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Heisenberg group IH. The functions of this class, recently introduced by Sun and Yang, are defined via
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1. Introduction

Recently, different notions of convexity for sets and functions have been introduced in
the framework of the Heisenberg groups and, more generally, of Carnot groups (see, for
instance, [8], [9]). The main motivations for the development of a theory of convex func-
tions in these groups are the applications towards subelliptic fully nonlinear PDE’s, given
the powerful role that convexity plays in this setting. Together with convex functions,
notions of convex sets were given. In particular, geodetical convexity was investigated in
[13], while strong H–convexity was studied in [6]. It appears that geodetically convex sets
are very rare, and few and quite peculiar are strongly H–convex sets.

There is a natural notion of convexity for functions and sets in these groups that fits the
sub–Riemannian structure; indeed, the weak H–convexity can be thought of as a sort of
horizontal convexity.
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In the last few years, many papers have been devoted to the study of weak H–convexity;
let us recall, among them, [8] and [10]. In the first one, the authors examine appropri-
ate notions of convexity in order to investigate the maximum principle of Alexandrov–
Bakelman–Pucci in a stratified, nilpotent Lie group. In particular, it turns out that for
Γ2 functions the weak H–convexity of a function is characterized via the symmetrized
horizontal Hessian at every point of the domain. In the second paper, the authors study
the class of functions f defined by requiring that [∇2

hf ]
∗ ≥ 0 in the viscosity sense; func-

tions of these kind are called v–convex functions; they show that v–convexity and weak
H–convexity are equivalent in a C2 context.

In subsequent papers (see, for instance, [11] and [9]) it is proved that this equivalence is
still true under the assumptions of upper semicontinuity.

Recently, Sun and Yang (see [14]) introduced a notion that generalizes the classical concept
of quasiconvexity for functions on Euclidean spaces, to functions defined on subsets of IH;
on the analogy of the Euclidean case, they consider functions whose sublevels are weakly
H–convex. In the sequel, we will call them weakly H–quasiconvex. This class contains
weakly H–convex functions, but it is larger. Sun and Yang proved, in particular, that
these functions are locally bounded from above.

In this paper, inspired by previous results about weakly H–convex functions (see [8] and
[5]), we prove a characterization of the first order for weakly H–quasiconvex functions in
Γ1 (Theorem 4.5). Afterwards, in Theorem 4.9, we find a second order characterization
for C2 weakly H–quasiconvex functions, on the analogy of the result in [7], where a char-
acterization for regular quasiconvex functions in the Euclidean setting is given in terms
of the behaviour of the Hessian along particular directions.

The paper is organized as follows. In Section 2 we recall some definitions and preliminary
results, and in Section 3 we introduce and state some results for weakly H–convex sets in
the Heisenberg group. Section 4 is devoted to weakly H–quasiconvex functions. Under
suitable regularity assumptions we provide a first order characterization, and, as a conse-
quence of our main result (Theorem 4.6), we establish a second order characterization for
weak H–quasiconvexity. In Subsection 4.1, we are able to provide a sufficient condition
of weak H–quasiconvexity for the functions f(x, y, t) = ((x2 + y2)2 + z(t))1/4, that can be
compared with an analogous one given in [3].

2. Preliminaries

The Heisenberg group IH = IH1 is the simplest non commutative Carnot group and a
privileged object of study in Analysis and Geometry; it is the Lie group given by the
underlying manifold IR3 with the non commutative group law

gg′ = (x, y, t)(x′, y′, t′) = (x+ x′, y + y′, t+ t′ + 2(x′y − xy′)) .

The unit element is e = (0, 0, 0), and the inverse of g = (x, y, t) is g−1 = (−x,−y,−t).
Left translations and anisotropic dilations are, in this setup, Lg0(g) = g0g and δλ(x, y, t) =
(λx, λy, λ2t) .

The differentiable structure on IH is determined by the left invariant vector fields

X =
∂

∂x
+ 2y

∂

∂t
, Y =

∂

∂y
− 2x

∂

∂t
, T =

∂

∂t
, with [X, Y ] = −4T.
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The vector field T commutes with the vector fieldsX and Y ; X and Y are called horizontal
vector fields.

The Lie algebra of IH, h, is the stratified algebra h = IR3 = V1 ⊕ V2, where V1 =
span {X, Y } , V2 = span {T} ; 〈·, ·〉 will denote the inner product. Via the exponential
map exp we identify the vector αX + βY + γT in h with the point (α, β, γ) in IH; the
inverse ξ : IH → h of the exponential mapping has the unique decomposition ξ = (ξ1, ξ2)
with ξi : IH → Vi.

The main issue in the analysis of the Heisenberg group is that the classical first and
second order differential operators are considered only in terms of horizontal fields. For a
given open subset Ω ⊆ IH, the class Γk(Ω) represents the Folland–Stein space of functions
having continuous derivatives up to order k with respect to the vector fields X and Y ; we
denote as usual by Ck(Ω) the class of functions having continuous derivatives up to order
k with respect to the differential structure of IR3.

Let us recall that the horizontal gradient of a function u ∈ Γ1(Ω) at g ∈ Ω is the 2–vector

(∇hu)(g) = ((Xu)(g), (Y u)(g)) ,

written with respect to the basis {X, Y } of V1; we denote by Xu the element in V1 defined
as follows

Xu = (Xu)X + (Y u)Y.

The horizontal Hessian of u ∈ Γ2(Ω) at g ∈ Ω is the 2× 2 matrix

(∇2
hu)(g) =

(

(X(Xu))(g) (X(Y u))(g)
(Y (Xu))(g) (Y (Y u))(g)

)

,

while the symmetrized horizontal Hessian is the 2× 2 symmetric matrix

[

(∇2
hu)(g)

]∗
=

1

2

{

(∇2
hu)(g) +

[

(∇2
hu)(g)

]T
}

.

Explicit calculations give us, for u ∈ C1(Ω) (respectively, u ∈ C2(Ω))

(∇hu)(g0) = (ux + 2yut, uy − 2xut)|(x0,y0,t0)

[(∇2
hu)(g0)]

∗
=

(

uxx + 4yuxt + 4y2utt uxy − 2xuxt + 2yuyt − 4xyutt

uxy − 2xuxt + 2yuyt − 4xyutt uyy − 4xuyt + 4x2utt

)

|(x0,y0,t0)

.

A Lipschitz continuos curve γ : [0, T ] → IH, T ≥ 0, γ(s) = (γ1(s), γ2(s), γ3(s)) is said to
be horizontal if γ′(s) ∈ spanIR{X(γ(s)), Y (γ(s))} for almost every s ∈ [0, T ]; hence, a.e.,

γ′(s) = γ′
1(s)X(γ(s)) + γ′

2(s)Y (γ(s)).

We define |γ′(s)| = ((γ′
1(s))

2 + (γ′
2(s))

2)
1/2

.

To this concern, the following computations of derivatives of a function restricted to a
horizontal curve will be helpful in the sequel. Let u be a function in C1(Ω) and γ :
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I ⊆ IR → Ω a horizontal C1–curve. If U is the function U(s) = u(γ(s)), then easy
computations show that

U ′(s) = 〈(∇hu)(γ(s)), (γ
′
1(s), γ

′
2(s))〉 (1)

(here 〈·, ·〉 denotes the usual inner product in IR2). Moreover, if u ∈ C2(Ω) and γ is a
horizontal C2–curve, then

U ′′(s) = (γ′
1(s), γ

′
2(s))[(∇

2
hu)(γ(s))]

∗(γ′
1(s), γ

′
2(s))

T + 〈(∇hu)(γ(s)), (γ
′′
1 (s), γ

′′
2 (s))〉 (2)

Metrics in IH which are compatible with left translations and dilations can be obtained
in several ways. One of these is the non Euclidean left invariant metric, defined by
dN(g, g

′) = N(g−1g′), for every g, g′ ∈ IH, where N is the pseudo–norm, called non–

isotropic gauge, N(g) = N(x, y, t) = ((x2 + y2)2 + t2)
1
4 .

Another metric is the Carnot–Carathéodory distance, defined as follows:

dCC(g, g
′) = inf

γ∈Γg,g′

∫ 1

0

|γ′(s)| ds, (3)

where Γg,g′ denotes the set of all the horizontal curves γ : [0, 1] → IH s.t. γ(0) = g and
γ(1) = g′. It is worthwhile noticing that the infimum in (3) is actually a minimum, and a
curve with minimum length is a geodesic. The Heisenberg group, with the metrics above,
is a locally compact metric space. It can be proved that the distances dCC and dN are
equivalent (see [4]).

Recently, a notion of convexity was given via geodesic curves: C ⊆ IH is said to be
geodetically convex if and only if γ ⊂ C for every g, g′ ∈ C, and for all geodesic γ joining
g and g′. In [13] the authors proved, in particular, that the geodetically convex envelope
of three points not belonging to the same geodesic is the whole group IH.

Different notions of convexity can be defined via the twisted convex combination of two
points, that plays the role in IH of the convex combination of points in vector spaces.

Given two distinct points g, g′ ∈ IH, the twisted convex (tw–convex) combination of g =
(x, y, t) and g′ = (x′, y′, t′) based on g is the point gλ defined by

gλ = gδλ(g
−1g′), λ ∈ [0, 1]. (4)

Easy computations show that

gλ = ((1− λ)x+ λx′, (1− λ)y + λy′, t+ 2λ(x′y − xy′) + λ2(−t+ t′ − 2x′y + 2xy′)).

From now on, γg,g′ will denote the curve in IH defined by γg,g′(λ) = gλ, λ ∈ [0, 1].

Definition 2.1 (see, for instance, [8], 7.5). A set C ⊆ IH is said to be strongly H–convex
if and only if γg,g′ ∈ C for every g, g′ ∈ C.

In [6] we prove that strongly H–convex sets are very scarce. In particular, a bounded
strongly H–convex set should be contained in a left translated of some 2–dimensional
subgroup.

Since to every notion of convexity on sets there is a naturally associated notion of convexity
for functions, from the definition above we have the following:
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Definition 2.2. Let Ω be a strongly H–convex subset of IH. A function u : Ω → IR is
called strongly H–convex if, for any g, g′ ∈ Ω, one has

u(gλ) ≤ u(g) + λ (u(g′)− u(g)) , ∀λ ∈ [0, 1].

In the sequel we will call sublevel set of a function u : Ω → IR any set

{g ∈ Ω : u(g) ≤ a},

with a ∈ IR. It is straightforward to see that the sublevels of a strongly H–convex function
are strongly H–convex. Actually, strong H–convexity is a hard request, and very few
functions satisfy this property (for instance, H–affine functions are strongly H–convex, as
it is shown in [8], 3.6); the gauge function N is not strongly H–convex, as shown in ([8],
6.8).

Finally, let us recall that the Pansu differential, defined for functions between Carnot
groups, for a function u : IH → IR is given by

Du(g)(h) = lim
λ→0+

u(gδλ(h))− u(g)

λ
.

In [8] (see Proposition 2.3) it is proved that, if u ∈ Γ1(Ω), then

Du(g)(h) = 〈Xu(g), ξ1(h)〉 (5)

3. Weakly H–convex sets

In this section we focus on a concept of convexity of subsets of IH that weakens the strong
one and takes into account the horizontal structure of IH. As we will see, this concept has
nothing to share with the idea of convexity in Euclidean spaces; in particular, the main
feature of connectedness is lost.

This mentioned horizontal structure relies on the notion of horizontal plane. Given a point
g0 ∈ IH, the horizontal plane Hg0 associated to g0 is the plane in IH defined by Hg0 =
Lg0 (exp(V1)) = {g = (x, y, t) ∈ IH : t = t0 + 2y0x− 2x0y} . Notice that, given g, g′ ∈ IH,
g 6= g′, γg,g′ is a segment (i.e., the convex closure, in the Euclidean sense, of the set {g, g′})
if and only if g′ ∈ Hg, or (x, y) = (x′, y′); if g′ ∈ Hg, γg,g′ is the horizontal geodesic whose
length is dCC(g, g

′) (we call it horizontal segment).

Definition 3.1 (see [8], 7.1). A set C ⊆ IH is said to be weakly H–convex if and only if
γg,g′ ∈ C for every g ∈ C, g′ ∈ Hg ∩ C.

It is easy to see that the following implications hold, and none of them can be reversed:

C Euclidean convex C geodetically convex
⇑ =⇒ ⇓

C strongly H–convex ⇒ C weakly H–convex

The reader can easily convince himself that the following are examples of weakly H–convex
stes: A = γe,(1,0,1), and any subset of the t–axis.
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Let us consider now the closed balls BCC(e, r) and BN(e, r) with center e ∈ IH and radius
r, with respect to the Carnot–Carathéodory metric and to the gauge metric, and examine
their behaviour as regards the weak H–convexity.

It is not hard to see that BCC(e, r) is not weakly H–convex. This is easily proved, taking
into account the equation of the balls in the Carnot–Carathéodory metric (see [12]): in-
deed, if g′ = (x′, y′, t′) is a point in BCC(e, r) with t′ = max {t : g = (x, y, t) ∈ BCC(e, r)} ,
and g̃ = (−x′,−y′, t′) ∈ BCC(e, r), then γg′,g̃ is the segment joining g′ and g̃, and it is not
contained in BCC(e, r).

On the contrary, the weak H–convexity of the gauge function N , the results in [6], and
easy computations entail that the set BN(e, r) is connected and weakly H–convex, while
is not strongly H–convex. In addition, it can be easily seen that for any r ≥ 0, there exists
α ∈ IR such that BN(e, r) and BN((0, 0, α), r) are disjoint, and BN(e, r)∪BN((0, 0, α), r)
is weakly H–convex.

Given a subset of IH, the investigation of its weak H–convexity by a direct test based on
the fulfilment of Definition 3.1 turns out to be quite complicated; in next section we will
provide a sufficient tool to single out weakly H–convex sets, bypassing the definition.

In some special cases, where the set is described by a regular function, we can provide some
more tractable conditions. Let Φ be a C1(IH) function. Denote by C the set C = {g ∈
IH : Φ(g) < 0}, and assume that its boundary ∂C is given by ∂C = {g ∈ IH : Φ(g) = 0}.
We say that ∂C is regular at g0 ∈ ∂C if (∇Φ)(g0) 6= 0; we say that ∂C is regular if
it is regular at any point g0 ∈ ∂C. Recently, domains with regularity properties were
investigated in [2]. More generally, and taking into account only the horizontal structure,
the point g0 ∈ ∂C is said to be non characteristic if (∇hΦ)(g0) 6= 0; we say that ∂C is non
characteristic if all the points g0 ∈ ∂C are non characteristic. In the next proposition,
a sufficient condition for weak H–convexity of a subset of IH, whose boundary is non
characteristic, is provided.

Proposition 3.1. Let Ω ⊂ IH be a domain given by a C1–smooth defining function u :
IH → IR, Ω = {g ∈ IH : u(g) ≤ 0} with boundary ∂Ω given by ∂Ω = {g ∈ IH : u(g) = 0}.

i) If Ω is weakly H–convex, then, for every g ∈ ∂Ω and g′ ∈ Hg ∩ Ω, we have

〈Xu(g), ξ1(g
′)− ξ1(g)〉 ≤ 0.

ii) If, for every g ∈ ∂Ω and g′ ∈ Hg ∩ Ω, we have

〈Xu(g), ξ1(g
′)− ξ1(g)〉 < 0, (6)

then Ω is weakly H–convex; in particular, ∂Ω should be non characteristic.

The set Ω is clearly a sublevel set of the function u.

Proof. Let Ω be weakly H–convex. Let g ∈ ∂Ω, g′ ∈ Ω ∩ Hg and let us consider the
function U : [0, 1] → IR defined by U(s) = u(γg,g′(s)). From the assumption, U(s) ≤ 0 for
every s ∈ [0, 1], and U(0) = 0. Since U is differentiable, we conclude that U ′

+(0) ≤ 0, i.e.,
by (5),

〈Xu(g), ξ1(g
′)− ξ1(g)〉 ≤ 0.



A. Calogero, G. Carcano, R. Pini / On Weakly H-Quasiconvex Functions on the ... 759

Now, let (6) be true and let us suppose that Ω is not weakly H–convex, i.e., there exist
g ∈ Ω, g′ ∈ Hg ∩ Ω, and λ+ ∈ (0, 1) such that gλ+ 6∈ Ω, where gλ is defined as in (4). In
other words,

u(g) ≤ 0, u(g′) ≤ 0, u(gλ+) > 0.

Set λ = max{λ ∈ [0, λ+] : u(gλ) = 0}. In particular, u(gλ) = 0, therefore gλ ∈ ∂Ω, and,
from the assumption,

〈Xu(gλ), ξ1(g
′)− ξ1(gλ)〉 < 0.

Let U : [0, 1] → IR denote the function U(λ) = u(gλ); we have that U(λ) = 0, and
U(λ) > 0 if λ ∈ (λ, λ+]. This implies that U ′(λ) ≥ 0, i.e.,

〈Xu(gλ), ξ1(g
′)− ξ1(gλ)〉 ≥ 0,

a contradiction.

4. Weakly H–quasiconvex functions

Within this section, Ω will denote a weakly H–convex set. A notion of convexity for
functions arising naturally from the weak H–convexity of sets is the following:

Definition 4.1. A function u : Ω → IR is called weakly H–convex if

u(gλ) ≤ u(g) + λ (u(g′)− u(g))

for any g ∈ Ω, g′ ∈ Hg ∩ Ω, and λ ∈ [0, 1].

Next theorem (see, for instance, [8]) provides useful first and second order conditions for
weak H–convexity, based on the behaviour of the horizontal gradient and Hessian of u.

Theorem 4.2. A function u ∈ Γ1(Ω) is weakly H–convex if and only

u(g′)− u(g) ≥ 〈Xu(g), ξ1(g
′)− ξ1(g)〉 (7)

for every g ∈ Ω and g′ ∈ Hg ∩ Ω. Moreover, if u ∈ Γ2(Ω), then u is weakly H–convex
if and only if the symmetrized horizontal Hessian [(∇2

hu)(g)]
∗
is positive semidefinite for

every g ∈ Ω.

From the definition of weak H–convexity, it follows that the sublevel sets of a weakly H–
convex function are weakly H–convex sets. However, if all the sublevels of a function are
weakly H–convex one cannot infer that the function is weakly H–convex. Let us consider,
for instance, the function u : IH → IR defined by u(x, y, t) = ln(x2+y2+t2+1), and notice
that all the sublevel sets are Euclidean convex, in particular weakly H–convex. Since the
horizontal Hessian is not positive semidefinite everywhere, we deduce that this function
is not weakly H–convex.

In order to characterize all the functions whose sublevels are weakly H–convex, we give,
as in [14], the following:

Definition 4.3. A function u : Ω → IR is weakly H–quasiconvex if and only if

u(gλ) ≤ max(u(g), u(g′))

for every g ∈ Ω, g′ ∈ Hg ∩ Ω and λ ∈ [0, 1]; this is equivalent to require that {g ∈ Ω :
u(g) ≤ a} is weakly H–convex, for every a ∈ IR.
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While any weakly H–convex function is locally Lipschitz continuous (see [3], Th. 1.2), this
is not true, in general, for weakly H–quasiconvex functions. Indeed, consider, for instance,
the function u = χ

Ac , where A is a proper, weakly H–convex subset of IH. Nevertheless,
a kind of regularity is guaranteed by Sun and Yang (see [14], Th. 2.8): they prove that a
weakly H–quasiconvex function is locally bounded from above.

A useful remark, whose proof is trivial, is the following:

Remark 4.4. Let u be a weakly H–quasiconvex function on IH. Then, for every g0 ∈ IH,
the left translated Lg0u is still weakly H–quasiconvex.

Similarly to (7), a first–order characterization of weak H–quasiconvexity can be provided.

Theorem 4.5. Let Ω be an open weakly H–convex subset of IH and let u ∈ Γ1(Ω). Then,
u is weakly H–quasiconvex on Ω if and only if for every g ∈ Ω and g′ ∈ Hg ∩ Ω such that
u(g) ≥ u(g′), we get

〈Xu(g), ξ1(g
′)− ξ1(g)〉 ≤ 0.

Proof. Consider g, g′ ∈ Ω, with g′ ∈ Hg, and assume that u is weakly H–quasiconvex on
Ω. This implies that

u(gλ) ≤ max(u(g), u(g′)), ∀λ ∈ [0, 1].

Suppose that u(g) ≥ u(g′); we have that u(gλ)− u(g) ≤ 0 and, by (5),

lim
λ→0+

u(gλ)− u(g)

λ
= 〈Xu(g), ξ1(g

′)− ξ1(g)〉 ≤ 0.

Conversely, assume that u satisfies the first–order condition. By contradiction, suppose
that u is not weakly H–quasiconvex, and denote by g and g′ two points in Ω, with g′ ∈ Hg,
such that u(gλ) > max(u(g), u(g′)) for some λ ∈ [0, 1]. Let u(g) ≥ u(g′). Denote by λ the
smallest λ ∈ [0, 1] such that u(gλ) = maxν∈[0,1] u(gν). Since the function U(λ) = u(gλ) is
differentiable, then

U(λ̃) < U(λ), U ′(λ̃) > 0

for some λ̃ < λ. Consider the points g̃ = gλ̃ and g′ ∈ Hg̃ and apply the first–order
condition:

U ′(λ̃) = 〈Xu(g̃), ξ1(g
′)− ξ1(g̃)〉 > 0,

a contradiction.

More difficult is the proof of the second–order sufficient condition. Next theorem is
devoted to this condition, that is inspired by the second order characterization given
by Crouzeix ([7]) in the Euclidean setting. While the conditions in Crouzeix’s result
involve the Euclidean Hessian, in the sub–Riemannian framework we expect that only
the horizontal Hessian plays a crucial role. As a matter of fact, this situation has already
arisen in the characterization of weak H–convexity.

Theorem 4.6. Let u ∈ C2(Ω), where Ω ⊆ IH is an open weakly H–convex set. Let us
assume that the following implication holds:

∀g0 ∈ Ω, ∀v ∈ IR2 \ {0} : 〈(∇hu)(g0),v〉 = 0 =⇒ v[(∇2
hu)(g0)]

∗vT > 0. (8)

Then u is weakly H–quasiconvex on Ω.
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Proof. By contradiction, assume that u is not weakly H–quasiconvex. Denote by g1, g2
two points in Ω, g1 = (x1, y1, t1), g2 = (x2, y2, t2), with g2 ∈ Hg1 , such that

M = max
λ∈[0,1]

u(γg1,g2(λ)) > max(u(g1), u(g2)).

Let us consider the C2−function h defined by h(λ) = u(γg1,g2(λ)), and set g = (x, y, t) =
γg1,g2(λ), where λ = min{λ ∈ [0, 1], h(λ) = M}; it follows that

{

h(λ) < h(λ) = M, 0 ≤ λ < λ,

h(λ) ≤ h(λ) = M, λ ≤ λ ≤ 1.

Since g2 ∈ Hg1 , from (1) and (5), we have

h′(λ) = [(Xu)(g)](x2 − x1) + [(Y u)(g)](y2 − y1),

and
[(Xu)(g)](x2 − x1) + [(Y u)(g)](y2 − y1) = 0 (9)

First case: Assume that
(∇hu)(g) = 0.

Then, (8) implies that [(∇2
hu)(g)]

∗ is positive definite. Since g2 ∈ Hg1 , from (2) we get
that

h′′(λ) = (x2 − x1, y2 − y1)[(∇
2
hu)(g)]

∗(x2 − x1, y2 − y1)
T > 0.

Therefore, if |λ− λ| is small enough,

h(λ) = h(λ) + h′(λ)(λ− λ) +
h′′(λ)

2
(λ− λ)2 + o

(

(λ− λ)2
)

= h(λ) +
h′′(λ)

2
(λ− λ)2 + o

(

(λ− λ)2
)

> M,

a contradiction.

Second case: Suppose now that (∇hu)(g) 6= 0. Without loss of generality, we can suppose
that (Y u)(g) 6= 0. Moreover, we assume that x1 < x2; indeed, if x1 > x2, we can exchange
g1 and g2. Notice that the case x1 = x2 cannot occur if (Y u)(g) 6= 0, since (9) holds.

Denote by g̃ a point of the segment [g1, g] ⊂ [g1, g2], g̃ 6= g; standard computations show
that

g̃ =

(

x̃,−
(Xu)(g)

(Y u)(g)
(x̃− x) + y, t+ 2yx̃+ 2

(Xu)(g)

(Y u)(g)
(x̃− x)− 2x y

)

.

Actually, g̃ is supposed to satisfy some more conditions, that we defer to a later date for
the sake of clarity.

Denote by U the C2–function defined by

U(x, y) = u(x, y, t̃+ 2ỹx− 2x̃y),

for any (x, y) ∈ IR2 such that (x, y, t̃ + 2ỹx − 2x̃y) ∈ Hg̃ ∩ Ω; in other words, U is an
expression of the restriction of u to the plane Hg̃. In particular, since g̃ ∈ Hg, we have
that t = t̃+ 2ỹx− 2x̃y, and

U(x, y) = M.
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In order to apply the implicit function theorem to the equation above, we take into account
that (Y u)(g) 6= 0, that is, uy(g) − 2xut(g) 6= 0. If ut(g) = 0, then uy(g) − 2x̃ut(g) 6= 0,
for every g̃; if ut(g) 6= 0, then g̃ can be chosen close to g enough in such a way that
uy(g)− 2x̃ut(g) 6= 0. Denote by U1 a neighborhood of g such that

uy(g)− 2x̃ut(g) 6= 0

if g̃ ∈ U1. This is the first demand on g̃. With this choice of g̃, there exists ǫ > 0 and
γ2 : (x− ǫ, x] → IR such that



















γ2(x) = y,

U(x, γ2(x)) = M,

γ′
2(x) = −

Ux(x, γ2(x))

Uy(x, γ2(x))
,

for every x ∈ (x− ǫ, x], where

Ux(x, γ2(x)) = ux(x, γ2(x), t̃+ 2ỹx− 2x̃γ2(x)) + 2ỹut(x, γ2(x), t̃+ 2ỹx− 2x̃γ2(x)),

and

Uy(x, γ2(x)) = uy(x, γ2(x), t̃+ 2ỹx− 2x̃γ2(x))− 2x̃ut(x, γ2(x), t̃+ 2ỹx− 2x̃γ2(x));

notice that γ2 ∈ C2. Denote by γ3 : (x− ǫ, x] the function defined by

γ3(x) = t̃+ 2ỹx− 2x̃γ2(x),

and set Γ(x) = (x, γ2(x), γ3(x)). Let G denote the continuous function

G(g, g′) = −
1

(uy(g′)− 2xut(g′))3
(1, γ′

2(x
′))A(g, g′)

(

1
γ′
2(x

′)

)

,

where A(g, g′) = (aij(g, g
′))i,j=1,2 and

a11(g, g
′) = uxx(g

′) + 4yuxt(g
′) + 4y2utt(g

′)

a12(g, g
′) = a21(g, g

′) = uxy(g
′)− 2xuxt(g

′) + 2yuyt(g
′)− 4xyutt(g

′)

a22(g, g
′) = uyy(g

′)− 4xuyt(g
′) + 4x2utt(g

′).

Deriving once again the function γ2, we obtain γ′′
2 (x) = G(g̃,Γ(x)).

Notice that A(g, g) = [(∇2
hu)(g)]

∗; from (9) and hypothesis (8), we have that

(1, γ′
2(x))A(g, g)

(

1
γ′
2(x)

)

> 0.

We deduce that the expression

−
1

(uy(g)− 2xut(g))3
(1, γ′

2(x))A(g, g)

(

1
γ′
2(x)

)
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is non zero and has the sign opposite to the sign of (Y u)(g). Assume, without loss of
generality, that (Y u)(g) > 0. By continuity arguments on G, we can find a neighborhood
U2 of g such that γ′′

2 (x) < 0 whenever g̃ ∈ U1 ∩ U2; in particular, x 7→ γ2(x) is strictly
concave on (x− ǫ1, x] for a suitable 0 < ǫ1 ≤ ǫ.

Let us consider the curve Γ. This curve is not horizontal, in general, but it lies in the set

{g ∈ IH : u(g) = M} ∩Hg̃.

From the computations above, the curve {(x, γ2(x)) : x ∈ (x−ǫ1, x]} is tangent at (x, y) to
the line r through (x̃, ỹ) and (x, y), and has no intersections with it for any x ∈ (x−ǫ1, x).

Consider the line n through (x̃, ỹ) with direction (∇hu)(g), i.e., n = {(x, y) = (x̃, ỹ) +
s(∇hu)(g), s ∈ IR}, that is normal to r. Denote by (x#, y#) the intersection between n
and the curve above, and by g# the point in Hg̃ whose first components are (x#, y#).
Let W (W (η) = (w1(η), w2(η), w3(η))) be the horizontal geodesic in IH joining g# with
g̃. Assume that W (0) = g#, and W (1) = g̃. This geodesic is actually a segment, since g#

belongs to the horizontal plane of g̃.

Apply the Lagrange theorem to the function u ◦W : [0, 1] → IR. We get, for a suitable
η′ ∈ [0, 1] and K > 0,

u(W (1)) = u(W (0)) + 〈(∇hu)(W (η′)), (w′
1(η

′), w′
2(η

′))〉

= u(W (0)) +K〈(∇hu)(W (η′)), (∇hu)(g)〉.

Consider a neighborhood U3 of g such that the angle between (∇hu)(W (η)) and (∇hu)(g)
is, for instance, less than π/4, for every η ∈ [0, 1]. This is the last demand on g̃. If we take
g̃ ∈ U1 ∩ U2 ∩ U3, then

u(W (1)) = M +K〈(∇hu)(W (η′)), (∇hu)(g)〉 > M,

but this is a contradiction.

Notice that (8) makes sense under the weaker assumption that u belongs to Γ2(Ω), and
this would be consistent with Theorem 4.2 by Danielli, Garofalo and Nhieu. Actually, our
proof requires that u is in C2(Ω). Moreover, the second order characterization for weak
H–convexity in Theorem 4.2 does not imply (8); take, for instance, any constant, or, more
generally, any affine function. A similar situation occurred also in the Euclidean case
investigated by Crouzeix (see [7]).

In order to provide a set of conditions that fully characterize the weak H–quasiconvexity
of a function u, we follow the same line of [1], where the Euclidean case is studied. Let
us first introduce the concept of semistrict local maximum.

Definition 4.7. A function f : I ⊆ IR → IR, I interval, is said to have a semistrict local
maximum at t ∈ I if there exist t1, t2 ∈ I, t1 < t < t2 such that

i) f(t) ≥ f(λt1 + (1− λ)t2), for every λ ∈ [0, 1],

ii) f(t) > max(f(t1), f(t2)).

It is worthwhile noticing that any semistrict local maximum should be an interior point
of I; moreover, we have:
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Remark 4.8. If u is a weakly H–quasiconvex function on Ω, then for every g, g′ ∈ Ω with
g′ ∈ Hg the function U(λ) = u(gλ) : [0, 1] → IR has no semistrict local maxima.

We are now in the position to provide the following second–order characterization of a
weakly H–quasiconvex function.

Theorem 4.9. Let u ∈ C2(Ω), where Ω is an open, weakly H–convex subset of IH. Then
u is weakly H–quasiconvex if and only if for every g0 ∈ Ω and for every v = (v1, v2) ∈ IR2

such that ||v|| = 1 and 〈(∇hu)(g0),v〉 = 0, one of the following two conditions is fulfilled:

i) v[(∇2
hu)(g0)]

∗vT > 0,

ii) v[(∇2
hu)(g0)]

∗vT = 0, and the function F (s) = u(g0 · exp(sv1X + sv2Y )) does not
have a semistrict local maximum at s = 0.

Proof. Assume first that u is weakly H–quasiconvex, and take g0 ∈ Ω and v = (v1, v2) ∈
IR2, with ||v|| = 1, and such that 〈(∇hu)(g0),v〉 = 0. By contradiction, let v[(∇2

hu)(g0)]
∗vT

< 0. Since u ∈ C2(Ω), there exists ǫ > 0 such that v(∇2
hu)(g)]

∗vT < 0 for any g ∈ Ω with
dN(g, g0) < ǫ. Moreover, since Ω is open, we can find two points g1, g2 ∈ Hg0 , with
dN(gi, g0) < ǫ and such that g1 = g0 · exp(−ǫ1v1X− ǫ1v2Y ), g2 = g0 · exp(ǫ2v1X + ǫ2v2Y ),
for some positive ǫi. Consider gλ = g0δλ(g

−1
0 g1), λ ∈ [0, 1]. Then, for a suitable λ̃ ∈ [0, 1]

and for K > 0,

u(g1) = u(g0) +K(x1 − x0, y1 − y0)[(∇
2
hu)(gλ̃)]

∗(x1 − x0, y1 − y0)
T < u(g0).

Arguing in a similar way with respect to g2, we get that

u(g0) > max(u(g1), u(g2)),

but this is a contradiction. This implies that

〈(∇hu)(g0),v〉 = 0 =⇒ v[(∇2
hu)(g0)]

∗vT ≥ 0.

If v[(∇2
hu)(g0)]

∗vT > 0, there is nothing more to prove. Assume that

v[(∇2
hu)(g0)]

∗vT = 0.

Adapting Remark 4.8 to this case (g1 = g and g2 = g′) we easily conclude that the
function F (s) = u(g0 · exp(sv1X + sv2Y )) has not a semistrict local maximum at s = 0.

Suppose now that condition i) or ii) is fulfilled whenever 〈(∇hu)(g0),v〉 = 0. By contradic-
tion, suppose that there are g1, g2 ∈ Ω, with g2 ∈ Hg1 , such that u(g) > max(u(g1), u(g2))
for some g ∈ γg1,g2 . Denote by g0 a point where u attains its maximum in γg1,g2 ; in par-
ticular, 〈(∇hu)(g0),v〉 = 0. From the assumption, this implies that i) or ii) holds. As
a matter of fact, i) cannot occur, since g0 is not a minimum point for u on γg1,g2 ; even
condition ii) cannot be satisfied, since the point s = 0 is a semistrict local maximum
for the function F (s) = u(g0 · exp(sv1X + sv2Y )) defined on [−ǫ1, ǫ2]. This provides a
contradiction.

4.1. Example of weakly H–quasiconvex, non weakly H–convex, functions

We will now construct weakly H–quasiconvex functions which are not, in general, weakly
H–convex. Following the idea in [3], we consider functions of the type

u(x, y, t) = ((x2 + y2)2 + z(t))1/4,
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where z : IR → IR is assumed to be twice continuously differentiable and positive. A
simple computation shows that

Det[(∇2
hu)(x, y, t)]

∗ = 3u(x, y, t)−10(x2 + y2)2[z(t)(1 + z′′(t))− 3(z′(t))2/4]

tr[(∇2
hu)(x, y, t)]

∗ = (x2 + y2)[4z(t)(1 + z′′(t)) + (1 + z′′(t))(x2 + y2)2 − 3(z′(t))2/4].

We recall (see Theorem 4.2) that u is weakly H–convex on IH if and only if [(∇2
hu)(x, y, t)]

∗

is positive semidefinite on IH. Since z is positive, straightforward arguments show that

4z(1 + z′′) ≥ 3(z′)2, on IR (10)

if and only if both Det[(∇2
hu)(g)]

∗ and tr[(∇2
hu)(g)]

∗ are nonnegative on IH. Hence, (10)
is equivalent to the weakly H–convexity of u.

In the following, according to our Theorem 4.9, we find conditions on z assuring that u
is weakly H–quasiconvex. Since

(∇hu)(x, y, t) =

(

(x2 + y2)x+ yz′(t)/2

((x2 + y2)2 + z(t))3/4
,
(x2 + y2)y − xz′(t)/2

((x2 + y2)2 + z(t))3/4

)

,

(∇hu)(g) = (0, 0) if and only if g = (0, 0, t). In this case we get that [(∇2
hu)(0, 0, t)]

∗ is null,
for every t. Hence we consider v = (v1, v2) ∈ IR2, ‖v‖ = 1 and the function F : IR → IR
defined by F (s) = u(g · exp(sv1X+ sv2Y )) = (s4+ z(t))1/4. It is clear that we do not have
a semistrict local maximum for F at s = 0.

Let us consider a point g = (x, y, t) with (x, y) 6= (0, 0). Clearly, if we choose v = (v1, v2) ∈
IR2, with ||v|| = 1, as (v1, v2) = c(−(Y u)(g), (Xu)(g)), with c ∈ IR \ {0}, we have that
〈(∇hu)(g),v〉 = 0. We obtain

v[(∇2
hu)(g)]

∗vT =
c2(x2 + y2)2[4(x2 + y2)2(z′′(t) + 1) + 3z′(t)2]

((x2 + y2)2 + z(t))9/4
.

Since (x, y) 6= (0, 0), we see that the following conditions on z are sufficient to guarantee
that u(x, y, t) = ((x2 + y2)2 + z(t))1/4 is weakly H–quasiconvex:

(i) z ∈ C2(IR), z > 0 on IR;

(ii) 1 + z′′ ≥ 0 on IR;

(iii) if 1 + z′′(t0) = 0, then z′(t0) 6= 0.

Observe that, for instance, the function z : IR → IR defined by z(t) = 1
2
(te−t2 + 1)

satisfies these conditions, but the inequality (10) does not hold; therefore, u(x, y, t) =
((x2 + y2)2 + z(t))1/4 is weakly H–quasiconvex, but it is not weakly H–convex.
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