi, i = 1, 2, 3 :

(x1, y1) = (
(B1
B4
)134(

B2
B1
)123 + (B1

B4
)124(

B3
B1
)123 − 1

1 + (B2
B1
)123 + (B3

B1
)123

, (B1)123)

(x2, y2) = (x1(
B2

B1
)123 − (

B1

B4
)134(

B2

B1
)123, (B2)123)

(x3, y3) = (x1(
B3

B1
)123 − (

B1

B4
)124(

B3

B1
)123, (B3)123).

Proposition 4.6. Corollaries 4.2, 4.3, 4.5 and Proposition 4.4 applies also for the case
of weighted convex quadrilaterals and triangles in the two-dimensional sphere and two-
dimen-sional hyperboloid (Spherical and Hyperbolic Plasticity).

Proof. We agree on the same notations that are indicated in Figure 2.1. The equations
(11), (12), (13), (15) remain the same by applying the “cosine lawÔ and “sine lawÔ of
spherical (hyperbolic) triangles to the derived equations from (1) by differentiating with
respect to the spherical (hyperbolic) angles α3, α3′ , α3′′ and the geodesic segment a2.

Example 4.7. Given the angles α012 = 120◦, α023 = 90◦, α034 = 50◦, α041 = 100◦, the
weight (B1)123 = 1 and the assumption that

∑

1234 B =
∑

123 B =
∑

124 B =
∑

134 B from
the Proposition 4.4 and Corollary 4.5 the following results are derived:

∇123(A1A2A3) : (B1)123 = 1, (B2)123 = 0.50, (B3)123 = 0.866

∑

123

B = 2.366

∇124(A1A2A4) : (B1)124 = 0.606, (B2)124 = 0.942, (B4)124 = 0.818

∑

124

B = 2.366

∇134(A1A3A4) : (B1)134 = 1.432, (B3)134 = 1.869, (B4)134 = −0.935

∑

134

B = 2.366

(B1)1234 − (B1)123 = − 0.475(B4)1234 (18)

(B2)1234 − (B2)123 = 0.53(B4)1234 (19)

(B3)1234 − (B3)123 = − 1.054(B4)1234 (20)

and
∑

1234 B = 2.366. The range of (B4)1234,(B1)1234, (B2)1234, (B3)1234 is:

0 6 (B4)1234 6 0.821

1 > (B1)1234 > 0.61

0.5 6 (B2)1234 6 0.935

0.866 > (B3)1234 > 0.
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Remark 4.8. By taking into consideration in Figure 4.1 the branch with weight B4

that lies inside the angle α031 and referring to the Example 4.7, the weights of the two
branches with weights B1, B3 decrease and the weight of the opposite branch B2 increases
(see equations (18), (19), (20)).

Remark 4.9. For values of B1, B2, B3 which depend on B4 according to Corollary 4.5
and for any value of the vertex Ai which lies in the line A0Ai such that the inequalities of
the weighted floating case are satisfied (see [4]), the weighted Fermat-Torricelli point A0

remains invariant.

Example 4.10. Let A1A2A3A4 be the given convex quadrilateral with a1 = 5, a2 = 7.5,
a3 = 5, a4 = 10, α012 = 120◦, α023 = 90◦, α034 = 50◦, α041 = 100◦ and weights B1 = 0.762,
B2 = 0.765, B3 = 0.339, B4 = 0.5 taken from Example 4.7. The point A0 is the weighted
Fermat-Torricelli point (see Figure 4.2). The convex quadrilateral A1A2A3A4 of Figure
4.3 has the same angles a0ij and lengths ai, i, j = 1, 2, 3, 4, i 6= j like in Figure 4.3 with
weights B1 = 0.81, B2 = 0.712, B3 = 0.444, B4 = 0.4 taken from Example 4.7. From
Figure 4.2 and Figure 4.3 the weighted Fermat-Torricelli point A0 remains invariant. Let
A1A2A

′
3A4 be the convex quadrilateral in Figure 4.4 and A′

3 is the vertex that exists at
the line that connects the point A0 of A1A2A

′
3A4 with A3 like in Figure 4.3 such that

a′3 = 7 with the angles a0ij with the other lengths and the weights Bi, i = 1, 2, 3, 4, to
be the same as in Figure 4.3. The weighted Fermat-Torricelli point A0 of Figure 4.3 and
Figure 4.4 remains also invariant.

Remark 4.11. Taking into consideration equations from physics, we can bound the so-
lutions regarding the dimensions of the quadrilateral.

From statics, concerning n bars A0A1, A0A2, . . . , A0An, with constant density and lengths
a1, a2, . . . , an respectively that connect at the Fermat-Torricelli point A0, the sum of the
projection of the moments on the x-axis and the sum of the projection on the y-axis are:

n
∑

i=1

(Mi)x = 0,
n

∑

i=1

(Mi)y = 0. (21)

Definition 4.12. The moment due to the gravity of the bar A0Ai with length ai referring
to the point A0 is:

~Mi = caqi~ui, qεQ : q > 2.
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such that c is a constant and ui is the unit vector of ~Mi, q depends on the cross-section
of the bar.

For simplicity we deal with q = 2 or q = 3. Suppose that for the case n = 4, we consider
the projection on the x-axis (A0A2) of the moments and on the y-axis which is orthogonal
to the x-axis (see Figure 4.5). From the conditions (21), two equations are deduced:

−a21 sin(α012) + a23 sin(α023) + a24 sin(α034 + α023) = 0

a21 cos(α012) + a22 + a23 cos(α023) + a24 cos(α034 + α023) = 0.

Similarly, by taking as x-axis A0A3, A0A1 the following equations are derived:

−a21 sin(α034 + α041) + a22 sin(α023)− a24 sin(α034) = 0

−a22 sin(α012) + a23 sin(α041 + α034) + a24 sin(α041) = 0.

The form of the derived equations from the projection of moments are similar to the
equations (11), (12), (13), (14) by expressing the weights Bi ∼ a2i , i = 1, 2, 3, 4. The
maximum area of the convex quadrilateral A1A2A3A4 can be calculated:

Area1 =
α1α2 sin(α012) + α2α3 sin(α023) + α3α4 sin(α034) + α4α1 sin(α041)

2
. (22)

The area of the quadrilateral (A1A2A3A4) is a composition of rational functions of the
variable a4, because the following equations are valid:

a2i = xia
2
4 + yi, i = 1, 2, 3 (23)

such that:
x1 + x2 + x3 = 0.

The area of the convex quadrilateral A1A2A3A4 as a composition of rational functions of

a4 is a continuous function and has a maximum value for the interval 0 6 a4 6
√

(B1)123
x1

or 0 6 a4 6
√

(B3)123
x3

.

Remark 4.13. Given the A0 weighted Fermat-Torricelli point, the angles a012, a023, a034,
a041 of A0 and the weights Bi ∼ aqi , three different constraints are used in the follow-
ing Examples 4.14, 4.15, 4.16 to calculate the distances a1, a2, a3, a4 of the A0 weighted
Fermat-Torricelli point, in order to maximize the area of the quadrilateral A1A2A3A4:

(i)
∑4

i=1 a
q
i = c1 (Example 4.14, q = 2, c1 = 2.366)

(ii) a1 = c2 (Example 4.15, q = 3, c2 = 1)

(iii) The perimeter of A1A2A3A4 is constant:
Perimeter=a12 + a23 + a34 + a41 = cs (Example 4.16, q = 3, cs = 3).

Example 4.14. Let A1A2A3A4 be the convex quadrilateral with weights Bi ∼ a2i for
i = 1, 2, 3, 4. Given α012 = 120◦, α023 = 90◦, α034 = 50◦, α041 = 100◦, A0 is the weighted
Fermat-Torricelli point and the constraint:

4
∑

i=1

a2i = 2.366.
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Figure 4.6

To achieve the maximum area of A1A2A3A4 the variables a1, a2, a3 are expressed as
functions of a4: taking into account the equations (21) of the moments from the remark
4.11 and the Example 4.7, equations (23) take the form:

a21 = 1− 0.475a24

a22 = 0.50 + 0.53a24

a23 = 0.866− 1.054a24.

The maximum area of the quadrilateral is obtained when a4 = 0.6563, a1 = 0.8918,
a2 = 0.8534, a3 = 0.6417 (see Figure 4.6).

Example 4.15. Consider the quadrilateral A1A2A3A4 with the same given angles α012,
α023, α034, α041 as in Example 4.14 with weights Bi ∼ a3i that correspond to each vertex
Ai, i = 1, 2, 3, 4, A0 is the weighted Fermat-Torricelli point and the constraint a1 = 1. We
use the two equations with a “sine formÔ (projection on the x-axis) of the moments for
a2, a3 and q = 3:

a2 = ((1/ sin(α023))(a
3
1 sin(α034 + α041) + (a34) sin(α034)))

1/3 (24)

a3 = ((1/ sin(α023))(a
3
1 sin(α012)− (a34) sin(α034 + α023)))

1/3. (25)

The maximum area of the quadrilateral is achieved as a function of a4 by replacing the
variables a2, a3 from (24), (25) to the equation (22). The area of the quadrilateral is
maximized for the values: a4 = 0.982273, a1 = 1, a2 = 1.07029, a3 = 0.635637 (see Figure
4.7)

Example 4.16. Consider the same quadrilateral A1A2A3A4 as in Example 4.15, the an-
gles α012, α023, α034, α041, the weights Bi ∼ a3i , the weighted Fermat-Torricelli point A0

and the following constraint for the perimeter of A1A2A3A4:

Perimeter = a12 + a23 + a34 + a41 = constant.
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This means that the quadrilateral A1A2A3A4 is inscribed to a circle. We will calculate
the values a1, a2, a3, a4 that maximize the area of A1A2A3A4. The constraint can be
written as a function of a1, a2, a3, a4.

2S =
4

∑

i=1

√

a2i + a2i+1 − 2aiai+1 cosα0ii+1 = Cs, i = 1, 2, 3, 4. (26)

For i = 4 set i+1 = 1 and S is the semi perimeter of the convex quadrilateral A1A2A3A4.
The area of the inscribed quadrilateral in a circle is given by the formula:

Area2 =
√

(S − a12)(S − a23)(S − a34)(S − a41). (27)

A system of two equations can be derived as functions of a1 and a4:

Area1 = Area2 (28)

and the equation (26). The variables a2 and a3 are functions of a1 and a4 and they
can be taken from (24), (25) respectively. The formula of Area1 is given by (22). Let
the constant of (26) be cs = 3. The system of the two equations (28), (26) can be
solved numerically by Newton’s method. The values a1 = 0.595346, a4 = 0.482094,
a2 = 0.576236, a3 = 0.480186 maximize the area of the quadrilateral A1A2A3A4 (see
Figure 4.8 for cs = 3, 4, 6).

Remark 4.17. Let A1A2A3A4 be the convex quadrilateral with weights Bi ∼ aqi for
i = 1, 2, 3, 4 and angles α012 = 120◦, α023 = 120◦, α034 = 60◦, α041 = 60◦. There
is a connection between the weighted Fermat-Torricelli point A0 for the given convex
quadrilateral A1A2A3A4 and the fundamental equation of Fermat. Similar equations with
(11), (14) are deduced:

−aq1 sin(α012) + aq3 sin(α023) + aq4 sin(α034 + α023) = 0 (29)

−aq2 sin(α012) + aq3 sin(α041 + α034) + aq4 sin(α041) = 0. (30)
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Figure 4.8

From equation (29):

aq1 = aq3. (31)

Equation (30) gives the equation of Fermat:

aq2 = aq3 + aq4 (32)

for qεN.

Conclusion 4.18. The starting point of the evolution of weighted convex quadrilateral
at time t = 0 is the weighted Fermat-Torricelli point A0. This is the main reason that we
have followed a computational approach which does not depend on the coordinates of the
vertices Ai(xi, yi) but on the geodesic segments ai i = 1, 2, 3, 4. The result of plasticity
holds in R2, S2 and H2. An open question is to derive plasticity conditions for an n-convex
polygon in R2, S2 and H2 and solve the generalized inverse weighted Fermat-Torricelli
problem for n > 4. Finally, we would like to note that taking into consideration the
connection of the Fermat-Torricelli point with the fundamental equation of P. de Fermat,
there cannot exist a simultaneously integer evolution concerning a1, a2, a3, a4 from A0,
because of the invariance of the weighted Fermat-Torricelli point.

A. Explanation of the moments M = C

∫ ai

0

r2xdx = r = r0(1− (x/ai)
n)

Suppose that r0 ∼ C1a
q
i then:

M = Ca2+q′

i = Caqi ,
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C and C1 are constant and q′, q ∈ Q. If q′ = 0 then q = 2 (cylinder). If q′ = 1 then q = 3
(cone).
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