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Let S be an ideal of subsets of a metric space 〈X, d〉. A net of subsets 〈Aλ〉 of X is called S-convergent
to a subset A of X if for each S ∈ S and each ε > 0, we have eventually A∩S ⊆ Aε

λ
and Aλ∩S ⊆ Aε. We

identify necessary and sufficient conditions for this convergence to be admissible and topological on the
power set of X. We show that S-convergence is compatible with a pseudometrizable topology if and only
if S has a countable base and each member of S has an ε-enlargement that is again in S. Further, in the
case that the ideal is a bornology, we show that S-convergence when pseudometrizable is Attouch-Wets
convergence with respect to an equivalent metric.
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1. Introduction

If A is a subset of a metric space 〈X, d〉 and ε > 0, we write Aε for the epsilon enlargement
of A, defined by

Aε := {x ∈ X : d(x,A) < ε}

where we agree that d(x, ∅) = ∞. In terms of this notation, a net of sets 〈Aλ〉 in X is
declared Attouch-Wets convergent to a subset A of X if for each d-bounded set B and
each ε > 0, we have eventually

A ∩B ⊆ Aε
λ and Aλ ∩B ⊆ Aε.

It is hard to overstate the importance of this mode of convergence in convex analysis and,
more generally, in variational analysis (see, e.g., [3, 7, 21, 25, 26]). The first result of note
for this mode of convergence was the Walkup-Wets isometry theorem [28] that has as a
consequence bicontinuity of polarity for convex cones. But their result was a quantitative
one, not just a qualitative one, and predicted the importance of this mode of convergence
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in terms of estimation and the development of usable calculus rules, as contrasted with
Mosco convergence or Joly/slice convergence (see, e.g., [7]). Precisely, Walkup and Wets
showed that if A and C are convex cones in a normed linear space X with polar cones A◦

and C◦, then

sup {ε > 0 : C ∩B ⊆ Aε and A ∩B ⊆ Cε}.

= sup {ε > 0 : C◦ ∩B◦ ⊆ (A◦)ε and A◦ ∩B◦ ⊆ (C◦)ε},

where B is the closed unit ball of X and B◦ is the closed unit ball of the dual space
(the hypothesis of reflexivity in the original formulation is superfluous). Bicontinuity of
Fenchel conjugacy identifying lower semicontinuous convex functions with their epigraphs
was established over twenty years later [6, 13, 24]; this implies bicontinuity of polarity for
general closed convex sets containing the origin. These results were preceded by similar
results for Mosco convergence [22] which of course are valid only in reflexive spaces, along
with Joly’s seminal work on convex duality and topology [18]. But more fundamentally
Attouch-Wets convergence also imposes itself on linear analysis: a sequence of continuous
linear functionals converges in the operator norm to a continuous linear functional f if
and only if their graphs Attouch-Wets converge to the graph of f (see, e.g., [7, p. 104]).

Recall that a topology τ on a set W is called pseudometrizable if there is a pseudometric
on W whose balls form a base for the topology, and that a uniformity on W is called a
pseudometrizable uniformity if it coincides with the uniformity of a pseudometric on W .
As is well-known [29], a uniformity is pseudometrizable if and only if the uniformity has
a countable base. Attouch-Wets convergence on the power set P(X) of a metric space
〈X, d〉 fits within this framework, for if x0 is a fixed point of X, a compatible uniformity
has as a base all sets of the form

En := {(A,C) : A ∩ {x0}
n ⊆ C

1

n and C ∩ {x0}
n ⊆ A

1

n} (n ∈ N).

where N denotes the set of positive integers. Note that this uniformity on P(X) is not
separated since ∀n ∈ N ∀A ∈ P(X), we have (A, cl(A)) ∈ En, and for this reason there is
no hope of getting a metrizable topology for the entire hyperspace unless the d-topology
is discrete. But restricted to the closed subsets of X, it is easy to check that we get a
separated uniformity and hence a metrizable topology τAW which is completely metrizable
provided 〈X, d〉 is a complete metric space. Further, restricted to the nonempty closed
subsets, it can be shown that the Attouch-Wets topology τAW is the topology of uniform
convergence of distance functionals on bounded subsets of X [5, 4, 2, 7].

The nonempty d-bounded subsets Bd(X) obviously form a bornology [16, 8, 20], i.e., a
nonempty hereditary family of nonempty subsets of X that is closed under finite unions
and that forms a cover of X. Now if we replace Bd(X) in the definition of Attouch-
Wets convergence by an arbitrary bornology S, the resulting convergence need not be
topological. It turns out that the convergence we get is topological if and only if the
bornology is stable under small enlargements, i.e., given S ∈ S ∃ε > 0 with Sε ∈ S. In this
paper we give necessary and sufficient conditions for the topology to be pseudometrizable,
and show that when this occurs, there is an equivalent metric for the topology ofX so that
the convergence is actually Attouch-Wets convergence with respect to the remetrization
(see Theorem 3.18 infra).
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2. Preliminaries

In the sequel, all metric spaces are assumed to contain at least two points.

Let S be a nonempty family of nonempty subsets of a metric space 〈X, d〉; following [20]
we declare a net 〈Aλ〉 of subsets of X S-convergent to a subset A of X if for each S ∈ S

and each ε > 0, we have eventually

A ∩ S ⊆ Aε
λ and Aλ ∩ S ⊆ Aε.

No finer convergence results if we replace S by subsets of finite unions of members of S,
and so in the general case, we may assume without loss of generality that S is a nonempty
hereditary family closed under finite unions, i.e., a so-called ideal of subsets of X. Of
course, a bornology is an ideal that is a cover. No coarser convergence occurs if we replace
our ideal S by a base for S, i.e., a subfamily of S that is cofinal with respect to inclusion.
We mention that bornological convergence has been considered in this way by Di Maio,
Meccariello, and Naimpally [14] for bornologies assumed to have a closed base.

Given an ideal S and S ∈ S and ε > 0, form the entourage

[S, ε] := {(A,B) ∈ P(X)× P(X) : A ∩ S ⊆ Bε and B ∩ S ⊆ Aε},

and for A ⊆ X write [S, ε](A) = {B ∈ P(X) : (A,B) ∈ [S, ε]}. Evidently, 〈Aλ〉 is
S-convergent to A if and only if for each S and ε > 0, eventually Aλ ∈ [S, ε](A).

In applications, we often wish to restrict our attention to convergence of nets of closed
sets, and we now write C(X) for the family of closed subsets of X including the empty
set. So restricted, a convergence can be better behaved than it is more generally. For
example, if K(X) is the bornology of nonempty subsets of X that have compact closure,
then a net 〈Aλ〉 of closed subsets is K(X)-convergent to a closed set A if and only if 〈Aλ〉
is convergent in the Fell topology on C(X) to A [7, p. 141], having as a subbase all sets of
the form

{C ∈ C(X) : C ∩ V 6= ∅} (V open),

{C ∈ C(X) : C ∩K = ∅} (K compact).

The importance of the Fell topology on C(X) stems from its compactness without restric-
tion (see, e.g., [1, 7]). As we shall see in Theorem 3.1 below, this kind of convergence
on P(X) may fail to be topological. We will also write C0(X) for the nonempty closed
subsets of X.

The strongest S-convergence is obtained when our ideal consists of all nonempty subsets
P0(X), and as X ∈ P0(X), a net 〈Aλ〉 is P0(X)-convergent to a subset A if and only if
∀ε > 0, we have eventually

A ⊆ Aε
λ and Aλ ⊆ Aε.

Thus, P0(X)-convergence is compatible with Hausdorff distance on P(X) [19, 7], an ex-
tended real-valued pseudometric defined by

Hd(A,B) = inf{ε > 0 : A ⊆ Bε and B ⊆ Aε}.

Note that Hd(A,B) = 0 ⇔ cl(A) = cl(B). In the literature, Attouch-Wets convergence is
often called bounded Hausdorff convergence (see, e.g., [4, 25]).
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One desirable property for a convergence defined on P(X) or less generally on some
subfamily of P(X) containing the singletons, e.g., the closed convex sets of a normed linear
space, is that the assignment x 7→ {x} be an embedding with respect to convergence: for
each net 〈xλ〉 in X, we have

lim d(xλ, x) = 0 if and only if 〈{xλ}〉 converges to {x}.

In this case the convergence is called admissible. With respect to S-convergence, this
amounts to S almost being a bornology as next described.

Proposition 2.1. Let S be an ideal in a metric space 〈X, d〉. Then S-convergence on
P(X) is admissible if and only if either (1) S is a bornology, or (2) X\ ∪ S = {p} and
∀ε > 0 ∃S ∈ S with diamd(X\S) < ε.

Proof. Whether or not either (1) or (2) hold, since convergence in Hausdorff distance
is admissible, if lim d(xλ, x) = 0, then lim Hd({xλ}, {x}) = 0 and so {x} = S-lim {xλ}.
Suppose on the other hand that {x} = S-lim {xλ}. If (1) holds, choose S0 ∈ S0 with x ∈ S0;
eventually, {x} ∩ S0 ⊆ {xλ}

ε and so eventually d(x, xλ) < ε. If (1) fails but (2) holds, we
need only deal with the case that x /∈ ∪S. Choose S1 ∈ S with diamd(X\S1) < ε. There
exists an index λ0 such that λ ≥ λ0 ⇒ {xλ} ∩ S1 ⊆ {x}ε. Thus whether or not xλ ∈ S1

for λ > λ0, we have d(x, xλ) < ε because x /∈ S1.

Conversely suppose neither (1) nor (2) hold. If two distinct points p and q lay outside
∪S, then the sequence {p}, {p}, {p}, . . . is S-convergent to {q}, violating admissiblity. So
we may assume X\ ∪ S is a singleton {p}. If ∀S ∈ S, diamd(X\S) > ε, then for each
S ∈ S,∃xS ∈ X\S with d(xS, p) ≥

ε
2
. The net 〈{xS}〉S∈S is S-convergent to {p} and again

admissiblity is violated.

In the case that condition (2) in Proposition 2.1 holds and S has a closed base, then
{(X\S) ∪ {p} : S ∈ S} is a local base for the topology at p. Thus, we can think of X as
a one-point extension of X\{p} where complements of open neighborhoods of the ideal
point {p} are closed members of the bornology. It can be shown that any T1 one-point
extension of a T1 topological space arises exactly in this way from a bornology with closed
base (see, e.g., [11, Prop. 2.6]).

More primitively, we can define S−-convergence and S+-convergence of a net in P(X) as
follows: 〈Aλ〉 is S−-convergent (resp. S+-convergent) to A if for each S ∈ S and each
ε > 0 we have eventually A ∩ S ⊆ Aε

λ (resp. Aλ ∩ S ⊆ Aε). There is not complete
symmetry in lower and upper convergence so defined; the reader may consult [20] for
details. Generically, all of these convergences are now called bornological convergences in
the literature, whether or not the ideal is a bornology (see also [10]).

3. Results

When S is a bornology with closed base, cobbling together Propositions 2.15, Proposi-
tion 3.5 and Corollary 3.8 (iii) of [20], one can assert the equivalence of the following
statements:

(1) S-convergence is topological on P(X);

(2) {[S, ε] : S ∈ S, ε > 0} is a base for a uniformity on P(X);

(3) S is stable under small enlargements.
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As the framework in which this equivalence was obtained involved splitting S-convergence
into its upper and lower halves, we find it worthwhile to supply a stand-alone proof
here. Further, the equivalence is valid when S is just an ideal without the closed base
assumption.

As is well-known [29, p. 33] one can state properties for a collection of neighborhood bases
{Bx : x ∈ X} for a topological space X that are characteristic. Put differently, in a set
X, if a collection {Bx : x ∈ X} of subsets of X satisfies these properties where of course
each x is a member of each element of Bx, then for each x the collection Bx must form a
local base for some topology τ on X at x. Invariably, the crucial property is

(♯) ∀x ∈ X ∀U ∈ Bx ∃V ∈ Bx such that ∀y ∈ V ∃W ∈ By with W ⊆ U.

If (♯) fails, one can easily produce a net in X that fails the iterated limit criterion [19, p.
30] necessary for the convergence of 〈xλ〉 to x defined by

〈xλ〉 → x iff ∀U ∈ Bx, xλ ∈ U eventually

to be topological

Theorem 3.1. Let S be an ideal in a metric space 〈X, d〉. The following conditions are
equivalent:

(1) S-convergence is topological on P(X);

(2) {[S, ε] : S ∈ S, ε > 0} is a base for a uniformity △S on P(X);

(3) S is stable under small enlargements.

Proof. (3 ) ⇒ (2). Only the composition property is at issue. To verify this, let [S0, ε]
be arbitrary. Choose 0 < δ < ε

2
such that T = Sδ

0 ∈ S. We intend to show that
[T, δ] ◦ [T, δ] ⊆ [S0, ε]. To this end suppose (A,B) ∈ [T, δ] and (B,C) ∈ [T, δ] are
arbitrary. We must show A ∩ S0 ⊆ Cε and C ∩ S0 ⊆ Aε, and we only establish the first
inclusion. Let a ∈ A∩S0 be arbitrary; since S0 ⊆ T , we can choose b ∈ B with d(a, b) < δ.
Now b ∈ T so there exists c ∈ C with d(b, c) < δ, and so a ∈ (Cδ)δ ⊆ Cε.

(2) ⇒ (1). At each A ∈ P(X), {[S, ε](A) : S ∈ S} forms a local base for the topology of
the uniformity which is compatible with S-convergence.

(1) ⇒ (3 ). By the remarks preceding the theorem it suffices to show that if S fails to
be stable under small enlargements, then {BA : A ∈ P(X)} fails to satisfy condition (♯)
where of course

BA := {[S, ε](A) : S ∈ S, ε > 0}.

If (3 ) fails, there exists S0 ∈ S such that ∀ε > 0, Sε
0 /∈ S. We show that condition (♯)

fails with respect to U = [S0, 1](∅) ∈ B∅. We use the following elementary fact: for every
A ∈ P(X), S ∈ S, and ε > 0,

A ∈ [S, ε](∅) ⇔ A ∩ S = ∅.

Let V = [S1, ε1](∅) be an arbitrary member of B∅. Since ∀n S
1

n

0 * S1, we can pick for

each n bn ∈ S
1

n

0 \S1. Put
B = {bn : n ∈ N} ∈ [S1, ε1](∅).
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We claim ∀W ∈ BB, we have W * U . To see this let W = [S2, δ](B) be arbitrary in
BB. Take n ∈ N with 1/n < δ and then q ∈ S0 with d(bn, q) < 1/n. Then actually
Hd(B,B ∪ {q}) < 1/n < δ so that B ∪ {q} ∈ [S2, δ](B). However, B ∪ {q} /∈ U because
q ∈ S0.

One might object to our proof of (1) ⇒ (3 ) because we resort to arguing at the empty
set. We remark that if we are willing to assume that the ideal has a closed base - which
is implied by condition (3 ) - then we can tweak our proof to show that condition (3 ) is
necessary for S-convergence to be topological on the nonempty subsets P0(X) of X. We
leave verification of this claim as an exercise to the interested reader.

Let F(X) denote the bornology of nonempty finite subsets of X, and again let K(X)
denote the bornology of nonempty subsets with compact closure. The following two
corollaries are implicit in [20].

Corollary 3.2. Let 〈X, d〉 be a metric space. Then F(X)-convergence is topological on
P(X) if and only if d gives the discrete topology.

Corollary 3.3. Let 〈X, d〉 be a metric space. Then K(X)-convergence is topological on
P(X) if and only if the topology of X is locally compact.

When 〈X, d〉 is locally compact, it can be shown that a compatible topology has as a
subbase all sets of the form

{A ∈ P(X) : A ∩ V 6= ∅} (V open),

{A ∈ P(X) : ∃ε > 0 with A ∩Kε = ∅} (K compact).

Generically, a topology of this type is called a proximal topology [10]. This last corol-
lary is somewhat unanticipated in that K(X)-convergence restricted to C(X) is without
qualification compatible with the Fell topology as we noted earlier.

Here is a noteworthy negative corollary.

Corollary 3.4. Let 〈X, d〉 be a metric space whose topology is not discrete, and let S

be the ideal consisting of the nowhere dense subsets of X. Then S-convergence is never
topological on P(X).

We next list two corollaries in the domain of functional analysis.

Corollary 3.5. Let X be a normed linear space and let S be the bornology having as a
base the weakly compact sets. Then S-convergence is topological on P(X) if and only if X
is reflexive.

Proof. If X is not reflexive, then no ε-enlargement of a point can lie in a weakly compact
set as no closed ball is weakly compact. If X is reflexive and A is weakly compact, then
for each ε > 0, Aε ⊆ A+ {x : ‖x‖ ≤ ε} which is again a weakly compact set.

Notice that if two-sided bornological convergence as determined by the weakly compact
sets is topological, then it is already Attouch-Wets convergence. In a general normed
linear space, it follows from the uniform boundedness principle [27] applied to the dual
space that the weakly bounded sets coincide with the norm bounded sets. Thus, two-sided
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bornological convergence as determined by the weakly bounded sets is again Attouch-Wets
convergence and is trivially topological. But while weak*- bounded subsets of X∗ need
not be norm bounded, we may still state

Corollary 3.6. Let X be a normed linear space and let S be the bornology on X* having
as a base the weak* bounded sets. Then S-convergence is always topological on P(X∗).

Proof. Suppose A is a weak∗ bounded subset of X∗. Then by definition ∀x ∈ X,
sup{a(x) : a ∈ A} < ∞. But for each x,

sup{a(x) : a ∈ A1} = sup{a(x) : a ∈ A}+ ‖x‖,

and so the enlargement of radius 1 about A is also weak∗ bounded.

In the sequel when S is an ideal that is closed under small enlargements, we will write τS
for the topology of S-convergence on P(X). This topology is always completely regular
because it is induced by a uniformity [29]. In addition to Proposition 2.1, another rationale
for restricting our attention here to bornologies is provided by the following proposition.

Proposition 3.7. Let S be an ideal in a metric space 〈X, d〉 that is stable under small
enlargements. The following conditions are equivalent:

(1) S is a bornology;

(2) C(X) equipped with the τS-relative topology is Hausdorff;

(3) C0(X) equipped with the τS-relative topology is Hausdorff.

Proof. (1) ⇒ (2). If S is a cover and A and B are distinct closed sets with A * B,
chose a ∈ A and ε > 0 with d(a,B) > ε. As S is hereditary, we have {a} ∈ S and
(A,B) /∈ [{a}, ε]. This shows that the trace of the uniformity △S on C(X) is separated
so that the relative topology is Hausdorff.

(2) ⇒ (3 ). This is trivial.

(3 ) ⇒ (1). Suppose (1) fails, i.e., ∃x0 /∈ ∪S. Take x1 6= x0; then the sequence of nonempty
closed sets {x0, x1}, {x0, x1}, {x0, x1}, . . . is S-convergent to both {x1} and to {x0, x1}, and
so the relative topology on C0(X) cannot be Hausdorff.

We note that whether or not S-convergence is topological restricted to C(X), one can
easily see that S-limits are unique in C(X) (or in C0(X)) if and only if ∀x ∈ X ∃ε > 0
with {x}ε ∈ S (see [20, Prop. 4.5]).

Theorem 3.8. Let S be an ideal in a metric space 〈X, d〉 that is stable under small
enlargements. The following conditions are equivalent:

(1) S has a countable cofinal subset with respect to inclusion;

(2) The uniformity △S on P(X) has a countable base;

(3) The hyperspace 〈P(X), τS〉 is pseudometrizable;

(4) The hyperspace 〈F(X), τS〉 is first countable.

Proof. (1) ⇒ (2). Choose 〈Sn〉 cofinal and increasing in S; then clearly {[Sn,
1
n
] : n ∈ N}

is a countable base for △S.
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(2) ⇒ (3 ). This is a consequence of a standard fact from general topology (see, e.g., [29,
p. 257]).

(3 ) ⇒ (4). This is obvious.

(4) ⇒ (1). Let x0 ∈ ∪S be arbitrary, and let {F(X) ∩ [Sn, εn]({x0}) : n ∈ N} be a
countable local base for 〈F(X), τS〉 at {x0}. Since S is hereditary, ∃δ > 0 with {x0}

δ ∈ S.
For each n set Tn = {x0}

δ ∪ ∪n
j=1Sj. Since S is closed under finite unions, 〈Tn〉 is an

increasing sequence in S. We claim that {Tn : n ∈ N} is cofinal in S. If this fails we can
find S ∈ S not included in any Tn. For each n, pick xn ∈ S\Tn. Then for j ≥ n, we have

{x0, xj} ∈ [Tn, εn]({x0}),

and evidently {F(X)∩ [Tn, εn]({x0}) : n ∈ N} is also a local base for the relative topology
at {x0}. This yields {x0} = τS − lim{x0, xj}. But on the other hand, for each j,

{x0, xj} /∈ [S,
δ

2
]({x0}),

and this gives the desired contradiction.

In view of Proposition 3.7, and since finite sets are closed sets, we may state

Corollary 3.9. Let S be an ideal in a metric space 〈X, d〉 that is stable under small
enlargements. Then 〈C(X), τS〉 is metrizable if and only if S is a bornology with a countable
base.

Let X be a metrizable space and let DX be the family of metrics that are compatible with
the topology. A basic question to ask is this: under what circumstances do two compatible
metrics for X yield the same S-convergence? When S = P0(X), it is well-known that the
convergences coincide if and only if the metrics define the same uniformity [7, p. 92]. This
does not help much in solving the general problem, but the answer given for S = Bd(X)
as determined by Beer and Di Concilio [9] puts us on the right track. The key idea is
provided by the following definition.

Definition 3.10. Let 〈X, d〉 and 〈Y, ρ〉 be metric spaces and let S be a subset of X. We
say that a function f : X → Y is strongly uniformly continuous on S if ∀ε > 0 ∃δ > 0 such
that if d(x,w) < δ and {x,w}∩S 6= ∅, then ρ(f(x), f(w)) < ε. If S is a family of subsets,
we say f is strongly uniformly continuous on S if it is strongly uniformly continuous on
each member of S.

The following facts are easy to verify: (1) if f is strongly uniformly continuous on S,
then it is strongly uniformly continuous on the ideal generated by S; (2) f is globally
continuous if and only if it is strongly uniformly continuous on F(X); (3) f is uniformly
continuous on X if and only if f is strongly uniformly continuous on P0(X); (4) if f is
globally continuous, then it is strongly uniformly continuous on K(X). If d ∈ DX and
ρ ∈ DX , we say ρ is uniformly stronger than d on an ideal S provided the identity map
id : 〈X, ρ〉 → 〈X, d〉 is strongly uniformly continuous on S. If this is also true when the
metrics are reversed, we say that d and ρ are uniformly equivalent with respect to S. The
following lemma is an easy exercise.
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Lemma 3.11. Let 〈X, d〉 be a metric space and let d be a metric that determines the same
uniformity as d. Suppose f : X → R is a continuous function that is strongly uniformly
continuous on an ideal S. Then the metric ρ ∈ DX defined by

ρ(x, y) := d(x, y) + |f(x)− f(y)|

is uniformly equivalent to d with respect to S.

Example 3.12. On the real line R, ρ(x, y) = |x2 − y2| + min {1, |x − y|} is uniformly
equivalent to the usual metric with respect to the bounded subsets of R but is not uni-
formly equivalent to the usual metric.

We now look at two-sided bornological convergence defined on a metrizable space depend-
ing on two parameters: the ideal S and the metric d chosen from DX . We incorporate
the parameter d in our notation as follows: (S, d)-convergence will mean S-convergence
for the metric space 〈X, d〉, and [S, d, ε] will mean [S, ε] where the enlargements are taken
with respect to the metric d. Further, ∆S,d will be denote the “pre-uniform structure�
consisting of all supersets of all entourages [S, d, ε].

Theorem 3.13. Let d and ρ be compatible metrics for a metrizable topological space X,
and let T and S be two ideals in X. The following conditions are equivalent:

(1) (S, ρ)-convergence ensures (T, d)-convergence for nets in P(X);

(2) (S, ρ)-convergence ensures (T, d)-convergence for nets in C0(X);

(3) T ⊆ S and ρ is uniformly stronger than d on T;

(4) For each T ∈ T and ε > 0 there exists S ∈ S and λ > 0 with [S, ρ, λ] ⊆ [T, d, ε].

Proof. (1) ⇒ (2). This is obvious.

(2) ⇒ (3 ). Suppose first that T * S. Then ∃T0 ∈ T such that ∀S ∈ S, T0\S 6= ∅. For
each S ∈ S, pick xS ∈ T0\S. Clearly, ∀x ∈ X, we have {x} = (S, ρ)-lim {xS, x}. By (2),
we have {x} = (T, d)-lim {xS, x}. But since 〈xS〉 is a net in T0, we conclude that for all
x, lim d(xS, x) = 0. This contradicts our groundrule that X is not a singleton, and we
now have shown that T ⊆ S.

It remains to show that ρ is uniformly stronger than d on T. If not, then by definition
id : 〈X, ρ〉 → 〈X, d〉 is not strongly uniformly continuous on T. Thus for some T ∈ T and
ε > 0 there exists sequences 〈tn〉 in T and 〈wn〉 in X such that ∀n ∈ N

ρ(tn, wn) ≤
1

n
but d(tn, wn) > ε.

Notice that since d and ρ are equivalent metrics, neither sequence can have a cluster point.
By the Efremovic Lemma [7, 23] by passing to a subsequence we may assume ∀n, k ∈ N
that d(tn, wk) ≥ ε/4. For each k ∈ N write

Ak := {wn : n ∈ N} ∪ {tn : n ≥ k} ∈ C0(X).

Clearly the sequence 〈Ak〉 converges to the closed set {wn : n ∈ N} in Hausdorff distance
Hρ and thus is (S, ρ)-convergent, too. But for all k, (Ak, {wn : n ∈ N}) /∈ [T, d, ε/4] and
so (T, d)-convergence fails. This contradiction shows ρ is uniformly stronger than d on T.
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(3 ) ⇒ (4). Fix T ∈ T and ε > 0. There exists λ > 0 such that if {x, y} ∩ T 6= ∅ and
ρ(x, y) < λ then d(x, y) < ε. Then with S = T , we have [S, ρ, λ] ⊆ [T, d, ε].

(4) ⇒ (1). This is obvious.

Corollary 3.14. Let d and ρ be compatible metrics for a metrizable topological space X,
and let T and S be two ideals in X. The following conditions are equivalent:

(1) (S, ρ)-convergence coincides with (T, d)-convergence for nets in P(X);

(2) (S, ρ)-convergence coincides with (T, d)-convergence for nets in C0(X);

(3) T = S and ρ is uniformly equivalent to d on T;

(4) Coincidence of pre-uniform structures holds: ∆S,d = ∆T,ρ.

Corollary 3.15. Let d and ρ be compatible metrics for a metrizable topological space X.
Let T be an ideal consisting of sets all whose closures are compact, and let S be a second
ideal. Then (S, ρ)-convergence ensures (T, d)-convergence if and only if T ⊆ S.

Proof. Each continuous function on X is strongly uniformly continuous on T no matter
what compatible metric is used for the domain. In particular, this applies to id : 〈X, ρ〉 →
〈X, d〉.

Corollary 3.16. Let T be an ideal in a metric space 〈X, ρ〉 that is stable under small
enlargements. Let d be an equivalent metric and let S be a second ideal. Then (S, ρ)-
convergence ensures (T, d)-convergence if and only if T ⊆ S and id : 〈X, ρ〉 → 〈X, d〉
restricted to each member of T is uniformly continuous.

Proof. If T is stable under small enlargements, then a function is strongly uniformly
continuous on T if and only if its restriction to each member of T is uniformly continuous.

Example 3.17. We present a bornology T on a metrizable space X and two compatible
metrics d and ρ such that id : 〈X, ρ〉 → 〈X, d〉 restricted to each member of T is uniformly
continuous, yet ρ is not uniformly stronger than d restricted to T. In the plane, let

X = {(x, 0) : x ∈ R} ∪ {(n,
1

n
) : n ∈ N},

and let T be the bornology on X consisting of all sets of the form A∪B where A ∈ F(X)
and B ⊆ {(x, 0) : x ∈ R}. Let ρ be the usual metric for the plane, and let d be the
equivalent metric on X defined by

d(x,w) =











ρ(x,w) if x and w are both on the horizontal axis

0 if x = w

1 otherwise.

Clearly, id : 〈X, ρ〉 → 〈X, d〉 fails to be strongly uniformly continuous on {(x, 0) : x ∈ R}.
On the other hand let T = A ∪ B ∈ T be arbitrary where A = {(nj,

1
nj
) : j = 1, 2, . . . , k}

and B lies in the horizontal axis. Given ε > 0, if (t1, t2) ∈ T and if ρ(t1, t2) < min{ε, (n1+
n2 + · · ·+ nk)

−1}, then d(t1, t2) < ε.



G. Beer, S. Levi / Pseudometrizable Bornological Convergence is Attouch-Wets ... 449

We call a bornology S on a metric space 〈X, d〉 a metric bornology if S = Bρ(X) for some
equivalent metric ρ. By a celebrated theorem of S.-T. Hu [17], this occurs if and only if
both of the following conditions hold: (1) S has a countable base, and (2) ∀S ∈ S ∃T ∈ S

with cl (S) ⊆ int (T ). It can be shown that we can find a metric ρ uniformly equivalent
to d for which S = Bρ(X) if and only if ∃δ > 0 such that for each S ∈ S, Sδ = {x :
d(x, S) < δ} ∈ S [8]. This means that for the initial metric d, S is stable under small
enlargements uniformly over S.

We intend to show using Corollary 3.14 that if S is a bornology and (S, d)-convergence
on P(X) is pseudometrizable, then it must be Attouch-Wets convergence with respect to
a remetrization. Now by Theorems 3.1 and 3.8, such a bornology S already satisfies the
conditions of Hu’s Theorem as condition (2) obviously holds if S is stable under small
enlargements. While there is no way in general to produce a metric ρ that is uniformly
equivalent to d knowing just that S is stable under small enlargements, Corollary 3.14
fortunately says that something substantially less than that is required. Hu’s original con-
struction [17, pp. 312–313] is not adequate to the task, as we need to construct uniformly
continuous Urysohn functions along the way.

Theorem 3.18. Let S be a bornology in a metric space 〈X, d〉. The following conditions
are equivalent:

(1) (S, d)-convergence is compatible with a pseudometrizable topology;

(2) S is stable under small enlargements and has a countable base;

(3) there exists an equivalent metric ρ for X such that (S, d)-convergence on P(X) is
Attouch-Wets convergence with respect to ρ;

(4) there exists an equivalent metric ρ for X such that ∆S,d = ∆Bρ(X),ρ on P(X);

(5) there exists an equivalent metric ρ for X such that A = (S, d)-lim Aλ for nets
of nonempty sets if and only if the associated net of distance functionals ρ(·, Aλ)
converges to ρ(·, A) on ρ-bounded sets.

Proof. Theorem 3.8 gives the equivalence of conditions (1) and (2), and Corollary 3.14
gives the equivalence of conditions (3 ) and (4). Equivalence of Attouch-Wets convergence
with uniform convergence of distance functions for nets in C0(X) is a classical result
[5, 4, 2, 7], and the proof is easily adapted to general nets of nonempty sets. Thus,
conditions (3 ) and (5) are equivalent by Corollary 3.14. Since Attouch-Wets convergence
is pseudometrizable, (3 ) ensures (1). Thus only (2) ⇒ (3 ) requires proof.

If S = P0(X), then (S, d)-convergence is convergence in Hausdorff distance Hd which is
(Bρ(X), ρ)-convergence where ρ is the uniformly equivalent bounded metric defined by
ρ = min {d, 1}. Otherwise, for each S ∈ S, X\S is nonempty. Let 〈Sn〉 be an increasing
sequence of open sets that is cofinal in S. Set A1 = S1 and choose ε1 > 0 with Aε1

1 ∈ S.
Now let A2 = S2 ∪ Aε1

1 ∈ S. Having produced open A1, A2, . . . , An in S, choose εn > 0
with Aεn

n ∈ S and set An+1 = Sn+1∪Aεn
n . The construction produces a new sequence with

these properties:

(1) ∀n ∈ N, An is open;

(2) ∀n ∈ N, Aεn
n ⊆ An+1;

(3) ∀n ∈ N, X\An 6= ∅;

(4) {An : n ∈ N} is cofinal in S.
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For each n ∈ N define fn : X → R by

fn(x) = min {1,
1

εn
d(x,An)}.

Each fn is d-uniformly continuous, fn(x) = 0 if x ∈ An, and by property (2) above
fn(x) = 1 if x /∈ An+1. Since S is a bornology, condition (4) says that {An : n ∈ N} is a
cover of X, and we may assert

(5) ∀x ∈ X ∃δ > 0 ∃n0 ∈ N such that d(x,w) < δ ⇒ ∀n > n0 fn(w) = 0.

By local finiteness, f := f1 + f2 + f3 + · · · defines a finite-valued nonnegative continuous
function. Note also that if C ⊆ X, then f |C is bounded if and only if C ⊆ An for some n
because (i) if x ∈ An, then f(x) ≤ n− 1, and (ii) if x /∈ An+1, then f(x) ≥ n. Next define
an equivalent metric ρ on X by

ρ(x,w) = min {d(x,w), 1}+ |f(x)− f(w)|.

By condition (4), f |C is bounded if and only if C ∈ S which obviously gives Bρ(X) = S.
To show that d and ρ are uniformly equivalent with respect to S, it suffices by Lemma 3.11
to show that f is strongly uniformly continuous on S. To see this, fix S ∈ S and choose
n with S ⊆ An. Now f restricted to the εn-enlargement of S is uniformly continuous as
f = f1 + f2 + f2 + · · · + fn so restricted. Thus f is strongly uniformly continuous on S,
and in view of Corollary 3.14, the proof is complete.

Corollary 3.19. Let S be a bornology in a complete metric space 〈X, d〉 with a count-
able base that is stable under small enlargments. Then (S, d)-convergence on C0(X) is
completely metrizable.

Proof. The metric ρ in the proof of Theorem 3.18 satisfies d ≤ ρ, and so ρ is a complete
metric. But the Attouch-Wets topology for C0(X) as determined by a complete metric is
itself completely metrizable [2, 7].

Example 3.20. In the plane R2 let S be the bornology having as a countable base all
strips of the form R× [−n, n] where n ∈ N. Evidently, S is stable under arbitrary enlarge-
ments, not just small ones, and a uniformly equivalent metric for which S-convergence is
Attouch-Wets convergence is given by

ρ((x1, y1), (x2, y2)) = min{
√

(x2 − x1)2 + (y2 − y1)2, 1}+ ||y2| − |y1||.

Now it is not hard to show that if A = {(0, 1)} and An = {(0, 1), (n, log n)}, then
A = (S, d)− lim An. On the other hand, 〈d(·, An)〉 fails to converge uniformly to d(·, A)
on R× [−1, 1], because for each n,

d((n, 1), (0, 1)) = n while d((n, 1), (n, log n)) = log n− 1.

This shows that uniform convergence of distance functionals for nets of sets on a metric
bornology need not be preserved by a uniformly equivalent remetrization.

While necessary and sufficient conditions for remetrizations that preserve uniform con-
vergence of distance functionals on finite subsets for nets of sets have been worked out
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by Costantini, Levi and Zieminska [12], not much is known in the general case. Uniform
convergence of distance functionals on finite subsets for nets of sets is nothing more than
pointwise convergence and is known as Wijsman convergence in the literature [7]. On
the other hand, necessary and sufficient conditions for S-convergence to coincide with this
stronger form of convergence have recently been presented in [10], where an example is
given showing that this can happen outside the setting of Attouch-Wets convergence.

Example 3.21. Consider the open interval X = (−1, 1) equipped with the usual metric
d of R and with the bornology K(X). Then ρ(x,w) = | x

1−|x|
− w

1−|w|
| provides a remetriza-

tion of X for which K(X)-convergence is Attouch-Wets convergence. More generally,
any locally compact separable metric space 〈X, d〉 admits a metric ρ for which closed
and bounded sets are compact [15], and for any such metric (K(X), d)-convergence is
(Bρ(X), ρ)-convergence (see Corollary 3.15 supra).

By Corollary 3.15 if 〈X, d〉 is a metric space and S ⊆ K(X) is an ideal, then each remetriza-
tion leaves S-convergence invariant. Our final result of the paper shows that if S is any
other kind of ideal, then we can get many different S-convergences by varying metrics.
Our proof calls on an often useful theorem of Hausdorff [15, p. 369]: each metric defined
on a closed subset of a metrizable space X that is compatible with the relative topology
is extendable to an element of DX .

Theorem 3.22. Let X be a metrizable space with compatible metrics DX and let S be an
ideal of subsets of X that contains some set S0 whose closure is noncompact. Then there
exists an uncountable subset T of DX whose members ρ yield distinct (S, ρ)-convergences
in C0(X) and thus in P(X) .

Proof. We produce an uncountable family of compatible metrics {ρα : α ∈ Ω} such that
(S, ρα)-convergence differs from (S, ρβ)-convergence whenever α, β are distinct indices in
Ω. Since cl(S0) is noncompact, there is a sequence

x1, y1, x2, y2, x3, y3, . . .

in S0 with no cluster point in X. Since {xn : n ∈ N}∪{yn : n ∈ N} is a closed discrete set,
by Hausdorff’s Theorem on the extension of metrics ∃d ∈ DX such that for all positive
integers n 6= k,

d(xn, xk) =
∣

∣

1

n
−

1

k

∣

∣ and d(xn, yn) =
1

n
.

Let Σ = {E : E ⊆ N and both E and N\E are infinite}, and define an equivalence relation
≡ on Σ as follows:

E1 ≡ E2 provided their symmetric difference is a finite set.

Let {Eα : α ∈ Ω} consist of one representative from each equivalence class, so that
the index set Ω is uncountable. By the Tietze Extension Theorem, for each α ∈ Ω, let
fα : X → [0, 1] be a continuous functions with these three properties:

(1) ∀α ∈ Ω ∀n ∈ N, fα(xn) = 0;

(2) ∀α ∈ Ω ∀n ∈ Eα, fα(yn) = 0;

(3) ∀α ∈ Ω ∀n /∈ Eα, fα(yn) = 1.
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For each α ∈ Ω define ρα ∈ DX by the formula

ρα(x,w) = d(x,w) + |fα(x)− fα(w)|.

Now let α, β be distinct indices in Ω; without loss of generality, we may assume Eα\Eβ

is infinite. We produce a sequence of nonempty closed sets that is (S, ρα)-convergent but
not (S, ρβ)-convergent to A = {xj : j ∈ N}. For each n ∈ N, let An be defined by

An := {yj : j ∈ Eα and j ≥ n} ∪ A.

The sequence 〈An〉 is actually convergent to A in ρα-Hausdorff distance, for if j ≥ n and
j ∈ Eα, we have

ρα(yj, A) ≤ ρα(yj, xj) = d(yj, xj) + |fα(yj)− fα(xj)| =
1

j
+ 0 ≤

1

n
,

so that Hρα(An, A) ≤
1
n
. But with respect to the metric ρβ, we claim that ∀n ∈ N, we

have An ∩ S0 * A
1

2 = {x : ρβ(x,A) <
1
2
}. To see this, take j > n with j ∈ Eα\Eβ. Then

yj ∈ An ∩ S0, but
ρβ(yj, A) ≥ infn∈N |fβ(yj)− fβ(xn)| = 1.

This shows that yj /∈ A
1

2 with respect to ρβ, and so (S, ρβ)-convergence fails.
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