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1. Introduction

It is known that differentiability of a convex function is closely related to strict convexity
of its conjugate. Similarly, Lipschitz continuity of the gradient of a differentiable convex
function is related to strong convexity of the conjugate. (We make these statements
precise in Section 2.)

To our knowledge, an equivalent characterization of local Lipschitz continuity of the gra-
dient of a differentiable convex function in terms of a property of the conjugate function
has not been studied. Carrying out such a study is the purpose of this paper.

It will turn out that the sought after property is not quite what a natural guess suggests,
i.e., it is not “local strong convexity� defined via a local combination of definitions of strict
and strong convexity. Rather, it will require that a “strong� subdifferential inequality hold
on all compact – but not necessarily convex – subsets of the domain of the subdifferential
of the conjugate function on which that subdifferential has a bounded selection. However,
such property will reduce to the expected “local strong convexity� in many cases.

2. Background

Let f : IRn → IR be a proper (never −∞ and finite somewhere), lower semicontinuous
(lsc), and convex function. The effective domain of f is the set dom f = {x ∈ IRn | f(x) <
∞}. Given f , its conjugate function is

f ∗(y) = sup
x∈IRn

{y · x− f(x)} .
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It is also a proper, lsc, and convex function, and (f ∗)∗ = f . We have f ∗(y) < ∞ for all
y ∈ IRn if and only if f is coercive: lim|x|→∞ f(x)/|x| = ∞.

The subdifferential of f at x, denoted ∂f(x), is the set of all subgradients y of f at x:

∂f(x) = {y ∈ IRn | f(x′) ≥ f(x) + y · (x′ − x) ∀x′ ∈ IRn}

The domain of ∂f is the set dom ∂f = {x ∈ IRn | ∂f(x) 6= ∅}. In general, dom ∂f need
not be convex. The subdifferential mappings of f and f ∗ are inverses of one another:
y ∈ ∂f(x) if and only if x ∈ ∂f ∗(y). Either of these inclusions is also equivalent to
f(x) + f ∗(y) = x · y.

The subdifferential mapping is a monotone mapping: for all x1, x2 ∈ dom ∂f , all y1 ∈
∂f(x1), y2 ∈ ∂f(x2), (x1−x2)·(y1−y2) ≥ 0. It is strictly monotone if (x1−x2)·(y1−y2) > 0
as long as x1 6= x2 and strongly monotone with constant σ > 0 if (x1 − x2) · (y1 − y2) ≥
σ|x1 − x2|

2.

The function f is essentially differentiable if C = int dom f is nonempty, f is differentiable
on C, and limi→∞ |∇f(xi)| = ∞ for any sequence {xi}

∞
i=1

converging to a boundary point
of C. The function f is essentially strictly convex if f is strictly convex on every convex
subset of dom ∂f ; that is, if for each convex S ⊂ dom ∂f , we have (1−λ)f(x1)+λf(x2) >
f ((1− λ)x1 + λx2) for all λ ∈ (0, 1), all x1, x2 ∈ S with x1 6= x2. The following are
equivalent:

- f is essentially differentiable;
- ∂f is single-valued on dom ∂f ;
- ∂f ∗ is strictly monotone;
- f ∗ is essentially strictly convex.

The function f is strongly convex if there is a constant σ > 0 such that

(1− λ)f(x1) + λf(x2) ≥ f ((1− λ)x1 + λx2) +
1

2
σλ(1− λ)|x1 − x2|

2 (1)

for all λ ∈ [0, 1], all x1, x2 ∈ IRn. A manipulation of (1) shows that strong convexity of f
with constant σ is equivalent to f − 1

2
σ| · |2 being convex. The following are equivalent:

- f is differentiable and ∇f is Lipschitz continuous with constant 1/σ;
- f ∗ is strongly convex with constant σ;
- ∂f ∗ is strongly monotone with constant σ.

Finally, if f is smooth, then strong convexity of f with constant σ is equivalent to the
eigenvalues of the Hessian Hf of f (that are real and nonnegative, by convexity of f)
being bounded below by σ.

For details of the facts summarized above see [1] and [2].

3. Examples

In what follows, we will say that f : IRn → IR is essentially locally strongly convex if for
any compact and convex K ⊂ dom ∂f , f is strongly convex on K, in the sense that there
exists σ > 0 such that (1) is satisfied for all x1, x2 ∈ K and all λ ∈ (0, 1).

Example 3.1. Consider f(x) = (1/p)|x|p and f ∗(y) = (1/q)|y|q where 1/p+1/q = 1 and
p, q > 1. Then ∇f is locally Lipschitz continuous if p ≥ 2 while f ∗ is essentially locally
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strongly convex (one could omit the term “essentially� here as dom f ∗ = IRn) if q ≤ 2.
Note that ∇f is globally Lipschitz continuous only when p = 2 and then also q = 2,
f ∗ = f , f ∗ is strongly convex, and in fact f ∗ is (globally) strongly convex only in this
case.

Example 3.2. Consider f(x) = ex and

f ∗(y) =











y log y − y if y > 0

0 if y = 0

∞ if y < 0.

Then f is differentiable, what is reflected in f ∗ being essentially strictly convex. Fur-
thermore, ∇f is is locally Lipschitz continuous, while f ∗ is essentially strongly convex.
(This can be seen by looking at the second derivative of f ∗, which is bounded below by a
positive number on each compact subset of dom ∂f ∗ = (0,∞).)

Similarly, f is strictly convex, what is reflected in f ∗ being essentially differentiable.
(Note that |∇f ∗(y)| = − log y blows up as y ց 0 and ∂f ∗(0) = ∅.) Furthermore, f is
locally strongly convex (which can be seen by noting that the second derivative of f is
locally bounded below by positive numbers), while ∇f ∗ is locally Lipschitz continuous on
int dom f = dom ∂f ∗ = (0,∞).

Note that in the example above, ∇f is locally Lipschitz continuous on IRn but f ∗ is
not strongly convex. Such a situation can occur even if dom f ∗ is compact, as the next
example shows.

Example 3.3. Consider a convex function f : IR → IR with f(0) = 0 that is even,
differentiable, with f ′ piecewise differentiable, and such that, for n = 1, 2, . . . , f ′′(x) = 0
if x ∈ (n− 1, n− 1/n4], f ′′(x) = n if x ∈ (n− 1/n4, n]. In other words, f ′ is constant on
(n−1, n−1/n4] and increases at the rate n on (n−1/n4, n] (so f ′ increases on (n−1/n4, n]
by 1/n3). Then f ′ is locally Lipschitz continuous. However, f ∗ is not strongly convex on
compact subsets of IR; in fact it is not strongly convex on compact subsets of dom f ∗.
Indeed, we have dom f ∗ = [−c, c] where c =

∑∞
n=1

1/n4, while (f ∗)′′(p) = 1/n on the
interval

(
∑n−1

k=1
1/k4,

∑n

k=1
1/k4

)

. In other words, there are intervals of arbitrarily slow
growth of ∂f ∗ in the compact dom f ∗, which means that ∂f ∗ is not strongly monotone,
which in turn means that f ∗ is not strongly convex.

A natural conjecture to make is that the conjugate of an essentially differentiable convex
function f with locally Lipschitz continuous gradient will be an essentially locally strongly
convex. This turns out to be false, as the next, more complicated, example shows.

Example 3.4. Consider the pair of convex conjugate functions on IR2:

f(x1, x2) =















1

2

(

1

2
x2

1
+ x2

)2

if
1

2
x2

1
+ x2 ≥ 0

0 if
1

2
x2

1
+ x2 < 0,
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f ∗(y1, y2) =



















1

2

y2
1

y2
+

1

2
y2
2

if y2 > 0

0 if y1 = y2 = 0

∞ otherwise.

Note that dom f ∗ = {y | y2 > 0 or y = 0} and dom ∂f ∗ = dom f . (At y = 0, we have
0 ∈ ∂f ∗(0).) Also note that f ∗ is smooth on int dom f ∗ = {y | y2 > 0}.

The function f is differentiable and ∇f is locally Lipschitz continuous. However, f ∗ is
not strongly convex on the compact and convex set K = {(y1, y2) | 2 ≥ 2y2 ≥ y2

1
}. There

are several ways to see that. For example, note that for y2 > 0,

∇f ∗(y) =









y1
y2

−
1

2

y2
1

y2
2

+ y2









, Hf∗(y) =









1

y2
−
y1
y2
2

−
y1
y2
2

y2
1

y3
2

+ 1









,

and the smaller of the two real eigenvalues of Hf ∗(y) equals

γ(y) = 2



1 +
y2
1

y2
2

+ y2 +

√

(

1 +
y2
1

y2
2

+ y2

)2

− 4y2





−1

.

In particular, γ(y) < 2

(

1 +
y2
1

y2
2

)−1

, and if y2 = y2
1
, γ(y) < 2y2

1
. Thus the eigenvalues of

Hf ∗ are not uniformly bounded below by a positive number on the interior of K (where
f ∗ is smooth), and so f ∗ is not strongly convex on K.

We need to note though that the function f ∗ from the example above is strongly convex
on each compact and convex K ⊂ dom ∂f ∗ ∩ {y | y2 > 0}, and more generally, on each
compact and convex K ⊂ dom ∂f ∗ such that ∂f ∗ is uniformly bounded on K \ {0}.
Indeed, if ∂f ∗ is uniformly bounded on K \ {0} and K is compact, then for some M > 0,
for all y ∈ K \ {0} we have |y1| ≤ My2 and y2 ≤ M . At the same time

γ(y) ≥

(

1 +
y2
1

y2
2

+ y2

)−1

≥
(

1 +M2 +M
)−1

,

and so the eigenvalues of Hf ∗ are uniformly bounded below by a positive number on
K \ {0}. It is easy to check that f ∗ is continuous relative to the set K under discussion
(but it is not continuous at 0 in general, only lsc). This is enough to conclude that
f ∗ is strongly convex on K. Note that while ∂f ∗(0) is not bounded, and thus ∂f ∗ is
not bounded on K, there exists a bounded selection from ∂f ∗ on K. This to an extent
illustrates the condition on f ∗ that turns out to be equivalent to local Lipschitz continuity
of ∇f ; more precisely, condition (d) in Theorem 4.1.

4. Main results

Theorem 4.1. For a proper, lower semicontinuous, and convex function f : IRn → IR,
the following are equivalent:
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(a) f is essentially differentiable and ∇f is locally Lipschitz continuous on int dom f ;

(b) the mapping ∂f is single-valued on dom ∂f and locally Lipschitz continuous relative
to gph ∂f in the sense that for each compact subset S ⊂ gph ∂f there exists ρ > 0
such that for any (x1, y1), (x2, y2) ∈ S one has

|y1 − y2| ≤ ρ|x1 − x2|;

(c) the mapping ∂f ∗ is locally strongly monotone relative to gph ∂f ∗ in the sense that for
each compact subset S ⊂ gph ∂f ∗ there exists σ > 0 such that for any (y1, x1), (y2, x2)
∈ S one has

(y1 − y2) · (x1 − x2) ≥ σ|y1 − y2|
2;

(d) for each compact subset K ⊂ dom ∂f ∗ and each compact K ′ ⊂ IRn such that K ′ ∩
∂f ∗(y) 6= ∅ for all y ∈ K there exists σ > 0 such that

f ∗(y′) ≥ f ∗(y) + x · (y′ − y) +
1

2
σ|y′ − y|2 (2)

for all y, y′ ∈ K, all x ∈ ∂f ∗(y) ∩K ′.

Proof. (a) =⇒ (d): Pick any compact K ⊂ dom ∂f ∗ and a compact K ′ ⊂ IRn such that
K ′ ∩ ∂f ∗(y) 6= ∅ for all y ∈ K. (If no such K ′ exists for a chosen K there is nothing to
prove.) For all y ∈ K there exists x ∈ K ′ with x ∈ ∂f ∗(y), and so with y = ∇f(x). Thus
K ⊂ ∇f(K ′) and K ′ ⊂ C, where C = dom∇f = int dom f . As C is convex and open,
conK ′ is a compact subset of C. Let ε > 0 be such that K ′

ε = conK ′ + εIB ⊂ C, and let
ρ > 0 be a Lipschitz constant for ∇f on K ′

ε. Then for all x, x′ ∈ K ′
ǫ,

f(x′) ≤ f(x) +∇f(x) · (x′ − x) +
1

2
ρ|x′ − x|2.

This is shown in the proof of [2, Proposition 12.60]. Take any y ∈ K, x ∈ ∂f ∗(y) ∩K ′.
Then f ∗(y) = y · x− f(x) while for any y′ ∈ K,

f ∗(y′) = sup
x′

{y′ · x′ − f(x′)} ≥ sup
x′∈K′

ε

{y′ · x′ − f(x′)}

≥ sup
x′∈K′

ε

{

y′ · x′ − f(x)−∇f(x) · (x′ − x)−
1

2
ρ‖x′ − x‖2

}

= y · x− f(x) + sup
x′∈K′

ε

{

(y′ − y) · x′ −
1

2
ρ‖x′ − x‖2

}

= f ∗(y) + x · (y′ − y) + sup
x′∈K′

ε

{

(y′ − y) · (x′ − x)−
1

2
ρ‖x′ − x‖2

}

.

Now pick any α > 0 such that σ = 2(α − 1

2
ρα2) > 0 and α‖y′ − y‖ ≤ ε for all y, y′ ∈ K.

Considering x′ in the supremum above so that x′ − x = α(y′ − y) yields the desired
inequality.

(d) =⇒ (c): Let S be any compact subset of gph ∂f ∗. Let

K = {y | ∃x such that (y, x) ∈ S},

K ′ = {x | ∃ y such that (y, x) ∈ S}.
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Both K and K ′ are compact and for all y ∈ K, ∂f ∗(y) ∩K ′ 6= ∅. Let σ > 0 be as in (d).
Then for any (y1, x1), (y2, x2) ∈ S,

f ∗(y2) ≥ f ∗(y1) + x1 · (y2 − y1) +
1

2
σ|y2 − y1|

2,

f ∗(y1) ≥ f ∗(y2) + x2 · (y1 − y2) +
1

2
σ|y1 − y2|

2.

Adding the two inequalities shows the needed strong monotonicity.

(c) =⇒ (b): Given any compact S in gph ∂f , let S ′ = {(y, x) | (x, y) ∈ S} and let σ > 0
be as in (c). One can then take ρ = 1/σ, since for any (x1, y1), (x2, y2) ∈ S,

|y1 − y2| |x1 − x2| ≥ (y1 − y2) · (x1 − x2) ≥ σ|y1 − y2|
2.

(b) =⇒ (a): Essential differentiability of f follows from ∂f being single-valued, and entails
continuity, and thus local boundedness, of∇f on int dom f . Local boundedness, and local
Lipschitz continuity of ∇f relative to gph∇f , implies local Lipschitz continuity of ∇f on
int dom f .

Essentially, condition (d) above says that inequality (2) holds for some σ > 0 for each
compact – but not necessarily convex – subset of dom ∂f ∗ and for each bounded selection
from ∂f ∗ on that subset.1 It turns out that when such a compact subset is in fact convex,
satisfaction of (2) for one bounded selection from ∂f ∗ (provided it exists) is enough to
guarantee that f ∗ is “strongly convex on that subset�. More generally, we have:

Proposition 4.2. Let g : IRn → IR be a proper, lower semicontinuous, and convex func-
tion, let K be a compact and convex subset of dom ∂g, and let σ > 0. Consider the
inequality

g(x′) ≥ g(x) + y · (x′ − x) +
1

2
σ|x′ − x|2. (3)

The following are equivalent:

(a) for all x ∈ K there exists y ∈ ∂g(x) such that (3) holds for all x′ ∈ K;

(b) g is strongly convex with constant σ on K (in the sense that (1) is satisfied by g for
all x1, x2 ∈ K and all λ ∈ (0, 1));

(c) for all x ∈ K and all y ∈ ∂g(x), (3) holds for all x′ ∈ K.

Proof. (a) =⇒ (b) Pick any x1, x2 ∈ K and λ ∈ (0, 1). Let x = (1 − λ)x1 + λx2 and
let y ∈ ∂g(x) be such that (3) holds for all x′ ∈ K. Inequalities obtained from (3) by
substituting x1 and x2 for x′, multiplied, respectively, by 1− λ and λ, and added to each
other, yield

(1− λ)g(x1) + λg(x2) ≥ g(x) +
1

2
σ
(

(1− λ)|x1 − x|2 + λ|x2 − x|2
)

.

Now, algebra yields (1−λ)|x1−x|2+λ|x2−x|2 = λ(1−λ)|x1−x2|
2, and so g is strongly

convex on K.

1Monotone operators for which there exist locally bounded selections were studied in [3] under the name
“locally efficient”.
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(b) =⇒ (c) Let φ = g − 1

2
σ| · |2. From (b) we have that φK = φ + δK is convex. (Here

δK is the indicator of K: δK(x) = 0 if x ∈ K and δK(x) = ∞ otherwise.) Thus for any
x, x′ ∈ K, any z ∈ ∂φK(x), we have

φ(x′) ≥ φ(x) + z · (x′ − x).

But ∂φ + ∂δK ⊂ ∂φK and 0 ∈ ∂δK(x), so the inequality above holds for all x, x′ ∈ K,
all z ∈ ∂φ(x). As the function 1

2
σ| · |2 is finite everywhere, ∂g(x) = ∂φ + σx. Thus, the

inequality displayed above translates to

g(x′)−
1

2
σ|x′|2 ≥ g(x)−

1

2
σ|x|2 + (y − σx) · (x′ − x)

and this inequality holds for all x, x′ ∈ K, all y ∈ ∂g(x). Algebra shows that this
inequality is exactly (3).

(c) =⇒ (a) Obvious.

Corollary 4.3. Let f : IRn → IR be a proper, lower semicontinuous, and convex function.
If

(⋄) for every compact and convex set K ⊂ dom ∂f ∗ there exists a compact set K ′ ⊂ IRn

such that ∂f ∗(y) ∩K ′ 6= ∅ for all x ∈ K,

then the condition that

(a) f is essentially differentiable and ∇f is locally Lipschitz continuous on int dom f

implies that

(b) f ∗ is essentially locally strongly convex.

On the other hand, if dom ∂f ∗ is convex then (b) implies (a). Thus, if (⋄) holds and
dom ∂f ∗ is convex, then (a) is equivalent to (b).

Corollary 4.3 in particular says that for a coercive (and proper and lsc) convex function
f , essential differentiability of f and local Lipschitz continuity of ∇f is equivalent to
essential local strong convexity of f ∗.

There are some natural examples of classes of convex functions g for which the two
assumptions used in Corollary 4.3 are met, that is, for which dom∂g is convex and there
exist bounded selections from ∂g(x) with x ranging over compact subsets K ⊂ dom ∂g.
One example is given by functions g = g0 + δC where g0 : IR

n → IR is a convex function
(finite-valued!) and δC is the indicator of a nonempty closed convex set C. Indeed,
then ∂g0 is locally bounded and ∂g0(x) ⊂ ∂g(x) for each x ∈ dom ∂g = dom g = C.
Another class is given by functions g for which dom ∂g is open, as then ∂g is bounded on
each compact subset of dom ∂g. More generally, it is enough that dom ∂g be relatively
open, that is, open in the relative topology of the affine hull of dom∂g, and equivalently,
of dom g. Then dom ∂g equals to the relative interior of dom g, and so is relatively
open. Furthermore, if P denotes the orthogonal projection onto the affine hull of dom g,
the function G(x) := g(Px) is proper, lsc, and convex, dom ∂G is open, and given any
compact K ⊂ dom ∂g ⊂ dom ∂G, ∂G is bounded on K and ∂G(x) ⊂ ∂g(x) for all x ∈ K.

To conclude, we make the following observation, which follows from the fact that for any
essentially differentiable f , dom ∂f is open and convex.
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Corollary 4.4. Let C be the class of all proper, lower semicontinuous, and convex func-
tions f : IRn → IR such that f is essentially differentiable, ∇f is locally Lipschitz contin-
uous, and f is essentially locally strongly convex. Then

f ∈ C ⇐⇒ f ∗ ∈ C.
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